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An Introduction to Empirical Bayes Data Analysis

GEORGE CASELLA*

Empirical Bayes methods have been shown to be powerful
data-analysis tools in recent years. The empirical Bayes
model is much richer than either the classical or the ordinary
Bayes model and often provides superior estimates of pa-
rameters. An introduction to some empirical Bayes methods
is given, and these methods are illustrated with two ex-
amples.

KEY WORDS: Stein estimation; Normal distribution; Bi-
nomial distribution.

1. INTRODUCTION

Empirical Bayes methods have been around for quite a
long time. Their roots can be traced back to work by von
Mises in the 1940s (see Maritz 1970), but the first major
work must be attributed to Robbins (1955), although his
formulation is somewhat different from that used here. One
might refer to Robbins’s formulation as nonparametric em-
pirical Bayes, whereas the formulation discussed here can
be referred to as parametric empirical Bayes. The major
difference is that the parametric approach specifies a par-
ametric family of prior distributions, but the nonparametric
approach leaves the prior completely unspecified. We will
deal here only with parametric empirical Bayes methods and
will refer to them simply as empirical Bayes methods.

Although the idea of a parametric empirical Bayes anal-
ysis is not new, the first major work in this area did not
appear until the early 1970s in a series of papers by Efron
and Morris (1972, 1973, 1975), and one might rightfully
say that they are the founders of modern empirical Bayes
data analysis. Efron and Morris (1977) is an excellent, fairly

nontechnical account of the interrelationship between these

methods and the so-called Stein effect.

Empirical Bayes methods have become increasingly pop-
ular and have been applied to many types of problems. Some
examples are fire alarm probabilities (Carter and Rolph 1974),
revenue sharing (Fay and Herriot 1979), quality assurance
(Hoadley 1981), and law school admissions (Rubin 1981).
More recently, Morris (1983) formulated a theory of para-
metric empirical Bayes inference.

The purpose here is to give a simple introduction to em-
pirical Bayes methods and illustrate them with two exam-
ples.

2. EMPIRICAL BAYES ESTIMATORS
FOR THE NORMAL CASE

Suppose that we observe p random variables, each from
a normal population with different means but the same known
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variance, that is,

X, ~n, b, i=1...p. Q2.1

(Think of a balanced one-way analysis of variance, with the
X, representing the cell means.) The cases of unknown var-
iance or different sample sizes per cell can also be handled,
but here we will stay with this simple case.

The usual, or classical, estimator of 6, is X, the obser-
vation (or cell mean). This estimator has many optimality
properties (best linear unbiased, maximum likelihood, min-
imax, etc.), but we can do better.

For the moment, make the Bayesian assumption that

0, ~ n(u, %), i=1,...p. 2.2)
The Bayes estimate for 6, 6%(X;), is given by
88(X,) = [a¥(a? + ™) + [7H(2 + o)))X,. (2.3)

Note that 83(X,) is a weighted average of u (the prior es-
timate) and X; (the sample estimate). The weights used in
the weighted average depend on the relative sizes of 72 (the
prior variance) and o? (the sample variance). As 7%/0? gets
smaller, more weight is put on u. Thus the relative accuracy
of the estimates X; and u determines how much weight they
receive in the weighted average.

58(X,) is the Bayes estimate because it is the mean of the
posterior distribution, the distribution of 6; given X;, denoted
by 7(6;|X,). A standard calculation shows that

7(6]X;,) ~ n[85(X,), o7/ (0 + 7)),
i=1...p. @24

The empirical Bayesian agrees with the Bayes model but
refusés to specify values for u and 72. Instead, he estimates
these parameters from the data. All of the information about
w and 72 is contained in the marginal distribution of X,
(unconditional on 6;), and another standard calculation shows
that this marginal distribution, f(X;), is given by

fX) ~ n(u, o + 12), i=1,...,p (2.5

Thus unconditionally, we can regard the X;’s as coming
from the same population. This assumption was already
implicit in the Bayes model, since each 6; had the same
prior distribution. In many cases this assumption is also
quite reasonable—think of a one-way analysis of variance
in which the treatments are defined by levels of a particular
factor. It is reasonable to assume that there is some distant,
underlying similarity in the responses.

Using (2.5), we can construct estimates of the Bayes
quantities in (2.3). In particular, we have

(p — 3o | o?
SX;, — X)? o+ 72

EX) = E [ (2.6)

where the expectation is taken over the marginal distribution
of the X;’s. From (2.6), we have unbiased estimators of the
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Bayes quantities in (2.3), and we can construct an empirical
Bayes estimator of 6; by replacing these quantities by their
estimates. Thus an empirical Bayes estimator of 6,
8E(X), is given by

SE(X) = ﬂ’_—3)_"] X
! SX, — X)?

