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In this presentation I'd like to talk about a modern way to build real-time
embedded software that goes beyond the traditional Real-Time Operating
System (RTOS).

Even though the ideas I'll discuss today are certainly not new, the “reactive
approach” that I'll present has been only recently gaining popularity as
software developers from different industries independently re-discover better
ways of designing concurrent software. These best practices universally favor
event-driven, asynchronous, non-blocking, encapsulated active objects (a.k.a.
actors) instead of sequential programming based on traditional RTOS.

This talk is based on my 15 years of experience with developing and refining
active object frameworks for deeply embedded real-time systems.
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My talk should take about 40 minutes, followed by 10 minutes of
demonstrations and 10 minutes for questions and answers.

One comment, to avoid any confusion from the beginning: when I say RTOS, I
mean a small real-time kernel designed for deeply embedded systems, such
as single-chip, single-core microcontrollers. I specifically don't mean here
embedded Linux, embedded Windows, or other such big OSes.

An example of a representative hardware that I have in mind for this talk is
shown in the picture. Here, in a dimple of a golf ball, you can see a complete
microcontroller in a silicon-size package. The chip contains the 32-bit ARM
Cortex-M core, an impressive set of peripherals as well as several kilobytes of
static-RAM for data and few hundred kilobytes of flash-ROM for code.

If you think that it's too small for any significant complexity, let me tell you from
experience that this is plenty to shoot yourself in the foot.

BTW, worldwide shipments of microcontrollers reach some 20 billion units a
year.



 state-machine.com© 2005-2018, Quantum Leaps

Smaller embedded systems are typically designed as a “superloop” that runs
on a bare-metal CPU, without any underlying operating system. This is also the
most basic structure that all embedded programmers learn in the beginning of
their careers.

For example, here you can see a superloop adapted from the basic Arduino
Blink Tutorual. The code is structured as an endless “while (1)” loop, which
turns an LED on, waits for 1000 ms, turns the LED off, and waits for another
1000ms. All this results in blinking the LED. The main characteristics of this
approach is that the code often waits in-line for various conditions, for example
a time delay. “In-line” means that the code won't proceed until the specified
condition is met. Programming that way is called sequential programming.

The main problem with this sequential approach is that while waiting for one
kind of event, the “superloop” is unresponsive to any other events, so it is
difficult to add new events to the loop.

Of course, the loop can be modified to wait for ever shorter periods of time to
check for various conditions more often. But adding new events to the loop
becomes increasingly difficult and often causes an upheaval to the whole
structure and timing of the entire loop.
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An obvious solution to the unresponsiveness of a single superloop is to allow
multiple superloops to run on the same CPU. Multiple superloops can wait for
multiple events in parallel.

And this is exactly what a Real-Time Operating System (RTOS) allows you to
do. Through the process of scheduling and switching the CPU, which is called
multitasking or multithreading, an RTOS allows you to run multiple superloops
on the same CPU. The main job of the RTOS is to create an illusion that each
superloop, called now a thread, has the entire CPU all to itself.

For example, here you have two threads: one for blinking an LED and another
for sounding an alarm when a button is pressed.

As you can see, the code for the Blink thread is really identical to the Blink
superloop, so it is also sequential and structured as an endless while(1) loop.
The only difference now is that instead of the polling delay() function, you use
RTOS_delay(), which is very different internally, but from the programming
point of view it performs exactly the same function.
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How does the RTOS achieve multitasking? Well, each thread in an RTOS has
a dedicated private context in RAM, consisting of a private stack area and a
thread-control-block (TCB).

The context for every thread must be that big, because in a sequential code
like that, the context must remember the whole nested function call tree and
the exact place in the code, that is, the program counter. For example, in the
Blink thread, the contexts of the two calls to RTOS_delay(), will have identical
call stack, but will differ in the values of the program counter (PC).

Every time a thread makes a blocking call, such as RTOS_delay() the RTOS
saves CPU registers on that thread's stack and updates it's TCB. The RTOS
then finds the next thread to run in the process called scheduling. Finally, the
RTOS restores the CPU registers from that next thread's stack. At this point the
next thread resumes the execution and becomes the current thread.

The whole context-switch process is typically coded in CPU-specific assembly
language, and takes a few microseconds to complete.
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For example, a call to RTOS_delay() from Thread-A results in a context switch
to Thread-B.

