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Abstract  

We first classify all integers ≥2 into eight kinds, and that formulate each 

of seven kinds therein into a sum of three unit fractions. For remainder 

one kind, we classify it into three genera, and that formulate each of two 

genera therein into a sum of three unit fractions. For remainder one genus, 

we classify it into five sorts, and that formulate each of three sorts therein 

into a sum of three unit fractions. For remainder two sorts i.e. 4/(49+120c) 

and 4/(121+120c) with c≥0, we prove them by logical inference. But miss 

out 3587 concrete fractions to await computer programming to solve the 

problem that express each of them into a sum of three unit fractions.  

AMS subject classification: 11D72, 11D45, 11P81   
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1. Introduction  

The Erdös-Straus conjecture is a famous conjecture concerning Egyptian 

fractions. In 1948, Paul Erdös conjectured that for integer n≥2, there exist 

invariably 4/n=1/x+1/y+1/z, where x, y and z are positive integers. Later, 

Ernst G. Straus further conjectured, that the equation’s solutions x, y and z 

satisfy x≠y, y≠z and z≠x, because there are 1/2r +1/2r = 1/(r+1)+1/r(r+1) 
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and 1/(2r+1)+1/(2r+1)=1/(r+1)+1/(r+1)(2r+1) where r≥1.  

Thus the Erdös conjecture and the Straus conjecture are equivalent from 

each other, and they are called the Erdös-Straus conjecture collectively.  

As a general rule, the Erdös-Straus conjecture states that for every integer 

n≥2, there exist positive integers x, y and z, such that 4/n=1/x+1/y+1/z.  

Yet, it is still both unproved and un-negated a conjecture hitherto.  

2. Expressing Each of Majorities of 4/n into 1/x +1/y +1/z   

First let us divide all integers ≥2 into eight kinds, i.e. ①8k+1, ②8k+2, 

③8k+3, ④8k+4, ⑤8k+5, ⑥8k+6, ⑦8k+7 and ⑧8k+8, where k≥0.  

Please, see also the permutations of each and every kind of positive 

integers from small to large as follows.   

K,  8k+1,  8k+2,  8k+3,  8k+4,  8k+5,  8k+6,  8k+7,  8k+8  

0,    1(not),   2,     3,     4,      5,     6,     7,     8,  

1,    9,     10,    11,    12,     13,    14,    15,    16,  

2,    17,    18,    19,    20,     21,    22,    23,    24,  

3,    25,    26,    27,    28,     29,    30,    31,    32, 

…,  …,    …,     …,    …,     …,    …,    …,    …,  

Excepting 8k+1, we formulate each of other seven kinds as follows.   

(1) For n=8k+2, 4/(8k+2)=1/(4k+1) +1/(4k+2) +1/(4k+1)(4k+2);  

(2) For n=8k+3, 4/(8k+3)=1/(2k+2)+1/(2k+1)(2k+2)+1/(2k+1)(2k+3); 

(3) For n=8k+4, 4/(8k+4)=1/(2k+3)+1/(2k+2)(2k+3)+1/(2k+1)(2k+2);  

(4) For n=8k+5, 4/(8k+5)=1/(2k+2)+1/(8k+5)(2k+2)+1/(8k+5)(k+1);  
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(5) For n=8k+6, 4/(8k+6)=1/(4k+3)+1/(4k+4)+ 1/(4k+3)(4k+4);   

(6) For n=8k+7, 4/(8k+7)=1/(2k+3)+1/(2k+2)(2k+3)+1/(2k+2)(8k+7);  

(7) For n=8k+8, 4/(8k+8)=1/(2k+4)+1/(2k+2)(2k+3)+1/(2k+3)(2k+4).  

Thus it can be seen, that listed above seven formulas suit absolutely the 

Erdös-Straus conjecture, where k≥0 in them. Of course, for each of them, 

be necessary to make a check from each of readers, similarly hereinafter.  

For remainder 8k+1 with k≥1, we divide it into 3 genera, i.e. (A) 8k+1 for 

modulus 3 and remainder 0, (B)8k+1 for modulus 3 and remainder 1 and 

(C)8k+1 for modulus 3 and remainder 2. Excepting 8k+1 for modulus 3 

and remainder 1, we formulate each of two genera therein as follows.  

