
A Tutorial on Programming Features in
ATS

Hongwei Xi
gmhwxiATgmailDOTcom

A Tutorial on Programming Features in ATS
by Hongwei Xi

Copyright © 2010-201? Hongwei Xi

All rights are reserved. Permission is granted to print this document for personal use.

Table of Contents
Preface ...iv
I. Basic Tutorial Topics..v

1. Syntax-Coloring for ATS code...1
2. Filename Extensions ..2
3. File Inclusion inside ATS Code ...3
4. Fixity Declarations ...4
5. Static Load ...6
6. Dynamic Load..8
7. Bracket Overloading ..10
8. Dot-Symbol Overloading ...12
9. Recursion ...15
10. Datatypes..18
11. Functional Lists..22
12. Functional Sets and Maps ..27

12.1. Functional Sets ..27
12.2. Functional Maps ..29

13. Exceptions ..33
14. References ..36
15. Boxed Tuples and Records...39
16. Persistent Arrays ..43
17. Persistent Arrays-with-size ..47
18. Persistent Matrices ...49
19. Persistent Matrices-with-size ...52
20. Persistent Hashtables..54
21. Tail-Recursion ..57
22. Higher-Order Functions ...58
23. Stream-Based Lazy Evaluation ..60
24. Linearly Typed Lists ..64

II. Advanced Tutorial Topics ..67
25. Extvar-Declaration ...68
26. Linear Closure-Functions...69
27. Stack-Allocated Closure-Functions ...71
28. Linear Stream-Based Lazy Evaluation...74
29. Automatic Code Generation...77

29.1. Generating a datcon-function ..77
29.2. Generating a datcontag-function ...78
29.3. Generating a fprint-function ..79

iii

Preface

This tutorial covers a variety of issues that a programmer typically encounters when programming in
ATS. It is written mostly in the style of learn-by-examples. Although it is possible to learn programming
in ATS by studying the tutorial (if the reader is familiar with ML and C), I consider the book Introduction
to Programming in ATS (http://www.ats-lang.org/DOCUMENT/INTPROGINATS/HTML/book1.html) a
far more approriate source for someone to acquire a view of ATS in a coherent and systematic manner.
Of course, there will also be considerable amount of overlapping between these two books. The primary
purpose of the tutorial is to bring more insights into a rich set of programming features in ATS and also
demonstrate through concrete examples that these features can be made of effective use in the
construction of high-quality programs.

iv

I. Basic Tutorial Topics

Chapter 1. Syntax-Coloring for ATS code

The syntax of ATS is highly involved, which can be a daunting obstacle for beginners trying to read and
write ATS code. In order to alleviate this problem, I may employ colors to differentiate various
syntactical entities in ATS code. The convention I adopt for coloring ATS syntax is given as follows:

• The keywords in ATS are all colored black (and possibly written in bold face).

• The comments in ATS are all colored gray.

• The code in the statics of ATS is colored blue.

• The code in the dynamics of ATS is colored red unless it represents proofs, for which the color dark
green is used.

• The external code (in C) is colored deep brown.

Please find an example of ATS code on-line
(http://ats-lang.github.io/DOCUMENT/ATS2TUTORIAL/CODE/fact_dats.html) that involves all of the
syntax-coloring mentioned above.

1

Chapter 2. Filename Extensions

In ATS, the filename extensions .sats and .dats are reserved to indicate static and dynamic files,
respectively. As these two extensions have some special meaning attached to them, which can be
interpreted by the command atscc, they should not be replaced arbitrarily.

A static file may contain sort definitions, datasort declarations, static definitions, abstract type
declarations, exception declarations, datatype declarations, macro definitions, interfaces for dynamic
values and functions, etc. In terms of functionality, a static file in ATS is somewhat similar to a header
file (with the extension .h) in C or an interface file (with the extension .mli) in OCaml.

