

Query Processing on Smart SSDs: Opportunities and Challenges

Jaeyoung Do+,#, Yang-Suk Kee*, Jignesh M. Patel+,
Chanik Park*, Kwanghyun Park+, David J. DeWitt#

+University of Wisconsin – Madison; *Samsung Electronics Corp.; #Microsoft Corp.

ABSTRACT
Data storage devices are getting “smarter.” Smart Flash storage
devices (a.k.a. “Smart SSD”) are on the horizon and will package
CPU processing and DRAM storage inside a Smart SSD, and
make that available to run user programs inside a Smart SSD. The
focus of this paper is on exploring the opportunities and
challenges associated with exploiting this functionality of Smart
SSDs for relational analytic query processing. We have
implemented an initial prototype of Microsoft SQL Server
running on a Samsung Smart SSD. Our results demonstrate that
significant performance and energy gains can be achieved by
pushing selected query processing components inside the Smart
SSDs. We also identify various changes that SSD device
manufacturers can make to increase the benefits of using Smart
SSDs for data processing applications, and also suggest possible
research opportunities for the database community.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems – Query Processing

General Terms
Design, Performance, Experimentation.

Keywords
Smart SSD.

1. INTRODUCTION
It has generally been recognized that for data intensive
applications, moving code to data is far more efficient than
moving data to code. Thus, data processing systems try to push
code as far below in the query processing pipeline as possible by
using techniques such as early selection pushdown and early
(pre-)aggregation, and parallel/distributed data processing systems
run as much of the query close to the node that holds the data.

Traditionally these “code pushdown” techniques have been
implemented in systems with rigid hardware boundaries that have
largely stayed static since the start of the computing era. Data is
pulled from an underlying I/O subsystem into the main memory,
and query processing code is run in the CPUs (which pulls data
from the main memory through various levels of processor

caches). Various areas of computer science have focused on
making this data flow efficient using techniques such as
prefetching, prioritizing sequential access (for both fetching data
to the main memory, and/or to the processor caches), and
pipelined query execution.

However, the boundary between persistent storage, volatile
storage, and processing is increasingly getting blurrier. For
example, mobile devices today integrate many of these features
into a single chip (the SoC trend). We are now on the cusp of this
hardware trend sweeping over into the server world. The focus of
this project is the integration of processing power and non-volatile
storage in a new class of storage products known as Smart SSDs.
Smart SSDs are flash storage devices (like regular SSDs), but
ones that incorporate memory and computing inside the SSD
device. While SSD devices have always contained these resources
for managing the device for many years (e.g., for running the FTL
logic), with Smart SSDs some of the computing resources inside
the SSD could be made available to run general user-defined
programs.

The focus of this paper is to explore the opportunities and
challenges associated with running selected database operations
inside a Smart SSD. The potential opportunities here are
threefold.

First, SSDs generally have a far larger aggregate internal
bandwidth than the bandwidth supported by common host I/O
interfaces (typically SAS or SATA). Today, the internal aggregate
I/O bandwidth of high-end Samsung SSDs is about 5X that of the
fastest SAS or SATA interface, and this gap is likely to grow to
more than 10X (see Figure 1) in the near future. Thus, pushing
operations, especially highly selective ones that return few result
rows, could allow the query to run at the speed at which data is
getting pulled from the internal (NAND) flash chips. We note that
similar techniques have been used in IBM Netezza and Oracle
Exadata appliances, but these approaches use additional or
specialized hardware that is added right into or next to the I/O
subsystem (FPGA for Netezza [12], and Intel Xeon processors in
Exadata [1]). In contrast, Smart SSDs have this processing in-built
into the I/O device itself, essentially providing the opportunity to
“commoditize” a new style of data processing where operations
are opportunistically pushed down into the I/O layer using
commodity Smart SSDs.

Second, offloading work to the Smart SSDs may change the way
in which we build balanced database servers and database
appliances. If some of computation is done inside the Smart SSD,
then one can reduce the processing power that is needed in the
host machine, or increase the effective computing power of the
servers or appliances. Smart SSDs use simpler processors, like
ARM, that are generally cheaper (from the $/MHz perspective)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGMOD’13, June 22–27, 2013, New York, New York, USA.
Copyright © ACM 978-1-4503-2037-5/13/06...$15.00.

than the traditional processors that are used in servers. Thus,
database servers and appliances that use Smart SSDs could be
more efficient from the overall price/performance perspective.

Finally, pushing processing into the Smart SSDs can reduce the
energy consumption of the overall database server/appliance. The
energy efficiency of query processing can be improved by
reducing its running time and/or by running processing on the low
power processors that are typically packaged inside the Smart
SSDs. Lower energy consumption is not only environmentally
friendly, but often leads to a reduction in the total cost of
operating the database system. In addition, with the trend towards
database appliances, energy starts becoming an important
deployment consideration when the database appliances are
installed in private clouds on premises where getting additional
(many kilowatts of) power is challenging.

To explore and quantify these potential advantages of using Smart
SSDs for DBMSs, we have started an exploratory project to
extend Microsoft SQL Server to offload database operations onto
a Samsung Smart SSD. We wrote simple selection and
aggregation operators that are compiled into the firmware of the
SSD. We also extended the execution framework of SQL Server
to develop a simple (but with limited functionality) working
prototype in which we could run simple selection and aggregation
queries end-to-end.

