Chapter 6
Programming Using the Message Passing
Paradigm

(Original slides with modifications)

A. Grama, A. Gupta, G. Karypis, and V. Kumar

To accompany the text “Intfroduction to Parallel Computing”,
Addison Wesley, 2003.

Principles of Message-Passing Programming

The logical view of a machine supporting the message-passing
paradigm consists of p processes, each with its own exclusive
address space.

Data must be explicitly partitioned and placed.

All interactions (read-only or read/write) require cooperation
pbetween the involved processes.

These tTwo constraints make underlying costs very explicit to the
programmet.

Most message-passing programs are written using the single
program multiple data (SPMD) model.

The Building Blocks: Send and Receive Operations

e The profotypes of these operations are as follows:

send (void #*sendbuf, int nelems, 1int dest)
receive (volid *recvbuf, int nelems, 1int source)

e Consider the following code segments:

PO P1

a = 100; receive (&a, 1, 0)
send(&a, 1, 1); printf ("$d\n", a);
a = 0;

e The semantics of the send operation require that the value

received by process P1 is 100 (not 0 as is changed afterwards
on PO).

Non-Buffered Blocking Message Passing Operations

e A simple method for forcing send/receive semantics is for the
send operation to return only when it is safe to do so.

e In the non-buffered blocking send, the operaftion does not
return until the matching receive has been encountered at the
receiving process.

e |dling and deadlocks are major issues with non-buffered
blocking sends.

Non-Buffered Blocking Message Passing Operations

sending receiving sending receiving sending receiving
process process process process process process
send I request to send I
request to send request to send .
okay to send receive Send okay to send receive gang receive

okay to send

. data > . data) . data) .

() Sender comesfirgt; (b) Sender and receiver come (c) Receiver comesfirst;
idling at sender at about the same time; idling at receiver
idling minimized

Handshake for a blocking non-buffered send/receive operation.
It is easy to see that in cases where sender and receiver do not
reach communication point at similar times, there can be
considerable idling overheads.

Buffered Blocking Message Passing Operations

e A simple solufion to the idling and deadlocking problem is to
rely on buffers at the sending and receiving ends.

e The sender simply copies the data into a designated buffer and
returns after the copy operation has been completed.

e The data must be buffered at the receiving end as well.

e Buffering trades off idling overhead for buffer copying
overhead.

Buffered Blocking Message Passing Operations

sending receiving sending receiving
process process process process
send I sendI I
|:| data > Data copied to
data buffer at receiver

rece|ve
I receive

Blocking buffered fransfer protocols: (a) in the presence of
communication hardware with buffers at send and receive ends;
and (b) in The albsence of communication hardware, sender
interrupts receiver and deposits data in buffer at receiver end.

Buffered Blocking Message Passing Operations

Bounded buffer sizes can have significant impact on

performance.
PO P1
for (i = 0; 1 < 1000; i++) { for (i = 0; 1 < 1000; i++) {
produce_data (&a) ; receive (&a, 1, 0);
send(&a, 1, 1); consume_data (&a) ;

} }

What if P1 was much slower than PO?

Buffered Blocking Message Passing Operations

Deadlocks are still possible with buffering since receive
operations block.

PO Pl
receive (&a, 1, 1); receive (&a, 1, 0);
send (&b, 1, 1); send (&b, 1, 0);

Whereas the following situation is fine (provided that the buffer is
large enough)

PO P1

send (&b, 1, 1); send (&b, 1, 0);
receive (&a, 1, 1); receive(&a, 1, 0);

Non-Blocking Message Passing Operations

e The programmer must ensure semanfics of the send and
receive.

e This class of non-blocking protocols refurns from the send or
receive operation before it is semantically safe fo do so.

e Non-blocking operations are generally accompanied by a
check-status operation later.

e When used correctly, these primifives are capable of
overlapping communication overheads with useful computations.

e Message passing libraries typically provide both blocking and
non-blocking primifives.

Non-Blocking Message Passing Operations

sending receiving sending receiving
process process process process
send request to send send request to send

Unsafe to Unsafe to
update okay to send receive update okay to send receive

data being > data being >
sent sent Unsafe to read
data data data being received

(a) Without hardware support (b) With hardware support

Non-blocking non-buffered send and receive operations (Q) in
absence of communication hardware; (b) in presence of
communication hardware.

MPI: the Message Passing Interface

MPI defines a standard library for message-passing that can
be used to develop portable message-passing programs using
either C/C++ or Fortran.

