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ABSTRACT 
Data storage devices are getting “smarter.” Smart Flash storage 
devices (a.k.a. “Smart SSD”) are on the horizon and will package 
CPU processing and DRAM storage inside a Smart SSD, and 
make that available to run user programs inside a Smart SSD. The 
focus of this paper is on exploring the opportunities and 
challenges associated with exploiting this functionality of Smart 
SSDs for relational analytic query processing. We have 
implemented an initial prototype of Microsoft SQL Server 
running on a Samsung Smart SSD. Our results demonstrate that 
significant performance and energy gains can be achieved by 
pushing selected query processing components inside the Smart 
SSDs. We also identify various changes that SSD device 
manufacturers can make to increase the benefits of using Smart 
SSDs for data processing applications, and also suggest possible 
research opportunities for the database community. 

Categories and Subject Descriptors 
H.2.4 [Database Management]: Systems – Query Processing 

General Terms 
Design, Performance, Experimentation. 

Keywords 
Smart SSD. 

1. INTRODUCTION 
It has generally been recognized that for data intensive 
applications, moving code to data is far more efficient than 
moving data to code. Thus, data processing systems try to push 
code as far below in the query processing pipeline as possible by 
using techniques such as early selection  pushdown  and early 
(pre-)aggregation, and parallel/distributed data processing systems 
run as much of the query close to the node that holds the data. 

Traditionally these “code pushdown” techniques have been 
implemented in systems with rigid hardware boundaries that have 
largely stayed static since the start of the computing era. Data is 
pulled from an underlying I/O subsystem into the main memory, 
and query processing code is run in the CPUs (which pulls data 
from the main memory through various levels of processor 

caches). Various areas of computer science have focused on 
making this data flow efficient using techniques such as 
prefetching, prioritizing sequential access (for both fetching data 
to the main memory, and/or to the processor caches), and 
pipelined query execution.  

However, the boundary between persistent storage, volatile 
storage, and processing is increasingly getting blurrier. For 
example, mobile devices today integrate many of these features 
into a single chip (the SoC trend). We are now on the cusp of this 
hardware trend sweeping over into the server world. The focus of 
this project is the integration of processing power and non-volatile 
storage in a new class of storage products known as Smart SSDs. 
Smart SSDs are flash storage devices (like regular SSDs), but 
ones that incorporate memory and computing inside the SSD 
device. While SSD devices have always contained these resources 
for managing the device for many years (e.g., for running the FTL 
logic), with Smart SSDs some of the computing resources inside 
the SSD could be made available to run general user-defined 
programs. 

The focus of this paper is to explore the opportunities and 
challenges associated with running selected database operations 
inside a Smart SSD. The potential opportunities here are 
threefold.  

First, SSDs generally have a far larger aggregate internal 
bandwidth than the bandwidth supported by common host I/O 
interfaces (typically SAS or SATA). Today, the internal aggregate 
I/O bandwidth of high-end Samsung SSDs is about 5X that of the 
fastest SAS or SATA interface, and this gap is likely to grow to 
more than 10X (see Figure 1) in the near future. Thus, pushing 
operations, especially highly selective ones that return few result 
rows, could allow the query to run at the speed at which data is 
getting pulled from the internal (NAND) flash chips. We note that 
similar techniques have been used in IBM Netezza and Oracle 
Exadata appliances, but these approaches use additional or 
specialized hardware that is added right into or next to the I/O 
subsystem (FPGA for Netezza [12], and Intel Xeon processors in 
Exadata [1]). In contrast, Smart SSDs have this processing in-built 
into the I/O device itself, essentially providing the opportunity to 
“commoditize” a new style of data processing where operations 
are opportunistically pushed down into the I/O layer using 
commodity Smart SSDs. 

Second, offloading work to the Smart SSDs may change the way 
in which we build balanced database servers and database 
appliances. If some of computation is done inside the Smart SSD, 
then one can reduce the processing power that is needed in the 
host machine, or increase the effective computing power of the 
servers or appliances. Smart SSDs use simpler processors, like 
ARM, that are generally cheaper (from the $/MHz perspective) 
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than the traditional processors that are used in servers. Thus, 
database servers and appliances that use Smart SSDs could be 
more efficient from the overall price/performance perspective.  

Finally, pushing processing into the Smart SSDs can reduce the 
energy consumption of the overall database server/appliance. The 
energy efficiency of query processing can be improved by 
reducing its running time and/or by running processing on the low 
power processors that are typically packaged inside the Smart 
SSDs. Lower energy consumption is not only environmentally 
friendly, but often leads to a reduction in the total cost of 
operating the database system. In addition, with the trend towards 
database appliances, energy starts becoming an important 
deployment consideration when the database appliances are 
installed in private clouds on premises where getting additional 
(many kilowatts of) power is challenging. 

To explore and quantify these potential advantages of using Smart 
SSDs for DBMSs, we have started an exploratory project to 
extend Microsoft SQL Server to offload database operations onto 
a Samsung Smart SSD. We wrote simple selection and 
aggregation operators that are compiled into the firmware of the 
SSD. We also extended the execution framework of SQL Server 
to develop a simple (but with limited functionality) working 
prototype in which we could run simple selection and aggregation 
queries end-to-end. 