Our results show that for this class of queries, we observed up to
2.7X improvement in end-to-end performance compared to using
the same SSDs but without the “Smart” functionality, and up to a
3.0X reduction in energy consumption. These early results,
admittedly on queries using a limited subset of SQL (e.g., no
joins), demonstrate that there are potential opportunities for using
Smart SSDs even in mature commercial and well-optimized
relational DBMSs.
Our results also point out that there are a number of challenges,
and hence research opportunities, in this new area of running data
processing programs inside the Smart SSDs.
First, the processing capabilities available inside the Smart SSD
that we used are very limited by design. It is clear from our results
that adding more computing power into the Smart SSD (and
making it available for query processing) could further increase

both performance and energy savings. However, the SSD
manufacturers will need to determine if it is economical and
technically feasible to add more processing power – issues such as
the additional cost per device and changes in the device energy
profile must be considered. In a sense, this is a chicken-and-egg
problem since the SSD manufacturers will add more processing
power only if more software makes use of an SSD’s “smart”
features while the software vendors need to become confident in
the potential benefits before investing the necessary engineering
resources. We hope that our work provides a starting point for
such deliberations.

Second, the firmware development process we followed to run
user code in the Smart SSDs is rudimentary. This can be a
potential challenge for general application developers. Before
Smart SSDs can be broadly adopted, the existing development and
debugging tools and runtime system (Section 3) need to be much
more user-friendly. Further, the ecosystem around the Smart SSDs
including communication protocols and the programming,
runtime, and usage models need to be investigated in-depth.

Finally, the query execution engine and query optimizer of the
DBMS must be extended to determine when to push an operation
to the SSD. Implications of running operations in the Smart SSDs
also extend out to query optimization, DBMS buffer pool caching
policies, transaction processing, and may require re-examining
how aspects such as database compression are used. In other
words, the DBMS internals have to be modified to make use of
Smart SSDs in a production setting.

The remainder of this paper is organized as follows: The
architecture of a modern SSD is presented in Section 2. In Section
3 we describe how Smart SSDs work. Experimental results are
presented in Section 4. Related work is discussed in Section 5.
Finally, Section 6 contains our concluding remarks and points to
some directions for future work.

2. BACKGROUND: SSD ARCHITECTURE
Figure 2 illustrates the general internal architecture of a modern
SSD. There are three major components: SSD controller, flash
memory array, and DRAM.

The SSD controller has four key subcomponents: host interface
controller, embedded processors, DRAM controller, and flash
memory controllers. The host interface controller implements a
bus interface protocol such as SATA, SAS, or PCI Express (PCIe).
The embedded processors are used to execute the SSD firmware
code that runs the host interface protocol, and also runs the Flash
Translation Layer (FTL), which maps Logical Block Address
(LBA) in the host OS to the Physical Block Address (PBA) in the
flash memory. Time-critical data and program code are stored in
the SRAM. Today, the processor of choice is typically a low-
powered 32-bit RISC processor, like an ARM series processor,

Figure 1: Bandwidth trends for the host I/O interface (i.e., SAS/SATA
standards), and aggregate internal bandwidth available in high-end
enterprise Samsung SSDs. Numbers here are relative to the I/O
interface speed in 2007 (375 MB/s). Data beyond 2012 are internal
projections by Samsung.

SSD
Controller

Flash Flash

Flash Flash

Flash Channel

Flash
Controller

DRAM

DRAM
Controller

Flash Channel
Flash Memory Array

Embedded
Processors

SRAM

H
os

t I
nt

er
fa

ce

C
on

tro
lle

r

Flash
Controller

Flash SSD
Figure 2: Internal architecture of a modern SSD

1

10

100

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

B
an

dw
id

th
 R

el
at

iv
e

to

th
e

I/O
 In

te
rf

ac
e

Sp
ee

d

Year

I/O Interface

Internal SSD

which typically has multiple cores. The controller also has on-
board DRAM memory that has higher capacity (but also higher
access latency) than the SRAM.

The flash memory controller is in charge of data transfer between
the flash memory and DRAM. Its key functions include running
the Error Correction Code (ECC) logic, and the Direct Memory
Access (DMA). To obtain higher I/O performance from the flash
memory array, the flash controller uses chip-level and channel-
level interleaving techniques. All the flash channels share access
to the DRAM. Hence, data transfers from the flash channels to the
DRAM (via DMA) are serialized.

The NAND flash memory array is the persistent storage medium.
Each flash chip has multiple blocks, each of which holds multiple
pages. The unit of erasure is a block, while the read and write
operations in the firmware are done at the granularity of pages.

3. SMART SSDs FOR QUERY PROCESSING
The Smart SSD runtime framework (shown in Figure 3)
implements the core of the software ecosystem that is needed to
run user-defined programs in the Smart SSDs.

3.1 Communication Protocol
Since the key concept of the Smart SSD (that we explore in this
paper) is to convert a regular SSD into a combined computing and
storage device, we needed a standard mechanism to enable the
processing capabilities of the device at run-time. We have
developed a simple session-based protocol that is compatible with
the standard SATA/SAS interfaces (but could be extended for
PCIe). The protocol consists of three commands – OPEN, GET,
and CLOSE.

 OPEN, CLOSE: A session starts with an OPEN command
and terminates with a CLOSE command. Once the session
starts, runtime resources including threads and memory (see
Thread and Memory APIs in Section 3.2) that are required to
run a user-defined program are granted, and a unique session
id is then returned to the host. Note that when one of the
other Smart SSD commands (i.e., GET and CLOSE) is
invoked by the host, the session id must be provided to find
the corresponding session before the command is executed in
the Smart SSDs. The CLOSE command closes the session
associated with the session id; it terminates any running
program and releases all resources that are used by the
program. Once the session is closed, the corresponding
session id is invalid, and can be recycled.

 GET: The host can monitor the status of the program and
retrieve results that the program generates via a GET
command. This command is mainly designed for the
traditional block devices (based on SATA/SAS interfaces), in
which case the storage device is a passive entity and
responds only when the host initiates a request. For PCIe, a
more efficient command (such as PULL) could be introduced
to directly leverage device-initiated capabilities (e.g.,
interrupts). A single GET command retrieves both the
running status of the program and the results if the output is
ready. With different session ids, multiple user-defined
programs can be executed in parallel. Note that the programs
can be blocked if no resource is available in the Smart SSD.
Therefore, the polling interval should be adaptive so that it
does not introduce a large polling overhead or hinder the
progress of the Smart SSD operations. In our experiments,
the polling interval was set to 10 msec.