A dynamic file may contain everything in a static file. In addition, it may also contain definitions for
dynamic values and functions. However, interfaces for functions and values in a dynamic file should
follow the keyword extern, which on the other hand should not be present when such interfaces are
declared in a static file. For instance, the following syntax declares interfaces (or types) in a static file for
a value named pi and a function named area_of_circle:

val pi : double
fun area_of_circle (radius: double): double

When the same interfaces are declared in a dynamic file, the following slightly different syntax should be
used:

extern val pi : double
extern fun area_of_circle (radius: double): double

Please note that a static file is essentially a special case of a dynamic file. It is entirely possible to replace
a static file with a dynamic one.

As a convention, we often use the filename extension .cats to indicate that a file contains some C code
that is supposed to be combined with ATS code in certain manner. There is also the filename extension
.hats, which we occassionally use for a file that should be included in ATS code stored in another file.
However, the use of these two filename extensions are not mandatory, that is, they can be replaced if
needed or wanted.

2

Chapter 3. File Inclusion inside ATS Code

As is in C, file inclusion inside ATS code is done through the use of the directive #include. For instance,
the following line indicates that a file named foobar is included, that is, this line is to be replaced with
the content of the file foobar:

#include "foobar.hats"

Note that the included file is parsed according to the syntax for statics or dynamics depending on
whether the file is included in a static or dynamic file. As a convention, the name of an included file often
ends with the extension .hats.

A common use of file inclusion is to keep some constants, flags or parameters being defined consistently
across a set of files. For instance, the file prelude/params.hats (https://github.com/ats-lang/ats-
lang.github.io/blob/master/DOCUMENT/ATS-Postiats/prelude/params.hats) serves such a purpose. File
inclusion can also be used to emulate (in a limited but rather useful manner) functors supported in
languages such as SML and OCaml.

3

Chapter 4. Fixity Declarations

Given a function f , the standard syntax for applying f to an argument v is f(v); for two arguments v1 and
v2, the syntax is f(v1, v2). Also, it is allowed in ATS to use infix notation for a binary function
application, and prefix/postifix notation for a unary function application.

Each identifier in ATS can be assigned one of the following fixities: prefix, infix and postfix. The fixity
declarations for many commonly used identifiers can be found in prelude/fixity.ats
(https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/ATS-
Postiats/prelude/fixity.ats). Often, the name operator is used to refer to an identifier that is assigned a
fixity. For instance, the following syntax declares that + and - are infix operators of a precedence value
equal to 50:

infixl 50 + -

After this declaration, we can write an expression like 1 + 2 - 3, which is parsed into -(+(1, 2), 3) in terms
of the standard syntax for function application.

The keyword infixl indicates that the declared infix operators are left-associative. For right-associative
and non-associative infix operators, please use the keywords infixr and infix, respectively. If the
precedence value is omitted in a fixity declaration, it is assumed to be equal to 0.

We can also use the following syntax to declare that iadd, fadd, padd and uadd are left-associative infix
operators with a precedence value equal to that of the operator +:

infixl (+) iadd fadd padd uadd

This is useful as it is difficult in practice to remember the precedence values of (a large collection of)
declared operators. Sometimes, we may need to specify that the precedence value of one operator in
relation to that of another one. For instance, the following syntax declares that opr2 is a left-associative
infix operator and its precedence value is that of opr1 plus 10:

infixl (opr1 + 10) opr2

If the plus sign (+) is changed to the minus sign (-), then the precedence value of opr2 is that of opr1
minus 10.

We can also turn an identifier opr into a non-associative infix operator (of precedence value 0) by putting
the backslash symbol (\\) in front of it. For instance, the expression exp1 \\opr exp2 stands for opr(exp1,
exp2), where exp1 and exp2 refer to some expressions, either static or dynamic.

The syntax for declaring (unary) prefix and postfix operators are similar. For instance, the following
syntax declares that ~ and ? are prefix and postfix operators of precedence values 61 and 69, respectively:

4

Chapter 4. Fixity Declarations

prefix 61 ~
postfix 69 ?

As an example, a postfix operator is involved in the following 3-line program:

postfix (imul + 10) !!
extern fun !! (x: int): int
implement !! (x) = if x >= 2 then x * (x - 2)!! else 1

For a given occurrence of an operator, we can deprive it of its assigned fixity status by simply putting the
keyword op in front of it. For instance 1 + 2 - 3 can be writen as op- (op+ (1, 2), 3). It is also possible to
(permanently) deprive an operator of its assigned fixity status. For instance, the following syntax does so
to the operators iadd, fadd, padd and uadd:

nonfix iadd fadd padd uadd

Note that nonfix is a keyword in ATS.

