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Abstract. In this paper a new geometric-mean circuit for current-mode 
square-root domain filters (SRD) is presented. The geometric-mean 
circuit employs MOSFET transistors that are operating in both strong 
inverted saturation and triode regions and works in low supply voltage. 
Simulation results by HSPICE confirm the validity of the proposed 
design technique. 
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1   Introduction 

Companding (compressing and expanding) filters as an attractive technique in analog 

circuit designs have drawn the attention of many researchers. The main  advantage  of  
these  filters  is  their  large  dynamic  range  in  low  voltage, caused by voltage swing  
reduction  at  internal  nodes [1]. In the first attempt companding systems employed 
the exponential I-V characteristic of bipolar transistors that led to the log-domain 
structures [2, 3]. Developments in CMOS circuits and also similarity in I-V 
characteristics, caused the bipolar transistors were substituted by CMOS transistors 

that are operating in weak inversion region [4]. However, the effects of limited speed 
and transistor mismatches restricted their applications. Afterwards, companding 
system employed MOS transistors in saturation  region  based on  voltage  translinear  
principle  and class-AB  linear  tranconductors  that  led to square-root domain (SRD) 
structure [5-13]. The main drawback of these circuits is that for correct operation, all 
MOS transistors of the circuit should work in saturation region. If, in some cases, the 

transistors are forced to enter triode region, it will invalidate the MOS translinear or 
tranconductance operation, which lead to more nonlinearity. In this work to overcome 
the above problem a new approach for geometric-mean circuit as the basic unit of 
SRD filters is presented, in which MOS transistors operate in both saturation and 
triode region and the circuit can work in low supply voltage. 

                                                             
1 The corresponding author.  
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This paper is organized as follows: In section 2, the basic principle of current-mode 

SRD filters operation is presented. In section 3 circuit design of proposed geometric 
mean is presented. In section 4 and 5 simulation results and conclusion is presented, 
respectively. 

2   Principle operation of SRD filters 

A current-mode first-order low pass filter with output current outI   and input current 

inI  in time domain will be expressed by [1]. 

inout
out AII

dt

dI
(1)                                               

in which, A is the DC gain,
C


1

  is the time constant of filter  and C  is cutoff 

frequency of the filter. 
Fig. 1 shows the basic principle of the SRD filter. Employing I-V relation of transistor 
MF gives:  
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Fig. 1: principle of the SRD filter 

 
It can be shown [1], after a little manipulation by substituting (2) into (1), it gives:  
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in which , tuning current  Itune1  and  Itune2  are  obtained   by [1]: 
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Fig. 2 shows block diagram of the SRD first-order LPF based on (3).   
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Fig.2: Block diagram of the SRD first-order LPF 

3   Circuit Design 

Fig. 3 shows  the  proposed  geometric-mean circuit  that contains  of  two current 
mirrors by transistors M1, M2, M7  and  M5, M6, M12, respectively, output current 
mirror  (transistors M13-M16) and auxiliary transistors (M3, M4, M8-11). Input 

currents are   xI , yI   and output current is  outI  of the geometric-mean circuit. In a 

simple analysis, it is assumed that the bulk effect and channel-length modulation are 
not be considered and those effects will be apparent in the simulation results. In this 

circuit it is considered that transconductance factor of   M1, M2, M5 and M6 are 
identical. In this case the current drain of MOS transistors that are operating in triode 
region is: 

inI
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and for  saturation  region  it  will be:   
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It can be shown  when  input current xI  is  higher  than  other input current  yI   

( yx II  ), transistor  M2 and  M3    operates  in  triode region and transistor  M4   and  

M5  operates  in  saturation  region and  vice versa . 
 