3.2 Application Programming Interface (API)
Once a command has been successfully delivered to the device
through the Smart SSD communication protocol (Section 3.1), the
Smart SSD runtime system drives the user-defined program in an
event-driven fashion. The user program can use the Smart SSD
APIs for command management, thread management, memory
management, and data management. The design philosophy of the
APIs is to give more flexibility to the program, so that it is easier
for the end-user programs to use these APIs. These APIs are
briefly described below.

 Command APIs: Whenever a Smart SSD command (i.e.,
OPEN, GET, and CLOSE) is passed to the device, the Smart
SSD runtime system invokes the corresponding callback
function(s) registered by the user-defined program. For
instance, the OPEN and CLOSE commands trigger user-
defined open and close functions respectively. In contrast,
the GET command calls functions to fill the running status of
the program and to transfer results to the host if available.

 Thread APIs: Once a session is opened, the Smart SSD
runtime system creates a set of worker threads and a master
thread per core dedicated to the session. All threads managed
by the runtime system are non-preemptive. A worker thread
is scheduled when a Smart SSD command arrives (see
Command APIs above), or when a data page (8KB) is loaded
from flash to DRAM (see Data APIs below). Once scheduled,
a user-registered callback function for that event is invoked
on the thread (e.g., an open function in the event of the
OPEN command). Since callback functions are designed to
be “quick” functions, long-running operations that are
required for each page (such as filtering) are handled by a
special function that is executed in the master thread. We
note that the current version of the runtime system does not
support a “yield” command that gives up the processor to
other threads. To simulate this behavior when the master
thread is scheduled, the operation processes only a few pages,
before the master thread is rescheduled to deal with the next
task (which could be to process the next set of pages for the
first task).

 Memory APIs: Smart SSD devices typically have two types
of memory modules – a small fast SRAM (e.g., ARM’s
Tightly Coupled Memory), and a large slow DRAM. In a
typical scenario, the DRAM is mainly used to store data
pages while the SRAM is used for frequently accessed
metadata such as the database table schema. Once a session

User-Defined Programs

Command
APIs

Thread
APIs

Data
APIs

Memory
APIs

Flash SSD

Application Programing Interfaces

Proprietary SSD Firmware
O

PE
N

G
ET

C
LO

SEHost
Interface Communication

Protocol

Host Machine

Figure 3: Smart SSD runtime framework

is open, a pre-defined amount of memory is assigned to the
session, and this memory is returned back to the Smart SSD
runtime system when the session is closed (i.e., dynamic
memory allocation using malloc and free is not allowed.)

 Data APIs: Multiple data pages can be loaded from flash to
DRAM in parallel. Here, the degree of parallelism depends
on the number of flash channels employed in the Smart SSD.
Once loaded, the pages are pinned to ensure that they are not
evicted from the DRAM. After processing a page, it must be
unpinned to release the memory required to hold the page
back to the device. Otherwise, Smart SSD operations might
be blocked until enough memory is available for the
subsequent operations.

4. EVALUATION
In this section, we present results from an empirical evaluation of
Smart SSD with Microsoft SQL Server.

4.1 Experimental Setup
4.1.1 Workloads
For our experiments, we used the LINEITEM table defined in the
TPC-H benchmark [30] and three synthetic tables (Synthetic4,
Synthetic16, and Synthetic64) that consist of 4 integer columns,
16 integer columns, and 64 integer columns respectively.
Our modifications to the original LINEITEM table specifications
are as follows:

1) We used a fixed-length char string for the variable-length
column, L_COMMENT,

2) All decimal numbers were multiplied by 100 and stored as
integers,

3) All date values were converted to the numbers of days since
the last epoch.

These changes resulted in 148 byte-sized tuples. The LINEITEM
data was populated at a scale factor of 100 (600M tuples, ~90GB).

In addition, we created three synthetic tables, called Synthetic4,
Synthetic16, and Synthetic64, each of which has 400M tuples.
The sizes of these tables are 10GB, 30GB and 110GB for the
Synthetic4, the Synthetic16, and the Synthetic64 tables
respectively.

The data in the LINEITEM table and the synthetic tables was
inserted into a SQL Server heap table (without a clustered index).
By default, the tuples in these tables were stored in slotted pages
using the traditional N-ary Storage Model (NSM). For the Smart
SSDs, we also implemented the PAX layout [3] in which all the
values of a column are grouped together within a page.

4.1.2 Hardware/Software Setup
All experiments were performed on a system running 64bit
Windows 7 with 32GB of DRAM (24 GB of memory is dedicated
to the DBMS). The system has two Intel Xeon E5430 2.66GHz
quad core processors, each of which has a 32KB L1 cache, and
two 6MB L2 caches shared by two cores. For the OS and the
transactional log, we used two 7.5K RPM SATA HDDs,
respectively. In addition, we used a LSI four-port SATA/SAS
6Gbps HBA (host bus adapter) [22] for the three storage devices
that we used in our experiments. These three devices are:

1) A 146GB 10K RPM SAS HDD,
2) A 400GB SAS SSD, and
3) A Smart SSD prototyped on the same SSD as above.

Only one of three devices is connected to the HBA at a time for
each experiment. Finally, the power drawn by the system was
measured using a Yokogawa WT210 unit (as suggested in [26]).
We used this server hardware since it was compatible with the
LSI HBA card that was needed to run the extended host interface
protocol described in Section 3.1.

We recognize that this box has a very high base energy profile
(235W in the idle state) for our setting in which we use a single
data drive; hence, we expect the energy gains to be bigger when
the Smart SSD is used with a more balanced hardware
configuration. But, this configuration allowed us to get initial end-
to-end results.