Lastly, please note that each fixity declaration is only effective within its own legal scope.

5

Chapter 5. Static Load

In ATS, static load (or staload for short) refers to the creation of a namespace populated with the declared
names in a loaded package.

Suppose that a file named foo.sats contains the following code:

//
datatype
aDatatype =
| A | B of (int, int)
//
val aValue: int
fun aFunction: int -> int
//

The following staload-declaration introduces a namespace FOO for the names declared in foo.sats:

staload FOO = "foo.sats"

The prefix $FOO. needs to be attached to a name in the namespace FOO in order for it to be referenced.
For instance, the names available in the namespace FOO are all referenced in the following code:

val a: $FOO.aDatatype = $FOO.A()
val b: $FOO.aDatatype = $FOO.B(0, $FOO.aFunction($FOO.aValue))

If the file foo.sats is staloaded as follows for the second time:

staload FOO2 = "foo.sats"

then foo.sats is not actually loaded by the compiler. Instead, FOO2 is simply made to be an alias of
FOO.

It is also allowed for foo.sats to be staloaded as follows:

staload "foo.sats"

In this case, the namespace for the names declared in foo.sats is opened. For instance, the following
code shows that these names can now be referenced directly:

val a: aDatatype = A()
val b: aDatatype = B(0, aFunction(aValue))

6

Chapter 5. Static Load

Let us suppose that we have the following sequence of declarations:

val aValue = 0
staload "foo.sats"
val anotheValue = aValue + 1

Does the second occurrence of aValue refer to the one introduced in the first declaration, or it refers to
the one declared inside foo.sats? The answer may be a bit surprising: It refers to the one introduced in
the first declaration as a binding for the occurrence of a name is resolved in ATS by searching first
through the available names delcared in the same file.

7

Chapter 6. Dynamic Load

In ATS, dynamic load (or dynload for short) refers to some form of initialization of a loaded package.

Suppose that a file named foo.dats contains the following code:

//
val x = 1000
val y = x + x // = 2000
val z = y * y // = 4000000
//
extern
fun sum_x_y_z (): int
//
implement sum_x_y_z () = x + y + z
//

Clearly, the names x, y, and z must be bound to some values before a call to the function sum_x_y_z can
be evaluated. In order to create such bindings, some form of initialization is required. Let us further
suppose that a file named foo2.dats contains the following code:

staload "./foo.dats"
dynload "./foo.dats" // for initialization

implement
main0 () =
{
val () = assertloc (4003000 = sum_x_y_z())
} (* end of [main0] *)

We can now generate an executable file mytest by issuing the following command-line:

atscc -o mytest foo.dats foo2.dats

Note that atscc may need to be changed to patscc.

The line starting with the keyword dynload is referred to as a dynload-declaration. If it is deleted from
the file foo2.dats, then executing the above command-line leads to link-time reporting of undefined
reference to a variable of certain name ending with the string __dynloadflag. The dynload-declaration for
foo.dats introduces this special variable and then makes a call to a special function associated with
foo.dats for the purpose of performing some form of initialization. This special function is referred as
a dynload-function (for foo.dats), which is always idempotent.

There is also a dynload-function generated for foo2.dats. As the function main0, a variant of the
special function main, is implemented in foo2.dats, the dynload-function for foo2.dats is
automatically called inside the body of the main function.

8

Chapter 6. Dynamic Load

If there is a reason to suppress the generation of a dynload-function, one can set the value of the flag
ATS_DYNLOADFLAG to 0. For instance, no dynload-function for foo.dats is generated if the
following line is added into foo.dats:

#define ATS_DYNLOADFLAG 0

Of course, skipping proper initialization for foo.dats means that an erroneous result is expected if the
function sum_x_y_z is ever called.