(8) 8k+1 for modulus 3 and remainder 0, since (8k+1)/3 is an integer, so 

there is to 4/(8k+1)=1/(8k+1)/3 +1/(8k+2) +1/(8k+1)(8K+2), where k ≥1.   

(9) 8k+1 for modulus 3 and remainder 2, since (8k+2)/3 is an integer, so 

there is to 4/(8k+1)=1/(8k+2)/3 +1/(8k+1) +1/(8k+1)(8k+2)/3, where k≥2.  

For remainder (B)8k+1 with k≥3 for modulus 3 and remainder 1, let us 

divide it into five sorts, i.e. ①25+120c, ②49+120c, ③73+120c, 

④97+120c and ⑤121+120c, where c≥0, as listed below.   

C,  ①25+120c, ②49+120c, ③73+120c, ④ 97+120c, ⑤121+120c,  

0,      25,        49,        73,        97,        121,  

1,     145,       169,       193,       217,        241,  

2,     205,       289,       313,       337,        361,   

…,    …,        …,        …,        …,         …,    
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Excepting ② and ⑤, we formulate each of other three sorts as follows:   

(10) For n=25+120c, 4/(25+120c)=1/(25+120c)+1/(50+240c)+1/(10+48c).  

(11) For=73+120c, 4/(73+120c) = 1/(20+30c) + 1/(73+120c)(10+15c) + 

1/(73+120c)(4+6c).   

(12) For n=97+120c, 4/(97+120c) =1/(25+30c) + 1/(97+120c)(50+60c) + 

1/(97+120c)(10+12c).   

Thereinafter, we shall divide 4/(49+120c) and 4/(121+120c) into certain 

subclasses to prove them by two sections via logical inference.  

For each subclass of 4/(49+120c) plus 4/(121+120c), although can 

formulate it, but since their total should be many, also add wordy 

paragraphs inevitably, so do them like this unnecessarily.   

4. Proving 4/(49+120c)=1/x + 1/y +1/z   

Since 4/(49+120c)  

= 1/(13+30c) + 3/(13+30c)(49+120c),  

= 1/(14+30c) + 7/(14+30c)(49+120c),  

= 1/(15+30c) + 11/(15+30c)(49+120c),  

= 1/(16+30c) + 15/(16+30c)(49+120c),  

= 1/(17+30c) + 19/(17+30c)(49+120c),  

= 1/(18+30c) + 23/(18+30c)(49+120c), 

= 1/(19+30c) + 27/(19+30c)(49+120c),  

= 1/(20+30c) + 31/(20+30c)(49+120c), 

…  
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= 1/(13+α+30c) + (3+4α)/(13+α+30c)(49+120c), where α≥0 and c≥0.  

                …      

Listed above groups of two additive fractions plus their identical 

transformations are termed to identical relation of 4/(49+120c). Evidently 

such identical relations have infinitely many.  

To my way of thinking, 4/(49+120c)=1/(13+α+30c)+(3+4α)/(13+α+30c) 

(49+120c) is able to be expressed into 1/x+1/y+1/z in which case c equals 

each of positive integers plus 0 certainly. Nothing but, each of 

4/(49+120c)=1/x+1/y+1/z hides within some equalities therein or 

identical transformations thereof. Thus, first let 1/(13+α+30c)=1/x, after 

that, so long as can prove (3+4α)/(13+α)+30c)(49+120c)=1/y+1/z, then it 

is able to be concluded that achieve the purpose of the proof.  

Though we are unable to find out all of them singly, but can still select 

few representative equalities therein via identical transformation and 

logical inference to prove that when c is equal to each of positive integers 

plus 0, there is sure to 4/(49+120c)=1/x+1/y+1/z.    

Proof* First we regard 4/(49+120c)=1/(15+30c)+11/(15+30c)(49+120c) 

as a representative equality, and that from this to structure a rough shell 

frame about proving 22m/2m(15+30c)(49+120c)=1/y+1/z via identical 

transformation, where m expresses each and ever positive integer.  

