INTRODUCTION TO LATEX

- What is LATEX?
- Basic usage and syntax
- Modes and environments
- Newcommands
- Cross-referencing
- Packages
- Importing graphics
- Tables and figures
- Pictures
- Where to learn more

1

What LATEX IS:

- A freely-available, powerful typesetting language
- Supremely well-suited to creation of documents with heavy technical and mathematical content
- The standard typesetting language used by *major publishers of books* in the sciences (e.g., Springer, CRC Press, Wiley, etc.)
- The standard typesetting language used by most journals in the sciences (including Journal of the American Statistical Association, Biometrics, etc.)
- The popular way to produce a dissertation document in the preferred NCSU format (later...)

WHAT IS LATEX?

What LATEX is NOT:

- A word-processor that allows the user to view a document as it is created in a "what you see is what you get" format (e.g., MS-Word)
- A word-processor associated with a certain operating system (e.g., Windows)
- A word-processor in which creation of highly technical mathematical content is a big pain in the neck
- A product that the user must purchase

2

What LATEX IS:

- Versions available for UNIX, Linux, Windows, etc.
- The overwhelming choice of most people in math, statistics, physics, computer science, engineering, and many other disciplines to produce articles, reports, books, letters, visual presentation materials, and more

Basic premise:

- A LATEX document must be processed in order for the final version of the document to be viewed
- The user creates a file with a .tex extension that contains the text of the document and special commands that control
 - style (e.g., article, letter, report)
 - organization into sections, subsections, etc.
 - mathematical content (e.g., equations, tables, symbols)
 - incorporation of graphics
 - automatic cross-referencing of equations, figures, tables, references
 - And MUCH MORE!
- After the file is processed, the result may be viewed (using freely available software) and the file modified as necessary
- Postscript or pdf versions of the final document are easily created

5

For example: The .tex file used to create these slides is called latex1.tex (available on the class web page)

Commands used to process: To create the .dvi file and then a postscript file

stat% add tetex
stat% latex latex1
stat% dvips latex1
stat% ghostview latex1.ps &

- add tetex allows access on unity to a comprehensive distribution of LATEX called tetex (optional)
- Here, ghostview is used to view the final document
- Using instead dvips -P pdf latex1 creates a postscript file
 that is optimal if the a pdf file is to be created, e.g., using
 acrobat distiller or the ps2pdf utility

stat% distill latex1.ps OR stat% ps2pdf latex1.ps

7

BASIC USAGE AND SYNTAX

Some basic steps for creating a document: On a UNIX or Linux platform

- Create a .tex file using any text editor (e.g., emacs, Nedit); the content should be plain text
- Run the file through the LATEX program to create a device independent (.dvi) file containing the typesetting instructions (can be viewed with a .dvi previewer)
- Run a program to convert the .dvi file to a postscript file containing the *finished document*, which can be viewed with a postscript viewer or printed
- If desired, convert the postscript file to pdf format
- (Alternatively, a program called pdflatex can be used to create pdf documents directly; this is not discussed here)

6

Structure of a .tex file:

- Preamble
 - Specify document class (article, report, book, letter, etc.)
 - Add any "packages" used (e.g., to import graphics, create headers and footers, etc.)
 - Specify margins, indentation, spacing, etc.
 - Define "new commands" (coming up...)
- Document body
 - The actual document content

Fun facts:

- % symbol is used to document the file or "comment out" text; anything to the right of a % does not appear in the document
- LaTeX commands start with \
- LATEX is case sensitive

For example: Here is a sample preamble and document body for an article (See the web page for a full template file)

```
\documentclass[12pt]{article}
                                    % type size: also 10pt or 11pt
% commands to set margins and spacing -- all have defaults
\setlength{\textheight}{9in}
                                    % height of text on a page
\setlength{\textwidth}{6.5in}
                                    % width of text on a page
\setlength{\parskip}{2.3ex}
                                    % space between paragraphs
% commands to invoke packages
\usepackage{graphicx,psfig,epsf}
                                    % no limit to how many
% user-defined newcommands
\newcommand{\betahat}{\hat{\beta}}  % more on this shortly
% start of document body
\begin{document}
\section{Introduction}
                                    % sectioning command
This is the introduction...
\end{document}
```

9

MODES AND ENVIRONMENTS

Modes: At any point in a LATEX file, there is a current "mode" in effect

- Paragraph mode the default text mode, with line wrap. A space between lines signals the start of a new paragraph
- Math mode math symbols and commands may be used, and mathematical expressions result
- LR mode "left-to-right" mode, lines do not automatically wrap around

Note on math mode: Math symbols and commands only work in math mode; if they are used in other modes, an *error* will result

Syntax: Some commands have arguments in braces {}, some do not Some commands with no argument:

10

Environments: Often, there is also an *environment* in effect that determines how material is displayed – the basic structure is

```
\begin{environment-name}
...
\end{environment-name}
```

For example: The math environment

```
the linear model \begin{math}Y = X\beta + \epsilon\end{math}.   
the linear model Y = X\beta + \epsilon.
```

• The popular shortcuts are to use \$... \$ or (... \setminus), e.g. the linear model $\$Y = X \cdot + \$.