The MPI standard defines both the syntax as well as the
semantics of a core set of library routines.

Vendor implementations of MPI are available on almost all
commercial parallel computers.

It is possible to write fully-functional message-passing programs
by using only the six routines.

MPI: the Message Passing Interface

The minimal set of MPI routines.

MPI TInit

MPI Finalize
MPI Comm_size
MPI_ Comm_rank
MPI_Send
MPI_Recv

Initializes MPI.

Terminates MPI.

Determines the number of processes.
Determines the label of the calling process.
Sends a message.

Receives ad message.

Starting and Terminating the MPI Library

MPI_Init is cdlled prior to any calls to other MPI routines. Its
purpose is to initialize the MPI environment.

MPI_Finalize is cdlled at the end of the computation,
and it performs various clean-up tasks to terminate the MPI
environment.

The prototypes of these two functions are:

int MPI_TInit (int w%argc, char *xxargv)
int MPI Finalize ()

All MPI routines, data-types, and constants are prefixed
by "MPI_". The refurn code for successful completion is
MPI_SUCCESS.

Communicators

A communicator defines a communication domain — a set of
processes that are allowed to communicate with each other.

Information about communication domains is stored in
variables of fype MPI_Comm.

Communicators are used as arguments o all message-fransfer
MPI roufines.

A process can belong to many different (possibly overlapping)
communication domains.

MPI defines a default communicator called MPT_COMM_WORLD
which includes all the processes.

Querying Information

e TheMPI_Comm_size dNdMPI_Comm_rank functions are used to
determine the number of processes and the label of the calling
process, respectively.

e The calling sequences of these routines are as follows:

int MPI _Comm size (MPI_Comm comm, 1nt =xsize)
int MPI_ Comm_rank (MPI_ Comm comm, 1int =xrank)

e The rank of a process is an infeger that ranges from zero up to
the size of the communicator minus one.

Our First MPI Program

#include <mpi.h>

main (int argc, char xargv[])

{

int npes, myrank;

MPI_TInit (&argc, &argv);

MPI_Comm_size (MPI_COMM_WORLD, &npes);

MPI_Comm_rank (MPI_COMM_WORLD, &myrank);

printf ("From process %d out of %d, Hello World!\n",
myrank, npes);

MPI Finalize();

Sending and Receiving Messages

The basic functions for sending and receiving messages in MPI
are the MPI_Send and MPI_Recv, respectively.

The calling sequences of these routines are as follows:

int MPI_Send(void =xbuf, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm)
int MPI_Recv(void xbuf, int count, MPI_Datatype datatype,
int source, int tag, MPI_Comm comm, MPI_Status xstatus)

MPI provides equivalent datatypes for all C datatypes. This is
done for portability reasons.

The message-tag can tfake values ranging from zero up to the
MPI defined constant MPI_TAG_UB.

MPI Datatypes

MPI Datatype

C Datatype

MPI_CHAR
MPI_SHORT

MPI_INT

MPI_LONG
MPI_UNSIGNED_CHAR
MPI_UNSIGNED_SHORT
MPI_UNSIGNED
MPI_UNSIGNED_LONG
MPI_FLOAT
MPI_DOUBLE
MPI_LONG_DOUBLE
MPI_BYTE
MPI_PACKED

signed char
signed short int
signed 1int

signed long int
unsigned char
unsigned short int
unsigned int
unsigned long int
float

double

long double

Sending and Receiving Messages

MPI allows specification of wildcard arguments for both source
and tag.

If source is set O MPI_ANY_SOURCE, then any process of the
communication domain can be the source of the message.

If tag is sef o MPI_ANY_TAG, then messages with any fag are
accepted.

On the receive side, the message must be of length equal to
or less than the length field specified.

Sending and Receiving Messages

e On the receiving end, the status variable can be used to get
information about the MPI_Recv operation.

e The corresponding data structure contains:

typedef struct MPI_Status {
int MPI_SOURCE;
int MPI_TAG;
int MPI_ERROR;

I

e The MPI_Get_count function returns the precise count of data
items received.

int MPI_Get_count (MPI_Status =*status, MPI_Datatype datatype,
int *count)

Avoiding Deadlocks

Consider:

int al[l0], b[10], myrank;
MPI_ Status status;

MPI_Comm_rank (MPI_COMM_WORLD, &myrank);
if (myrank == 0) {
MPI Send(a, 10, MPI_INT, 1, 1, MPI_COMM WORLD) ;
MPI_Send (b, 10, MPI_INT, 1, 2, MPI_COMM_WORLD) ;
}
else if (myrank == 1) {
MPI_Recv (b, 10, MPI_INT, O, 2, MPI_COMM_WORLD) ;
MPI_Recv(a, 10, MPI_INT, O, 1, MPI_COMM_WORLD);

If MPI_Send is blocking and non-buffered, there is a deadlock.

