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Abstract 

Alzheimer's disease (AD) is a slowly progressing non-linear dynamic brain disease in which 

pathophysiological abnormalities, detectable in vivo by biological markers, precede overt 

clinical symptoms by many years to decades. Use of these biomarkers for the detection of 

early and preclinical AD has become of central importance following publication of two 

international expert working group's revised criteria for the diagnosis of AD dementia, mild 

cognitive impairment (MCI) due to AD, prodromal AD and preclinical AD. As a consequence 

of matured research evidence six AD biomarkers are sufficiently validated and partly 

qualified to be incorporated into operationalized clinical diagnostic criteria and use in primary 

and secondary prevention trials. These biomarkers fall into two molecular categories: 

biomarkers of amyloid-beta (Aβ) deposition and plaque formation as well as of tau-protein 

related hyperphosphorylation and neurodegeneration. Three of the six gold-standard ("core 

feasible) biomarkers are neuroimaging measures and three are cerebrospinal fluid (CSF) 

analytes. CSF Aβ 1-42 (Aβ1-42), also expressed as Aβ1-42 : Aβ1-40 ratio, T-tau, and P-tau Thr181 & 

Thr231 proteins have proven diagnostic accuracy and risk enhancement in prodromal MCI and 

AD dementia. Conversely, having all three biomarkers in the normal range rules out AD. 

Intermediate conditions require further patient follow-up. Magnetic resonance imaging (MRI) 

at increasing field strength and resolution allows detecting the evolution of distinct types of 

structural and functional abnormality pattern throughout early to late AD stages. Anatomical 

or volumetric MRI is the most widely used technique and provides local and global measures 

of atrophy. The revised diagnostic criteria for “prodromal AD” and "mild cognitive 

impairment due to AD" include hippocampal atrophy (as the fourth validated biomarker), 

which is considered an indicator of regional neuronal injury. Advanced image analysis 

techniques generate automatic and reproducible measures both in regions of interest, such as 

the hippocampus and in an exploratory fashion, observer and hypothesis-indedendent, 
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throughout the entire brain. Evolving modalities such as diffusion-tensor imaging (DTI) and 

advanced tractography as well as resting-state functional MRI provide useful additionally 

useful measures indicating the degree of fiber tract and neural network disintegration 

(structural, effective and functional connectivity) that may substantially contribute to early 

detection and the mapping of progression. These modalities require further standardization 

and validation. The use of molecular in vivo amyloid imaging agents (the fifth validated 

biomarker), such as the Pittsburgh Compound-B and markers of neurodegeneration, such as 

fluoro-2-deoxy-D-glucose (FDG) (as the sixth validated biomarker) support the detection of 

early AD pathological processes and associated neurodegeneration. How to use, interpret, and 

disclose biomarker results drives the need for optimized standardization. Multimodal AD 

biomarkers do not evolve in an identical manner but rather in a sequential but temporally 

overlapping fashion. Models of the temporal evolution of AD biomarkers can take the form of 

plots of biomarker severity (degree of abnormality) versus time. AD biomarkers can be 

combined to increase accuracy or risk. A list of genetic risk factors is increasingly included in 

secondary prevention trials to stratify and select individuals at genetic risk of AD. Although 

most of these biomarker candidates are not yet qualified and approved by regulatory 

authorities for their intended use in drug trials, they are nonetheless applied in ongoing 

clinical studies for the following functions: (i) inclusion/exclusion criteria, (ii) patient 

stratification, (iii) evaluation of treatment effect, (iv) drug target engagement, and (v) safety. 

Moreover, novel promising hypothesis-driven, as well as exploratory biochemical, genetic, 

electrophysiological, and neuroimaging markers for use in clinical trials are being developed.  

The current state-of-the-art and future perspectives on both biological and neuroimaging 

derived biomarker discovery and development as well as the intended application in 

prevention trials is outlined in the present publication. 



	 6	

Key Words: Alzheimer’s Disease, Prevention Trials, Biomarkers, Molecular Imaging, 

Neuroimaging



	 7	

  

1. Introduction 

A first wave of disease-modifying candidate treatments for Alzheimer disease (AD) has so far 

failed to demonstrate efficacy in systematic clinical trials and therefore have not gained 

regulatory approval. Part of the reason is considered to be due to an intervention in a too late 

stage of AD when pathophysiological mechanisms and irreversible neuropathological lesions 

of AD have largely spread through the brain (1). Therefore, prevention at earlier preclinical 

stages seems a promising way to decrease the incidence of this age-associated 

neurodegenerative disease, and its associated burden for society (2). Further roadblocks to 

successful development are due to shortcomings and challenges in appropriate trial design (3-

5). 

A biomarker (biological marker) is defined as “a characteristic that is objectively measured 

and evaluated as an indicator of normal biological processes, pathogenic processes, or 

pharmacologic responses to a therapeutic intervention” (6). Biological and neuroimaging 

markers of AD are assumed to present central tools for prevention trials and most of them are 

applied in prevention trials for AD (for an overview, see Table 1). They can be divided into: 

(i) diagnostic markers, used to enrich, select, and stratify individuals at risk of AD; (ii) 

endpoint biomarkers, used as outcome measures to monitor the rate of disease progression 

and detect treatment effects (7), and finally (iii) markers of target engagement, used to target 

directly the pathophysiology of AD during the preclinical stages (8, 9). Owing to the advances 

in discovery, development, and validation of AD related neuroimaging and biological 

markers, it has now become possible to significantly improve the detection and diagnosis of 

AD by using a combined "multimodal" approach (10, 11). In particular, biomarkers derived 

from structural/functional/metabolic/molecular neuroimaging and/or neurophysiology (12, 

13), and/or neurobiochemistry of cerebrospinal fluid (CSF) (14-16), blood (plasma/serum) 
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and/or (17-19) neurogenetic markers (18, 20, 21) have been introduced. Moreover, the 

combination of different source biomarkers (22) is believed to make the selection of 

asymptomatic individuals at risk of AD possible who are a particularly attractive target 

population for prevention trials. The development of this scenario requires the involvement of 

regulatory bodies and industry stakeholders providing critical guidance in the area of AD 

biomarker discovery and application in prevention trials (18, 23). 

Here, we review the current and future role of multimodal gold-standard ("core, feasible") 

biomarkers – derived from structural, functional, metabolic and molecular neuroimaging, 

from neurochemistry and genetics – in AD prevention trials, adding some perspectives on 

biomarker discovery, development, and application in the future prevention trials. In addition, 

regulatory issues and perspectives related to biomarkers applications in clinical trials will be 

discussed. 
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2. The meaning of prevention in the context of Alzheimer clinical trials 

From a public health perspective, treatments as well as clinical trials of therapeutics are 

classified in terms of primary, secondary, and tertiary prevention interventions (24). Primary 

prevention aims at reducing the incidence of illness across the broad population by treating the 

subjects before disease onset, thus promoting the maintenance of good health or eliminating 

potential causes of disease. Two paradigms of primary prevention approaches are reducing 

population risk of illness (1) by altering environmental and cardiovascular risk factors, and (2) 

by using disease-specific mechanistic approaches such as polio vaccination (Figure 1).  

Secondary prevention aims at preventing disease at preclinical phases of illness, from 

progressing to clearly diagnosed disease, while tertiary prevention is focused on treating the 

disease when it has been clinically diagnosed and its consequences.  

The above definitions are conceptually direct but they do not practically work well with the 

developing concepts of AD therapeutics. The traditional diagnosis of AD refers to “Alzheimer 

disease dementia”, that is when the illness is at the late dementia stage (25). Under these 

considerations, primary and secondary prevention involve delaying or impeding the onset of 

dementia, while tertiary prevention involves subjects already diagnosed and treated by 

cognitive enhancers, psychotherapeutic drugs, as well as psychosocial and environmental 

approaches.  

In this perspective, the difference between primary and secondary prevention is whether 

individuals to be treated have or not signs of cognitive impairment. The recent use of 

biomarkers or bioscales to establish population risk or to enrich a treatment sample for those 

more likely than others to develop AD, together with the related evolution of clinical diagnostic 

constructs of ‘prodromal Alzheimer disease’ or ‘MCI due to AD (26, 27) has created a milieu 

in which the meaning of ‘prevention of AD’ becomes more nuanced and complex. Indeed, 

there is a shared clinical presentation and underlying pathobiology with both prodromal AD 
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and AD (dementia) such that ‘prevention’ might be better considered as delaying the onset of 

prodromal AD or AD (27). 

Secondary prevention may then focus on people who may be at particular, specific risk, have 

early signs of the illness, or evidence of AD neuropathology that, if further expressed, would 

lead to the illness. Here, the illness would be represented by the earliest stage of AD that can be 

accurately diagnosed, and which, currently, is represented by ‘prodromal AD’ or ‘MCI due to 

AD’ (any attempt to diagnose illness earlier, e.g., ‘pre-clinical’ AD would be far less certain 

and must rely mainly on the presence of biomarkers of AD neuropathology). 