For example: Creating a numbered list

\begin{enumerate}
\item This is the first entry
\item This is the second entry
\item This is the third entry
\end{enumerate}

- 1. This is the first entry
- 2. This is the second entry
- 3. This is the third entry

13

Math: LATEX is tailor-made for writing involving high mathematical content! And it's easy!

• Subscripts, superscripts, roots

e^y, x_{ij}, \sqrt{x+y}, \sum^n_{i=1}
$$e^y, x_{ij}, \sqrt{x+y}, \sum_{i=1}^n$$

• Greek

• Roofs

 $$ \hat{\alpha}, \tilde{\alpha}, \bar{x}, \bar{x} . $ \hat{\alpha}, \hat{x}, \bar{x}. $ \hat{x} . $ \hat{x}. $ \hat{$

Some popular environments:

Environment	Mode	Description
math	math	in-text mathematical expressions
displaymath	math	displayed mathematical expressions
equation	math	displayed expressions w/ line number
eqnarray	math	lines up equal signs, line numbers
eqnarray*	math	lines up equal signs, no line numbers
array	math	matrices and arrays
itemize	paragraph	list with bullets
enumerate	paragraph	list with numbers
description	paragraph	list with indentation
tabular	LR	align text in columns
table	paragraph	number and position table
figure	paragraph	number and position figure
center	paragraph	center text
mbox	LR	write text while in math mode

14

Math, continued:

• Binary operations

\pm,\times,\div,\cup,\otimes $\pm,\times,\div,\cup,\otimes$

• Relation symbols

\leq,\subset,\in,\geq,\equiv,\sim,\approx,\neq,\perp \le , \subset , \in , \ge , \equiv , \sim , \ne , \bot

• Arrows

\rightarrow,\Leftarrow,\Leftrightarrow,\uparrow $\to, \Leftarrow, \Leftrightarrow, \uparrow$

• Miscellaneous

\forall,\exists,\Re,\sum,\prod,\int $\forall,\exists,\Re,\sum,\prod,\int$

16

Math, continued: textstyle vs. displaystyle

- Math displayed as equations may be carried out using the displaymath, equation, eqnarray*, eqnarray environments
- Shortcuts when equations are not numbered: \$\$... \$\$ or \[... \]; e.g.,

\$\$\sum^n_{i=1} x_i^2 (Y_{ij}-z_i \beta)\$\$

$$\sum_{i=1}^{n} x_i^2 (Y_{ij} - z_i \beta)$$

• Some symbols appear differently depending on whether they are in the text or displayed; e.g.,

 $\sum_{i=1}$

VS. \$\$\sum^n_{i=1}\$\$

$$\sum_{i=1}^n$$
 VS. $\sum_{i=1}^n$

• Can be overridden with textstyle{ } and \displaystyle{ }

17

Math, continued: There are different ways to present math in boldface; here are two

- $\mbox{\boldmath X}\$, $\mbox{\boldmath Σ}\$ X, Σ
- \mathbf{X} , \mathbf{X} , \mathbf{X}

Math, continued:

• Products, integrals, unions

\$\$\prod^n_{j=1},\hspace{0.1in} \int^\infty_t f(u) du,
\hspace{0.1in}\bigcup_{A: A \in \Omega}\$\$

$$\prod_{j=1}^{n}, \int_{t}^{\infty} f(u)du, \bigcup_{A: A \in \Omega}$$

• Special functions

 $\exp(x)$, \log y, \sin(k\pi), \min_x f(x)\$ $\exp(x), \log y, \sin(k\pi), \min_x f(x)$

• Fractions, partial derivatives

\$\$\frac{\exp(x^T \beta)}{1+\exp(x^T \beta)},
\frac{\partial u}{\partial x}\$\$

$$\frac{\exp(x^T\beta)}{1 + \exp(x^T\beta)}, \frac{\partial u}{\partial x}$$

Note: Use \displaystyle for fractions; otherwise they are too small

18

Math, continued: array and equarray environments

• (2×3) matrix:

\left(\begin{array}{ccc}
 x_{11} & x_{12} & x_{13}\\
 x_{21} & x_{22} & x_{23} \end{array} \right)

$$\left(\begin{array}{ccc} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \end{array}\right)$$