Thread-A switched “away” in this process stops consuming any CPU cycles, so
it becomes efficiently blocked.

Instead, the CPU cycles that a primitive superloop would waste in a polling
loop go to the other Thread-B that has something useful to do.

Please note that in a single CPU system, for any given thread to run, all other
threads must be blocked. This means that blocking is quite fundamental to
multitasking.

Finally, note that a context switch can be also triggered by an interrupt, which is
asynchronous to the execution of threads. For example, unblocking of Thread-
A and blocking of Thread-B, can be triggered by the system clock tick interrupt.
An RTOS kernel in which interrupts can trigger context switch is called a
preemptive RTOS.
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Compared to a “superloop”, an RTOS kernel brings a number of very
important benefits:

1. It provides a “divide-and-conquer” strategy, because it allows you to
partition your application into multiple threads.
→ Each one of these threads is much easier to develop and maintain than
one “kitchen sink” superloop

2. Threads that wait for events are efficiently blocked and don't consume CPU
cycles. This is in contrast to wasteful polling loops often used in the superloop.

3. Certain schedulers, most notably preemptive, priority-based schedulers,
can execute your applications such that the timing of high-priority threads can
be insensitive to changes in low-priority threads (if the threads don't share
resources). This is because under these conditions, high-priority threads can
always preempt lower-priority threads. This enables you to apply formal timing
analysis methods, such as Rate Monotonic Analysis (RMA), which can
guarantee that (under certain conditions) all your higher-priority threads will
meet their deadlines.
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Multiple, dedicated threads are great and bring a quantum leap of
improvement compared to a kitchen-sink “superloop”, but the problems begin
when the threads need to synchronize and communicate with each other.

Generally, threads synchronize their activities by blocking and unblocking
each other by means of such mechanisms as semaphores, event flags, or
message queues. But this causes additional blocking, which reduces the
responsiveness of the existing threads and forces developers to create more
threads, which ultimately leads to architectural decay

Also any form of shared-state communication among threads requires
applying mutual exclusion to avoid race conditions around the shared
resources. But using mutual exclusion leads to additional blocking of threads,
which can cause the whole slew of second-order problems, such as thread
starvation, deadlock, or priority inversion. Any of these problems might lead to
missed deadlines, which means failure in a real-time system.

Speaking of failures, they are typically subtle, intermittent, and notoriously
hard to reproduce, isolate, and fix. Such problems are the worst kind you can
possibly have in your software.
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For all these reasons, expert real-time programmers have learned to be very
weary of blocking. Instead, experts came up with the following best
practices:

1. Don't block inside your code. Instead communicate among threads
asynchronously via event objects
→ This makes threads run truly independently, without blocking on each
other

2. Don't share any data or resources among threads. Keep data and
resources encapsulated inside threads (“share-nothing” principle) and
instead use events to share information

3. Organize your threads as “message pumps” (event queue + event loop)

In other words, these best practices combine multithreading with event-
driven programming.
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Perhaps the easiest way to understand these best practices is to see how
they can be implemented with a traditional RTOS:
● You start off by defining your own basic event data type, which carries the

event signal and event parameters. For example, an event with signal
ADC_COMPLETE tells you that ADC conversion has just completed, and in
the event parameter it can carry the numeric value produced by the ADC.

● Each thread owns an event queue (or a message queue) capable of storing
your event objects

● The threads communicate and synchronize only by posting events to their
queues. Specifically, the threads are not allowed to share any data or
resources, which are private and strictly encapsulated.

● Event posting is asynchronous meaning that threads don't wait until the
event is processed. They just drop it into a queue and move on.

● The thread code is organized as a “message pump”
→ a thread blocks only when its queue is empty, and does not block
anywhere in the event-handler code
→ such a “message pump” naturally implements the Run-to-Completion
event processing semantics, which simply means that the thread must
necessarily finish processing of one event before it can start processing the
next event. This eliminates any concurrency hazards within a thread itself.
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Of course, all these best practices and specific implementation guidelines
establish a design pattern, which is known as the Active Object or Actor
design pattern.

As most good ideas in software, the concept of autonomous software objects
communicating by message passing is not new. It can be traced back to the
1970s when Carl Hewitt at MIT came up with Actors.