Our results show that for this class of queries, we observed up to 
2.7X improvement in end-to-end performance compared to using 
the same SSDs but without the “Smart” functionality, and up to a 
3.0X reduction in energy consumption. These early results, 
admittedly on queries using a limited subset of SQL (e.g., no 
joins), demonstrate that there are potential opportunities for using 
Smart SSDs even in mature commercial and well-optimized 
relational DBMSs. 
Our results also point out that there are a number of challenges, 
and hence research opportunities, in this new area of running data 
processing programs inside the Smart SSDs.  
First, the processing capabilities available inside the Smart SSD 
that we used are very limited by design. It is clear from our results 
that adding more computing power into the Smart SSD (and 
making it available for query processing) could further increase 

both performance and energy savings. However, the SSD 
manufacturers will need to determine if it is economical and 
technically feasible to add more processing power – issues such as 
the additional cost per device and changes in the device energy 
profile must be considered. In a sense, this is a chicken-and-egg 
problem since the SSD manufacturers will add more processing 
power only if more software makes use of an SSD’s “smart” 
features while the software vendors need to become confident in 
the potential benefits before investing the necessary engineering 
resources. We hope that our work provides a starting point for 
such deliberations.  

Second, the firmware development process we followed to run 
user code in the Smart SSDs is rudimentary. This can be a 
potential challenge for general application developers. Before 
Smart SSDs can be broadly adopted, the existing development and 
debugging tools and runtime system (Section 3) need to be much 
more user-friendly. Further, the ecosystem around the Smart SSDs 
including communication protocols and the programming, 
runtime, and usage models need to be investigated in-depth. 

Finally, the query execution engine and query optimizer of the 
DBMS must be extended to determine when to push an operation 
to the SSD. Implications of running operations in the Smart SSDs 
also extend out to query optimization, DBMS buffer pool caching 
policies, transaction processing, and may require re-examining 
how aspects such as database compression are used. In other 
words, the DBMS internals have to be modified to make use of 
Smart SSDs in a production setting.  

The remainder of this paper is organized as follows: The 
architecture of a modern SSD is presented in Section 2. In Section 
3 we describe how Smart SSDs work. Experimental results are 
presented in Section 4. Related work is discussed in Section 5. 
Finally, Section 6 contains our concluding remarks and points to 
some directions for future work. 

2. BACKGROUND: SSD ARCHITECTURE 
Figure 2 illustrates the general internal architecture of a modern 
SSD. There are three major components: SSD controller, flash 
memory array, and DRAM.  

The SSD controller has four key subcomponents: host interface 
controller, embedded processors, DRAM controller, and flash 
memory controllers. The host interface controller implements a 
bus interface protocol such as SATA, SAS, or PCI Express (PCIe). 
The embedded processors are used to execute the SSD firmware 
code that runs the host interface protocol, and also runs the Flash 
Translation Layer (FTL), which maps Logical Block Address 
(LBA) in the host OS to the Physical Block Address (PBA) in the 
flash memory. Time-critical data and program code are stored in 
the SRAM. Today, the processor of choice is typically a low-
powered 32-bit RISC processor, like an ARM series processor, 

 

Figure 1: Bandwidth trends for the host I/O interface (i.e., SAS/SATA 
standards), and aggregate internal bandwidth available in high-end 
enterprise Samsung SSDs. Numbers here are relative to the I/O 
interface speed in 2007 (375 MB/s). Data beyond 2012 are internal 
projections by Samsung.  
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which typically has multiple cores. The controller also has on-
board DRAM memory that has higher capacity (but also higher 
access latency) than the SRAM.  

The flash memory controller is in charge of data transfer between 
the flash memory and DRAM. Its key functions include running 
the Error Correction Code (ECC) logic, and the Direct Memory 
Access (DMA). To obtain higher I/O performance from the flash 
memory array, the flash controller uses chip-level and channel-
level interleaving techniques. All the flash channels share access 
to the DRAM. Hence, data transfers from the flash channels to the 
DRAM (via DMA) are serialized.  

The NAND flash memory array is the persistent storage medium. 
Each flash chip has multiple blocks, each of which holds multiple 
pages. The unit of erasure is a block, while the read and write 
operations in the firmware are done at the granularity of pages. 

3. SMART SSDs FOR QUERY PROCESSING 
The Smart SSD runtime framework (shown in Figure 3) 
implements the core of the software ecosystem that is needed to 
run user-defined programs in the Smart SSDs. 

3.1 Communication Protocol 
Since the key concept of the Smart SSD (that we explore in this 
paper) is to convert a regular SSD into a combined computing and 
storage device, we needed a standard mechanism to enable the 
processing capabilities of the device at run-time. We have 
developed a simple session-based protocol that is compatible with 
the standard SATA/SAS interfaces (but could be extended for 
PCIe). The protocol consists of three commands – OPEN, GET, 
and CLOSE. 