The denominator 2m(15+30c)(49+120c)=2m×3×5(2c+1)(49+120c), and 

divide the numerator 22m into two addends, also regard left addends as 
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the set Q, and regard right addends as the set Φ, then 22m=q+φ, ut infra.  

When     m=1;      m=2;       m=3…         m   
Numerator,  Q,    Φ,     Q,    Φ,      Q,    Φ…         Q,      Φ     

22m: 22=22-1 +1; 44=44-1 +1; 66=66-1 +1; … 22m=22m-1 +1   

       22-3 +3;   44-3 +3;    66-3 +3;        22m-3 +3   

       22-5 +5;   44-5 +5;    66-5 +5;        22m-5 +5   

       …  …;   …  …;    …  …;  …     …   …   

     22-21 +21;  44-21 +21;  66-21 +21; …    22m-21 +21  

                22-1  +1;  44-1  +1;…    22(m-1)-1 +1  
               [i.e.44-23  +1];  [i.e.66-23  +1]…    [i.e.22m-23  +1]    

                22-3  +3;  44-3  +3;…    22(m-1)-3 +3  

               …    …;   …   …; …     …     …  

               22-21 +21;  44-21 +21;…    22(m-1)-21 +21 

                          22-1  +1;…    22(m-2)-1  +1  
                         [i.e.44-23   +1]…     [i.e.22(m-1)-23  +1]  

                          22-3  +3;…    22(m-2)-3  +3  

                          …    …; …      …      …  

                          22-21 +21;…   22(m-2)-21 +21  

                                        22(m-3)-1  +1,  
                                        [i.e.22(m-2)-23  +1]  

                                        22(m-3)-3  +3  

                                          …      … 

                                        22(m-3)-21 +21 

                                          …      …  
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As listed above, when a left addend turn into 22(m-1)-φ from 22m-φ, the 

right addend is always φ, where φ=1, 3, 5, 7, 9, 11, 13, 15, 17, 19 and 21, 

so all right addends can be converted into 11 consecutive odd numbers 

from 1 to 21. Thus, if regard such 11 consecutive odd numbers as a group, 

then when m equals each and every positive integer, left all addends are 

all positive odd numbers irrespective of their repetitions. Yet right all 

addends are infinitely many groups of odd numbers from 1 to 21.  

Prove 22m/2m×3×5(2c+1)(49+120c)=1/y+1/z, actually it is exactly to 

prove that the equality (q+φ)/2m×3×5(2c+1)(49+120c)=1/y+1/z holds 

water in which case c equals each of positive integers plus 0, where y and 

z are positive integers, and q+φ=22m.    

If each and every positive odd number substitutes for 2c+1, then c is 

equal to each of positive integers plus 0.  

So let each of left addends from small to large to substitute for 2c+1, one 

by one, then, we get every value of c from small to large.  

Thereupon, let us list headmost 11 equalities of 4/49+120c=1/x+1/y+1/z 

in which case c=0, 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10, as listed below.  

1. When c=0, 4/(49+120c) = 1/(14+30c)+7/(14+30c)(49+120c)=1/14 + 

7/(14+30c)(49+120c) =1/14 + 1/(2×49) =1/14 + 1/99 + 1/(98×99).  

Here, c=0 is due to 1=2c+1, i.e. the left addend is 1, similarly hereinafter.  

2. When c=1, 4/(49+120c) = 1/(22+30c) + 39/(22+30c)(49+120c) = 1/52 

+ (26+13)/(22+30c)(49+120c) = 1/52 +1/(2×169) + 1/(22×169).  
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3. When c=2, 4/(49+120c) = 1/(42+30c) + 119/(42+30c)(49+120c) = 

1/(42+30c) + (102+17)/(42+30c)(49+120c) = 1/102+ 1/172 + 1/(102×17).  

4. When c=3, 4/(49+120c) = 1/(15+30c) + 11/(15+30c)(49+120c) =  

1/(15+30c) + (21+1)/3×10(2c+1)(49+120c)=1/105+1/4090+1/(210×409).  

5. When c=4, 4/(49+120c) = 1/(18+30c) + 23/(18+30c)(49+120c) = 1/138 

+ 23/(138×232) = 1/138 + 1/(138×23+1) +1/(138×23)(138×23+1).   