Assuming that M8 and M11 are  identical and  having  the aspect ratio of (N1)2 times 
more than  the aspect  ratio of  the   M1, M2, M5 and M6, then transconductance 

factor of the M8 and M11 will be [13]: 

  
2

1118 N(7)                                                

With this assumption and by considering Fig. 4, and using (5) and (6), the drain-
source voltage of transistor M2 can be written as follows: 
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According to prior assumption ( yx II  ), M2 operate in triode region, so from (5), 

(6) and by applying (8), it can be shown that the drain current of M2, by assumption 

that 
2

1N  is much more than one, will be: 

))II(I
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that reported in [13]. In this work, aiming to better performance of the output current 

of the geometric mean circuit and thus elimination the second and third terms of right 
hand side of (9), it is assumed that transcodutance factors of M3 and M4 is:  
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which lead to better approximation rather than existed in proposal [13].                                                  
Similar to (8) and using (10) and (11), the drain-source voltage of transistor M3 will 
be: 
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   Fig.3 : proposed geometric mean circuit 

 
 

And, by assumption that 
2
2N  is much more than one, the current drain of M3  

approximately will be:  
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In Fig. 3, the output current 1oI  is summation of the drain current of transistors M9 

and M10 (or equivalently summation of the drain current of transistors M3 and M4). 
So, by applying KCL in node A and using (9): 

2
3431
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MMMo
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IIII   xyMyx III

N
II  3

22

2
(14)           

Also the output current 2oI   is summation both drain current of M8 and M11. 

Similarly, by applying KCL in node B and using this assumption that β5= β6, the 

output current 2oI  will be expressed as: yMo III  22 , and using (9),  the current 

2oI  will be:  

 xyMyxo III
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III  2
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Now by applying KCL in node X of Fig. 3, the output current will be obtained by:              

xI

outI

yI

1oI
2oI

1oI
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and using (9), it results: 
2

2
5

M
M

I
I   , so it can be seen if in (16) it is considered that 

22

1
2

N
N  , then the output current Iout  simplified to:    

    yxout III (17)                                                  

From (17), it can be seen that the proposed circuit acts as a geometric-mean. It is 

evident that squarer/divider is obtained by exchanging the output current Iout with one 
of input Iy of geometric mean circuit. 

4   Simulation Results 

By employing block diagram of Fig. 2 and using circuit diagram of Fig. 3 a current 
mode first order low pass filter is designed and simulated by HSPICE. Vdd=1V and an 
external capacitor C=50pF were employed. Transient analysis were carried out by 
using Itune1=Itune2=15uA as shown in Fig. 4.  Fig. 4 shows time response of the filter 
for sinusoidal input current with 5uA amplitude, 5uA bias current and with 1 kHz 
frequency. The frequency response of the filter is tunable. Fig. 5 shows frequency 

response simulation, with varying tuning current in range of 6uA to 10uA (from left 
to right). Fig. 6 shows the nonlinear behavior of the output current by using total 
harmonic distortion with a 4096 point Fast Fourier (FFT). The worst-case THD of the 
output the current is less than -40db for the input amplitudes from 10uA to 45uA. 
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Fig. 4: Time Response of the filter    a: input and output filter    b:capacitor voltage 

 

5uA bias current and with 1 kHz frequency. The frequency response of the filter is 
tunable. Fig. 5 shows frequency response simulation, with varying tuning current in 
range of 6uA to 10uA (from left to right). Fig. 6 shows the nonlinear behavior of the 
output current by using total harmonic distortion with a 4096 point Fast Fourier 
(FFT). The worst-case THD of the output the current is less than -40db for the input 
amplitudes from 10uA to 45uA. 

 
 
 
 
 
 

 
 
 
 
 
 

 
 

 

 

 

Fig. 5: Frequency response of the filter 
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Fig. 6: Nonlinearity performance of the filter 

 Conclusion 

In this paper a new current-mode geometric-mean that uses MOS transistors that are 
operating in both saturation and triode region is presented. Simulation results of the 
filter show that the proposed technique is applicable to design of filters with low 

voltage requirement. The circuit is employed for designing of a first order SRD filter.   
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