 OPEN, CLOSE: A session starts with an OPEN command 
and terminates with a CLOSE command. Once the session 
starts, runtime resources including threads and memory (see 
Thread and Memory APIs in Section 3.2) that are required to 
run a user-defined program are granted, and a unique session 
id is then returned to the host. Note that when one of the 
other Smart SSD commands (i.e., GET and CLOSE) is 
invoked by the host, the session id must be provided to find 
the corresponding session before the command is executed in 
the Smart SSDs. The CLOSE command closes the session 
associated with the session id; it terminates any running 
program and releases all resources that are used by the 
program. Once the session is closed, the corresponding 
session id is invalid, and can be recycled.  

 GET: The host can monitor the status of the program and 
retrieve results that the program generates via a GET 
command. This command is mainly designed for the 
traditional block devices (based on SATA/SAS interfaces), in 
which case the storage device is a passive entity and 
responds only when the host initiates a request. For PCIe, a 
more efficient command (such as PULL) could be introduced 
to directly leverage device-initiated capabilities (e.g., 
interrupts). A single GET command retrieves both the 
running status of the program and the results if the output is 
ready. With different session ids, multiple user-defined 
programs can be executed in parallel. Note that the programs 
can be blocked if no resource is available in the Smart SSD. 
Therefore, the polling interval should be adaptive so that it 
does not introduce a large polling overhead or hinder the 
progress of the Smart SSD operations. In our experiments, 
the polling interval was set to 10 msec. 

3.2 Application Programming Interface (API) 
Once a command has been successfully delivered to the device 
through the Smart SSD communication protocol (Section 3.1), the 
Smart SSD runtime system drives the user-defined program in an 
event-driven fashion. The user program can use the Smart SSD 
APIs for command management, thread management, memory 
management, and data management. The design philosophy of the 
APIs is to give more flexibility to the program, so that it is easier 
for the end-user programs to use these APIs. These APIs are 
briefly described below. 

 Command APIs: Whenever a Smart SSD command (i.e., 
OPEN, GET, and CLOSE) is passed to the device, the Smart 
SSD runtime system invokes the corresponding callback 
function(s) registered by the user-defined program. For 
instance, the OPEN and CLOSE commands trigger user-
defined open and close functions respectively. In contrast, 
the GET command calls functions to fill the running status of 
the program and to transfer results to the host if available.   

 Thread APIs: Once a session is opened, the Smart SSD 
runtime system creates a set of worker threads and a master 
thread per core dedicated to the session. All threads managed 
by the runtime system are non-preemptive. A worker thread 
is scheduled when a Smart SSD command arrives (see 
Command APIs above), or when a data page (8KB) is loaded 
from flash to DRAM (see Data APIs below). Once scheduled, 
a user-registered callback function for that event is invoked 
on the thread (e.g., an open function in the event of the 
OPEN command). Since callback functions are designed to 
be “quick” functions, long-running operations that are 
required for each page (such as filtering) are handled by a 
special function that is executed in the master thread. We 
note that the current version of the runtime system does not 
support a “yield” command that gives up the processor to 
other threads. To simulate this behavior when the master 
thread is scheduled, the operation processes only a few pages, 
before the master thread is rescheduled to deal with the next 
task (which could be to process the next set of pages for the 
first task). 

 Memory APIs: Smart SSD devices typically have two types 
of memory modules – a small fast SRAM (e.g., ARM’s 
Tightly Coupled Memory), and a large slow DRAM. In a 
typical scenario, the DRAM is mainly used to store data 
pages while the SRAM is used for frequently accessed 
metadata such as the database table schema. Once a session 
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Figure 3: Smart SSD runtime framework 

 



 

is open, a pre-defined amount of memory is assigned to the 
session, and this memory is returned back to the Smart SSD 
runtime system when the session is closed (i.e., dynamic 
memory allocation using malloc and free is not allowed.)  

 Data APIs: Multiple data pages can be loaded from flash to 
DRAM in parallel. Here, the degree of parallelism depends 
on the number of flash channels employed in the Smart SSD. 
Once loaded, the pages are pinned to ensure that they are not 
evicted from the DRAM. After processing a page, it must be 
unpinned to release the memory required to hold the page 
back to the device. Otherwise, Smart SSD operations might 
be blocked until enough memory is available for the 
subsequent operations. 

4. EVALUATION 
In this section, we present results from an empirical evaluation of 
Smart SSD with Microsoft SQL Server.  

4.1 Experimental Setup 
4.1.1 Workloads 
For our experiments, we used the LINEITEM table defined in the 
TPC-H benchmark [30] and three synthetic tables (Synthetic4, 
Synthetic16, and Synthetic64) that consist of 4 integer columns, 
16 integer columns, and 64 integer columns respectively.  
Our modifications to the original LINEITEM table specifications 
are as follows:  

1) We used a fixed-length char string for the variable-length 
column, L_COMMENT,  

2) All decimal numbers were multiplied by 100 and stored as 
integers,  

3) All date values were converted to the numbers of days since 
the last epoch.  

These changes resulted in 148 byte-sized tuples. The LINEITEM 
data was populated at a scale factor of 100 (600M tuples, ~90GB).  