An illustrative exception is the example of the recent Dominantly Inherited Alzheimer Network 

Trial (DIAN-TU), involving dominantly-inherited AD neuropathology and disease caused by 

single gene mutations that have nearly 100% penetrance such that it appears that all people 

with the mutation will sooner or later develop a dementia syndrome (28). In this scenario, the 

consideration with respect to describing a primary or secondary prevention effort is whether or 

not the mutation itself without clinical signs can be considered the disease and therefore 

‘preclinical AD’. 

The concept of ‘primary prevention’ can be taken further by including in clinical trials subjects 

who are considered to have no evidence of AD pathology based on the absence of clinical signs 

and negative amyloid biomarker status, assuming that these individuals have a lower risk for 

AD than the overall population. The complementary approach, however, is selecting a sample 

with no clinical evidence of AD pathology but that is biomarker positive. This latter sample 

would have a somewhat higher actuarial risk for illness; and here treatment could be considered 

either primary or secondary prevention depending on whether the biomarker itself is considered 

as defining the pathology of AD and diagnosis of the illness (Figure 2) (24). For instance, the 

Anti-Amyloid Treatment in Asymptomatic Alzheimer’s Disease (A4) trial (http://a4study.org) 

(29, 30) selects participants with or without a memory complaint and who are PET amyloid 
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positive for randomized treatment with an antibody targeting Aβ or with placebo. This study 

may be considered either as primary or secondary prevention trial depending on one’s 

interpretation of the sample selected for treatment (30-32).  

Several current prevention trials focus on individuals who are cognitively within the normal 

range but are at increased risk for AD due to a mutation (28, 33), amyloid deposition in the 

brain (A4 trial) (30), an apolipoprotein E and TOMM40 (ApoE/TOMM40) genotype 

combination (TOMMORROW trial) (34), or ApoE ε4 homozygous status (Alzheimer 

Prevention Initiative (API), Phoenix) (35). These studies have been developed to prevent the 

progression from normal or slightly impaired cognition to clear cognitive impairment or, in the 

TOMMORROW trial, to ‘MCI due to AD’ or AD. Other trials begin with patients in prodromal 

AD or MCI due to AD and aim at delaying the progression to AD dementia. The majority of 

these studies are include neuroimaging and biological markers to select target population or as 

secondary outcome measures. Although biomarkers are potentially useful to select clinical 

trials sample likely to develop AD, they are not validated as primary surrogate outcomes yet. 

Thus, clinical outcomes should continue to remain the primary outcomes used in preventive 

trials. 

Finally, preventive interventions should be targeted for those most at risk by determining each 

individual’s or group’s risk for cognitive impairment and dementia. It may be possible to 

identify individuals who are relatively more likely than others to benefit from intensive lifestyle 

or risk-reduction changes and/or pharmacological interventions. Given the heterogeneous and 

multifactorial etiology of AD, preventive strategies targeting several risk factors simultaneously 

may be needed for an optimal preventive effect. Many modifiable risk factors (e.g. high blood 

pressure, obesity, physical inactivity, cigarette-smoking, and unhealthy diet) are shared among 

dementia/AD and other late-life chronic conditions (36). Thus, prevention agendas linking 

dementia and other non-communicable diseases should be developed. Because AD develops 
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over decades, an overall life-course approach to prevention is needed.  Different preventive 

interventions may be needed at different ages and in different contexts (37). 
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3. Structural, functional and diffusion Magnetic Resonance Imaging (MRI) markers: 

current applications ad future methods  

3.1 Structural MRI markers 

Magnetic resonance imaging (MRI) is highly versatile and, thus, multi-modality information 

can be acquired in a single patient examination, including those discussed in the present 

section. The most widely studied MRI modality is structural MRI (sMRI). In AD, cerebral 

atrophy – detected by sMRI – occurs in a characteristic topographic distribution (38, 39) which 

mirrors the Braak (40) and Delacourte (41) neurofibrillary tangles (NFT) staging. Here, atrophy 

begins in the medial temporal lobe and spreads to the temporal pole, basal and lateral temporal 

areas, and medial and lateral parietal areas (42). The primary proteinopathies associated with 

atrophy in AD are tau and TDP43 (43-45). Atrophy, however, does not follow the topography 

of Aβ nor is atrophy particularly well correlated with plaque counts Aβ or immunostaining in 

imaging-autopsy correlations (46, 47). Thus, sMRI is correctly viewed as a direct measure of 

neurodegeneration. 

The location and severity of atrophy can be extracted from grey scale images by qualitative 

visual grading (48), by quantification of the volume of specific structures, or by measuring 

volume/thickness from multiple regions of interest to form AD-signature composite measures 

(49, 50). The most common sMRI measure employed in AD is the atrophy of the hippocampus, 

recently recommended by the revised criteria for AD as one of AD core biomarkers (25-27, 32, 

51, 52). For this reason, international efforts to harmonize the definition of the hippocampus 

were carried out (53-55). Fully automated MR-based hippocampal volumetry seems to fulfill 

the requirements for a relevant core feasible biomarker for detection of AD associated 

neurodegeneration in everyday patient care, such as in a secondary care memory clinic for 

outpatients. Software used is partly freely available, e.g. as an SPM8 toolbox. These methods 

seem robust and fast and may be easily integrated into routine workflow (56). 
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In clinical trials, sMRI is or can be used in a variety of capacities. T2-weighted and FLAIR 

scans can be used to exclude patients with extensive white matter changes, where cognitive 

impairment might be significantly contributed by or solely due to microvascular disease (57, 

58). Hippocampal atrophy has been approved by the European Medicine Agency (EMA) as a 

means of enriching trials in prodromal AD populations based on the observation in natural 

history studies that greater hippocampal atrophy predicts more rapid cognitive decline (59-64). 

Measures of the rate of brain atrophy have been used as endpoints based on the observation in 

natural history studies that atrophy rates correlate highly with the rate of concurrent clinical 

decline (65, 66). Of all known outcome measures (including clinical, psychometric, 

neuroimaging, and biofluid biomarkers), sMRI seems to have the highest measurement 

precision and thus has been viewed as an attractive outcome measure for clinical trials (67). 

However, unexpected or counter intuitive results (i.e. more rapid rates of brain shrinkage in 

treated subjects) in several disease modifying trials (68) have dampened the enthusiasm of 

some in the pharmaceutical industry for sMRI as an outcome measure. The most rational 

explanation for such findings, however, is that there may be first wave of short term volume 

losses associated with amyloid removal perhaps due to a reduction in activated microglia that 

were associated with plaques. If and when interventions effective on neurodegeneration will be 

available, sMRI may be able to map a second wave of volume loss sparing that will map onto 

AD-specific regions of neurodegeneration. Moreover, if/when interventions that target other 

aspects of the AD pathophysiological pathway (e.g. tau stabilization, or neuroprotection) will 

be entered into clinical trials, interest in sMRI as an outcome measure might experience a rapid 

resurgence. In light of this, we believe that sMRI will continue to have a role in AD clinical 

trials as an outcome measure. 

In addition to its role as a measure of AD-related neurodegeneration, sMRI is also an important 

safety monitor in clinical trials. Both micro bleeds and transient cerebral edema (known as 
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ARIAH and ARIAE respectively) have been reported in some subjects treated with active Aβ 

immunization and administration of anti Aβ monoclonal antibodies (68-70). ARIAH is best 

captured by T2* imaging and ARIAE by FLAIR imaging. 

3.2 Functional MRI markers 

The blood oxygenation level dependent (BOLD) signal measured with Functional Magnetic 

resonance imaging (fMRI) reflects primarily the local vascular response to regional neuronal 

activation and intracortical processing (71). At the moment the main use for the BOLD signal 

would be in secondary prevention trials where the signal would be used to predict conversion 

of MCI subjects to AD dementia. One approach is to use a cognitive paradigm that “stresses” 

the brain or structure that is known to be affected in the preclinical stages of the disease. For 

example a learning paradigm will activate the hippocampus and it has been shown to vary 

linearly from high to low from HC to MCI to AD dementia patient groups, respectively (72, 

73). Another learning paradigm (encode face & name pairing) leads to a nonlinear response in 

hippocampus, with higher activation in MCI subjects compared to HC and AD dementia 

patients (74-77). Not only memory but also attention-related paradigms may be used as a 

secondary prevention biomarker such as working memory (78-80) and perceptual tasks (81-83). 

Another strategy for BOLD-based biomarkers that could be used for secondary prevention 

trials are the intrinsic coherent networks (ICN) (84, 85). The biomarkers would be based on 

measures of neural network integrity, which have been shown to differentiate among HC, MCI 

subjects and AD dementia groups (86, 87) and also between HC groups with different amyloid 

loads (88, 89). Functional MRI based biomarkers could provide an approach to select patients 

for secondary prevention trials and to track progression from preclinical to clinical stages of the 

disease but also further work needs to be done to better understand the relationship between the 

BOLD signal and clinical changes. 
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As a primary prevention biomarker it still needs considerable research and development work, 

one of the primary issues is the potential confound between normal aging and development of 

AD-related pathology. Normal aging alters the potential fMRI biomarker (a recent review (90)) 

and alterations that are seen in MCI group (74-77) are similar due to middle aged HC with 

different ApoE status (91). The fMRI signal is shown to be dynamic and further investigation is 

required before the normal aging related changes can be separated from those due to pathology. 