+ [1 = (—”_—357] X, (.7
(X, — X)?

Note that 6% uses information from all of the X,;’s when
estimating each 6,. This takes advantage of what has come
to be known as the Stein effect (e.g., see Stein 1981 or
Berger 1982). Simply put, the Stein effect asserts that es-
timates can be improved by using information from all co-
ordinates when estimating each coordinate.

The empirical Bayes estimator §£(X) is a good estimator
of 6;. We will see later how it performs on data, but it also
has an extremely appealing theoretical property: on the av-
erage, it is always closer to 6, than X;. We can measure the
worth of an estimator &; by considering (6, — §;)%, the
sum of the squared differences between the estimator and
the parameter. If p = 4, it is true that

P P
E{Z [6; — 5,-E(X)]2} <E [Z (6, — Xi)z].
i=1

i=1
for all 6;,, (2.8)

where the expectation here is over the distribution of X;
given 6, X; ~ n(6;, o?). In this sense, 8%(X) is always
closer to 6; than X;. [For a rigorous proof of (2.8), see Efron
and Morris 1973.]

The quantities in (2.8) are called the mean squared error
(MSE) of the respective estimators and are functions of 6,
and o only through the quantity =/_, 67/c*. On examining
Figure 1, it is fairly obvious that the empirical Bayes es-
timator has the most desirable MSE.

3. SOME EMPIRICAL BAYES INTUITION

There is a nice intuitive justification of the empirical
Bayes estimator of (2.7) in the one-way analysis of variance

Figure 1. MSE of the Usual Estimator, X, the Bayes Estimator,
88, and the Empirical Bayes (EB) Estimator, §.
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(ANOVA). Suppose that there are five treatments. Let X,
..., Xs represent observed cell means and 6, . .., 6
represent true cell means. The ANOVA F statistic tests the
hypotheses

H, : all 6’s equal vs. H, :notH,. 3.1

We can regard these hypotheses as two extremes: If H is
true, then we should estimate each 6, withX = 3X,/5 (since
all of the 6;’s are equal), whereas if H, is true, then we
should estimate each 6; with X;. The empirical Bayes es-
timator, given in (2.7), is a compromise between these two
extremes, as can be seen in Figure 2.

Note how the empirical Bayes estimator affects the ex-
treme means (X, and Xs) much more than it affects the
means that are close to X. In most cases this type of shrink-
age will improve the estimate of 6;: the extreme cell means
are often overestimates or underestimates. One might say
that the empirical Bayes estimator anticipates regression to
the mean.

The amount of shrinkage in the empirical Bayes estimator
is directly related to the F statistic that tests the ANOVA
null hypothesis. If there are p treatments, the F statistic is

F=[(2X - X)Y(p — /6~ (3.2)
where 2 estimates o°. Since we are dealing here with
known ¢, the ANOVA null hypothesis would be tested by
T =[2X, - X)*(p — D]/o?

~xiMp — D, (3.3)
and large values of T would lead to rejection of H,, : all 6;’s

equal. By using (3.3), the empirical Bayes estimator of (2.7)
can be written as

. 3\ -
SE(X,) = (”——)T"x
p ]

+ [1 - (&_—3>T"]X,. (3.4)
p— 1

As T becomes large (and the data support H,), 6£(X;) puts
more weight on X; and less on X. Thus 8%(X;) puts more
weight on the estimate (X; or X ) that seems most reasonable
based on the evidence from all of the data.

kel

X t

T Empirical Bayes T‘
Estimates H

H " o]

Figure 2. The Empirical Bayes Estimator in the One-Way
ANOVA.



4. EXAMPLES OF EMPIRICAL
BAYES ESTIMATES

The following two examples were chosen because, in both
cases, the parameter values were available. Thus it is pos-
sible to assess directly the performance of the estimators.

Example 1. Estimating Batting Averages. Efron and
Morris (1975) reported the batting averages of 18 major
league baseball players after their first 45 at bats. The prob-
lem is to estimate their final batting average. For simplicity,
we will only consider here a subset of their data, consisting
of seven players selected to be illustrative. (The highest-
ranked, the lowest-ranked, and five other players, chosen
at random, were included.)

It is reasonable to assume that each time at bat is a bi-
nomial trial, with the probability of success equal to the
player’s true batting average. With 45 trials, the normal
approximation seems reasonable. [Actually, the arc sine
square root transformation was performed on the data, which
were then recentered to resemble batting averages. The var-
iance attached to each player’s observed average is (.0659)2.]