• Determinant of (2×2) matrix:

\left| \begin{array}{cc}
a_{11} & a_{12} \\
a_{21} & a_{22} \end{array} \right|

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

20

Math, continued: array and equarray environments

• Braces

x = \left\{ \begin{array}{1} \sin x \mbox{ if } y<3, \\
 \cos x \mbox{ if } y \geq 3 \end{array} \right.</pre>

$$x = \begin{cases} \sin x \text{ if } y < 3, \\ \cos x \text{ if } y \ge 3 \end{cases}$$

• Binomial coefficients:

\left(\begin{array}{c}N \\ y \end{array} \right)

$$\begin{pmatrix} N \\ y \end{pmatrix}$$

21

The tabular environment:

- As with array, separate *elements* with &, make *new line* with \\
- Specify number of columns and type of justification at top, add vertical and horizontal lines

\begin{tabular}{c|rr}

& \multicolumn{2}{c}{Results} \\

Parameter & \multicolumn{1}{c}{Bias} & \multicolumn{1}{c}{SE} \\ \hline

 Δ_0 & \$-\$0.030 & 0.12 \\

\$\beta_1\$ & 0.002 & 0.07

\end{tabular}

	Results		
Parameter	Bias	SE	
eta_0	-0.030	0.12	
β_1	0.002	0.07	

Math, continued: array and equarray environments

• Equation with several lines, = signs lined up

\begin{eqnarray*}

& = & $\frac{2 \rho_i}{1-\rho_i} \left(n_{i-1} - \rho_i \right)$

 $\frac{\rho_i(1-\rho_i^{n_i-1})}{1-\rho_i} \right)$

\end{eqnarray*}

$$\begin{split} \Delta_i &= \sum_j \sum_{k \neq j} \operatorname{Corr}(Y_{ij}, Y_{ik}) \\ &= \sum_j \sum_{k \neq j} \rho_i^{\parallel j - k \parallel} \\ &= \frac{2\rho_i}{1 - \rho_i} \left\{ n_i - 1 - \frac{\rho_i (1 - \rho_i^{n_i - 1})}{1 - \rho_i} \right\} \end{split}$$

22

NEWCOMMANDS

Motivation: In technical typing, the same (nasty) expression may appear *frequently*

- A newcommand is like a "shortcut" to produce the expression easily
- \newcommand{keyword}{text}
- A newcommand declaration may appear anywhere in a L^AT_EX source file (preamble or body) and is defined thereafter
- A newcommand keyword may not contain numbers

Examples: Some newcommand definitions and their usage

\newcommand{\bbeta}{\mbox{\boldmath \$\beta\$}}
\newcommand{\betahatj}{\widehat{\bbeta}_j}
\newcommand{\var}{\mbox{\var}}
\newcommand{\sumjn}{\sum^n_{j=1}}

• Note that a *previously-defined* newcommand may be used in defining a *new* newcommand

\$\$\sumjn \var(\betahatj)\$\$

$$\sum_{j=1}^{n} \operatorname{var}(\widehat{\boldsymbol{\beta}}_{j})$$

25

Examples:

• Numbered equation

```
\begin{equation}
\var(\alpha) = \sumjn \var(\betahatj)
\label{eq:alpha}
\end{equation}
```

In equation \ref{eq:alpha}, we see that...

CROSS REFERENCES

Advantage: A built-in feature of LATEX is that it automatically keeps track of sections, numbered equations, pages, and so on

- Sections, equations, tables, figures, pages etc. may be labeled and referred to by the label
- If new labeled entities are added, LATEX renumbers them automatically
- It is even possible to generate a *table of contents* and *index* for a document
- To set up cross references correctly, must process a document twice

LaTeX Warning: Label(s) may have changed. Rerun to get cross-references right.

26

Examples, continued:

• Section label

```
\section{Introduction}
\label{s:intro}
```

- ... As discussed in Section \ref{s:intro}, kurtosis...
- Page label

Thus, we see that calculation of the variance is straightforward \label{p:var}

...On page~\pageref{p:var}, the variance calculation...