6. When c=5, 4/(49+120c) = 1/(15+30c) +11/(15+30c)(49+120c) = 1/165 

+1/(15×649) = 1/165 +1/(15×649+1) +1/15×649(15×649+1). 

7. When c=6, 4/(49+120c) = 1/(15+30c) +11/(15+30c)(49+120c) = 1/195 

+(65+1)/(6×3×5×13×769) = 1/195 +1/(18×769) + 1/(18×65×769).  

8. When c=7, 4/(49+120c) = 1/(15+30c) +11/(15+30c)(49+120c) = 1/225 

+(21+1)/(2×3×5×15×7×127) =1/225 + 1/(150×127) + 1/(3150×127).  

9. When c=8, 4/(49+120c) = 1/(15+30c) + 11/(15+30c)(49+120c) = 1/255 

+(17+5)/(2×3×5×17×1009) =1/255 + 1/(30×1009) + 1/(102×1009).  

10. When c=9, 4/(49+120c) = 1/(15+30c) +11/(15+30c)(49+120c) = 

1/285 +(19+3)/(3×5×19×1129) = 1/285 + 1/(15×1129) + 1/(95×1129) 

11. When c=10, 4/(49+120c) = 1/(15+30c) + 11/(15+30c)(49+120c) = 

1/315 +(21+1)/(2×3×5×21×1249)=1/315 +1/(30×1249)+1/(30×21×1249).  

In order to enable that a left addend substitutes for 2c+1 solely, then the 

right addend must be a factor of the denominator.   

By now, we set about analyzing 11 right addends within the set Φ below.  

First, when Φ=1, 3, 5 and 15, each of them is a factor in denominator 
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2m×3×5(2c+1)(49+120c), so they satisfy the aforesaid requirement, i.e. a 

left addend within every pair with each of them can substitute for 2c+1 

solely, thus can determine all values of c of the 4 subclasses.  

Next, analyze all subclasses in which case Φ=7, 11, 13, 17, 19, 9 and 21.  

For Φ=7, since it is not a factor within the denominator, so we let m=7, 

then the numerator is turned into 22×7-7 plus 7, and the denominator is 

turned into 2×3×5×7(2c+1)(49+120c).  

As thus, when m≥7, it satisfy the aforesaid requirement likewise, enable 

that a left addend within every pair with 7 can substitute for 2c+1 solely, 

so can determine infinite many values of c of the subclass.  

But, after do it like this, missed out six odd numbers, i.e. 22×1-7, 22×2-7, 

22×3-7, 22×4-7, 22×5-7 and 22×6-7. If let these odd numbers substitute 

for 2c+1 orderly, then get c=7, 18, 29, 40, 51 and 62, yet c=7 has existed 

before this. Thus, need us to make up five such equalities of 4/49+120c= 

1/x+1/y+1/z in which case c=18, 29, 40, 51 and 62 by other methods.  

Such as when c=18, it has 4/(49+120c)=1/(24+30c)+47/(24+30c)×472 = 

1/(24+30c)+1/(24+30c)×47=1/565+1/(564×565)+1/(564×47). Then, other 

four will be reckoned in the number of unproved equalities.  

Pursuant to the same reason, for Φ=11, 13, 17 and 19, let m=11, 13, 17 

and 19, enable a left addends within every pair with 11, 13, 17 and 19 

substitute for 2c+1 solely in which case m≥11, 13, 17 or 19 to aforesaid 

order, as thus, can determine infinite many values of c of the 4 subclasses.  
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Nevertheless, when Φ=7, 11, 13, 17 and 19, there are still 60 missing 

fractions which express into 1/y+1/z, from 4+10+12+16+18=60.  

For Φ=9, let m=3 because the denominator has factor 3, then miss 2 

fractions, so need to list (22×1-32 + 32)/2×32×5(2c+1)(49+120c)=1/y+1/z 

and (22×2-32 + 32)/2×32×5(2c+1)(49+120c)=1/y+1/z.  

For Φ=21, on the basis that previously solved Φ=7, it is not a problem yet, 

thus need not again consider it.   

Hereto, we have proven infinitely many values of c such that 4/(49+120c) 

=1/x+1/y+1/z, nothing but, miss out 62 values of c to await supplements.  