In addition, we created three synthetic tables, called Synthetic4, 
Synthetic16, and Synthetic64, each of which has 400M tuples. 
The sizes of these tables are 10GB, 30GB and 110GB for the 
Synthetic4, the Synthetic16, and the Synthetic64 tables 
respectively.  

The data in the LINEITEM table and the synthetic tables was 
inserted into a SQL Server heap table (without a clustered index). 
By default, the tuples in these tables were stored in slotted pages 
using the traditional N-ary Storage Model (NSM). For the Smart 
SSDs, we also implemented the PAX layout [3] in which all the 
values of a column are grouped together within a page. 

4.1.2 Hardware/Software Setup 
All experiments were performed on a system running 64bit 
Windows 7 with 32GB of DRAM (24 GB of memory is dedicated 
to the DBMS). The system has two Intel Xeon E5430 2.66GHz 
quad core processors, each of which has a 32KB L1 cache, and 
two 6MB L2 caches shared by two cores. For the OS and the 
transactional log, we used two 7.5K RPM SATA HDDs, 
respectively. In addition, we used a LSI four-port SATA/SAS 
6Gbps HBA (host bus adapter) [22] for the three storage devices 
that we used in our experiments. These three devices are:  

1) A 146GB 10K RPM SAS HDD,  
2) A 400GB SAS SSD, and  
3) A Smart SSD prototyped on the same SSD as above.  

Only one of three devices is connected to the HBA at a time for 
each experiment. Finally, the power drawn by the system was 
measured using a Yokogawa WT210 unit (as suggested in [26]). 
We used this server hardware since it was compatible with the 
LSI HBA card that was needed to run the extended host interface 
protocol described in Section 3.1.  

We recognize that this box has a very high base energy profile 
(235W in the idle state) for our setting in which we use a single 
data drive; hence, we expect the energy gains to be bigger when 
the Smart SSD is used with a more balanced hardware 
configuration. But, this configuration allowed us to get initial end-
to-end results. 

We implemented simple selection and selection with aggregation 
queries in the Smart SSD by using the Smart SSD APIs (Section 
3.2). We also modified some components in SQL Server 2012 
[23] to recognize and communicate with the Smart SSD through 
the Smart SSD communication protocol (Section 3.1). For each 
test, we measured the elapsed wall-clock time, and calculated the 
disk energy consumption by summing the time discretized real 
energy values over the elapsed time. After each test run, we 
dropped the pages in the main-memory buffer pool to start with a 
cold buffer cache on each run. Thus, all the results presented here 
are for cold experiments; i.e., there is no data cached in the buffer 
pool prior to running each query. 

4.2 Experimental Results 
To aid the analysis of the results that are presented below, the I/O 
characteristics of the HDD, SSD, and Smart SSD are shown in 
Table 1. The bandwidth of the HDD and the SSD was obtained 
using Iometer [15]. For the Smart SSD internal bandwidth, we 
implemented a simple program (by using the Smart SSD APIs 
introduced in Section 3.2) to measure the wall clock time to 
sequentially fetch a 100GB dummy data file from flash to the on-
board DRAM. Note that for this experiment, there was no data 

  
Figure 4: End-to-end elapsed time for a selection query at a 
selectivity of 0.1% with the three synthetic tables Synthetic4, 
Synthetic16, and Synthetic64.  

Table 1: Maximum sequential read bandwidth with 32-page (256KB) 
I/Os.  
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transfer between the SSD and the host. The only traffic between 
the host and the Smart SSD was the communication associated 
with issuing the Smart SSD commands (i.e., OPEN, GET, and 
CLOSE) to control the program. 

As can be seen in Table 1, the internal sequential read bandwidth 
of the Smart SSD is 19.5X and 2.8X faster than that of the HDD 
and the SSD, respectively. This value can be used as the upper 
bound of the performance gains that this Smart SSD could 
potentially deliver. As described in Figure 1, over time it is likely 
that the gap between the SSD and the Smart SSD will grow to a 
much larger number than 2.8X.  

We also note that the improvement here (of 2.8X) is far smaller 
than the gap shown in Figure 1 (about 10X). The reason for this 
gap is that the access to the DRAM is shared by all the flash 
channels, and currently in this SSD device only one channel can 
be active at a time (recall the discussion in Section 2), which 
becomes the bottleneck. One could potentially address this 

bottleneck by increasing the bandwidth to the DRAM or adding 
more DRAM busses. As we discuss below, this and other issues 
must be addressed to realize the full potential of the Smart SSD 
vision.  