We implemented simple selection and selection with aggregation
queries in the Smart SSD by using the Smart SSD APIs (Section
3.2). We also modified some components in SQL Server 2012
[23] to recognize and communicate with the Smart SSD through
the Smart SSD communication protocol (Section 3.1). For each
test, we measured the elapsed wall-clock time, and calculated the
disk energy consumption by summing the time discretized real
energy values over the elapsed time. After each test run, we
dropped the pages in the main-memory buffer pool to start with a
cold buffer cache on each run. Thus, all the results presented here
are for cold experiments; i.e., there is no data cached in the buffer
pool prior to running each query.

4.2 Experimental Results
To aid the analysis of the results that are presented below, the I/O
characteristics of the HDD, SSD, and Smart SSD are shown in
Table 1. The bandwidth of the HDD and the SSD was obtained
using Iometer [15]. For the Smart SSD internal bandwidth, we
implemented a simple program (by using the Smart SSD APIs
introduced in Section 3.2) to measure the wall clock time to
sequentially fetch a 100GB dummy data file from flash to the on-
board DRAM. Note that for this experiment, there was no data

Figure 4: End-to-end elapsed time for a selection query at a
selectivity of 0.1% with the three synthetic tables Synthetic4,
Synthetic16, and Synthetic64.

Table 1: Maximum sequential read bandwidth with 32-page (256KB)
I/Os.

SAS HDD

SAS SSD

(Internal)
Smart SSD

Seq. Read (MB/sec) 80 550 1,560

0

50

100

150

200

Synthetic4 Synthetic16 Synthetic64

Ti
m

e
(s

ec
on

d)

Target Table

SAS SSD
Smart SSD(PAX)

transfer between the SSD and the host. The only traffic between
the host and the Smart SSD was the communication associated
with issuing the Smart SSD commands (i.e., OPEN, GET, and
CLOSE) to control the program.

As can be seen in Table 1, the internal sequential read bandwidth
of the Smart SSD is 19.5X and 2.8X faster than that of the HDD
and the SSD, respectively. This value can be used as the upper
bound of the performance gains that this Smart SSD could
potentially deliver. As described in Figure 1, over time it is likely
that the gap between the SSD and the Smart SSD will grow to a
much larger number than 2.8X.

We also note that the improvement here (of 2.8X) is far smaller
than the gap shown in Figure 1 (about 10X). The reason for this
gap is that the access to the DRAM is shared by all the flash
channels, and currently in this SSD device only one channel can
be active at a time (recall the discussion in Section 2), which
becomes the bottleneck. One could potentially address this

bottleneck by increasing the bandwidth to the DRAM or adding
more DRAM busses. As we discuss below, this and other issues
must be addressed to realize the full potential of the Smart SSD
vision.

4.2.1 Selection Query
For this experiment, we used three synthetic tables and the
following SQL query:

SELECT	
 SecondColumn	

FROM	
 SyntheticTable	

WHERE	
 FirstColumn	
 <	
 [VALUE]

Effect of Tuple Size: Figure 4 shows the end-to-end elapsed time
to execute the selection query at a selectivity of 0.1% with the
three synthetic tables (Synthetic4, Synthetic16, and Synthetic64).
As can be seen in this figure, the Smart SSD, with a PAX layout,
executes the selection query on the Synthetic64 table 2.6X faster
than the regular SSD, whereas the selection on the Synthetic4
table is slower than the regular SSD. The performance
improvement of the Smart SSD comes from the faster internal I/O,
whereas the low computation power of the ARM core in the
Smart SSD saturates its performance. In this experiment, in all the
three cases, the Smart SSD improves the I/O component of
fetching data from the flash chips. But, compared to the regular
SSD case, the Smart SSD has to compute on the data in the pages
that are fetched from the flash chips before sending it to the host.
With the Synthetic64 data set, this computation cost (measured as
cycles/page) is low as there are only 29 tuples on each page.
However, with the Synthetic4 table, there are 323 tuples on each
data page, and the Smart SSD-based execution strategy now has
to spend far more processing cycles per page, which saturates the
CPU. Now, the query (on the Synthetic4 table) in the Smart SSD
is bottlenecked on the CPU resource. In the case of this SSD
device, for the Synthetic4 data set, the throughput of the
computation that can be pushed “through the CPU” in the Smart
SSD is lower than the host IO interface. Consequently, the
performance of this query (with 0.1% selectivity) is faster with the
regular SSD.

Effect of Varying the Selectivity Factor: Figures 5 (a), 5 (b),
and 5 (c) present the end-to-end elapsed time and the energy
consumed when executing the selection query at various
selectivity factors on the Synthetic64 table, using the regular SSD,
and the Smart SSD with the default NSM layout and the PAX
layout. The energy consumption is shown for the entire system in
Figure 5 (b), and for just the I/O subsystem in Figure 5 (c).

To improve the presentation of these figures, we do not show the
measurements for the HDD case, as it was significantly higher
than the SSD cases. Rather, we show the measurements for the
HDD case in Table 2.

Figure 5: End-to-end (a) query execution time, (b) entire system
energy consumption, and (c) I/O subsystem energy consumption for a
selection query on the Synthetic64 table at various selectivity factors.

Table 2: Results for the SAS HDD: End-to-end query execution time,
entire system energy consumption, and I/O subsystem energy
consumption for a selection query on the Synthetic64 table at various
selectivity factors.

 0.1% 10% 100%
Elapse time (seconds) 1,494 1,486 1,485
Entire System Energy (kJ) 357 358 358
I/O Subsystem Energy (kJ) 13 13 13

0

100

200

300

400

0.1 10 100

Ti
m

e
(s

ec
on

d)

Fraction of tuples that match the predicate (%)

(a) Elapsed Time

SAS SSD
Smart SSD (NSM)
Smart SSD (PAX)

0

25

50

75

100

0.1 10 100

En
er

gy
 (k

J)

Fraction of tuples that match the predicate (%)

(b) Entire System Energy Consumption

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

0.1 10 100

En
er

gy
 (k

J)

Fraction of tuples that match the predicate (%)

(c) I/O Subsystem Energy Consumption

As can be observed from Figure 5 (a) and Table 2, the Smart SSD
provides significant improvements in performance for the highly
selective queries (i.e. when few tuples match the selection
predicate). The improvements are 19X and 2.6X over the HDD
and the SSD, respectively when 0.1% of the tuples satisfy the
selection predicate.