5. Proving 4/(121+120c)=1/x + 1/y +1/z   

Since 4/(121+120c)   

= 1/(31+30c) + 3/(31+30c)(121+120c), 

= 1/(32+30c) + 7/(32+30c)(121+120c),  

= 1/(33+30c) + 11/(33+30c)(121+120c),  

= 1/(34+30c) + 15/(34+30c)(121+120c),  

= 1/(35+30c) + 19/(35+30c)(121+120c),  

= 1/(36+30c) + 23/(36+30c)(121+120c), 

= 1/(37+30c) + 27/(37+30c)(121+120c),  

= 1/(38+30c) + 31/(38+30c)(121+120c), 

= 1/(39+30c) + 35/(39+30c)(121+120c), 

= 1/(40+30c) + 39/(40+30c)(121+120c), 

                …     
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= 1/(60+30c) + 119/(60+30c)(121+120c), 

                …  

= 1/(31+α+30c) + (3+4α)/(31+α+30c)(121+120c), where α≥0 and c≥0. 

               …          

As listed below, our think is still that first let 1/(31+α+30c)=1/x, then only 

prove (3+4α)/(31+α+30c)(121+120c) =1/y+1/z, where c≥0, and α≥0.  

Proof˙ This proof for 4/(121+120c) =1/x+1/y+1/z is similar to that proof 

of 4/(49+120c) =1/x+1/y+1/z in preceding section.  

Likewise be necessary to seek out a representative equality, so we select 

4/(121+120c) =1/(60+30c) + 119/(60+30c)(121+120c).  

First, let 1/(60+30c)=1/x, then, need only to prove 119/(60+30c)(121+120c) 

=1/y+1/z with c≥0. Undoubtedly this is feasible.   

Let 119/(60+30c)(121+120c)=119m/2×3×5m(2+c)(121+120c) with m≥1, 

then again, divide 119m into two portions of addends like preceding 22m, 

so either portion can express all positive integers in which case m equals 

each and every positive integer, irrespective of their repetitions.  

If let each and every positive integer≥2 substitute for 2+c, then we can get 

all values of c.  

So we let each and every left addend on the numerator to substitute for 

factor 2+c within the denominator solely, yet any right addend must be a 

factor within the denominator.  

Thus, we regard left addends as the set Q, and convert right addends into 
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infinite many groups of consecutive 119 integers≥1, and that regard them 

as the set Φ, as listed below.  

When       m=1;        m=2;         m=3…           m   
Numerator,    Q,     Φ,         Q,   Φ,         Q ,    Φ…          Q,     Φ     
119m: 119=119-1   +1;  238= 238-1 +1;  357=357-1  +1;…119m=119m-1  +1    
         119-2   +2;       238-2 +2;      357-2  +2; …     119m-2  +2    

             …             …          …     …          …        

       119-117  +117;    238-117 +117;   357-117 +117;… 119m-117  +117  
       119-118  +118;   238-118  +118;  357-118  +118;…119m-118  +118  
       119-119  +119;   238-119  +119;  357-119  +119;…119m-119  +119  
                    119-1    +1;     238-1   +1;…  119(m-1)-1  +1   
                       119-2    +2;     238-2   +2;…  119(m-1)-2  +2   

                            …           …   …         …     
                     119-117  +117;   238-117 +117;… 119(m-1)-117  +117 
                     119-118  +118;   238-118 +118;… 119(m-1)-118  +118  
                     119-119  +119;   238-119 +119;… 119(m-1)-119  +119  
                                      119-1  +1;…  119(m-2)-1  +1   
                                      119-2  +2;…  119(m-2)-2  +2   

                                         …   …         …     
                                     119-117 +117;… 119(m-2)-117  +117  
                                     119-118 +118;… 119(m-2)-118  +118  
                                     119-119 +119;… 119(m-2)-119  +119               
                                                   119(m-3)-1  +1   
                                                   119(m-3)-2  +2   

                                                          …        
                                                   119(m-3)-117  +117  
                                                   119(m-3)-118  +118  
                                                   119(m-3)-119  +119  

                                                           …         

Thus it can be seen, when m equals each and every positive integer, left 

addends’ set Q is all positive integers irrespective of repetitions of them 

plus 0 and 1. Yet right addends’ set Φ consists of infinite many groups of 

consecutive 119 integers≥1, because when a left addend is from 119m-φ 
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to 119(m-1)-φ, the right addend is always φ, where φ expresses each of 

integers from 1 to 119, but after m equals each positive integer, 118 and 

119 are needless, for a left addend which pair with 118 or 119 is 1 or 0.  