If there is a reason to call the dynload-function for foo2.dats explicitly, one can introduce an alias for
it and then call the alias. For instance, if the following line is added to foo2.dats:

#define ATS_DYNLOADNAME "foo2_dynload"

then the dynload-function for foo2.dats is given an alias foo2_dynload.

Please find on-line (https://github.com/ats-lang/ats-
lang.github.io/blob/master/DOCUMENT/ATS2TUTORIAL/CODE/CHAP_DYNLOAD/.) the entirety of
the code used in this chapter.

9

Chapter 7. Bracket Overloading

In many programming languages, bracket-notation is commonly associated with array subscripting. For
instance, A[i] is a left-value in C that refers to array-cell i in the array referred to by A. There is support
in ATS for overloading brackets with multiple function names so that bracket-notation can be employed
to call these functions, resulting in code that reads like some form of subscripting. It is expected that this
style of calling functions can, sometimes, make the code written in ATS more easily accessible.

Let us now see a simple example of bracket-notation in overloading. In the followng code, a linear
abstract type lock is introduced together with two functions:

//
absvtype lock(a:vt@ype)
//
extern
fun{a:vt0p} lock_acquire(!lock(a)): a
extern
fun{a:vt0p} lock_release(!lock(a), a): void
//

As one can imagine, lock_acquire is called to obtain the value stored in a given lock while lock_release
is called to return a value to a given lock.

Suppose that we now introduce the following overloading declarations:

//
overload [] with lock_acquire
overload [] with lock_release
//

With these declarations, the following code typechecks:

//
val
mylock = $extval(lock(int), "mylock")
//
val x0 = mylock[] // = lock_acquire (mylock)
val () = mylock[] := x0 // = lock_release (mylock, x0)
//

Note that the bracket-notation in any assigement is only allowed to refer to a function that returns the
void-value. In the above example, the function lock_release returns the void-value.

In ATS, bracket-notation is already overloaded with functions performing list-subscripting,
array-subscripting and matrix-subscripting, and it can also be used to access and update a given
reference.

10

Chapter 7. Bracket Overloading

Please find on-line (https://github.com/ats-lang/ats-
lang.github.io/blob/master/DOCUMENT/ATS2TUTORIAL/CODE/chap_brktoverld.dats) the entirety of
the code presented in this chapter.

11

Chapter 8. Dot-Symbol Overloading

In many programming languages, the so-called dot-notation is commonly associated with selecting a
field from a given tuple-value, record-value or object-value. In ATS, field selection can be done through
either pattern matching or the use of dot-notation. For example, the following code constructs a flat tuple
and also a boxed one, and then uses dot-notation to select their components:

//
val tup_flat = @("a", "b")
val tup_boxed = $tup("a", "b")
//
val-"a" = tup_flat.0 and "b" = tup_flat.1
val-"a" = tup_boxed.0 and "b" = tup_boxed.1
//

There is support in ATS for overloading a specified dot-symbol with multiple function names so that
dot-notation can be employed to call these functions, resulting in code that reads like field selection from
tuples or records. This style of calling functions can, sometimes, make the code written in ATS more
easily accessible, and it is especially so when ATS interacts with languages that support object-oriented
programming.

As an example of dot-notation in overloading, let us introduce a non-linear abstract type point for points
in a 2-dimensional space and also declare some associated functions:

//
abstype point = ptr // boxed
//
extern
fun
point_make
(x: double, y: double): point

//
extern
fun point_get_x (p: point): double
and point_get_y (p: point): double
//
extern
fun point_set_x (p: point, x: double): void
and point_set_y (p: point, x: double): void
//

For getting the x-coordinate and y-coordinate of a given point, the functions point_get_x and point_get_y
can be called, respectively. For setting the x-coordinate and y-coordinate of a given point, the functions
point_set_x and point_set_y can be called, respectively. By introducing two dot-symbols .x and .y and
then overloading them with certain function names as follows:

symintr .x .y
overload .x with point_get_x

12

Chapter 8. Dot-Symbol Overloading

overload .x with point_set_x
overload .y with point_get_y
overload .y with point_set_y

we can use dot-notation to call the corresponding get-functions and set-functions as is shown in the
following code:

val p0 = point_make (1.0, ~1.0)
val x0 = p0.x() // point_get_x (p0)
and y0 = p0.y() // point_get_y (p0)
val () = p0.x := y0 // point_set_x (p0, y0)
and () = p0.y := x0 // point_set_y (p0, x0)

Note that writing p0.x for p0.x() is currently not supported. The dot-notation in any assigement is only
allowed to refer to a function that returns the void-value. In the above example, both point_set_x and
point_set_y return the void-value.