4.2.1 Selection Query 
For this experiment, we used three synthetic tables and the 
following SQL query: 

SELECT	
  SecondColumn	
  
FROM	
  SyntheticTable	
  
WHERE	
  FirstColumn	
  <	
  [VALUE] 

Effect of Tuple Size: Figure 4 shows the end-to-end elapsed time 
to execute the selection query at a selectivity of 0.1% with the 
three synthetic tables (Synthetic4, Synthetic16, and Synthetic64). 
As can be seen in this figure, the Smart SSD, with a PAX layout, 
executes the selection query on the Synthetic64 table 2.6X faster 
than the regular SSD, whereas the selection on the Synthetic4 
table is slower than the regular SSD. The performance 
improvement of the Smart SSD comes from the faster internal I/O, 
whereas the low computation power of the ARM core in the 
Smart SSD saturates its performance. In this experiment, in all the 
three cases, the Smart SSD improves the I/O component of 
fetching data from the flash chips. But, compared to the regular 
SSD case, the Smart SSD has to compute on the data in the pages 
that are fetched from the flash chips before sending it to the host. 
With the Synthetic64 data set, this computation cost (measured as 
cycles/page) is low as there are only 29 tuples on each page. 
However, with the Synthetic4 table, there are 323 tuples on each 
data page, and the Smart SSD-based execution strategy now has 
to spend far more processing cycles per page, which saturates the 
CPU. Now, the query (on the Synthetic4 table) in the Smart SSD 
is bottlenecked on the CPU resource. In the case of this SSD 
device, for the Synthetic4 data set, the throughput of the 
computation that can be pushed “through the CPU” in the Smart 
SSD is lower than the host IO interface. Consequently, the 
performance of this query (with 0.1% selectivity) is faster with the 
regular SSD. 

Effect of Varying the Selectivity Factor: Figures 5 (a), 5 (b), 
and 5 (c) present the end-to-end elapsed time and the energy 
consumed when executing the selection query at various 
selectivity factors on the Synthetic64 table, using the regular SSD, 
and the Smart SSD with the default NSM layout and the PAX 
layout. The energy consumption is shown for the entire system in 
Figure 5 (b), and for just the I/O subsystem in Figure 5 (c).  

To improve the presentation of these figures, we do not show the 
measurements for the HDD case, as it was significantly higher 
than the SSD cases. Rather, we show the measurements for the 
HDD case in Table 2.  

  

 
 

Figure 5: End-to-end (a) query execution time, (b) entire system 
energy consumption, and (c) I/O subsystem energy consumption for a 
selection query on the Synthetic64 table at various selectivity factors. 

 
 

Table 2:  Results for the SAS HDD: End-to-end query execution time, 
entire system energy consumption, and I/O subsystem energy 
consumption for a selection query on the Synthetic64 table at various 
selectivity factors. 

 0.1% 10% 100% 
Elapse time (seconds) 1,494 1,486 1,485 
Entire System Energy (kJ)  357 358 358 
I/O Subsystem Energy (kJ)  13 13 13 
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As can be observed from Figure 5 (a) and Table 2, the Smart SSD 
provides significant improvements in performance for the highly 
selective queries (i.e. when few tuples match the selection 
predicate). The improvements are 19X and 2.6X over the HDD 
and the SSD, respectively when 0.1% of the tuples satisfy the 
selection predicate.  

One interesting observation from Figure 5 (a) is that for the Smart 
SSD case, using the PAX layout provides better performance than 
the NSM layout, by up to 32%. As an example, for the 0.1% 
selection query, the elapsed times when using NSM and PAX are 
about 115 seconds and 78 seconds, respectively. Unlike the host 
processor that has L1/L2 caches, the embedded processor in our 
Smart SSD does not have these caches. Instead, it provides an 
efficient way to move consecutive bytes from the memory to the 
processor registers in a single instruction, called the LDM 

instruction [4]1. Since all the values of a column in a page are 
stored contiguously in the case of the PAX layout, we were able 
to use the LDM instruction to load multiple values at once, 
reducing the number of (slow) DRAM accesses. Given the high 
DRAM latency in the SSD, the columnar PAX layout is more 
efficient than a row-based layout.  

In addition, from Figure 5 (b) and Table 2, we observe that the 
Smart SSD provides a big energy efficiency benefits – up to 
18.8X and 3.0X over the HDD and the SSD respectively, with 
0.1% selectivity. Furthermore, from Figure 5 (c) and Table 2, we 
observe that the Smart SSD achieves a substantial I/O subsystem 
energy efficiency improvement. For example it reduces the energy 
consumption by 24.9X and 2.0X over the HDD and the SSD cases 
respectively, at 0.1% selectivity. The interesting observation for 
the I/O subsystem energy consumption is that the Smart SSD 
energy efficiency benefit over the SSD is not proportional to the 
elapsed time. In other words, the elapsed times at 0.1% selectivity 
when using the Smart SSD with a PAX layout and the regular 
SSD are about 78 seconds and 207 seconds, which shows 2.6X 
performance improvement. However, the I/O subsystem energy 
efficiency improvement is only 2.0X. That is because the Smart 
SSD consumes additional computation power compared to the 
regular SSD. 
With the Synthetic4 and the Synthetic16 tables, the Smart SSD is 
usually slower than the regular SSD for the select query at 0.1% 
selectivity, and in the worst case about 2.6X slower with the NSM 
format. As above, the PAX format works better with the Smart 
SSD, and in the worst case the Smart SSD is 22% slower than the 
regular SSD. The reasons for this behavior are similar to the case 
of the Synthetic4 table shown in Figure 4 (See Section 4.2.1). 