By this token, first we must list headmost 119 equalities of 4/121+120c= 

1/x+1/y+1/z. Yet, since the amount is tanto, so we list only a few of such 

equalities in which case c=0, 1, 2, 3 and 4, ut infra.   

(1). When c=0, 4/(121+120c) = 1/(33+30c) + 11/(33+30c)(121+120c) = 

1/33 + 1/(3×112+1) = 1/33 + 1/(3×112+1) + 1/(3×112)(3×112+1);  

(2). When c=1, 4/(121+120c) = 1/(33+30c) + 11/(33+30c)(121+120c) = 

1/63 + (21+1)/2×3×21×241 = 1/63 + 1/2×3×241 + 1/2×3×21×241;  

(3). When c=2, 4/(121+120c) = 1/(35+30c) + 19/(35+30c)(121+120c) = 

1/95 + 1/5×361 = 1/95 + 1/(5×361+1) + 1/(5×361)(5×361+1);  

(4).When c=3, 4/(121+120c) = 1/(33+30c) + 11/(33+30c)(121+120c) = 

1/123+ (41+3)/22×3(11+10c)(121+120c)=1/123+1/12×481+1/22×41×481;  

(5). When c=4, 4/(121+120c) = 1/(60+30c) + 99/(60+30c)(121+120c) = 

1/180 + (90+9)/2×3×5(2+c)(121+120C) = 1/180 +1/2×601 +1/22×5×601.  

Likewise other 114 equalities are supposed to list out, but that is 

impractical. So, 114 will be reckoned in the number of unlisted equalities.  

By now, we analyze right each group of 119 consecutive addends of Φ as 

compared with denominator 2×3×5m(2+c)(121+120c) with m≥1, ut infra.  

First, when Φ=1, 2, 3, 5, 6, 10, 15 and 30, each of them is a factor within 

denominator 2×3×5m(2+c)(121+120c), thus they satisfy the requirement, 
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then a left addend within every pair with each of them can substitute for 

factor 2+c within the denominator solely, so can determine all values of c 

of the 8 subclasses on the premise that satisfies each fraction=1/y+1/z.   

In addition to this, the rest is 111 integers, and that there are 27 prime 

numbers and 84 composite numbers therein.   

For each of 27 prime numbers, let m of 119m/2×3×5m(2+c)(121+120c) 

be equal to the prime number.   

As thus, for two addends which constitute the numerator, one is the prime 

number, and another can substitute for 2+c. That is to say, two addends of 

the numerator are factors of the denominator. Of course, such a fraction is 

able to be expressed into sum of 1/y+1/z.  

Thereupon start with the fraction to infinite many fractions, can express 

uniformly each of them into sum of 1/y+1/z, but miss out m-1 fractions.  

By this token, for the 27 prime numbers, the number of missing fractions 

is the sum of the 27 prime numbers minus 27 altogether, i.e. 7+ 11+ 13+ 

17+ 19+ 23+ 29+ 31+ 37+ 41+ 43+ 47+53 + 59 + 61+ 67+ 71 + 73+ 79+ 

83+ 89+ 97+ 101+ 103+ 107+ 109+ 113 -27=1556.   

In other words, when the right addend φ at numerator of the fraction 

(q+φ)/2×3×5m(2+c)(121+120c) with q+φ=119m is a prime number, let m 

within the fraction be equal to the prime number. Then, start with this 

fraction to infinite many fractions, the right addend is always the prime 

number, and left each and every addend can always substitute for 2+c, 
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such that infinite many a fraction is expressed into sum of 1/y+1/z. But, 

after do it like this, they miss out 1556 fractions as such expression.  