In the 1990s, methodologies like Real-Time Object-Oriented Modeling
(ROOM) adapted actors for real-time computing.

More recently, UML introduced the concept of Active Objects that are
essentially synonymous with the ROOM actors. Both variants use
hierarchical state machines (UML statecharts) to model the internal
behavior of active objects. I'll talk about state machines a bit later.
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In an earlier slide, you saw how to implement the Active Object pattern
manually on top of a conventional RTOS. But an even better way is to
implement this pattern as a software framework, because a framework is the
best known method to capture and reuse a software architecture.

In fact, such a rudimentary framework already started to emerge in the thread
handler for the active objects. If you understand the call ao→handle() as
being virtual, that is, dependent on the type of the active object, the whole
thread handler will become generic and can be considered a part of an active
object framework, instead of being repeated in each specific application.

This also illustrates the most important characteristics of a framework called
inversion of control. When you use an RTOS, you write the main body of
each thread and you call the code from the RTOS, such as
RTOS_queuePend(). In contrast, when you use a framework, you reuse the
architecture, such as the message pump here, and write the code that it
calls.

The inversion of control is very characteristic to all event-driven systems. It
is the main reason for the architectural-reuse and enforcement of the best
practices, as opposed to re-inventing them for each project at hand.
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When you start building an Active Object framework, you will see that it will
require a paradigm shift.

On one hand, most RTOS mechanisms based on blocking will be useless, or
outright harmful, if applied inside active objects. For example, you will have
no use for the blocking delay() function, semaphores, or other similar
mechanisms.

On the other hand hand, a conventional RTOS will not provide much support
for event-driven active objects, which you will then need to create yourself.
For example, instead of the delay() function, you will need to create an event-
driven mechanism based on Time Events.

This is all because a conventional RTOS is designed for the sequential
programming model, where you block and wait in-line for the occurrence of
an event, whereas an Active Object framework implements an event-driven
paradigm based on run-to-completion event processing without blocking.
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But programming without blocking requires you to respond to events quickly
and always return to the “message pump”. This means that you cannot store
the context of your computation (the relevant history of handled events) on the
call stack and in the program counter, as the sequential code could do. Instead,
you would probably store the context (event history) in static variables. A typical
process looks as follows: Most event handlers start off pretty simple, but as
new events are grafted on, developers add more and more flags and variables.
Then they create increasingly convoluted IF-THEN-ELSE logic to test their
flags and variables, until nobody can tell what's going on in the code. At this
point, the code becomes “spaghetti”.

And here is where Finite State Machines come in. They are the best known
“spaghetti reducers”. The concept of “state” captures only the relevant aspects
of the system's history and ignores all irrelevant aspects. For example, a
computer keyboard can be in “default” where it generates lower-case
characters or in “caps_locked” state, where it generates upper-case
characters. The relevant system history is pressing the CAPS_LOCK event.
Pressing other keys is irrelevant.

State machines are a natural fit for event-driven programming. They are exactly
designed to process each event quickly and return to the caller. The context of
the system between calls is represented by the single state-variable, which is
much more efficient than improvising with multitude of flags.
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Newcomers to the state machine formalism often confuse state diagrams
(statecharts) with flowcharts. This is another aspect of the paradigm shift from
sequential to event-driven programming, so let me quickly explain the
difference.

So, first, a statechart represent states or modes of the system. In contrast, a
flowchart represents stages in processinig.

A statechart always needs events to perform any actions and possibly change
state (execute transitions).

A flowchart doesn't need events. It progresses from one stage of processing to
another upon completion of processing.

Graphically, flowcharts reverse the sense of nodes and arcs in the diagram. In
state machines, processing is associated with arcs. In flowchart with nodes.
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Much of the state machine examples posted online, in various books, and in
the existing code pertain to input-driven state machines, as opposed to truly
event-driven state machines introduced earlier.

Input-driven state machines are NOT driven by events. Instead, an input-driven
state machine code is called “as fast as possible”, or “periodically” from
while(1) loops to poll for the events. In the code, you can easily recognize such
input-driven state machines by the if() statements that test various (guard)
conditions in each state and only after discovering an event, they process it.