4.2.2 Selection with Aggregation Query 
For this experiment, we used the following SQL aggregate query: 

SELECT	
  AVG	
  (SecondColumn)	
  	
  
FROM	
  SyntheticTable	
  	
  
WHERE	
  FirstColumn	
  <	
  [VALUE]	
  

The results for this experiment for the Synthetic64 dataset are 
shown in Figure 6. The HDD results for this experiment are 
shown in Table 3. From Figure 6 and Table 3, we note that 
compared to the Smart SSD case with PAX, the HDD case takes 
19.2X longer to execute the query, consumes 18.7X more energy 
at the whole server/system level, and about 23.3X more energy in 
just the I/O subsystem.  

                                                                    
1 The load multiple instruction (LDM) allows loading data into 

any subset of the 16 general-purpose processor registers from 
memory, using a single instruction.  

     

 
 

Figure 6: End-to-end (a) query execution time, (b) entire system 
energy consumption, and (c) I/O subsystem energy consumption for a 
selection with aggregate query on the Synthetic64 table at various 
selectivity factors. 

 
 

Table 3: Results for the SAS HDD: End-to-end query execution time, 
entire system energy consumption, and I/O subsystem energy 
consumption for a selection with aggregation query on the 
Synthetic64 table at various selectivity factors. 

 0.1% 10% 100% 
Elapse time (seconds) 1,485 1,486 1,488 
Entire System Energy (kJ)  354 353 355 
I/O Subsystem Energy (kJ)  13 13 13 
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Similar to the previous results, the Smart SSD shows significant 
performance and energy savings over the HDD and the SSD 
cases. As seen in Figure 6 (a), the Smart SSD improves 
performance for the highly selective queries by up to 2.7X over 
the (regular) SSD case when 0.1% of the tuples satisfy the 
selection predicate. In addition, as shown in Figure 6 (b), using 
the Smart SSD (with PAX) is 2.9X more energy efficient than the 
regular SSD case when the selectivity is 0.1%. Furthermore, as 
can be observed from Figure 6 (c), the Smart SSD with PAX is 
1.9X more efficient in the I/O subsystem over the (regular) SSD 
case, at 0.1% selectivity. 

The one big difference between the simple selection query results 
shown in Figure 5 and Table 2, and the aggregate query results 
shown in Figure 6 and Table 3, is that with the aggregate query, 
the Smart SSD has better performance than the HDD and the SSD 
cases even at 100% selectivity. The reason for this behavior is that 
the output of the aggregation query is far smaller than the output 
of the selection query. Thus, the selection query has a much 
higher I/O cost associated with transferring data from the Smart 
SSD to the host, which diminishes the benefits of the Smart SSD.  

With the Synthetic4 and Synthetic16 tables, similar to the 
selection query results, the Smart SSD is usually slower than the 
regular SSD for the aggregate query at 0.1% selectivity, and in the 
worst case about 2.5X slower with the NSM format. As above, 
performance is higher with the PAX format in the Smart SSD, and 
in the worst case the Smart SSD is 20% slower than the regular 
SSD. The reasons for this are also similar to the case of the 
Synthetic4 table shown in Figure 4 (See Section 4.2.1). 

4.2.3 TPC-H Query 6  
For this experiment, we used the LINEITEM table and Query 6 
from the TPC-H benchmark [30], using the default SHIPDATE, 
DISCOUNT, and QUANTITY values for the predicates in the 
query. This query is: 

SELECT	
  SUM	
  (EXTENDEDPRICE*DISCOUNT)	
  
FROM	
  LINEITEM	
  	
  
WHERE	
  SHIPDATE	
  >=	
  1994-­‐01-­‐01	
  AND	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  SHIPDATE	
  <	
  1995-­‐01-­‐01	
  AND	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  DISCOUNT	
  >	
  0.05	
  AND	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  DISCOUNT	
  <	
  0.07	
  AND	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  QUANTITY	
  <	
  24	
  

Figure 7 shows the results with the HDD, the SSD, and the Smart 
SSD (with the NSM and the PAX layouts). The Smart SSD with 
the PAX layout improves overall query response time by 11.5X 
and 1.7X over the HDD and the SSD cases respectively. Also, it 
provides 12.0X and 2.0X energy efficiency gains for the entire 
system over the HDD and the SSD respectively. The LINEITEM 
table contains 51 tuples in a data page, which is more than the 
Synthetic64 case (29 tuples/page), but less than the Synthetic16 
table case (109 tuples/page). With the Synthetic16 table, the 
Smart SSD with the PAX layout provides about 12.5X and 1.8X 
performance improvements over the HDD and the SSD 
respectively, for the aggregate query at 0.1% selectivity factor. 
The selectivity factor of the TPC-H benchmark Query 6 is 0.6%. 
As explained in Section 4.2.1, the number of tuples in a data page 
has a big impact on the performance improvement that is achieved 
using the Smart SSD. So, the LINEITEM table should have 
provided better performance improvement than the Synthetic16 
table. However, the higher selectivity of the TPC-H benchmark 
Query 6 (0.6% vs. 0.1%), and its more complex predicates (five 
predicate vs. one predicate) saturates the CPU and the memory 
resources in the Smart SSD. As a result, the performance 
improvement of TPC-H Query6 with LINEITEM table is similar 
to that of the aggregate query described in Section 4.2.2 with a  
0.1% selectivity factor for the Synthetic16 table. 