Based on these preliminary results, fMRI represents a promising approach for the selection and 

the stratification of individuals at risk of AD in clinical prevention trials.  

 

3.3 Diffusion weighted imaging  

Magnetic resonance diffusion weighted imaging quantifies the diffusion characteristics of water 

molecules in any tissue (92). White matter microstructure integrity can be estimated applying 

the tensor model to diffusion weighted images. In so doing, monocentric studies report an 

accuracy between 77% and 98% for diffusion tensor imaging (DTI) metrics of limbic white 

matter and of whole-brain voxel-based pattern classifiers (such as mean diffusivity and 

fractional anisotropy) in studies aimed to discriminate MCI individuals who progress and 

convert to AD dementia and those who remain stable over a follow-up of 1 to 3 years (93-96). 

DTI measures, however, are more prone to multicenter variability than classical volumetric 

MRI sequences (97). Despite higher multicenter variability, DTI detected predementia stages of 

AD with a moderately higher accuracy than volumetric MRI in a multicenter setting using 

machine learning algorithms (98).  

Longitudinal DTI studies are still rare, indeed, individuals with MCI and AD dementia showed 

declining integrity of intracortically projecting fiber tracts (99-101). One study has reported a 

moderate effect of treatment with a cholinesterase inhibitor on fiber tract integrity in AD 

dementia patients (102).  
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According to the currently available scientific evidence, DTI will be mainly used in secondary 

prevention trials to predict AD dementia in individuals with MCI. Currently, evidence 

demonstrating the potential use of DTI to predict cognitive decline and dementia in cognitively 

healthy elderly individuals is not sufficient for primary prevention trials. On theoretical 

grounds, based on the early involvement of axonal and dendritic integrity in AD pathology, 

such a use seems possible but requires multicenter DTI studies to be conducted in preclinical 

AD. The use of DTI metrics as a surrogate of fiber tract integrity for clinical trials seems 

questionable to date given the high vulnerability of DTI measures to scanner drift effects over 

time compared to classical volumetric MRI data. Future studies are needed to further clarify 

this issue.  

In addition to DTI metrics, tractography of diffusion-weighted imaging (DWI) represents a 

challenging method to study white matter organization in AD prevention trials population.  

Given the dense axonal organization of white matter tissues, water molecules will be more 

likely to diffuse along rather than across them. Hence, by sequentially piecing together discrete 

estimates of the brain’s water diffusion, one might reconstruct continuous trajectory that 

follows the subjacent axonal organization. Using this approach, recent tractography studies 

identified an extended Papez circuit interconnecting essential areas dedicated to memory, 

emotion, and behavior (103). Indeed, axonal damage is associated with pathological behavioral 

manifestation (104, 105) and lead to drastic changes in the water diffusion properties that will 

affect the tractography reconstructions (106). Preliminary evidences have already associated 

discrete damage to these connections with early behavioral markers in AD (107, 108) and other 

dementia disorders (109). However, whether some of these anatomical changes occurred before 

the appearance of any behavioral signs is still unknown. It still needs to be shown if diffusion 

imaging tractography applied to pre-symptomatic populations may reveal exciting new 
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footprints, which have the potential to model and predict the conversion from cognitive 

normality to the prodromal symptomatic stages of AD. 

3.4 Utility of imaging platforms for AD prevention trials 

Harmonization of image acquisition and analysis protocols is mandatory for increased 

statistical power and smaller sample sizes in AD prevention trials. Hence, following the 

seminal ADNI initiative (http://adni.loni.usc.edu), multiple regional imaging platforms have 

been set up (110, 111) either in the context of specific multicenter studies or as a service to any 

study such as the CATI multicenter neuroimaging platform (http://cati-neuroimaging.com), the 

neuGRID4you (https://neugrid4you.eu), the CBRAIN (http://mcin-

cnim.ca/neuroimagingtechnologies/cbrain/), the LONI (https://ida.loni.usc.edu/login.jsp). The 

service model aims at lowering the cost of imaging technology 

(http://www.eurobioimaging.eu/). The first objective of these platforms is the harmonization of 

a network of imaging facilities, data collection, rigorous quality control and standard analysis 

procedures. ADNI protocols are largely embedded in this kind of activity since they have 

become a standard (112). The second objective is the emergence of a broader spectrum of 

potential biomarkers, which can stem from new imaging modalities or from ‘‘head-to-head’’ 

evaluations of new analytic methods. Finally, these platforms generate normative values for 

determining trial sample size and for the future clinical use of biomarkers. With regard to the 

challenges ahead, it is eagerly required to create a superarching organization in charge of 

globally synchronizing this network of platforms to proceed further with the advent of standard 

protocols and data sharing. It is all the more crucial that a big data perspective is probably 

mandatory to generate the ultimate models required for the acceptance of imaging biomarkers 

as surrogate endpoints.  
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4. Molecular Imaging Markers: PET FDG, Amyloid, Tau, Neuroinflammation  

Positron emission tomography (PET) provides specific imaging biomarkers for early detection 

and diagnosis and longitudinal assessment of molecular and functional changes associated with 

disease progression and therapeutic interventions. An increasing number of 18F-labeled tracers 

are now available for use at clinical sites, not requiring an on-site cyclotron and thus turning 

brain PET scans into a widely applicable routine tool in dementia research. This will provide 

detailed insight into human pathophysiology and the effects of early interventions that until 

recently could only be studied in experimental animals. In this section we will address current 

use of molecular markers for amyloid and tau, provide an update on FDG as a functional 

marker, and provide an outlook on new markers for neuroinflammation and transmitters. 

4.1 Amyloid-PET imaging 

Several tracers with similar properties (113), including 18F-florbetapir, 18F-florbetaben, and 18F-

flutemetamol, are now being included into observational studies and intervention trials. Their 

visual analysis in a binary fashion as amyloid positive or negative has been thoroughly 

validated by post-mortem pathological assessment in AD (Figure 3 shows an example of PET 

amyloid uptake in controls and AD) (114). Although results are promising, methods for 

quantitative analysis have not yet reached the same degree of standardization, and more 

research is needed to understand inter-individual and longitudinal changes. 

Several important prevention trials on autosomal-dominant AD (ADAD) and late-onset AD 

(LOAD) incorporating PET amyloid are currently on going (Table 1). The role of PET amyloid 

in the studies investigating the effect of monoclonal anti-amyloid antibodies varies from that of 

a primary outcome measure (one arm of DIAN-TU), to secondary outcome measure (API), to 

screening tool necessary to meet inclusion criteria (A4). In the A4 study, eligible participants 

must show evidence of elevated amyloid on both a semi-quantitative SUVr measurement and a 

qualitative binary visual read of a florbetapir PET scan.  Amyloid PET is also being utilized as 
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an exploratory outcome measure in A4, along with Tau PET (T807) in a subset of participants 

in the A4 study. A4 will also include an observational cohort with a group of participants who 

fell just below the threshold for amyloid eligibility for A4 to determine the factors that predict 

rapid amyloid accumulation, as these individuals may be ideal candidates for future secondary 

prevention trials aimed at slowing the production of amyloid-beta.  

4.2 Tau-PET imaging 

In addition to amyloid-beta, deposits of hyperphosphorylated tau are the other main defining 

neuropathologic feature of AD. Until recently measurement of brain tau deposition has not 

been possible during life. Several PET ligands highly selective for tau deposits have now been 

applied to imaging of individuals along the AD spectrum, from cognitively normal to AD 

dementia. Initial experience with these ligands at a small number of centers (115, 116) indicates 

that binding is detected in the anatomic areas expected from AD pathology according to the 

ordinal Braak staging scheme (Figure 3). Thus, binding is observed in medial temporal areas in 

most cognitively normal older individuals, in additional limbic and neocortical regions among 

individuals with established AD-like cognitive impairment, and in more widespread neocortical 

regions among those with AD dementia. While within-subject longitudinal change in tau ligand 

binding has not yet been reported, the initial experience at the Massachusetts General Hospital 

in over 200 subjects using 18F-T807 PET suggests that the characteristics of this PET measure 

are potentially well suited for use in AD prevention trials. This new technology could 

potentially be used in clinical trials both to stage AD pathology and as a therapeutic endpoint. 

 

4.3 FDG-PET imaging 

While tracers for amyloid-beta and tau provide images of key pathological protein deposits, 

18F-2-fluoro-2-deoxy-D-glucose (FDG) has already been used over many years as a functional 

marker of cortical synaptic dysfunction for diagnosis (117) and in clinical trials (118). 
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Considerable progress has been made in recent years to derive quantitative biomarkers from 

FDG scans (119), while further standardization of analysis methods and longitudinal 

characterization of reference samples is still ongoing. 