Avoiding Deadlocks

Consider the following piece of code, in which process i sends a
message to process ¢+ + 1 (modulo the numlber of processes) and
receives ad message from process : — 1 (module the number of
processes).

int al[l0], b[10], npes, myrank;
MPI_ Status status;

MPI_Comm_size (MPI_COMM_WORLD, &npes);

MPI_Comm_rank (MPI_COMM_WORLD, &myrank);

MPI_Send(a, 10, MPI_INT, (myrank+l)%npes, 1, MPI_COMM_WORLD) ;
MPI_Recv (b, 10, MPI_INT, (myrank—-l+npes)%npes, 1, MPI_COMM_WORLD) ;

Once again, we have a deadlock if MPI_Send is blocking.

Avoiding Deadlocks

We can break the circular wait to avoid deadlocks as follows:

int al[l0], b[10], npes, myrank;
MPI_ Status status;

MPI_Comm_size (MPI_COMM_WORLD, &npes);
MPI_Comm_rank (MPI_COMM_WORLD, &myrank);
if (myrank%$2 == 1) {
MPI_Send(a, 10, MPI_INT, (myrank+1l)%npes, 1, MPI_COMM_WORLD) ;
MPI_Recv (b, 10, MPI_INT, (myrank-l+npes)%npes, 1, MPI_COMM_WORLD) ;
}

else {
MPI_Recv (b, 10, MPI_INT, (myrank—-l+npes)%npes, 1, MPI_COMM_WORLD) ;
MPI_Send(a, 10, MPI_INT, (myrank+1l)%npes, 1, MPI_COMM_WORLD) ;

Sending and Receiving Messages Simultaneously

To exchange messages, MPI provides the following function:

int MPI Sendrecv (void *sendbuf, int sendcount,
MPI_Datatype senddatatype, 1int dest, int sendtag,
volid xrecvbuf, 1int recvcount, MPI_Datatype recvdatatype,

int source, int recvtag, MPI_Comm comm,
MPI_ Status =xstatus)

Creating and Using Cartesian Topologies

e \We can create cartesian fopologies using the function:

int MPI_Cart_create (MPI_Comm comm_old, int ndims, int =%dims,
int xperiods, int reorder, MPI_Comm xcomm_cart)

This function takes the processes in the old communicator and
creates a new communicator with dims dimensions.

e Each processor can now be identified in this new cartesian
topology by a vector of dimension dims.

Creating and Using Cartesian Topologies

e Since sending and receiving messages still require (one-
dimensional) ranks, MPI provides routines to convert ranks to
cartesian coordinates and vice-versa.

int MPI_Cart_coord (MPI_Comm comm_ cart, int rank, int maxdims,
int *xcoords)
int MPI Cart_rank (MPI_ Comm comm_cart, int =xcoords, 1int =*rank)

e The most common operation on cartesian fopologies is a shift.
To determine the rank of source and destination of such shifts,
MPI provides the following function:

int MPI_Cart_shift (MPI_Comm comm_cart, int dir, int s_step,
int *rank_source, int =xrank_ dest)

Overlapping Communication with Computation

e In order to overlap communication with computation, MPI
provides a pair of functions for performing non-blocking send
and receive operations.

int MPI_TIsend(void xbuf, int count, MPI_Datatype datatype,

int dest, 1nt tag, MPI_Comm comm, MPI_Request xrequest)
int MPI_Trecv (void xbuf, int count, MPI_Datatype datatype,

int source, int tag, MPI_Comm comm, MPI_Request x*request)

e These operatfions return before the operations have been
completed. Function MPI_Test tests whether or not the non-
blocking send or receive operation identified by ifs request
has finished.

int MPI_Test (MPI_Request xrequest, int xflag, MPI_Status =*status)
e MPI_Wait waifs for the operation to complete.

int MPI_Wait (MPI_Request xrequest, MPI_Status =xstatus)