4.3 Discussion 
The energy gains are likely to be much bigger with more balanced 
host machines than our test-bed machine. Recall from the 
discussion in Section 4.2.2 that with the aggregate query, we 
observed 18.7X and 2.9X energy gains for the entire system, over 
the HDD and the SSD, respectively. If we only consider the 
energy consumption over the base idle energy (235W), then these 
gains become 25.1X and 11.6X over the HDD and the SSD, 
respectively. Figure 8 shows the host CPU usage for the HDD, the 
SSD, and the Smart SSD. The SAS SSD uses about 20% of the 
host CPU during the query execution time whereas the Smart SSD 
rarely uses the host CPU. In our experimental setup, the power 
consumption of the host CPU is about 65W whereas the power 
consumption of the general ARM core is less than 5W. This 
power consumption difference results in the Smart SSD’s huge 
energy consumption gain (11.6X) over the SAS SSD at the entire 
system level.  

   
Figure 7:  Elapsed time and entire system energy consumption for the 
TPC-H query 6 on the LINEITEM table (100SF). 

 

    
Figure 8:  Host CPU usage for the SAS HDD, the SAS SSD, and the 
Smart SSD for a selection query with average query on Synthetic64 
table at 0.1% selectivity factor. 
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A crucial observation that we made is that the processing 
capabilities inside the Smart SSD quickly became a performance 
bottleneck, in particular when the selection predicate matches 
many input tuples or when there is a large amount of processing to 
be done per page of data (e.g., the Synthetic4 table). For example, 
as seen in Figure 5 (a), when all the tuples match the selection 
predicate (i.e., the 100% point on the x-axis), compared to the 
regular SSD the query runs 43% slower on the Smart SSD.  In this 
case, the low-performance embedded processor without L1/L2 
caches and the high latency cost for accessing the DRAM memory 
quickly became bottlenecks. Also, as discussed in Section 4.2.1, 
the Smart SSD achieves greater benefits when the query requires 
fewer computations per data page.  

The development environment that is required to run code inside 
the Smart SSD needs further development. A large part of the tool 
that we used in this study was developed hand-in-hand with 
Samsung for this project. To maximize the performance that we 
could achieve with the Smart SSD, we had to carefully plan the 
layout of the data structures used by the code running inside the 
Smart SSD to avoid having crucial data structures spill out of the 
SRAM. Similarly, we used a hardware-debugging tool called 
Trace32, a JTAG in-circuit (ICD) debugger [31], which is far 
more primitive than the regular debugging tools (e.g., Visual 
Studio) available to database systems developers. 

On the DBMS side, the implication of using a Smart SSD for 
query processing has other ripple effects. One key area is around 
caching in the buffer pool. If there is a copy of the data in the 
buffer pool that is more current than the data in the SSD, pushing 
the query processing to the SDD may not be feasible. Similarly, 
queries with any updates can’t be processed in the SSD without 
appropriate coordination with the DBMS transaction manager. If 
the database is immutable then some of these problems become 
easier to handle. 

In addition, there are other implications for the internals of 
existing DBMSs, including query optimization. If all or part of the 
data is already cached in the buffer pool then pushing the 
processing to the Smart SSD may not be beneficial (from both the 
performance and the energy consumption perspectives). In 
addition, even when processing the query the usual way is less 
efficient than processing all or part of the query inside the Smart 
SSD, we may still want to process the query in the host machine 
as that brings data into the buffer pool that can be used for 
subsequent queries.  

Finally, using a Smart SSD can change the way in which we build 
database servers/appliances. For example, if the issues outlined 
above are fixed, and Smart SSDs in the near future have both 
significantly more processing power and are easier to program, 
then one could build appliances that have far fewer compute and 
memory resources in the host server than what typical 
servers/appliances have today. Thus, pushing the bulk of the 
processing to Smart SSDs could produce a data processing system 
that has higher performance and potential a lower energy 
consumption profile than traditional servers/appliances.  

At the extreme end of this spectrum, the host machine could 
simply be the coordinator that stages computation across an array 
of Smart SSDs, making the system look like a parallel DBMS 
with the master node being the host server, and the worker nodes 
in the parallel system being the Smart SSDs. The Smart SSDs 
could basically run lightweight isolated SQL engines internally 
that are globally coordinated by the host node. Of course, the 
challenges associated with using the Smart SSDs (e.g. buffer pool 

caching and transactions as outlined above) must be addressed 
before we can approach this end of the design spectrum. 