PACKAGES

Useful utilities: LATEX is much more *powerful* than the intrinsic features would suggest

- A huge user community
- Contributed *document classes*, "add-ons" to allow different capabilities and customization
- "Packages"
- Define new commands, syntax, etc.
- Visit CTAN (see slide 51)

29

Example: shadow.sty - make "shadowboxes"

• In preamble

\usepackage{shadow}

\shabox{This stuff}

This stuff

In addition: There are also user-defined, alternative document classes

• Journals, book publishers may have their own class to create articles, pages with a specific format

Example: fancyheadings.sty – make "fancy" document headers and footers

• In preamble

\usepackage{fancyheadings}
\lhead{\footnotesize \bf CHAPTER \thesection}
\rhead{\footnotesize \bf ST 762, M. DAVIDIAN}
\cfoot{\footnotesize PAGE \rm\thepage}

• See http://www.stat.ncsu.edu/~st762_info/ for results

30

Dissertations: At NCSU, dissertations may be created in LATEX using special a special style; to learn more, visit

http://www2.acs.ncsu.edu/grad/ETD/tutorial/latex.htm

http://www.stat.ncsu.edu/computing/howto/latex/session_2/session2.html

31

IMPORTING GRAPHICS

Numerous options: We discuss three of these

• psfig - \usepackage{psfig} \psfig{figure=dental.ps,height=2.5in}

33

epsf - \usepackage{epsf} \epsfysize=2.5in \epsfbox{dental.ps}

- graphicx \usepackage{graphicx}
- Can also import other formats (pdf, jpg, etc)
 \includegraphics[height=2.5in]{dental.ps}

37

TABLES AND FIGURES

Two standard LaTeX environments: table and figure

- Automatically *numbers* tables and figures
- Allow tables and figures to be formatted and *referenced* within a document
- Allow captions

38

39

	Results	
Parameter	Bias	SE
β_0	0.030	0.12
eta_1	0.002	0.07

Table 1: Results of the simulation.

- Reference In Table~\ref{t:simresults}, we see that...
- In Table 1, we see that...

41

Figure 1: The dental data of Pothoff and Roy.

43

```
\begin{figure}
\caption{\it The dental data of Pothoff and Roy.}
\label{f:dental}
\begin{center}
\includegraphics[height=2.5in]{dental.ps}
\end{center}
\end{figure}
```

42

Useful package: subfigure - \usepackage{subfigure}

 \bullet Create a "multipanel" figure from several files with each panel labeled

```
\begin{figure}
```

```
\centering \subfigure[]{
    \includegraphics[width=1.5in]{dental.ps}}
    \hspace*{0.1in}
    \subfigure[]{
     \includegraphics[width=1.5in]{dental.ps}}
\caption{(a) The dental data of Pothoff and Roy. (b) The dental data of Pothoff and Roy, again.}
\label{f:dental2}
\end{figure}
```


Figure 2: (a) The dental data of Pothoff and Roy. (b) The dental data of Pothoff and Roy, again.

45

Two-compartment open model with IV administration:

$$\frac{dC(t)}{dt} = k_{21}C_{tis}(t) - k_{12}C(t) - k_eC(t),$$

$$\frac{C_{tis}(t)}{dt} = k_{12}C(t) - k_{21}C_{tis}(t), \ C_{tis}(0) = 0$$

47

PICTURES

LATEX can "draw":

- picture environment
- The following is a *simple* picture circles, curves, ovals, etc are also possible (see the documentation)

46

Picture was made with:

```
\setlength{\unitlength}{1in}
\begin{picture}(5,1)
\put(0.5,0.5){\framebox(1.5,1){$C(t)$}}
\put(2,1.25){\vector(1,0){0.5}}
\put(2.25,1.35){\makebox(0,0){$k_{12}$}}
\put(2.5,0.75){\vector(-1,0){0.5}}
\put(2.25,0.85){\makebox(0,0){$k_{21}$}}
\put(2.5,0.5){\framebox(1.5,1){$C_{tis}(t)$}}
\put(0.25,1){\makebox(0,0){$b:$}}
\put(1.25,0.5){\vector(0,-1){0.3}}
\put(1.35,0.35){\makebox(0,0){$k_{e}$}}
\end{picture}
\end{center}
```

Other "drawing" resources:

- The pstricks package really *intricate stuff* like grids, plots of functions, etc (see class web page for link to documentation)
- xfig

49

Resources online and on the Web:

- The Comprehensive TeX Archive Network (CTAN) http://www.ctan.org - a repository of tons of style files, packages, etc.
- Several free guides available on unity at /afs/bp.ncsu.edu/contrib/tetex107/share/texmf/doc/latex/general (as .dvi or .ps files)
- Local intro tutorial http://www.stat.ncsu.edu/computing/howto/latex/session_1/

WHERE TO LEARN MORE

Books and guides:

- Goossens, M. et al. (1994) The LATEX Companion
- Kopka, H. (1999) A Guide to LATEX: Document Preparation for Beginners & Advanced Users
- Hahn, J. (1993) LATEX for Everyone: A Reference Guide and Tutorial for Typesetting Documents Using a Computer