One interesting observation from Figure 5 (a) is that for the Smart
SSD case, using the PAX layout provides better performance than
the NSM layout, by up to 32%. As an example, for the 0.1%
selection query, the elapsed times when using NSM and PAX are
about 115 seconds and 78 seconds, respectively. Unlike the host
processor that has L1/L2 caches, the embedded processor in our
Smart SSD does not have these caches. Instead, it provides an
efficient way to move consecutive bytes from the memory to the
processor registers in a single instruction, called the LDM

instruction [4]1. Since all the values of a column in a page are
stored contiguously in the case of the PAX layout, we were able
to use the LDM instruction to load multiple values at once,
reducing the number of (slow) DRAM accesses. Given the high
DRAM latency in the SSD, the columnar PAX layout is more
efficient than a row-based layout.

In addition, from Figure 5 (b) and Table 2, we observe that the
Smart SSD provides a big energy efficiency benefits – up to
18.8X and 3.0X over the HDD and the SSD respectively, with
0.1% selectivity. Furthermore, from Figure 5 (c) and Table 2, we
observe that the Smart SSD achieves a substantial I/O subsystem
energy efficiency improvement. For example it reduces the energy
consumption by 24.9X and 2.0X over the HDD and the SSD cases
respectively, at 0.1% selectivity. The interesting observation for
the I/O subsystem energy consumption is that the Smart SSD
energy efficiency benefit over the SSD is not proportional to the
elapsed time. In other words, the elapsed times at 0.1% selectivity
when using the Smart SSD with a PAX layout and the regular
SSD are about 78 seconds and 207 seconds, which shows 2.6X
performance improvement. However, the I/O subsystem energy
efficiency improvement is only 2.0X. That is because the Smart
SSD consumes additional computation power compared to the
regular SSD.
With the Synthetic4 and the Synthetic16 tables, the Smart SSD is
usually slower than the regular SSD for the select query at 0.1%
selectivity, and in the worst case about 2.6X slower with the NSM
format. As above, the PAX format works better with the Smart
SSD, and in the worst case the Smart SSD is 22% slower than the
regular SSD. The reasons for this behavior are similar to the case
of the Synthetic4 table shown in Figure 4 (See Section 4.2.1).

4.2.2 Selection with Aggregation Query
For this experiment, we used the following SQL aggregate query:

SELECT	
 AVG	
 (SecondColumn)	
 	

FROM	
 SyntheticTable	
 	

WHERE	
 FirstColumn	
 <	
 [VALUE]	

The results for this experiment for the Synthetic64 dataset are
shown in Figure 6. The HDD results for this experiment are
shown in Table 3. From Figure 6 and Table 3, we note that
compared to the Smart SSD case with PAX, the HDD case takes
19.2X longer to execute the query, consumes 18.7X more energy
at the whole server/system level, and about 23.3X more energy in
just the I/O subsystem.

1 The load multiple instruction (LDM) allows loading data into

any subset of the 16 general-purpose processor registers from
memory, using a single instruction.

Figure 6: End-to-end (a) query execution time, (b) entire system
energy consumption, and (c) I/O subsystem energy consumption for a
selection with aggregate query on the Synthetic64 table at various
selectivity factors.

Table 3: Results for the SAS HDD: End-to-end query execution time,
entire system energy consumption, and I/O subsystem energy
consumption for a selection with aggregation query on the
Synthetic64 table at various selectivity factors.

 0.1% 10% 100%
Elapse time (seconds) 1,485 1,486 1,488
Entire System Energy (kJ) 354 353 355
I/O Subsystem Energy (kJ) 13 13 13

0

50

100

150

200

250

0.1 10 100

Ti
m

e
(s

ec
on

d)

Fraction of tuples that match the predicate (%)

(a) Elapsed Time

SAS SSD
Smart SSD (NSM)
Smart SSD (PAX)

0

10

20

30

40

50

60

0.1 10 100

En
er

gy
 (k

J)

Fraction of tuples that match the predicate (%)

(b) Entire System Energy Consumption

0
0.2
0.4
0.6
0.8

1
1.2

0.1 10 100

En
er

gy
 (k

J)

Fraction of tuples that match the predicate (%)

(c) I/O Subsystem Energy Consumption

Similar to the previous results, the Smart SSD shows significant
performance and energy savings over the HDD and the SSD
cases. As seen in Figure 6 (a), the Smart SSD improves
performance for the highly selective queries by up to 2.7X over
the (regular) SSD case when 0.1% of the tuples satisfy the
selection predicate. In addition, as shown in Figure 6 (b), using
the Smart SSD (with PAX) is 2.9X more energy efficient than the
regular SSD case when the selectivity is 0.1%. Furthermore, as
can be observed from Figure 6 (c), the Smart SSD with PAX is
1.9X more efficient in the I/O subsystem over the (regular) SSD
case, at 0.1% selectivity.

The one big difference between the simple selection query results
shown in Figure 5 and Table 2, and the aggregate query results
shown in Figure 6 and Table 3, is that with the aggregate query,
the Smart SSD has better performance than the HDD and the SSD
cases even at 100% selectivity. The reason for this behavior is that
the output of the aggregation query is far smaller than the output
of the selection query. Thus, the selection query has a much
higher I/O cost associated with transferring data from the Smart
SSD to the host, which diminishes the benefits of the Smart SSD.