5. RELATED WORK 
Since Jim Gray’s 2006 prediction [13] that “tape is dead, disk is 
tape, and flash is disk”, various DBMS internal components have 
been revisited for flash SSDs to improve the DBMS performance 
(e.g., for query processing [9, 32], index structures [2, 21, 33], and 
page layout [20]). In particular, a promising and well-established 
way of using the SSDs in a DBMS is to extend the main-memory 
buffer pool [5, 7, 10, 11, 19]. With an SSD buffer pool extension, 
pages that are evicted from the main-memory buffer pool are 
selectively cached in the SSDs to be served for subsequent 
accesses on the pages. The industry has released commercial 
storage appliances including Oracle Exadata [1], Teradata Virtual 
Storage System [29], and IBM XIV Storage System [14] that use 
similar ideas. As revealed in [11], however, the SSD buffer pool 
extensions are mainly beneficial for OLTP workloads, and not 
data warehousing workload, which is the focus of this paper.  

A nice overview of techniques that use flash memory for DBMSs 
is described in [18]. 

Over a decade ago, the concept of in-storage processing, which 
involves combining on-disk computational power with memory to 
execute all or part of application functions directly in the device, 
was propose in the Active Disks [27, 28] and the Intelligent Disks 
[16] projects. The studies proposed to exploit the excess 
computational power of the embedded processors in disks for 
useful data processing (offloaded from the host) to mainly reduce 
the data traffic between the host and the device. For example, 
Riedel et al. demonstrated performance gains for data 
computational tasks (e.g., filtering, image processing [28], and 
primitive database operations such as scan, aggregation [27]) in 
this environment. Since then, however, the computational power 
of disk controllers has not been improved significantly [6], and 
therefore none of the approaches have been commercially 
successful.  

Similar efforts of moving computation closer to the data have 
been realized with the help of special-purpose or commodity 
hardware to improve the performance of database processing. 
Mueller et al. [24, 25] proposes an FPGA-based approach, in 
which an FPGA is located between the disk and the host. In this 
approach, the data from the disk is pre-processed before it is fed 
to the host processors, and as a result, some of the computational 
work can be offloaded from the host. A commercial product based 
on this idea can be found in [12]. Another approach that uses 
additional commodity processors in storage servers is Oracle 
Exadata [1]. By pushing down some database operations from 
database servers to storage servers, the amount of data traffic can 
be significantly reduced. Our work follows in this same direction, 
but directly uses processing that can be directly built as part of the 
SSD manufacturing process. 

Recently, several studies have explored the feasibility of in-
storage processing on flash SSDs [8, 17]. These studies propose 
using a dedicated hardware logic (that is placed inside a flash 
controller) to accelerate the scan operation. A commercial SoC 
designer was used to demonstrate performance and energy gains 
by simulating the hardware logic. In [6], an analytical model was 
presented to examine the energy-performance trade-offs when 
data analysis tasks are carried out on the SSD-resident processors 
in a High Performance Computing (HPC) context. Lessons from 
these studies can be used to guide the future development of 



 

additional processing inside the Smart SSD for database related 
data processing. 

6. CONCLUSIONS AND FUTURE WORK 
The results in this paper show that Smart SSDs have the potential 
to play an important role when building high-performance 
database systems/appliances. Our end-to-end results using SQL 
Server and a Samsung Smart SSD demonstrated significant 
performance benefits (> 2.7X in some cases) and a significant 
reduction in energy consumption for the entire server (> 3.0X 
reduction in some cases) over a regular SSD. While we 
acknowledge that these results are preliminary (we only tested a 
limited class of queries and on only one server configuration), we 
also feel that there are potential new opportunities for crossing 
across the traditional hardware and software boundaries with 
Smart SSDs.  

A significant amount of work remains. On the SSD vendor side, 
the existing tools for development and debugging must be 
improved if Smart SSDs are to have a bigger impact. We also 
found that the hardware inside our Smart SSD device is limited, 
and that the CPU quickly became a bottleneck as the Smart SSD 
that we used was not designed to run general purpose programs. 
The next step must be to add in more hardware (CPU, SRAM and 
DRAM) so that the DBMS code can run more effectively inside 
the SSD. These enhancements are absolutely crucial to achieve 
the 10X or more benefit that Smart SSDs have the potential of 
providing (see Figure 1). The hardware vendors must, however, 
figure out how much hardware they can add to fit both within 
their manufacturing budget (Smart SSDs still need to ride the 
“commodity” wave) and the associated power budget for each 
device. On the software side, the DBMS vendors need to carefully 
weigh the pros-and-cons associated with using smart SSDs. 
Significant software development and testing time will be needed 
to fully exploit the functionality offered by Smart SSDs. There are 
many interesting research and development issues that need to be 
further explored, including extending the query optimizer to push 
operations to the Smart SSD, designing algorithms for various 
operators that work inside the Smart SSD, considering the impact 
of concurrent queries, examining the impact of running operations 
inside the Smart SSD on buffer pool management, considering the 
impact of various storage layout, etc. To make these longer-term 
investments, DBMS vendors will likely need the hardware 
vendors to remove the existing roadblocks.  

Overall, the computing hardware landscape is changing rapidly 
and Smart SSDs present an interesting additional new axis for 
thinking about how to build future high-performance database 
servers/appliances. Our results indicate that there is a significant 
potential benefit for database hardware and software vendors to 
come together to explore this opportunity. 
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