When applied to Mild Cognitive Impairment (MCI), FDG PET provides a good predictor of 

progression within the next 2 years (120), while markers of amyloid-beta and tau tend to 

become positive up to 20 years before actual onset of dementia. Recent studies comparing FDG 

and amyloid PET have revealed a substantial proportion of patients with amnestic MCI who 

have impaired FDG uptake while amyloid scans are negative (121). Contrary to the uniform 

sequential model of disease progression they show a relatively high rate of progression to 

dementia, and further research is required to clarify which type of dementia they actually suffer 

from. Considerable heterogeneity of AD subtypes and progression rates is well known from 

retrospective pathological studies (122), and longitudinal multimodal imaging studies including 

FDG are expected to provide better predictors and thus improve the efficacy of early 

intervention studies. 

4.4 Inflammation- and receptor-PET imaging 

Neurodegenerative diseases, including AD, are associated with activation of microglia. This 

leads to increased mitochondrial expression of the 18-kDa translocator protein (TSPO), which 

can be imaged using (R)-[11C]PK11195. Recent studies (123, 124) have partially confirmed 

earlier findings of increased cortical binding potential in AD, but this increase could not be 

detected in individual patients and was much weaker than the signal on amyloid PET (125). In 

addition, (R)-[11C]PK11195 was not able to separate clinically stable prodromal AD patients 

from those who progressed to dementia, and there was no correlation with cognitive function. 

More recently, many new TSPO ligands have been developed (126), and TSPO has also been 

identified as a potential drug target (127). In particular, studies using [11C]PBR28 have shown a 

signal that correlates with cognitive performance (128), providing a means for detecting 
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changes early in the disease process. However, a major disadvantage of many new TSPO 

ligands is that, due to genetic polymorphism (129), a subpopulation of subjects will not show 

binding. There is a need for TSPO ligands that provide high signal, but are insensitive to this 

polymorphism. In addition, PET ligands for other molecular targets related to 

neuroinflammation, e.g. monoamine oxidase B located in astrocytes (130), are being 

investigated. AD is associated with failure of cholinergic neurotransmission, but its relation to 

clinical symptoms and disease progression is still poorly understood. Thus, ongoing research 

into development of suitable PET tracers (131) may allow future studies on the relation 

between pathological protein deposition and their functional interactions and consequences.  
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5. Value of multimodal imaging in prevention trials 

With regard to preventive strategies of AD, in vivo multi-modal neuroimaging biomarkers may 

play an important role with regard to early and reliable detection of subjects at risk and to allow 

measuring of success/improve understanding of failure of therapeutic concepts. In this context, 

multimodal neuroimaging approaches are expected to be advocated on the basis of several 

important facts: (i) neurodegeneration in AD cannot be reduced to a singular pathological 

process in the brain. A number of different neuropathologies are known to be crucially 

involved in the development of this disorder and the causal interaction between these 

pathologies is not yet fully understood; (ii) it is well accepted that the onset of 

development/appearance of the mentioned pathologies in the brain may occur subsequently not 

simultaneously. Consequently, the presence/detectability of these pathologies depends on the 

stage of disease; (iii) it has been demonstrated that the temporal development of these different 

pathologies over time is neither linear, nor parallel to each other (132-134).  

These facts explain the potential of multimodal imaging approaches. Several of the 

characteristic forms of neuropathology known to be involved in AD such as protein 

aggregation (Aβ and tau), synaptic dysfunction, inflammation and neuronal loss/brain atrophy 

can be captured using in vivo imaging procedures. However, not a single one out of these 

pathologies is fully specific for AD (i.e. they can be found in other forms of neurodegeneration 

as well). Thus, in recent guidelines on the diagnosis of AD, improved diagnostic certainty or 

increased risk for underlying AD has been proposed for a combination of different disease 

biomarkers (32). These guidelines divide between markers of Aβ peptides aggregation 

pathology (including amyloid PET imaging) and markers of neuronal injury (including 

structural/volumetric MRI and FDG-PET imaging). The authors suggest that cumulative 

evidence obtained by biomarkers out of these two categories increases the probability for 
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ongoing AD even in preclinical stages. This directly applies to the detection of subjects at risk 

for AD, e.g. in prevention trials.  

It is well accepted that amyloid-pathology may be detectable in the brain of subjects suffering 

from AD long before clinical symptoms occur and, possibly, also ahead of detectable neuronal 

injury. However, little is known so far about the time to symptomatic onset in amyloid-positive 

subjects without cognitive deficits. Furthermore, it has been demonstrated that amyloid-

deposition seems to reach a plateau in later stages of AD, whereas markers of neuronal injury 

seem to better mirror the continued progression of cognitive decline. Consequently, only a 

multimodal combination of information on amyloid-pathology and neuronal injury may allow a 

reliable in vivo disease staging, particularly ahead of clinical disease onset.   

Generally, the classification of disease biomarkers into only 2 categories may represent an 

oversimplification (135). Depending on the type of prevention approach, higher resolutions of 

disease stages may be possible and the spectrum may be completed with other available 

imaging biomarkers, e.g. of tau-aggregation, inflammation, connectivity or receptor status 

(136-139).  

With regard to therapy monitoring or measuring success of any prevention methods, any one-

dimensional biomarker assessment may fall short. With regard to the dynamic non-linear and 

non-parallel natural courses of the different neurodegenerative pathologies over time, relevant 

changes may be overlooked and inter-patient differences may be interpreted incorrectly. 

Furthermore, interventions may influence single parameters without effect on other 

pathologies, e.g. inhibit amyloid-aggregation pathology without slowing down the ongoing 

cascade of neuronal injury.  

The recent introduction of PET/MR technology may represent the ideal tool for multimodal 

imaging approaches, particularly in longitudinal prevention trials. The systematic combination 

of complementary MRI and PET-methods may offer a number of advantages leading to the 
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optimal diagnostic assessment and disease quantification with the least possible burden for the 

patient (Figure 4). Suitable PET/MR examination work-flow protocols have already been 

published for the assessment of neurodegenerative disorders (140). In short, such protocols may 

allow for acquisition of data in high quality (motion and partial volume corrected), providing 

information on neuronal dysfunction, protein aggregation pathology and atrophy and at the 

same time exclude non-neurodegenerative diseases in a single patient visit.  

In summary, multimodal imaging assessment of different types of neuropathology might be 

designated as the method of choice for a reliable and specific detection and quantification of 

AD in vivo, and, thus, represent the approach of choice for prevention strategies.  
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6. Established and potential CSF biomarkers  

At present, there are three gold standard ("core feasible") CSF biomarkers for AD molecular 

pathology: total tau protein (T-tau) that reflects the intensity of neuronal/axonal degeneration, 

hyperphosphorylated tau protein (P-tau) that probably reflects neurofibrillary tangle pathology 

and the 42 amino-acid-long form of amyloid β (Aβ1-42) that is inversely correlated with Aβ 

pathology in the brain (low lumbar CSF levels reflect sequestration of the peptide in the brain 

parenchyma) (141). The biomarkers detect AD with an overall accuracy of 85-95% in both 

dementia and MCI stages of AD and appear to switch to pathological levels 10-20 years before 

the first symptoms become recognizable (142). Recently revised diagnostic criteria for AD 

suggest that biomarkers for both tau and Aβ pathology should be positive if an AD diagnosis is 

to be made (27). Here, CSF provides a biomarker source covering both these aspects and the 

assays for T-tau, P-tau and Aβ1-42 are currently undergoing standardization for such use; the 

most important international standardization efforts being the Alzheimer’s Association Quality 

Control program for CSF biomarkers (143, 144), the Alzheimer’s Association Global 

Biomarkers Standardization Consortium (GBSC) (145) and the International Federation of 

Clinical Chemistry and Laboratory Medicine (IFCC) Working Group for CSF Proteins (WG-

CSF) (145). Standard operating procedures (SOPs) for CSF sampling and storage have been 

published (141). As an outcome from the IFCC WG-CSF and the GBSC, the Single-Reaction 

Monitoring (SRM) mass spectrometry candidate Reference Measurement Procedures (RMP) 

for Aβ1-42 has been published (146), and certified reference material is being developed. These 

will be used to harmonize measurements between assay formats and to assure longitudinal 

stability and minimize batch-to-batch variations, and thereby serve as the basis for the 

introduction of uniforms cut-off values and a more general use of CSF biomarkers in clinical 

routine and trials. Updates on the work within the GBSC are available at: 

http://www.alz.org/research/funding/global_biomarker_consortium.asp. 
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Recent data show that it is possible to identify longitudinal changes in CSF Aβ1-42, T-tau and P-

tau in cognitively healthy controls followed with multiple lumbar punctures over several years 

(147-149), but most studies (with exceptions (147)) show that CSF AD biomarkers are 

essentially stable in symptomatic AD (150-152). This biomarker stability may be useful in 

clinical trials to help identify effects of interventions, both on the intended biological target, 

such as altered Aβ metabolism in response to an anti-Aβ treatment (18). One of the truly 

longitudinal studies of cognitively normal individuals with repeated CSF samples suggests that 

Aβ1-42 and T-tau changes occur in parallel and predict upcoming cognitive symptoms better 

than absolute baseline levels (149). CSF measurements may track trajectories of specific Aβ 

and APP metabolites (153-156), and down-stream effects on secondary phenomena, such as 

reduced axonal degeneration in response to a disease-modifying drug as measured by CSF tau 

levels (157, 158). So far, unfortunately, these changes have not predicted clinical benefit of any 

anti-AD drug (159).  