With the Synthetic4 and Synthetic16 tables, similar to the
selection query results, the Smart SSD is usually slower than the
regular SSD for the aggregate query at 0.1% selectivity, and in the
worst case about 2.5X slower with the NSM format. As above,
performance is higher with the PAX format in the Smart SSD, and
in the worst case the Smart SSD is 20% slower than the regular
SSD. The reasons for this are also similar to the case of the
Synthetic4 table shown in Figure 4 (See Section 4.2.1).

4.2.3 TPC-H Query 6
For this experiment, we used the LINEITEM table and Query 6
from the TPC-H benchmark [30], using the default SHIPDATE,
DISCOUNT, and QUANTITY values for the predicates in the
query. This query is:

SELECT	
 SUM	
 (EXTENDEDPRICE*DISCOUNT)	

FROM	
 LINEITEM	
 	

WHERE	
 SHIPDATE	
 >=	
 1994-­‐01-­‐01	
 AND	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 SHIPDATE	
 <	
 1995-­‐01-­‐01	
 AND	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 DISCOUNT	
 >	
 0.05	
 AND	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 DISCOUNT	
 <	
 0.07	
 AND	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 QUANTITY	
 <	
 24	

Figure 7 shows the results with the HDD, the SSD, and the Smart
SSD (with the NSM and the PAX layouts). The Smart SSD with
the PAX layout improves overall query response time by 11.5X
and 1.7X over the HDD and the SSD cases respectively. Also, it
provides 12.0X and 2.0X energy efficiency gains for the entire
system over the HDD and the SSD respectively. The LINEITEM
table contains 51 tuples in a data page, which is more than the
Synthetic64 case (29 tuples/page), but less than the Synthetic16
table case (109 tuples/page). With the Synthetic16 table, the
Smart SSD with the PAX layout provides about 12.5X and 1.8X
performance improvements over the HDD and the SSD
respectively, for the aggregate query at 0.1% selectivity factor.
The selectivity factor of the TPC-H benchmark Query 6 is 0.6%.
As explained in Section 4.2.1, the number of tuples in a data page
has a big impact on the performance improvement that is achieved
using the Smart SSD. So, the LINEITEM table should have
provided better performance improvement than the Synthetic16
table. However, the higher selectivity of the TPC-H benchmark
Query 6 (0.6% vs. 0.1%), and its more complex predicates (five
predicate vs. one predicate) saturates the CPU and the memory
resources in the Smart SSD. As a result, the performance
improvement of TPC-H Query6 with LINEITEM table is similar
to that of the aggregate query described in Section 4.2.2 with a
0.1% selectivity factor for the Synthetic16 table.

4.3 Discussion
The energy gains are likely to be much bigger with more balanced
host machines than our test-bed machine. Recall from the
discussion in Section 4.2.2 that with the aggregate query, we
observed 18.7X and 2.9X energy gains for the entire system, over
the HDD and the SSD, respectively. If we only consider the
energy consumption over the base idle energy (235W), then these
gains become 25.1X and 11.6X over the HDD and the SSD,
respectively. Figure 8 shows the host CPU usage for the HDD, the
SSD, and the Smart SSD. The SAS SSD uses about 20% of the
host CPU during the query execution time whereas the Smart SSD
rarely uses the host CPU. In our experimental setup, the power
consumption of the host CPU is about 65W whereas the power
consumption of the general ARM core is less than 5W. This
power consumption difference results in the Smart SSD’s huge
energy consumption gain (11.6X) over the SAS SSD at the entire
system level.

Figure 7: Elapsed time and entire system energy consumption for the
TPC-H query 6 on the LINEITEM table (100SF).

Figure 8: Host CPU usage for the SAS HDD, the SAS SSD, and the
Smart SSD for a selection query with average query on Synthetic64
table at 0.1% selectivity factor.

10

100

10 100 1000

To
ta

l E
ne

rg
y

(k
J)

, l
og

 s
ca

le

Elapse Time(second), log scale

SAS HDD

SAS SSD

Smart SSD (NSM)

Smart SSD (PAX)

0

5

10

15

20

25

30

0 200 400 600 800 1000 1200 1400

C
PU

 u
sa

ge
 (%

)

Time (second)

Host CPU Usage

SAS HDD
SAS SSD
Smart SSD (PAX)

A crucial observation that we made is that the processing
capabilities inside the Smart SSD quickly became a performance
bottleneck, in particular when the selection predicate matches
many input tuples or when there is a large amount of processing to
be done per page of data (e.g., the Synthetic4 table). For example,
as seen in Figure 5 (a), when all the tuples match the selection
predicate (i.e., the 100% point on the x-axis), compared to the
regular SSD the query runs 43% slower on the Smart SSD. In this
case, the low-performance embedded processor without L1/L2
caches and the high latency cost for accessing the DRAM memory
quickly became bottlenecks. Also, as discussed in Section 4.2.1,
the Smart SSD achieves greater benefits when the query requires
fewer computations per data page.

The development environment that is required to run code inside
the Smart SSD needs further development. A large part of the tool
that we used in this study was developed hand-in-hand with
Samsung for this project. To maximize the performance that we
could achieve with the Smart SSD, we had to carefully plan the
layout of the data structures used by the code running inside the
Smart SSD to avoid having crucial data structures spill out of the
SRAM. Similarly, we used a hardware-debugging tool called
Trace32, a JTAG in-circuit (ICD) debugger [31], which is far
more primitive than the regular debugging tools (e.g., Visual
Studio) available to database systems developers.

On the DBMS side, the implication of using a Smart SSD for
query processing has other ripple effects. One key area is around
caching in the buffer pool. If there is a copy of the data in the
buffer pool that is more current than the data in the SSD, pushing
the query processing to the SDD may not be feasible. Similarly,
queries with any updates can’t be processed in the SSD without
appropriate coordination with the DBMS transaction manager. If
the database is immutable then some of these problems become
easier to handle.