In the diagram, you can easily recognize input-driven state machines by the
fact that state transitions are NOT labeled by events, but rather by guard
conditions. The brackets around those guard conditions, which are required by
the standard UML state machine notation, are often (unfortunately) omitted, but
you typically can recognize that the labels are conditions, especially when you
see logic operators, like and/or.

The main problems with input-driven state machines are that they might miss
events (if sampling is too slow) or recognize events in different order,
depending on the timing of sampling, over each you have little control. They
are also wasteful, as they need to run all the time. Finally, it is impossible to
apply concepts of hierarchical event processing, because there are no explicit
events.
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Traditional FSMs have a major shortcoming known as “state and transition
explosion”. For example, if you try to represent the behavior of a simple pocket
calculator with a traditional FSM, you'll notice that many events (e.g., the Clear
or Off button presses) are handled identically in many states. A conventional
FSM, has no means of capturing such a commonality and requires repeating
the same actions and transitions in many states.

Hierarchical State Machines address this problem by introducing state nesting
with the following semantics: If a system is in the nested state, for example
"result" (called the substate), it also (implicitly) is in the surrounding state "on"
(called the superstate). This state machine will attempt to handle any event,
such as OFF, in the context of the substate, which conceptually is at the lower
level of the hierarchy. However, if the substate "result" does not prescribe how
to handle the event, the event is not quietly discarded as in a traditional "flat"
state machine; rather, it is automatically handled at the higher level context of
the superstate "on". State nesting enables substates to reuse the transitions
and actions defined already in superstates. The substates need only define the
differences from the superstates (programming-by-difference).
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So, how do you bring it all together, in a consistent active object framework?
Well, as it turns out most of such frameworks end up with a similar layered
structure. Here, for example, is the structure of a minimal active object
framework for RTE systems called QP:
● The Target hardware sits at the bottom.
● The Board Support Package (BSP) above it provides access to the board-

specific features, such as the peripherals.
● The real-time kernel (QV, QK, QXK, or a conventional 3rd-party RTOS)

provides the foundation for multithreading, meaning the specific scheduling
policy and context-switching.

● The event-driven framework (QF) supplies the event-driven infrastructure for
executing active objects and ensuring thread-safe event exchanges among
them.

● The event-processor (QEP) implements the hierarchical state machine
semantics (based on UML statecharts).

● The top layer is the application-level code consisting of loosely-coupled
active objects. Developing applications consists mostly of elaborating the
hierarchical state machines of the active objects.

● Finally, QS software tracing system provides live monitoring of applications
for testing, troubleshooting, and optimizing. This component takes
advantage of the fact that virtually all system interactions funnel through the
framework, so instrumenting this small piece of code provides
unprecedented visibility into the applications.



 state-machine.com© 2005-2018, Quantum Leaps

( )1
B

1

B

1

1

R
AM

(d
at

a)

2

-

/C,
/C

,

In the resource-constrained embedded systems, the biggest concern has
always been about the size and efficiency of Active Object (Actor) frameworks,
especially that commercial frameworks of this type accompanying various
modeling tools have traditionally been built on top of a conventional RTOS,
which adds memory footprint and CPU overhead to the final solution.

However, it turns out that an Active Object framework can be actually smaller
than a traditional RTOS. This is possible, because Active Objects don't need to
block internally, so most blocking mechanisms (e.g., semaphores) of a
conventional RTOS are not needed.

For example, here you see a comparison of RAM (data) and ROM (code)
requirements of a typical application for various RTOSes and the QP active
object frameworks. As you can see, the AO frameworks require significantly
less RAM and somewhat less ROM, mostly because the frameworks do not
need per-thread stacks. All these characteristics make event-driven Active
Objects a perfect fit for single-chip microcontrollers (MCUs).
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Even though an AO framework can be smaller than a conventional blocking
RTOS kernel, it offers a higher level of abstraction.

For example, you can view the framework as an event-driven “software bus”,
into which active objects plug in. The framework performs the heavy lifting of
thread-safe event delivery, so you—the application developer—don't need to
worry about concurrency issues.

Most frameworks of this type support direct event posting. But some
frameworks, including QP, also provide publish-subscribe event delivery,
which reduces the coupling between the producers and consumers of events.
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An AO framework raises the level of abstraction in another way as well. Instead
of thinking in terms of individual C or C++ statements and IF-THEN-ELSE
“spaghetti code”, you can now think in terms of state machine elements, such
as states, transitions, entry/exit actions, initial transitions, and guards.