In addition to T-tau, some CSF biomarkers reflecting neuronal and axonal damage, including 

visinin-like protein 1 (160) and heart-type fatty acid-binding protein (H-FABP) (161) show a 

clear increase in AD and correlates with CSF t-tau. Further, a number of novel biomarkers that 

should be relevant to the disease process in AD are under development. These include markers 

of synaptic degeneration (e.g. the dendritic protein neurogranin (162)), microglial activation 

(e.g. chitinase-3-like protein 1, CHI3L1, also called YKL-40 (163)) and protein 

homeostasis/lysosomal dysfunction (e.g. lysosomal-associated membrane proteins 1 and 2, 

LAMP-1 and LAMP-2 (164)). An overview of CSF biomarkers and their interpretation in the 

scenario of AD prevention trials is reported in Table 2. 

There is also a critical need for biomarkers to identify co-morbidities, including blood-brain 

barrier dysfunction, cerebrovascular disease, and Lewy body and TDP-43 pathologies, that 

could resemble or aggravate AD.  



	 28	

7. Evolving blood biomarkers 

The identification of blood-based biomarkers that have utility in clinical trials for AD is of 

great importance (165), as they have been recently included as secondary outcome measures in 

many ongoing trials (Table 1). Blood-based biomarkers and biomarker profiles have been 

shown to be highly accurate in detecting and discriminating amongst neurodegenerative 

diseases (19, 166-169) and may serve as a cost-effective first step in a multi-stage screening 

process for clinical trials (17). As an example, Kiddle (166) and colleagues recently cross-

validated the link between 9 markers from previously published studies and AD-related 

phenotypes across independent cohorts using an independent assay platform (SOMAscan 

proteomic technology). Recently, O’Bryant and colleagues (168) also cross-validated a serum-

based biomarker profile using an independent assay platform (Meso Scale Discovery; 21-

protein profile AUC=0.96; 8-protein profile AUC=0.95), across species (mice and humans) and 

tissues (serum and brain tissue). The proteomic profile approach was also able to extend further 

and accurately discriminate AD from Parkinson’s disease (168). If demonstrated effective in 

primary care settings, these blood-based profiles for detection of AD could provide access to 

clinical trials far beyond what is currently available through specialty clinic settings (168). 

Additionally, blood-based approaches have been shown capable of detecting Aβ burden (170, 

171). Using data from the Australian Imaging, Biomarkers and Lifestyle (AIBL) cohort, a 

plasma proteomic signature consisting of chemokine 13, IgM-1, PPY, VCAM-1, IL-17, Aβ42, 

age, ApoE genotype and CDR sum of boxes yielded an AUC=0.88 in AIBL and an AUC=0.85 

when applied to the ADNI cohort. The existence of a blood-based screener for Aβ positivity 

would provide a cost-effective means of screening patients into trials requiring Aβ positivity on 

PET scans (17, 170).   

Preliminary work also suggests that blood-based profiles can identify patients at risk for 

progression from MCI to AD (172,173) as well as from cognitively normal towards some level 
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of cognitive impairment (174, 175). Along these lines, recent work identified a 10-protein 

(plasma) algorithm (TTR, clusterin, cystatinC, A1AcidG, ICAM1, CC4, pigment epithelium-

derived factor, A1At, RANTES, ApoC3) that when combined with ApoE genotype predicted 

progression from MCI to AD with an optimal accuracy of 87% (sensitivity = 0.85, specificity = 

0.88) (172). Mapstone and colleagues (174) also provided preliminary data suggesting that a set 

of 10 lipids can predict progression from control to MCI/AD over a 2-3 year period. Kivipelto 

and colleagues (37) generated a risk score from the Cardiovascular Risk Factors, Aging and 

Dementia (CAIDE) study consisting of ApoE genotype, total cholesterol, systolic and diastolic 

blood pressure, demographics (age, education, gender), and lifestyle (smoking status, Body 

Mass Index [BMI], physical inactivity) factors that predicted increased risk for dementia over a 

20-year period. Each of these methods has potential use in the identification and selection of 

patients into novel preventative and therapeutic clinical trials. Blood-based biomarkers can be 

also employed for patient stratification in trials. For example ApoE ε4 which is the strongest 

risk factor for AD and correlates well with CSF Aβ1-42 levels and increased amyloid burden and 

has been used for patient stratification into clinical trials (e.g. ClinicalTrials.gov; identifiers: 

NCT00574132 and NCT00575055). Recent data also suggests serum/plasma ApoE protein 

levels are lower among ApoE carriers (169) and that plasma ApoE levels correlate with amyloid 

PET (176). Therefore, serum/plasma ApoE protein and ApoE genotype may be useful in patient 

stratification for trials (165). Crenshaw and colleagues (177) generated a patient stratification 

algorithm based on ApoE ε4 genotype and the TOMM40 gene. Risk stratification per this 

algorithm assigns all ApoE ε2/ε2 and ε2/ε3 carriers to the low risk group with all ApoE ε4 

carriers then assigned to the high risk group. Next, for all non-ApoE ε2 carriers, risk 

stratification varied by TOMM40 genotype and age. This risk stratification scheme was 

designed for a preventative trial targeting Pioglitazone for the prevention of cognitive loss 

(177). Moreover, prior work has suggested that blood-based biomarkers can be utilized for the 
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identification of AD-based endophenotypes (17, 167, 178) with additional work needed to 

determine if these endophenotypes can predict which groups of patients are more likely to 

respond to specific interventions (165). Recent findings presented at the Alzheimer’s 

Association International Conference (AAIC) suggest this is a promising line of investigation. 

As has been pointed out previously, additional work is needed regarding harmonization of 

methods for this work to progress (17, 179) with the first guidelines for pre-analytical methods 

now available (180).  
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8. Genetic tests and risk factors for Alzheimer’s disease 

AD occurrence and evolution, as for most complex chronic diseases, result from the 

interactions between environmental factors and an individual susceptibility. The very first 

genetic determinants have been described for rare hereditary early onset clinical forms almost 

25 years ago: the Aβ precursor protein gene (APP), the presenilin 1 (PSEN1) and the presenilin 

2 (PSEN2). These three loci were rapidly followed by the discovery of strong and consistent 

associations of the apolipoprotein E (ApoE) isoforms with late-onset AD. Then, it is only 

during the last five years, and thanks to large-scale international collaborations such as the 

AlzGene database (http://www.alzgene.org) (181) and high throughput genotyping progresses, 

that the deciphering of the genetic susceptibility to sporadic AD has rapidly progressed, leading 

to the identification of 20 confirmed loci, and of 16 putative others (182). The population 

attributable risk/preventive fractions of each of these loci vary from 27.1% for the ApoE ε4 

allele to less than 2% (Table 3). This allows for the establishment of a more precise picture of 

the genetic susceptibility background associated with the occurrence of late-onset AD, adding 

to the list of biomarkers a new tool, useful for AD diagnosis and prognosis. 

However, the use of this information in current clinical practice still remains limited. In the 

dominant early onset hereditary forms, when a causal mutation can be identified (in half of 

these early onset forms), presymptomatic genetic testing could be performed following the 

protocols issued from the Huntington disease experience by the World Federation of Neurology 

(183). In late-onset AD, despite a high attributable fraction, the ApoE ε4 allele is not 

recommended for diagnosis because of its low sensitivity and specificity. Conversely, in 

clinical and translational studies, genomic biomarkers are of the utmost interest. For instance, 

when studying AD cases, ApoE ε4 allele is now a common risk factor to systematically register, 

adjust and stratify on, as age, gender and educational level. Today, it is a major requirement to 
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collect DNA in any clinical study or drug trial and the decreased costs of sequencing offer a 

unique opportunity to access the genetic susceptibility information of each enrolled individual. 

The characterization of the 40 known susceptibility locus genotypes constitutes a major 

biomarker that can be usefully added to CSF biological measurements and PET imaging. This 

information helps to stratify the heterogeneity of AD clinical forms and identify specific 

subgroups with different disease evolution and therapeutical answers. This pharmacogenomics 

stratification based on the potential biological pathways underpinned by the specific genetic 

background of each patient, helps to better understand the possible mechanism of action of 

drugs. In primary and secondary AD prevention trials including asymptomatic patients, the 

identification of this genetic susceptibility allows to select individuals with the highest risk and 

the very best chances to benefit from these preventive approaches, improving the statistical 

power of such studies.  