Thus we can model each observed batting average, X;,
by

X; ~ n(6,, o), 4.1)

where 6, = true batting average and o? = (.0659)%. We
then use the Bayes prior, 8, ~ n(u, 72), and construct the
empirical Bayes estimator as indicated in Section 2. The
data, calculations, and final batting averages (true 6;) are
given in Table 1.

The empirical Bayes estimators are closer to the 6;’s than
the classical estimators, the X;’s. The improvement in MSE
is remarkable: .355/1.084 = .327, meaning a 67% reduc-
tion in MSE. [Here we have scaled the MSE, so for example,
1.084 = 3(X; — 6,)%/70>. Of course, this does not affect
the comparisons with the empirical Bayes estimator.]

The empirical Bayes estimator performed well because it
anticipated regression toward the mean. The player who
was batting .395 after 45 at bats was doing unusually well
(playing above his head), and it would be unreasonable to
expect him to continue at such a pace. Notice also that both
X; and 8¢ failed miserably with player 7, who had (for him)
an unusually poor start. (An explanation for this failure may
be the fact that player 7 was Thurmon Munson, and these
data were taken in his rookie year. Munson went on to
become a consistently excellent ball player.)

Table 1. Baseball Data

X; 6; 8E(X)
(observed batting  (final batting (empirical Bayes
Player average) average) estimate)
1 .395 .346 .341
2 .355 .279 .321
3 .313 276 .300
4 .291 .266 .289
5 .247 .271 .266
6 224 .266 .255
7 175 .318 .230
MSE 1.084 .355

NOTE: X = .286; X(X; — X)2 = .035; 402/%(X; — X)2 = .495; and £(X) = (.495)(.286)
+ 505X = 142 + .505X.

L400 |

L3004

2004 /

Observed FB Final Observed
Values Estimates Values Mean

Figure 3. Graphical Display of the Baseball Data.

A graphical display, such as the one in Figure 2, serves
to support further the claim that regression toward the mean
is a very real effect. Examining Figure 3, and noting how
close together the 6;’s are (compared to the X;’s and even
the 6%°s), reveals that the empirical Bayes estimates are
vastly superior to the usual ones.

Example2. Assessing Consumer Intent. This example
was chosen not only because the parameters were available
but also to illustrate the empirical Bayes technique for dis-
tributions other than the normal distribution. The data were
taken from Juster (1966) and were also analyzed by Mor-
rison (1979), using techniques outlined by Sutherland et al.
(1975). In fact, Morrison used some highly sophisticated
empirical Bayes techniques and obtained even better esti-
mates than those presented here.

The problem here is to estimate the probability that a
consumer will purchase a given product, given his stated
probability (intent) of such an event. Here we will concen-
trate on only a portion of Juster’s data, in which 447 ran-
domly selected people were asked this question: Taking
everything into account, what are the prospects that you or
some member of your family will buy a car sometime during
the next 12 months? The prospects were ranked on a scale
from O to 1: Certain (10 in 10), Almost Sure (9 in 10), Very
Probably (8 in 10), . . ., Very Slight Possibility (1 in 10),
and No Chance (0 in 10). The distribution of responses is
given in Table 2.

The data were grouped by Juster (as indicated in Table 2)
in order to increase the sample sizes. The weighted averages
of these groups are also given in Table 2. This grouping
was also used by Morrison (1979) and will be used here.
Thus we are dealing with five intent groups.

Before proceeding to a formal model, it ought to be ob-
served that these data should almost certainly be shrunk
toward their mean. It is quite unreasonable to assume that

Table 2. Consumer Intent Data

Intent
0 123 456 7.89 1
Responses 293 262121 10 912 131110 21
Weighted averages .19 .51 .79

The American Statistician, May 1985, Vol. 39, No. 2 85



none of the 293 people in the O-intent group will buy a car;
thus 0 is certainly an underestimate of the intent. The same
type of argument applies to the group with intent = 1.

The model for these data, used by Morrison and others,
is that /7, the stated intent of person i, can be modeled as
a binomial random variable with n = 10 and p = I7, the
true intent. That is,

I? ~ binomial(10, I7). 4.2)

The justification for this model is that an individual with
true intent /7 responds binomially—O or 1—in an indepen-
dent fashion to each point on the intent scale with proba-
bilities /7 and 1 — I7, respectively. The stated intention is
then the sum of these 0, 1 responses.