Let us introduce a linear abstract type counter for counter objects and a few functions associated with it:

//
absvtype counter = ptr
//
extern
fun counter_make (): counter
extern
fun counter_free (counter): void
//
extern
fun counter_get (cntr: !counter): int
extern
fun counter_incby (cntr: !counter, n: int): void
//

As can be expected, the functions counter_make and counter_free are for creating and destroying a
counter object, respectively. The function counter_get returns the current count stored in a give counter,
and the function counter_incby increase that count by a given integer value.

Let us introduce the following overloading declarations:

//
overload .get with counter_get
overload .incby with counter_incby
//

As is expected, one can now call counter_get as follows:

val n0 = c0.get() // = counter_get(c0)

Similarly, one can call counter_incby as follows to increase the count stored in c0 by 1:

13

Chapter 8. Dot-Symbol Overloading

val () = c0.incby(1) // = counter_incby(c0, 1)

If we revisit the previous example involving (non-linear) points, then we can see that the following code
also typechecks:

val p0 = point_make (1.0, ~1.0)
val x0 = p0.x() // point_get_x (p0)
and y0 = p0.y() // point_get_y (p0)
val () = p0.x(y0) // point_set_x (p0, y0)
and () = p0.y(x0) // point_set_y (p0, x0)

I may use the phrase functional dot-notation to refer to this form of dot-notation so as to differentiate it
from the general form of dot-notation.

Please find on-line (https://github.com/ats-lang/ats-
lang.github.io/blob/master/DOCUMENT/ATS2TUTORIAL/CODE/chap_dotoverld.dats) the entirety of
the code presented in this chapter plus some testing code.

14

Chapter 9. Recursion

The notion of recursion is ubiquitous in ATS. For instance, there are recursively defined sorts (datasorts)
and types (datatypes) in the statics, and there are also recursively defined functions in the dynamics.
Literally, the word recurse means "go back". When an entity is defined recursively, it means that the
entity being defined can appear in its own definition. In the following presentation, I will show several
ways to define (or implement) recursive functions and non-recursive functions, where the latter is just a
special case of the former.

The keyword fun can be used to initiate the definition of a recursive function. For instance, following is
the definition of a recursive function:

fun
fact(x: int): int =
if x > 0 then x * fact(x-1) else 1

(* end of [fact] *)

A non-recursive function is a special kind of recursive function that does make use of itself in its own
definition. So one can certainly use fun to initiate the definition of a non-recursive function. However, if
there is a need to indicate explicitly that a non-recursive is being defined, then one can use the keyword
fn to do so. For instance, the definiton of a non-recursive function is given as follows:

fn square(x: int): int = x * x

which is directly translated by the compiler into the following binding between a name and a
lambda-expression:

val square = lam (x: int): int => x * x

As another example, please note that the two occurrences of the symbol fact in the following code refer
to two distinct functions:

fn
fact(x: int): int =
if x > 0 then x * fact(x-1) else 1

(* end of [fact] *)

While the first fact (to the left of the equality symbol) refers to the (non-recursive) function being
defined, the second one is supposed to have been declared previously.

A recursive function can also be defined as a recursive value. For instance, the recursive function fact
defined above can be defined as follows:

val
rec
fact : int -> int =

15

Chapter 9. Recursion

lam (x) =>
if x > 0 then x * fact(x-1) else 1

(* end of [fact] *)

where the keyword rec indicates that fact is defined recursively, that is, it is allowed to appear in its own
definition. In fact, the former definition of fact is directly translated into the latter one by the compiler. Of
course, one may also use a reference to implement recursion:

val
fact = ref<int->int>($UNSAFE.cast(0))
val () =
!fact :=
(
lam (x:int):int => if x > 0 then x * !fact(x-1) else 1

) (* end of [val] *)

But this is definitely not a style I would like to advocate. For the sake of completion, I present yet
another way to define fact as a fixed-point expression:

val
fact =
fix f(x: int): int =>
if x > 0 then x * f(x-1) else 1

(* end of [fact] *)

Of course, if one wants to, then one can always replace a lambda-expression with a fixed-point
expression (or simply fix-expression for short). For instance, lambda(x:int):int => x+x can be written as
fix _(x:int):int => x+x.