The access to genomics information plays also a major role in the discussions about the 

efficiency of active and passive anti-Aβ immunotherapies in AD treatment (184). Genomics 

offer the best opportunity to identify presymptomatic individuals with AD causal mutations or 

at very high risk of developing AD to better appreciate the potential curative interest of these 

drugs at a stage where the resilience of cognitive functions is still possible. Thus, the DIAN-TU 

consortium has initiated a phase II/III randomized, double-blind, placebo-controlled multi-

center study of two potential disease modifying therapies in presymptomatic mutation carriers 

and their non-carrier siblings; a prevention trial is also conducted in 300 symptom-free 

individuals 30 years of age and older from a large Colombian family with a mutant gene 

(PSEN1 E280A) and another one in volunteers aged 60 to 75, homozygous for the ApoE ε4, 

without cognitive impairment is in preparation (35). Considering the increasing knowledge and 

dissemination of these biomarkers based on genetic information, ethical concerns must be 
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carefully taken into account, especially as direct-to-consumer tests develop for diseases as AD 

where no therapeutic solution is available yet. 
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9. Novel Advances and Research Frontiers : High-field MRI, and neurophysiological EEG-

MEG markers  

High-field of MRI such as (3T and higher) and ultra-high fields (7T and higher) as well as 

EEG-MEG techniques push further the possibilities of developing new biomarkers able to 

select and to monitor the disease in primary prevention trials.   

High-fields of MRI: 3T MRI is widely available for clinical trials and the number of ultra-

highfield 7T scanners is increasing rapidly as well, with about 40 7T scanners for humans 

currently installed worldwide (185). 

An important contribution of high-field MRI to AD biomarkers is the possibility to measure 

hippocampal subregions. Indeed, hippocampal subparts show distinct vulnerability to the AD 

pathological process, as demonstrated by neuropathological studies (186). Such measurements 

are usually based on T2-, T2*- or proton-density-weighted sequences with high in-plane 

resolution (about 200µm-500µm). At 3T/4T, it is possible to detect atrophy in different 

hippocampal subfields, such as CA1 and the subiculum (187, 188). 7T MRI provides higher 

contrasts, increased signal-to-noise ratio and higher spatial resolution, which dramatically 

improve the visualization of hippocampal subregions. This makes it possible to quantify the 

atrophy of distinct hippocampal layers associated with AD, such as the stratum pyramidale and 

the strata radiatum, lacunosum and moleculare (SRLM), and not only subfields (189-191). 

These measures have the potential to provide more sensitive and specific biomarkers than 

global hippocampal volumetry but require further validation in larger samples. 

Another important area of research is the detection of amyloid plaques using high-fields MRI. 

Such detection has been demonstrated in transgenic mouse models of AD (192, 193), as well as 

in non-transgenic mouse lemur primates in which plaques are more similar to those formed in 

humans (194). In vivo detection in humans of amyloid plaques by high-fields MRI is an 
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important challenge for the upcoming years and might open promising scenario in prevention 

AD trials. 

Ultra-high-field MRI also improves the assessment of vascular burden associated with AD. 

Cerebral microbleeds are often found in patients with AD and are likely to be due to frequent 

association between AD and cerebral amyloid angiopathy. 7T MRI, using T2*-weighted 

sequences or susceptibility weighted imaging (SWI), provides increased sensitivity to detect 

cerebral microbleeds (195, 196). 7T can also improve in vivo detection of microinfarcts. A 

recent 7T study reported an increased number of microinfarcts in AD patients compared to 

controls 197 while another study reported no difference (198).  

Electroencephalography (EEG) and magnetoencephalography (MEG) modalities (199, 200) are 

complementary techniques to high-field MRI due to their ability to detect the dynamic behavior 

of neuronal assembly circuits in the brain and to provide non-invasive time-dependent 

capabilities with sub-millisecond precision, especially in regard to cortical structures. Two 

main EEG/MEG biomarker approaches have emerged in using these techniques in AD research 

– evaluation of localized measures and inter-area connectivity indices (201). Localized 

neurodynamics biomarkers, such as band power or signal strength/phase, can characterize the 

change of the dynamic state of a brain area either through spontaneous brain oscillations or 

event-related activity (202). Evidence points to abnormal slowing of faster alpha and beta 

cortical rhythms especially in posterior regions and increase of slower delta- and theta-band 

activity in AD (203). Short- and long-range connectivity estimates, on the other hand, offer 

high sensitivity to evaluate the integrity of brain pathways or reduction of central cholinergic 

inputs, if employed properly (204). EEG/MEG connectivity biomarkers have revealed the 

existence of an entire new class of approaches able to manifest, for example, impaired 

functional synchrony in the upper alpha and beta bands in AD (205), and declining global 

synchronization in all frequency bands (206). While the full potential of EEG (207) and MEG 
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(208) biomarkers to characterize degenerative brain changes for primary AD prevention has yet 

to be realized, a substantial number of studies have demonstrated results compatible with 

secondary prevention trial strategy. Although numerous studies have investigated the feasibility 

of EEG/MEG biomarkers in varying degrees, they still could be considered an emerging 

approach in AD trials, and especially in prevention trials, due to the complexity and 

multidimensionality of the observed dynamic signals, as well as the need to achieve a 

converging consensus among studies for better understanding of the disease pathology and its 

time-dependent aspects. 
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10. Regulatory Requirements and evolving challenges 

As there is now consensus that effective therapies for AD have to start very early in the disease 

process after the many failures of development programs, European Medicines Agency (EMA) 

and food and drug administration (FDA) are reacting to these changes. FDA and EMA suggest 

potential approaches to clinical trial design and execution that allow for regulatory flexibility 

and innovation (209, 210). It is outlined that clinical diagnosis of early cognitive impairment 

might be coupled with specific appropriate biomarkers reflecting in vivo evidence of AD 

pathology. New diagnostic criteria addressing these issues have been established and are under 

validation by various working groups (18, 26, 27, 211, 212). Most biomarkers include brain Aβ 

and Tau load, as measured by PET and CSF levels of Aβ and tau proteins (22, 213), however, 

there is a clear move to update the amyloid hypothesis and to look for new biomarkers for the 

different disease stages (214, 215). 

However, adequate standardization and validation of these biomarkers for regulatory purposes 

is still lacking as described by Noel-Storr and colleagues (2013) (216). As far as the CSF 

biomarkers are concerned, it was recently reported that the overall variability of data coming 

from a total of 84 laboratories remains too high to allow the validation of universal biomarker 

cut-off values for its intended use (217), which underpins the urgent need for better 

harmonization and standardization of these methods.  

The use of biomarkers as endpoints in earlier stages of drug development is well established for 

regulators, and there are examples to approve medicinal products on the basis of their effects on 

validated surrogate markers, eg, anti-hypertensives, or cholesterol-lowering products. However, 

these examples have been considered as validated surrogate markers as they allow substitution 

for a clinically relevant endpoint. In their validation a link between a treatment-induced change 

in the biomarker and long-term outcome of the relevant clinical measure was undoubtedly 

established. Therefore the regulatory requirements on biomarkers used as endpoints in clinical 
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trials are high as outlined earlier (210). In consequence EU regulators help applicants in their 

research and development by issuing opinions on the acceptability of using such biomarkers or 

a distinct methodology in clinical trials. Since 2011, EMA’s Committee for Medicinal Products 

for Human Use (CHMP) has adopted and published several qualification opinions for use in the 

development of medicines for AD. In these qualification opinions biomarkers are accepted for 

identification and selection of patients at the pre-dementia stage of the disease as well as for 

selection of patients for clinical trials in mild and moderate AD. In September 2013, a 

qualification opinion for a novel model of disease progression and trial evaluation in mild and 

moderate AD was adopted by CHMP. The simulation tool is intended to provide a quantitative 

rationale for the selection of study design and inclusion criteria for the recruitment of patients. 

The EMA guideline on the clinical investigation of medicines for the treatment of AD will be 

updated on the basis of new knowledge obtained from the validation of the new diagnostic 

criteria, the use of biomarkers in clinical evaluation and other recent trends in research and 

development. A first draft will be available soon, in a 2-day workshop later this year the draft 

will be presented and discussed with the involved stakeholders. The final guidance should help 

regulators and industry to decide on the most appropriate study design for the distinct stages of 

AD, particularly in its early preclinical/prodromal stage. 
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11. Conclusions & perspective on a decade-long initiative on prevention  

 

The discovery-validation of a broad spectrum of interventions, including pharmacologic, 

behavioral and life-style treatments, remains a crucial global public policy objective (218-222). 

Although a series of clinical trials for treating AD dementia have failed during the last two 

decades, these setbacks have not deterred the confidence of investigators in pursuing the 

strategic goal of acquiring disease-modifying treatments, which would ameliorate the 

progression of neurodegeneration with the eventual aim of preventing the onset of symptoms. 

The optimism of the scientific community, regarding the technical feasibility of discovering 

strategies to slow or halt neurodegenerative process is conditional, predicated by the 

availability of adequate resources and our capabilities to surmount the major barriers that are 

hindering progress of research on prevention. In this scenario, as emerged from the current 

review, the role of neuroimaging and biological markers is crucial. In particular, they are 

involved in the future development of technologies algorithms identifying the better 

combination able to detect accurately the early stages of disease or the prognosis in 

asymptomatic people at elevated risk. Moreover, they could be essential to select sample of 

prevention trials and, ultimately, they might be employed as surrogate measure to assess drugs 

treatment efficacy. 

Some of the critical challenges need to be addressed in order to accelerate the pace of Research 

and Development (R&D) of interventions for prevention. 