Avoiding Deadlocks

Using non-blocking operations remove most deadlocks.
Consider:

int al[l0], b[10], myrank;
MPI_ Status status;

MPI_Comm_rank (MPI_COMM_WORLD, &myrank);

if (myrank == 0) {
MPI_Send(a, 10, MPI_INT, 1, 1, MPI_COMM_WORLD) ;
MPI_Send (b, 10, MPI_INT, 1, 2, MPI_COMM_WORLD);

}

else 1f (myrank == 1) {
MPI_Recv (b, 10, MPI_INT, 0, 2, &status, MPI_COMM_WORLD) ;
MPI Recv(a, 10, MPI_INT, 0, 1, &status, MPI_COMM WORLD) ;

Replacing either the send or the receive operations with
non-blocking counterparts fixes this deadlock.

Collective Communication and Computation
Operations

e MPI provides an extensive set of functions for performing
common collective communication operations.

e Each of these operationsis defined over a group corresponding
to the communicator.

e All processors in a communicator must call these operations.

Collective Communication Operations

e The barrier synchronization operation is performed in MPI using:
int MPI Barrier (MPI_ Comm comm)
The one-to-all broadcast operation is:

int MPI_Bcast (void xbuf, int count, MPI_Datatype datatype,
int source, MPI Comm comm)

e [he all-to-one reduction operation is:

int MPI Reduce (void *sendbuf, void #*recvbuf, int count,
MPI_Datatype datatype, MPI_Op op, 1int target,
MPI_ Comm comm)

Predefined Reduction Operations

Operation Meaning Datatypes

MPI_MAX Maximum C integers and floating point
MPI_MIN Minimum C integers and floating point
MPI_SUM Sum C integers and floating point
MPI_PROD Product C integers and floating point
MPI_LAND Logical AND C integers

MP I_BAND Bit-wise AND C integers and byte
MPI_LOR Logical OR C integers

MPI_BOR Bit-wise OR C integers and byte
MPI_LXOR Logical XOR C infegers

MPI_BXOR Bit-wise XOR C integers and byte
MPI_MAXLOC max-min value-location Data-pairs

MPI_MINLOC

mMinNn-min value-location

Data-pairs

Collective Communication Operations

e If the result of the reduction operation is needed by all
processes, MPI provides:

int MPI Allreduce (void =*sendbuf, void xrecvbuf, int count,
MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)

e [0 compute prefix-sums, MPI provides:

int MPI_Scan (void =*xsendbuf, wvoid xrecvbuf, int count,
MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)

Collective Communication Operations

e The gather operation is performed in MPI using:

int MPI_Gather (void *sendbuf, int sendcount,
MPI_Datatype senddatatype, void xrecvbuf, int recvcount,
MPI_Datatype recvdatatype, int target, MPI_Comm comm)

e MPI also provides the MPI_Allgather function in which the
data are gathered at all the processes.

int MPI_Allgather (void *sendbuf, int sendcount,
MPI_Datatype senddatatype, void xrecvbuf, int recvcount,
MPI_Datatype recvdatatype, MPI_Comm comm)

e The corresponding scafter operation is:

int MPI_Scatter (void *xsendbuf, int sendcount,
MPI_Datatype senddatatype, void xrecvbuf, int recvcount,
MPI_Datatype recvdatatype, 1int source, MPI_Comm comm)

Collective Communication Operations

e The all-to-all personalized communication operation is performed by:

int MPI _Alltoall (void xsendbuf, int sendcount,

MPI_Datatype senddatatype, void xrecvbuf, int recvcount,
MPI_Datatype recvdatatype, MPI_Comm comm)

e Using this core set of collective operations, a number of
programs can e greatly simplified.

Groups and Communicators

e In many parallel algorithms, communication operations need
to be restricted to cerftain subsets of processes.

e MPI provides mechanisms for partitioning the group of
processes that belong to a communicator info subgroups each
corresponding to a different communicator.

e The simplest such mechanism is:

int MPI_Comm_split (MPI_Comm comm, int color, int key,
MPI Comm =*newcomm)

This operation groups processors by color and sorfs resulting
groups on the key.

Groups and Communicators

process

color
key

original rank

new rank

0

1

2

3

4

5

6 7

0

0

0

1

1

1

1 2

1

1

1

1

1

0 1 2
0 1 2

MPI_Comm_gplit

|

3 4 5 6
01 2 4

|

1
7
0

Using MPI_Comm_split to split a group of processes in a
communicator into subgroups.