In addition, there are other implications for the internals of
existing DBMSs, including query optimization. If all or part of the
data is already cached in the buffer pool then pushing the
processing to the Smart SSD may not be beneficial (from both the
performance and the energy consumption perspectives). In
addition, even when processing the query the usual way is less
efficient than processing all or part of the query inside the Smart
SSD, we may still want to process the query in the host machine
as that brings data into the buffer pool that can be used for
subsequent queries.

Finally, using a Smart SSD can change the way in which we build
database servers/appliances. For example, if the issues outlined
above are fixed, and Smart SSDs in the near future have both
significantly more processing power and are easier to program,
then one could build appliances that have far fewer compute and
memory resources in the host server than what typical
servers/appliances have today. Thus, pushing the bulk of the
processing to Smart SSDs could produce a data processing system
that has higher performance and potential a lower energy
consumption profile than traditional servers/appliances.

At the extreme end of this spectrum, the host machine could
simply be the coordinator that stages computation across an array
of Smart SSDs, making the system look like a parallel DBMS
with the master node being the host server, and the worker nodes
in the parallel system being the Smart SSDs. The Smart SSDs
could basically run lightweight isolated SQL engines internally
that are globally coordinated by the host node. Of course, the
challenges associated with using the Smart SSDs (e.g. buffer pool

caching and transactions as outlined above) must be addressed
before we can approach this end of the design spectrum.

5. RELATED WORK
Since Jim Gray’s 2006 prediction [13] that “tape is dead, disk is
tape, and flash is disk”, various DBMS internal components have
been revisited for flash SSDs to improve the DBMS performance
(e.g., for query processing [9, 32], index structures [2, 21, 33], and
page layout [20]). In particular, a promising and well-established
way of using the SSDs in a DBMS is to extend the main-memory
buffer pool [5, 7, 10, 11, 19]. With an SSD buffer pool extension,
pages that are evicted from the main-memory buffer pool are
selectively cached in the SSDs to be served for subsequent
accesses on the pages. The industry has released commercial
storage appliances including Oracle Exadata [1], Teradata Virtual
Storage System [29], and IBM XIV Storage System [14] that use
similar ideas. As revealed in [11], however, the SSD buffer pool
extensions are mainly beneficial for OLTP workloads, and not
data warehousing workload, which is the focus of this paper.

A nice overview of techniques that use flash memory for DBMSs
is described in [18].

Over a decade ago, the concept of in-storage processing, which
involves combining on-disk computational power with memory to
execute all or part of application functions directly in the device,
was propose in the Active Disks [27, 28] and the Intelligent Disks
[16] projects. The studies proposed to exploit the excess
computational power of the embedded processors in disks for
useful data processing (offloaded from the host) to mainly reduce
the data traffic between the host and the device. For example,
Riedel et al. demonstrated performance gains for data
computational tasks (e.g., filtering, image processing [28], and
primitive database operations such as scan, aggregation [27]) in
this environment. Since then, however, the computational power
of disk controllers has not been improved significantly [6], and
therefore none of the approaches have been commercially
successful.

Similar efforts of moving computation closer to the data have
been realized with the help of special-purpose or commodity
hardware to improve the performance of database processing.
Mueller et al. [24, 25] proposes an FPGA-based approach, in
which an FPGA is located between the disk and the host. In this
approach, the data from the disk is pre-processed before it is fed
to the host processors, and as a result, some of the computational
work can be offloaded from the host. A commercial product based
on this idea can be found in [12]. Another approach that uses
additional commodity processors in storage servers is Oracle
Exadata [1]. By pushing down some database operations from
database servers to storage servers, the amount of data traffic can
be significantly reduced. Our work follows in this same direction,
but directly uses processing that can be directly built as part of the
SSD manufacturing process.

Recently, several studies have explored the feasibility of in-
storage processing on flash SSDs [8, 17]. These studies propose
using a dedicated hardware logic (that is placed inside a flash
controller) to accelerate the scan operation. A commercial SoC
designer was used to demonstrate performance and energy gains
by simulating the hardware logic. In [6], an analytical model was
presented to examine the energy-performance trade-offs when
data analysis tasks are carried out on the SSD-resident processors
in a High Performance Computing (HPC) context. Lessons from
these studies can be used to guide the future development of

additional processing inside the Smart SSD for database related
data processing.

6. CONCLUSIONS AND FUTURE WORK
The results in this paper show that Smart SSDs have the potential
to play an important role when building high-performance
database systems/appliances. Our end-to-end results using SQL
Server and a Samsung Smart SSD demonstrated significant
performance benefits (> 2.7X in some cases) and a significant
reduction in energy consumption for the entire server (> 3.0X
reduction in some cases) over a regular SSD. While we
acknowledge that these results are preliminary (we only tested a
limited class of queries and on only one server configuration), we
also feel that there are potential new opportunities for crossing
across the traditional hardware and software boundaries with
Smart SSDs.

A significant amount of work remains. On the SSD vendor side,
the existing tools for development and debugging must be
improved if Smart SSDs are to have a bigger impact. We also
found that the hardware inside our Smart SSD device is limited,
and that the CPU quickly became a bottleneck as the Smart SSD
that we used was not designed to run general purpose programs.
The next step must be to add in more hardware (CPU, SRAM and
DRAM) so that the DBMS code can run more effectively inside
the SSD. These enhancements are absolutely crucial to achieve
the 10X or more benefit that Smart SSDs have the potential of
providing (see Figure 1). The hardware vendors must, however,
figure out how much hardware they can add to fit both within
their manufacturing budget (Smart SSDs still need to ride the
“commodity” wave) and the associated power budget for each
device. On the software side, the DBMS vendors need to carefully
weigh the pros-and-cons associated with using smart SSDs.
Significant software development and testing time will be needed
to fully exploit the functionality offered by Smart SSDs. There are
many interesting research and development issues that need to be
further explored, including extending the query optimizer to push
operations to the Smart SSD, designing algorithms for various
operators that work inside the Smart SSD, considering the impact
of concurrent queries, examining the impact of running operations
inside the Smart SSD on buffer pool management, considering the
impact of various storage layout, etc. To make these longer-term
investments, DBMS vendors will likely need the hardware
vendors to remove the existing roadblocks.