The first challenge refers to the development of new paradigms and conceptual models for 

R&D on therapies. The sequential failure of clinical trials based on prevailing theories on 

dementia along with emerging new knowledge about the complexity of the biology underlying 

the disease has created the need to re-assess our assumptions about its etiology and the 

adoption of new paradigms for therapy development. At the present, there is growing 
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consensus that AD is a heterogeneous disorder, a syndrome rather than a disease, with 

polygenic origins where multiple putative risk factors influence the prolonged progression of 

neurodegenerative processes. These biological features will require radically different thinking 

and new approaches to therapy development. In particular, the adoption of concepts from 

‘systems theory’ might be well suited for guiding the formulation of new conceptual models for 

teasing out the complexities of this disease.  

The second challenge addresses the issue of developing technologies to accurately detect 

individuals at elevated risk – among asymptomatic populations. Indeed emerging knowledge 

showed that the cellular and molecular mechanisms leading to neurodegeneration start decades 

prior the onset of clinical symptoms of AD. For this reason, prospective prevention trials in the 

future will require the employment of treatments in the earlier asymptomatic or prodromal 

phases of neurodegeneration. Presently, crucial rate-limiting factors, which hinder the launch of 

true prevention trials are: (i) the lack of well-validated technologies for identification of 

asymptomatic people at elevated risk for the disease; (ii) the need for a reliable measure of 

disease progression – i.e. a surrogate marker allowing for precise tracking of one or more 

biological indices of the neurodegenerative process. 

The third critical challenge to consider is the need for novel original therapeutic targets, new 

molecules and paradigms for efficacy validation. In this context, the strategic goal is to enrich 

the drug discovery pipeline by investigating a wide array of options for therapy development. 

Notably, this issue may have been exasperated by the limitations of current theories, conceptual 

models, or even ideas about the pathogenesis of AD and dementia disorders, which have 

provided a dominant framework and paradigm for drug discovery-development efforts thus far. 

Finally, taking into account all the above issues, novel/different regulatory requirements for 

demonstrating efficacy based on revised guidelines or definitions of outcomes measurements 

are also required. 
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In conclusion, the major challenge to contend with will be the development of R&D resources 

for a multi-national prevention initiative. The convergence of several unique features of AD 

(e.g. heterogeneity, complex polygenic etiology, and prolonged asymptomatic pre-clinical 

phase of neurodegeneration) highlights the need for very large cohorts of well-characterized 

cohorts from various genetic/cultural backgrounds as potential volunteers for both: a) 

longitudinal epidemiological studies to discover and/or validate putative risk factors and b) 

clinical studies for prospective validation of potential preventive interventions. A massive 

international longitudinal database on health aging and pre-dementia or at risk populations, as a 

shared R&D resource, is an essential infrastructure to address the future needs of a major 

prevention initiative. Along with a ‘Big-Data’, the field of therapy development will require 

novel computational capabilities to not only sort out the complex interactions among multiple 

etiologic factors but also to discover and validate technologies for the early and accurate 

detection of the disease (220-222).  

In spite of many great strides in understanding AD, the lack of effective interventions for 

chronic brain disorders along with the rapid expansion of the aging population at risk for 

dementia pose an ever-increasing threat to the solvency of healthcare systems worldwide. The 

scope and magnitude of this global health-economic crisis demands a commensurate response; 

fortunately, many countries have begun to develop national plans to address the scientific, 

social, economic, and political challenges posed by dementia. There are several parallel efforts 

that reflect the global concerns and international efforts to formulate strategies for overcoming 

these challenges - e.g. the Organization for Economic Co-operation and Development (OECD) 

Expert Conferences/G-8 Dementia Summit/Post G-8 Legacy Meeting (218-221, 223). 

However, the open question remains whether these prospective plans for action will convince 

policy-makers worldwide to make the necessary financial commitments to significantly 

increase R&D resources for prevention.  
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The first ‘call to arms’ for a global mobilization of all necessary resources to address the 

looming crisis due to the exponential increases in the prevalence of dementia was made in a 

1992 editorial (224). In 1997, nearly two decades ago, in a Congressional Testimony on the 

‘Prospects of Prevention’, the Alzheimer’s Association (available at http://www.alz.org/) made 

the case for a radical shift in therapy development towards a strategy of ‘Prevention’ (225). In 

2009, once again, there was a call to launch a major international initiative called The 

Campaign to Prevent Alzheimer's Disease by 2020 (PAD2020) (available at 

http://www.pad2020.org/) (226). Nearly a quarter of a century after the first plea for action, the 

worldwide scientific community is well poised to make a quantum advance towards the 

strategic objectives of preventing dementia. The earlier calls for adoption of alternative 

paradigms to focus for therapies towards prevention were considered untenable goals. To date, 

however, there is an overwhelming optimism in the field with respects to the prospects of 

developing disease modifying intervention to delay the onset of disabling symptoms; and 

eventually to prevent (218, 226). The prevailing consensus is that current symptomatic 

treatments are woefully inadequate, indicating an urgent need to re-focusing R&D paradigms 

towards disease-modifying interventions.  
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Table 1. Biological and imaging markers currently used in prevention trials. 

Primary Prevention 

Study 
(clinical 

Trials.gov 
Identifier) 

Status Sample Intervention Markers of 
Incl/Excl criteria Stratification Biomarkers as 

Secondary Outcome Indication Ref 

MAPT 
NCT00672685 

 

(recruitment 
completed) Frail elderly 

Omega-3 Fatty 
Acids and/or Multi-
domain Intervention 

  MRI atrophy 
FDG-PET 

Disease 
modification (227) 

SimBio 
NCT01142336 (recruiting) Asymptomatic Simvastatin   CSF Aβ42, t-tau, p-

tau181 and BDNF Disease 
modification  

Secondary Prevention 

Study 
(clinical 

Trials.gov 
Identifier) 

Status Sample Intervention Markers of 
Incl/Excl criteria,  Stratification Biomarkers of 

Outcome Use Ref 

API 
NCT01998841 

Phase II 
(recruiting) Asymptomatic Crenezumab PSEN1 E280A PSEN1 E280A 

MRI atrophy rate; 
FDG- PET; amyloid 

PET; 
CSF Tau 

Disease 
modification (33, 35) 

DIAN-TTU 
NCT01760005 

Phase II/III 
Trial 

(ongoing 
recruiting) 

Asymptomatic 
Gantenerumab,Sola

nezumab,LY288672
1 

PS1 PS2 carriers PS1 PS2 carriers 
MRI (cortical 

thickness); FDG- PET; 
amyloid PET 

Disease 
modification (28) 

PREVENT-
Alzheimer 

To be 
approved 

Asymptomatic 
family history 

of AD 

Naproxen, Nasal 
Insulin   MRI rate of atrophy Disease 

modification  

TOMMORROW 
NCT01931566 

Phase III 
(recruiting) 

 
Asymptomatic  Pioglitazone TOMM40-523 

and ApoE ε4     

AD-A4 Trial 
NCT02008357 

Phase III 
(recruiting) Asymptomatic Solanezumab Positive amyloid 

PET  
volumetric MRI; 

SUVR; CSF Abeta42 
and Tau levels 

Disease 
modification (29, 30) 
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NCT00597376 Exploratory 
(completed) 

Memory 
Complaints Cerefolin NAC   Plasma Aβ42/40 ratio Memory 

complaints  

Tertiary Prevention 

Study 
(clinical 

Trials.gov 
Identifier) 

Status Sample Intervention Markers of 
Incl/Excl criteria,  Stratification Biomarkers of 

Outcome Use Ref 

NCT01055392 Phase II 
(completed) aMCI Lithium   CSF Aβ42, total Tau, 

p-Tau 
Target 

Engagement (228) 

NCT00438568 Phase II 
(completed) aMCI Intranasal Insulin   

CSF Aβ42, total Tau, 
p-Tau, 18-FDG-PET; 

“Plasma biological 
markers” 

Disease 
modification (229) 

NCT01595646 
Phase II 
(active, not 
enrolling) 

aMCI Intranasal Insulin   

Plasma Biomarkers of 
AD (Aβ39, Aβ40, 

Aβ42), Tau (total and 
phosphorylated) 

Disease 
modification  

NCT01072812 Phase 1 
(Unknown) aMCI Posiphen tartrate   

Plasma and CSF APP, 
Aβ40, Aβ42, AChE, 

BChE 
  

NCT01811381 Phase II 
(recruiting) aMCI Curcumin and Yoga   

Clusterin, CRP, NT-
proBNP, ApoE, Aβ, 

VCAM1, BDNF, IL6, 
IL1b, IL1ra, TNFα, 

osteopontin.  