For 84 composite numbers as right addends, decompose each of them into 

prime factors, and that write down the product of distinct prime factors 

and polymerous prime factors as compared with prime factors of the 

denominator 2×3×5m(2+c) (121+120c).  

In fact, every such product is exactly a disparate factor of right addend as 

compared with factors of the denominator.   

Below, we figure out each and every such product according to the order 

of composite numbers from small to large, and use the symbol Πdp to 

express the product of distinct and polymerous prime factors.   

(1) 4=22, Πdp=2; (2) 8=23, Πdp=4; (3) 9=32, Πdp=3;  

(4) 12=22×3, Πdp=2; (5) 14=2×7, Πdp=7; (6) 16=24, Πdp=23;  

(7) 18=2×32, Πdp=3; (8) 20=22×5, Πdp=2; (9) 21=3×7, Πdp=7;  

(10) 22=2×11, Πdp=11; (11) 24=23×3, Πdp=22; (12) 25=52, Πdp=5;  

(13) 26=2×13, Πdp=13; (14) 27=33, Πdp=32; (15) 28=22×7, Πdp=2×7;  

(16) 32=25, Πdp=24; (17) 33=3×11, Πdp=11; (18) 34=2×17, Πdp=17;  

(19) 35=5×7, Πdp=7; (20) 36=22×32, Πdp=2×3; (21) 38=2×19, Πdp=19;  

(22) 39=3×13, Πdp=13; (23) 40=23×5, Πdp=22; (24) 42=2×3×7, Πdp=7;  

(25) 44=22×11, Πdp=2×11; (26) 45=32×5, Πdp=3; (27) 46=2×23, Πdp=23;  

(28) 48=24×3, Πdp=23; (29) 49=72, Πdp=72; (30) 50=2×52, Πdp=5;  

(31) 51=3×17, Πdp=17; (32) 52=22×13, Πdp=2×13; (33) 54=2×33, Πdp=32; 
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(34) 55=5×11, Πdp=11; (35) 56=23×7, Πdp=22×7; (36) 57=3×19, Πdp=19;  

(37) 58=2×29, Πdp=29; (38) 60=22×3×5, Πdp=2; (39) 62=2×31, Πdp=31;  

(40) 63=32×7, Πdp=3×7; (41) 64=26, Πdp=25; (42) 65=5×13, Πdp=13;  

(43) 66=2×3×11, Πdp=11; (44) 68=22×17, Πdp=2×17; (45) 69=3×23, Πdp=23; 

(46) 70=2×5×7, Πdp=7; (47) 72=23×32, Πdp=22×3; (48) 74=2×37, Πdp=37; (49) 

75=3×52, Πdp=5; (50) 76=22×19, Πdp=2×19; (51) 77=7×11, Πdp=7×11; (52) 

78=2×3×13, Πdp=13; (53) 80=24×5, Πdp=23; (54) 81=34, Πdp=33;  

(55) 82=2×41, Πdp=41; (56) 84=22×3×7, Πdp=2×7; (57) 85=5×17, Πdp=17; 

(58) 86=2×43, Πdp=43; (59) 87=3×29, Πdp=29; (60) 88=23×11, Πdp=22×11; 

(61) 90=2×32×5,Πdp=3; (62) 91=7×13,Πdp=7×13; (63) 92=22×23,Πdp=2×23; 

(64) 93=3×31, Πdp=31; (65) 94=2×47, Πdp=47; (66) 95=5×19, Πdp=19;  

(67) 96=25×3, Πdp=24; (68) 98=2×72, Πdp=72; (69) 99=32×11, Πdp=3×11;  

(70) 100=22×52,Πdp=2×5;(71)102=2×3×17,Πdp=17; (72)104=23×13,Πdp=22×13; 

(73) 105=3×5×7,Πdp=7; (74) 106=2×53, Πdp=53; (75) 108=22×33, Πdp=2×32; 

(76) 110=2×5×11,Πdp=11; (77) 111=3×37,Πdp=37; (78) 112=24×7,Πdp=23×7; 

(79) 114=2×3×19,Πdp=19; (80) 115=5×23,Πdp=23; (81) 116=22×29,Πdp=2×29; 

(82) 117=32×13,Πdp=3×13; (83) 118=2×59,Πdp=59; (84) 119=7×17,Πdp=7×17.  