Overall, the computing hardware landscape is changing rapidly
and Smart SSDs present an interesting additional new axis for
thinking about how to build future high-performance database
servers/appliances. Our results indicate that there is a significant
potential benefit for database hardware and software vendors to
come together to explore this opportunity.

7. ACKNOWLEDGEMENTS
We would like to thank Paul Dyke and Mike Zwilling for their
insightful comments on previous drafts of this paper. This
research was supported in part by a grant from the Microsoft Jim
Gray Systems Lab, a gift donation from Samsung, and by the
National Science Foundation under grant IIS-0963993.

8. REFERENCES

[1] A Technical Overview of the Oracle Exadata Database
Machine and Exadata Storage Server. White Paper, Oracle
Corp, 2012.

[2] D. Agrawal, D. Ganesan, R. K. Sitaraman, Y. Diao, and S.
Singh. Lazy-Adaptive Tree: An Optimized Index Structure
for Flash Devices. PVLDB, 2009.

[3] A. Ailamaki, D. J. DeWitt, M. D. Hill, and M. Skounakis.
Weaving Relations for Cache Performance. In VLDB, 2001.

[4] ARM Developer Suite.
http://infocenter.arm.com/help/topic/com.arm.doc.dui0068b/
DUI0060.pdf

[5] B. Bhattacharjee, C. Lang, G. A. Mihaila, K. A. Ross, and M.
Banikazemi. Enhancing Recovery Using an SSD Buffer Pool
Extension. In DaMoN, 2011.

[6] S. Boboila, Y. Kim, S. S. Vazhkudai, P. Desnoyers, and G.
M. Shipman. Active Flash: Out-of-core Data Analytics on
Flash Storage. In MSST, 2012.

[7] M. Canim, G. A. Mihaila, B. Bhattacharjee, K. A. Ross, and
C. A. Lang. SSD Bufferpool Extensions for Database
Systems. In VLDB, 2010.

[8] S. Cho, C. Park, H. Oh, S. Kim, Y. Yi, and G. Ganger.
Active Disk Meets Flash: A Case for Intelligent SSDs. CMU
Technical Report, 2011.

[9] J. Do and J. M. Patel. Join Processing for Flash SSDs:
Remembering Past Lessons. In DaMoN, 2009.

[10] J. Do, D. Zhang, J. M. Patel, and D. J. DeWitt. Fast Peak-to-
Peak Behavior with SSD Buffer Pool. In ICDE, 2013.

[11] J. Do, D. Zhang, J. M. Patel, and D. J. DeWitt, J. F.
Naughton, and A. Halverson. Turbocharging DBMS Buffer
Pool Using SSDs. In SIGMOD, 2011.

[12] P. Francisco. The Netezza Data Appliance Architecture: A
Platform for High Performance Data Warehousing and
Analytics. IBM Redbook, 2011.

[13] J. Gray. Tape is Dead, Disk is Tape, Flash is Disk, RAM
Locality is King, 2006. http://research.microsoft.com/en-
us/um/people/gray/talks/ Flash_is_Good.ppt

[14] IBM XIV Storage System.
http://www.ibm.com/systems/storage/disk/xiv/index.html

[15] Iometer. http://www.iometer.org

[16] K. Keeton, D. A. Patterson, and J. M. Hellerstein. A Case for
Intelligent Disks (IDISKs). In SIGMOD Record, vol. 27,
1998.

[17] S. Kim, H. Oh, C. Park, S. Cho, and S-W. Lee. Fast, Energy
Efficient Scan inside Flash Memory SSDs. In ADMS, 2011

[18] I. Koltsidas and S. Viglas. Data Management over Flash
Memory. SIGMOD Tutorial, 2011.

[19] I. Koltsidas and S. Viglas. Designing a Flash-Aware Two-
Level Cache. In ADBIS, 2011.

[20] S.-W. Lee and B. Moon. Design of Flash-Based DBMS: An
In-Page Logging Approach. In SIGMOD, 2007.

[21] Y. Li, B. He, R. J. Yang, Q. Luo, and K. Yi. Tree Indexing
on Solid State Drives. PVLDB, 2010.

[22] LSI, SAS 9211-4i HBA.
http://www.lsi.com/channel/products/storagecomponents/Pag
es/LSISAS9211-4i.aspx

[23] Microsoft SQL Server 2012.
http://www.microsoft.com/sqlserver

[24] R. Mueller, J. Teubner, and G. Alonso. Data Processing on
FPGAs. PVLDB, 2009.

[25] R. Mueller and J. Teubner. FPGA: What's in it for a
Database? In SIGMOD, 2009.

[26] Power and Temperature Measurement Setup Guide.
http://spec.org/power/docs/SPEC-
Power_Measurement_Setup_Guide.pdf

[27] E. Riedel, C. Faloutsos, and D. F. Nagle. Active Disk
Architecture for Databases. CMU Technical Report, 2000.

[28] E. Riedel, G. A. Gibson, and C. Faloutsos. Active Storage for
Large-Scale Data Mining and Multimedia. In VLDB, 1998.

[29] Teradata. Virtual Storage.
http://www.teradata.com/t/brochures/Teradata-Virtual-
Storage-eb5944

[30] TPC Benchmark H (TPC-H). http://www.tpc.org/tpch

[31] Trace32, Lauterbach Development Tools.
http://www.lauterbach.com

[32] D. Tsirogiannis, S. Harizopoulos, M. A. Shah, J. L. Wiener,
and G. Graefe. Query Processing Techniques for Solid State
Drives. In SIGMOD, 2009.

[33] C.-H. Wu, T.-W. Kuo, and L.-P. Chang. An Efficient B-tree
Layer Implementation for Flash-Memory Storage Systems.
ACM TECS, 2007.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