  

InDDEx study 
NCT00000174 

Phase IIIb 
Trial 

(completed) 
MCI Rivastigmine   

Hippocampal and 
Whole brain atrophy 

rate, ventricular 
dilatation rate 

Disease 
modification (230) 

NCT00620191 Phase II 
Completed MCI Metformin   18-FDG-PET; Plasma 

Aβ42 
Disease 

modification  

NCT00236574 
Phase III 

Trial 
(completed) 

MCI Galantamine   
Brain and 

Hippocampal rate of 
atrophy 

Disease 
modification  

NCT00000173 
Phase III 

Trial 
(completed) 

MCI Donepezil and 
Vitamine E   

Brain, Hippocampal, 
ERC rates of atrophy, 
ventricular dilatation 

Disease 
modification (67) 
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rate 

NCT00267163 
Phase IV 

Trial 
(completed) 

age-associated 
memory 

impairment 
Donepezil   

Change in brain 
hypometabolism and 

MRI 

Disease 
modification  

Hippocampus 
Study completed Prodromal AD Donepezil   Hippocampal rate of 

atrophy 
Disease 

modification (231) 

NCT01600859 

Phase I Trial 
(completed 
September 

2013) 

MCI due to 
AD E2609 

Positive 
biomarker for 

amyloid β 
 CSF Aβ42 Target 

Engagement  

NCT01561430 

Phase II 
Trial 

(completed 
August 2013) 

MCI due to 
AD LY2886721 Positive amyloid 

PET  
CSF Aβ40,Aβ42, total 
Tau, p-Tau and plasma 

Aβ40,Aβ42 

Target 
Engagement  

NCT00890890 

Phase II 
Trial 

(completed 
July 2013) 

Prodromal AD BMS-708163 
(Avagacestat) 

CSF Aβ42 or 
Total Tau/aβ42 

ratio 
 

Aβ40,Aβ42, total Tau, 
p-Tau; MRI rate of 

atrophy 

Disease 
modification 

Target 
Engagement 

Safety 

 

NCT01953601 

Phase III 
Trial 

(ongoing 
recruiting) 

Prodromal AD MK-8931 
Positive 

[18F]flutametamol 
PET 

 

Hippocampal rate of 
atrophy, Aβ42, total 
Tau, p-Tau; Positive 

[18F]flutametamol PET 

Disease 
modification 

Target 
Engagement 

 

NCT01224106 

Phase III 
Trial 

(ongoing not 
recruiting) 

Prodromal AD Gantenerumab 
(RO4909832)   amyloid PET Disease 

modification  

NCT01767311 
Phase II 

Trial 
(recruiting) 

MCI due to 
AD BAN2401 Positive amyloid 

PET  Hippocampal rate of 
atrophy, amyloid PET 

Disease 
modification  

NCT01677572 Phase I Trial 
(recruiting) Prodromal BIIB037 Positive at 18F-

AV-45 PET scan  MRI, Change in 18F-
AV-45 PET scan 

Safety 
Disease 

modification 
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Phase I trials on healthy volunteers and study with a sample size <30 were excluded. Abbreviations: Incl= Inclusion; Excl= Exclusion; MCI, 

Mild Cogntive Impairment; aMCI, amnestic MCI; AD, Alzheimer’s Disease; Aβ, amyloid-β; P-tau, phosphorylated tau; T-tau, total tau; MRI, 

Magnetic Resonance Imging; 18-FDG-PET, 18F-2-fluoro-2-deoxy-D-glucose positron emission tomography
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Table 2 Cerebrospinal fluid biomarkers in prevention trials. 

Application Method Biomarkers Interpretation 

Identification of 

individuals with 

AD pathology 

CSF samples from individuals 

analyzed during the screening 

period for enrolment into a 

clinical trial 

Aβ42, T-tau, P-tau Low Aβ42 is indicative of cortical AD Aβ deposition, and is likely 

the first CSF biomarker that become positive. The combination of 

low CSF Aβ42 together with high T-tau and P-tau is indicative of 

AD, and may thus be used for enrichment of early AD in the trial. 

 

Theragnostics CSF samples taken before 

study initiation and at time-

points during the trial including 

end-of-study 

Aβ42, Aβ40, sAPPβ The amyloid biomarkers may provide evidence of target engagement 

of an anti-Aβ drug candidate, e.g. a BACE1 inhibitor. 

P-tau A change towards normalization in CSF P-tau may provide evidence 

of an effect of a drug candidate on tau phosphorylation state or tangle 

formation. 

T-tau, H-FABP, VLP-1 Downstream biomarkers, e.g. T-tau, may provide evidence of an 

effect of a drug candidate on the on the intensity of neuronal 

degeneration. Biomarkers not directly involved in AD pathogenesis, 

e.g. H-FABP and VLP-1, may give complementary information to T-

tau. 
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Synaptic proteins A change in synaptic biomarkers, e.g. neurogranin, may provide 

evidence of an effect of a drug candidate on synaptic function and 

degeneration. 

 

Inflammation and microglial 

activity 

A change in CSF biomarkers reflecting microglial activity, e.g. YKL-

40, may additional evidence of downstream drug effects. 

 

Clinical studies on 

disease 

pathogenesis 

CSF samples taken at multiple 

time-points in the preclinical 

phase and during disease 

progression 

Aβ42, T-tau, P-tau, synaptic 

proteins, inflammatory 

biomarkers 

CSF biomarkers for the different pathological processes analyzed in 

multiple longitudinal samples and related to cognitive function, other 

biomarkers for disease progression, e.g. MRI measures, amyloid PET 

and tau PET, and to each other, may provide information on the time 

course for, and interrelation between, pathogenic events during the 

preclinical and clinical course of AD. 

 

Abbreviations: Aβ, amyloid-β; AD, Alzheimer disease; BACE1, β-site APP cleaving enzyme 1; CSF, cerebrospinal fluid; H-FABP, Heart fatty acid-
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binding protein; MRI, magnetic resonance imaging; PET, positron emission tomography; P-tau, phosphorylated tau; sAPP, soluble amyloid precursor 

protein extracellular domain; T-tau, total tau; VLP-1, visinin-like protein-1. 
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Table 3: Population attributable/preventive fractions of AD loci (182). 

SNP Gene MAF PAF(%) 

Effect 

type 

ε4 allele ApoE 0.123 27.3 risk 

rs6733839 BIN1 0.366 8.1 risk 

rs10792832 PICALM 0.365 5.3 preventive 

rs9331896 CLU 0.398 5.3 preventive 

rs35349669 INPP5D 0.462 4.6 risk 

rs983392 MS4A6A 0.406 4.2 preventive 

rs6656401 CR1 0.191 3.7 risk 

rs1476679 ZCWPW1 0.293 3.2 preventive 

rs9271192 HLA 0.277 3.2 risk 

rs11771145 EPHA1 0.350 3.1 preventive 

rs28834970 PTK2B 0.358 3.1 risk 

rs2718058 NME8 0.368 2.9 preventive 

rs4147929 ABCA7 0.162 2.8 risk 

rs190982 MEF2C 0.389 2.7 preventive 

rs10838725 CELF1 0.312 2.4 risk 

rs10948363 CD2AP 0.255 2.3 risk 

rs10498633 SLC24A4/RIN3 0.212 1.5 preventive 

rs17125944 FERMT2 0.079 1.5 risk 

rs11218343 SORL1 0.044 1.1 preventive 

rs7274581 CASS4 0.088 1.1 preventive 
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Figure 1. Prevention approaches. The range of prevention approaches include one targeting 

highly specific populations (biomarker evidence for AD pathology) with specific targeted 

interventions (e.g. anti-amyloid). Another approach is broad, multi-factorial, population-

based, and non-specific. Both approaches are needed and we should probably work more in 

the ‘area between’ these approaches, combining potential treatments and interventions and to 

various at-risk populations. (With permission, Solomon et al 2014) (24).  
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Figure 2.  How disease definition affects prevention. The figure illustrates how two 

alternative definitions of AD (i.e., definition 1, disease defined as starting with 

neuropathological changes, and, definition 2, disease starting with clinical symptoms) lead to 

different definitions of primary, secondary and tertiary prevention. The differences between 

the definitions may blur distinctions between prevention and treatment strategies. For 

example, if Abeta-PET positivity is considered and accepted as diagnostic for AD (i.e., pre-

clinical AD) then treating such a sample would be an example of secondary prevention rather 

than primary (114). Alternatively, if Abeta-PET positivity is considered a risk for the future 

development of cognitive impairment and Alzheimer pathology then treatment would be 

considered as primary prevention (31, 32). These frameworks show that it is difficult to define 

pure primary vs secondary prevention. (With permission, Solomon et al 2014) (24).  
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Figure 3: Positron Emission Tomography Staging of AD pathology. Coronal Positron 

Emission Tomography images (overlaid with structural Magnetic Resonance) of PiB Aβ (left 

column) and T807 Tau (right column) acquired from 3 normal individuals (top 3 rows) and a 

patient with AD dementia (bottom row). Low levels of amyloid are seen in the top 2 cases and 

high levels in the bottom 2. T807 binding is particularly striking in medial temporal lobe in 

the middle 2 normal cases, possibly corresponding to Braak Stage III/IV, but is more intense 

and widespread in the AD dementia case, which is consistent with Braak V/VI. 
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Figure 4: Multimodal work-up of neurodegeneration, opportunities for combined 

Positron Emission Tomography (PET) and Magnetic Resonance Imaging (MRI). 
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