By now, we classify above 84 products, then figure out a number of 

missing fractions of each classify, and let ξ express the number.  

1. Πdp=2: (1), (4), (8), (38) 2; (11), (23) 22; (2), (6), (28), (53) 23; (16), (67) 24; (41) 25, 

and ξ =4+6+28+30+31=99.  

2. Πdp=3: (3), (7), (26), (61) 3; (14), (33) 32; (54) 33, and ξ = 8+16+26=50.  
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3. Πdp=5: (12), (30), (49) 5, and ξ =12.  

4. Πdp=7: (5), (9), (19), (24), (46), (73) 7; (29), (68) 72, and ξ = 36+96=132. 

5.Πdp=11: (10), (17), (34), (43), (76) 11, and ξ = 50. 

6. Πdp=13: (13), (22), (42), (52) 13, and ξ = 48.  

7. Πdp=2×7: (15), (56) 2×7; (35) 22×7; (78) 23×7, and ξ = 26+27+55=108.  

8. Πdp=17: (18), (31), (57), (71) 17, and ξ = 64.  

9. Πdp=2×3: (20) 2×3; (47) 22×3; (75) 2×32, and ξ = 5+11+17=33. 

10. Πdp=19: (21), (36), (66), (79) 19, and ξ = 72. 

11. Πdp=2×11: (25) 2×11; (60) 22×11, and ξ = 21+43=64. 

12. Πdp=23: (27), (45), (80) 23, and ξ = 66.  

13. Πdp=2×13: (32) 2×13; (72) 22×13, and ξ = 25+51=76. 

14. Πdp=29: (37), (59) 29, and ξ = 56.  

15. Πdp=31: (39), (64) 31, and ξ = 60.  

16. Πdp=3×7: (40) 3×7, and ξ = 20.  

17. Πdp=2×17: (44) 2×17, and ξ = 33.  

18. Πdp=37: (48), (77) 37, and ξ = 72.  

19. Πdp=2×19: (50) 2×19, and ξ = 37.  

20. Πdp=7×11: (51) 7×11, and ξ = 76.  

21. Πdp=41: (55) 41, and ξ = 40.  

22. Πdp=43: (58) 43, and ξ = 42.  

23. Πdp=7×13: (62) 7×13, and ξ = 90.  

24. Πdp=2×23: (63) 2×23, and ξ = 45.  
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25. Πdp=47: (65) 47, and ξ = 46.  

26. Πdp=3×11: (69) 3×11, and ξ = 32.  

27. Πdp=2×5: (70) 2×5, and ξ = 9.  

28. Πdp=53: (74) 53, and ξ = 52.  

29. Πdp=2×29: (81) 2×29, and ξ = 57.  

30. Πdp=3×13: (82) 3×13, and ξ = 38.  

31. Πdp=59: (83) 59, and ξ = 58.  

32. Πdp=7×17: (84) 7×17, and ξ = 118.  

Listed above numbers of missing fractions of 32 classifies add, is 1855.   

Namely, if right addends at numerator of 119m/2×3×5m(2+c)(121+120c) 

are composite numbers, let every Πdp substitute for m within the fraction, 

such that the fraction is expressed into infinite many a sum of 1/y +1/z.  

But, after do them like so, miss out 1855 fractions as such expression.  

Besides, there are 114 unlisted equalities anteriorly, i.e. c from 5 to 118.  

Thus, in the course of proving 4/(121+120c)=1/x+1/y+1/z, need us 

continue to list 3525 such equalities according to c as corresponding 

values, where 3525 from 1556+1855+114.  

Taken one with another, for the proof of 4/(49+120c)=1/x+1/y+1/z plus 

4/(121+120c)=1/x+1/y+1/z, need to get the aid of computer programming,  

and we firmly believe that it is able to complete 3587 equalities according 

to c as corresponding values, where 3587 from 62+3525.   

To sum up, we have proven the Erdös-Straus conjecture, so as continue to 
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list 3587 concrete equalities according to c as corresponding values.  

Namely, for a proof of the Erdös-Straus conjecture, we have realized 

successfully such a change from infinite to finite equalities.   
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