Although this model may sound strange, it has been widely
used and justified in both marketing and psychology liter-
ature (Morrison 1979). From a practical point of view, it
also seems to work well.

There is a minor problem with scaling, in that the stated
intention is on a 0—1 scale and the modeled intention is on
a 0-10 scale. This can, of course, be handled rather easily,
and we will not go into such details here.

The empirical Bayes model also specifies that

IT ~ beta(a, B); 4.3)

that is, the true intentions are drawn from a beta distribution
with parameters a and (3. Note that the /T’s are specified
to have a common distribution, which will, to a certain
extent, take into account the fact that the stated intentions
are somewhat related.

Under the model (4.2) and (4.3), the Bayes estimate of
IT is given by

iT—< )( )
! a+ B+ 1 a+ B
a+ B

- = I3
+<1 a+/3+1>1" (4.4)

where here and hereafter, /§ will be taken to be on the 0—
1 scale. The marginal distribution of /¥ (unconditional on
IT) is the negative hypergeometric distribution, sometimes
called the beta-binomial. The exact form is not important
here, because we will use only the facts that unconditionally,

5y = —<
Ed) a+ B
1 a a a+ B+ 10
S = -— -
var(f9) 10<a + ><l a + B) (a + B+ 1)’

4.5)

(See Kendall and Stuart, 1977, Vol. 1, for more information
on the beta-binomial distribution.)

By using (4.5) and the method of moments, « and 3 can
be estimated. From the full data set in Table 2, we have
IS = .172 with estimated variance = .091. Equating these
to the expressions in (4.5) and solving for a and 3, we get
a = .25 and B = .43, These yield the empirical Bayes
estimate

IT = (.405)(.172) + (.595)I3, (4.6)
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Table 3. Consumer Intent Estimates
and Parameters

Intent Observed True Empirical Bayes
group intent intent estimate
0 0 .07 .07
1-3 19 19 .18
4-.6 .51 41 .37
7-9 .79 .48 .54
1 1 .53 .67
MSE 729 .055

NOTE: MSE scaled by 42 = .091.

which can be seen, once again, to be a weighted average
of the grand mean (.172) and the individual intention.

The 447 people in the sample were contacted after the
time period to learn whether or not a car had been purchased.
Thus the parameter values are known. These values, to-
gether with the usual estimates (observed intent) and em-
pirical Bayes estimates, are given in Table 3.

As expected, the empirical Bayes estimates are far su-
perior to the observed intent, yielding a 93% improvement
in MSE. Notice that the parameter values are much closer
together than the observed intent, the phenomenon antici-
pated by the empirical Bayes estimates. In fact, the regres-
sion toward the mean is even more pronounced than that
predicted by the empirical Bayes estimates.

Table 3 shows that the empirical Bayes estimates perform
remarkably well, but seen in another light, their performance
is startling. From (4.4) and (4.6), it can be seen that we are
using estimates of /7 that are linear functions of /7. Since
we now have the parameter values, we can see what the
best linear predictor is (in practice, this can never be done).
A linear regression of the true intent on the stated intent
yields the line .10 + .471% as the best possible linear pre-
dictor. Compare this to the empirical Bayes line .07 +
.595X, and it can be seen that the empirical Bayes line is
incredibly close to the best possible (but always unattain-
able) line. Imagine doing a regression of y on x without any
v values! Figure 4 illustrates this.

Finally, the empirical Bayes method can tell us something

81
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Figure 4. Comparison of the Empirical Bayes Estimate Line
( ) With the Best Possible Linear Estimate Line (- — —). Values
plotted are the weighted averages of the observed intent from Table
2.
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Figure 5. The Beta Density Function, « = .25, B = .43. The
numbers under the curve represent the probability content of the
indicated regions.

about the prior distribution, and such information can be
useful, particularly if future studies are to be done. Recall
that our estimates of « and 3, the prior parameters, were
.25 and .43, respectively. Figure S is a graph of the beta
distribution with these parameter values. As one can see,
the greatest concentration of mass is near the ends of the
intervals, with the distribution being fairly flat in the middle.
Since the beta distribution can have virtually any shape
(from U-shape to bell-shape, symmetric or asymmetric), it
is interesting that the empirical prior is an asymmetric U-
shaped distribution. Since the empirical Bayes estimator
produced such good estimates, it is reasonable to infer that
this U-shaped prior is a reasonable approximation to the
true prior distribution. Thus one would expect a population’s
true intentions to be clustered near 0 or 1, with a small
portion (approximately 30%) uniformly distributed between
.2 and .8.

[Received June 1984 . Revised October 1984 .]
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