For defining mutually recursive functions, one can simply use the keyword and to concatenate function
definitions. For instance, the following code defines two functions isevn and isodd mutually recursively:

fun
isevn(x: int): bool =
if x > 0 then isodd(x-1) else true

and
isodd(x: int): bool =
if x > 0 then isevn(x-1) else false

The code, as one may have guessed, is translated by the compiler into the following form (for defining
two mutually recursive values):

val
rec
isevn : int -> bool =
lam (x) => if x > 0 then isodd(x-1) else true

and
isodd : int -> bool =
lam (x) => if x > 0 then isevn(x-1) else false

16

Chapter 9. Recursion

One can certainly use the keyword and to concatenate definitions of non-recursive functions, but doing
so is probably just a curiosity (instead of a meaningful practice).

Even at this point, I have not presented all of the possible ways to define functions in ATS. For instance,
one can also define stack-allocated closure-functions in ATS, which may be either recursive or
non-recursive. I plan to introduce such functions elsewhere in this tutorial.

Often, the interface (that is, type) for a function is declared at one place and its definition (or
implementation) is given at another place. For instance, one may first introduce the following
declaration:

extern fun fact (x: int): int

Later, one can implement fact according to the above declaration:

implement
fact (x) =
if x > 0 then x * fact(x-1) else 1

// end of [fact]

When implement is used to initiate the definition of a function, any previously declared symbols
(including the one that is being defined) can appear in the definition. If it is desirable, one may replace
implement with implmnt.

Please find on-line (https://github.com/ats-lang/ats-
lang.github.io/blob/master/DOCUMENT/ATS2TUTORIAL/CODE/chap_recursion.dats) the entirety of
the code used in this chapter.

17

Chapter 10. Datatypes

Datatypes are a form of user-defined types for classifying data (or values). The support for datatypes and
pattern matching in ATS is primarily adopted from ML.

The following code declares a datatype of the name weekday for values representing weekdays:

datatype weekday =
| Monday | Tuesday | Wednesday | Thursday | Friday

There are five data constructors associated with weekday, which are Monday, Tuesday, Wednesday,
Thursday, and Friday. All of these data constructors are nullary, that is, they take no arguments to form
values (of the type weekday).

Each nullary constructor is represented as a small integer (e.g., one that is less than 1024). One can use
the following function weekday2int to find out the integers reprsenting the constructors associated with
weekday:

//
staload UN = "prelude/SATS/unsafe.sats"
//
fun
weekday2int
(wd: weekday): int = $UN.cast{int}($UN.cast{intptr}(wd))

//

The small integer representing a nullary constructor is often referred to as the tag of the constructor. In
this case, the tags for Monday, Tuesday, Wednesday, Thursday, and Friday are 0, 1, 2, 3, and 4,
respectively.

Given a nullary constructor foo, both foo and foo() can be used to refer the value constructed by foo.
However, only foo() can be used as the pattern that matches this value. For instance, the following
function tests whether a given value of the type weekday is formed with the constructor Friday:

fun
isFriday(x: weekday): bool =
case+ x of Friday() => true | _ => false

Note that the pattern Friday() cannot be replaced with Friday as the latter is treated as a variable when
used as a pattern. On the other hand, both of the following assertions hold at run-time as Friday and
Friday() refer to the same value:

val () = assertloc (isFriday(Friday))
val () = assertloc (isFriday(Friday()))

18

Chapter 10. Datatypes

If there is only one constructor associated with a datatype, then there is no tag in the representation for
values of this datatype.