The provided code snippet shows how the QP/C framework allows you to map
these elements to C. Every state, such as state “on”, maps to a state-handler
function. This function is then called, possibly multiple times by the QEP
hierarchical event processor to handle each event.

The elements that go into a state handler are: all transitions originating at the
boundary of the state as well as the entry/exit actions of this state as well as
the initial transition, if present. State nesting is implemented in the default case.

The hallmark of this implementation is traceability, which means that each
state machine element is mapped to code unambiguously once and only once.
Such traceability between design and code is required by most functional-
safety standards.
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An AO framework must guarantee the Run-To-Completion event processing in
each active object, but it does not mean that the framework must monopolize
the CPU while an event is processed. In fact, the underlying kernel can switch
the CPU any number of times among active objects, provided that every RTC
step eventually completes before the next event is processed.  As long as the
AOs don't share resources, there are no concurrency hazards. This means that
an AO framework can work with a variety of different real-time kernels,
including a traditional RTOS as you saw in the AO implementation based on an
RTOS.

The QP framework can work with traditional RTOSes as well, but it also
provides two lightweight built-in kernels that work differently

The simplest of the two is the priority-based  cooperative QV kernel, which runs
in a single main loop. The kernel always selects the highest-priority, not-empty
event queue. Every event is always processed to completion in the main loop.
If any new events are produced during the RTC step (e.g., by ISRs or by
actions in the currently running active object) they are just queued, but the
current RTC step is not preempted. The kernel very easily detects a situation
where all event queues are empty, in which case it invokes the idle callback,
where the application can put the CPU into a low-level sleep mode.
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The second non-standard kernel provided in QP is really interesting. It is a very
efficient, preemptive, priority-based, non-blocking kernel called QK. This
kernel does not allow threads to block in the middle of run-to-completion step,
but allows them to preempt each other (such threads are classified as “basic
threads” in the OSEK/VDX terminology). The non-blocking limitation is
irrelevant for event-driven active objects, where blocking is not needed anyway.

The threads in the QK kernel are one-shot tasks that operate a lot like
interrupts with a prioritized interrupt controller, except that the priority
management happens in software (with up to 64 priority levels). The limitation
of not-blocking allows the QK kernel to nest all threads on the single stack,
the same way as all prioritized interrupts nest on a single stack. This use of the
natural stack protocol of the CPU makes the QK kernel very efficient and
requires much less stack space than traditional blocking kernels.

Still, the QK kernel meets all the requirements of the Rate Monotonic Analysis
(RMA) and can be used in hard real-time systems.
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Active objects provide the sufficiently high-level of abstraction and the right
level of abstraction to effectively apply modeling. This is in contrast to a
traditional RTOS, which does not provide the right abstractions. You will not
find threads, semaphores, or time delays in the standard UML. But you will find
active objects, events, and hierarchical state machines.

An AO framework and a modeling tool beautifully complement each other. The
framework benefits from a modeling tool to take full advantage of the very
expressive graphical notation of state machines, which are the most
constructive part of the UML.

On the other hand, a modeling tool needs a framework as a target for
automatic code generation. A framework provides the necessary structure and
well-defined “framework extension points” to generate code.

It should therefore come as no surprise that most modeling tools come with
specialized AO frameworks. For example, the IBM Rhapsody tool comes with
the OXF, IDF, and SXF frameworks. Similarly, the QM modeling tool from
Quantum Leaps accompanies the QP frameworks.
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Many embedded developers vastly underestimate the true costs and skills
needed to program with an RTOS. The truth is that all traditional RTOS
mechanisms for managing concurrency such as semaphores, mutexes,
monitors, critical sections, and others based on blocking, are tricky to use and
often lead to subtle bugs that are notoriously hard to reproduce, isolate, and
fix.

But RTOS and superloop aren't the only game in town. Actor frameworks,
such as Akka, are becoming all the rage in enterprise computing, but active
object frameworks are an even better fit for deeply embedded programming.

After working with such frameworks for over 15 years, I believe that they
represent a similar quantum leap of improvement over the RTOS, as the RTOS
represents with respect to the “superloop”.

Active objects are closely related to such concepts as autonomous agents in
artificial intelligence and behavior-based robotics.

Welcome to the 21st century!
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