A datatype is list-like if there are two data constructors associated with it such that one is nullary
(nil-like) and the other is non-nullary (cons-like). For instance, the datatype ab declared as follows is
list-like:

datatype ab = A of () | B of (bool)

The values of a list-like datatype are represented in a special way. Given a value of the datatype; if it is
constructed with the nil-like constructor, then it is represented as the null-pointer; if it is constructed with
the cons-like constructor, then it is reprenstend as a heap-allocated tuple containing all of the arguments
passed to the constructor. In the above case, the value A() is represented as the null pointer, and the value
B(b) for each boolean b is represented as a heap-allocated singleton tuple containing the only component
b. This description can be readily verified with the following code:

val () = assertloc (iseqz($UN.cast{ptr}(A())))
val () = assertloc (true = $UN.ptr0_get<bool>($UN.cast{ptr}(B(true))))
val () = assertloc (false = $UN.ptr0_get<bool>($UN.cast{ptr}(B(false))))

The following declaration introduces a datatype of the name abc:

datatype abc =
| A of () | B of (bool) | C of (int, double)

The three constructors associated with abc are A, B, and C; A is nullary; B is unary, taking a boolean to
form a value (of the type abc); C is binary, taking an integer and a float (of double precision) to form a
value (of the type abc).

In a general case, if a data constructor is n-ary for some positive n, then each value it constructs is a
heap-allocated tuple of n+1 components, where the first one is the tag assigned to the constructor and the
rest are the arguments passed to the constructor. For instance, the following function can be called to find
out the tags assigned to the constructors associated with abc:

fun
abc2tag
(x: abc): int = let
val p = $UN.cast{intptr}(x)

in
//
case+ 0 of
| _ when p < 1024 => $UN.cast{int}(p)
| _ (*heap-allocated*) => $UN.ptr0_get<int>($UN.cast{ptr}(p))
//
end // end of [abc2tag]

In this case, the tags assigned to A, B, and C are 0, 1, and 2, respectively.

19

Chapter 10. Datatypes

Datatypes can be defined recursively. As an example, the following declaration introduces a recursively
defined datatype intexp (for representing arithemetic integer expressions):

datatype
intexp =
| Int of int
| Neg of (intexp)
| Add of (intexp, intexp)
| Sub of (intexp, intexp)

For instance, (1+2)-3 can be represented as Sub(Add(Int(1), Int(2)), Int(3)). As another example, the
following code introduces two mutually recursively defined datatypes intexp and boolexp (for integer
expressions and boolean expressions, respectively):

datatype
intexp =
| Int of int
| Neg of (intexp)
| Add of (intexp, intexp)
| Sub of (intexp, intexp)
| IfThenElse of (boolexp, intexp, intexp)

and
boolexp =
| Bool of bool // constant
| Not of (boolexp) // negation
| Less of (intexp, intexp) // Less(x, y): x < y
| LessEq of (intexp, intexp) // LessEq(x, y): x <= y
| Conj of (boolexp, boolexp) // Conj(x, y): x /\ y
| Disj of (boolexp, boolexp) // Disj(x, y): x \/ y

The code below implements two mutually recursive functions eval_intexp and eval_boolexp for
evaluating integer expressions and boolean expressions, respectively:

//
symintr eval
//
extern
fun eval_intexp : intexp -> int
extern
fun eval_boolexp : boolexp -> bool
//
overload eval with eval_intexp
overload eval with eval_boolexp
//
(* ****** ****** *)
//
implement
eval_intexp
(e0) = (

//

20

Chapter 10. Datatypes

case+ e0 of
| Int (i) => i
| Neg (e) => ~eval(e)
| Add (e1, e2) => eval(e1) + eval(e2)
| Sub (e1, e2) => eval(e1) - eval(e2)
| IfThenElse

(e_test, e_then, e_else) =>
if eval(e_test) then eval(e_then) else eval(e_else)

//
) (* end of [eval_intexp] *)
//
implement
eval_boolexp
(e0) = (

//
case+ e0 of
| Bool (b) => b
| Not (e) => ~eval(e)
| Less (e1, e2) => eval(e1) < eval(e2)
| LessEq (e1, e2) => eval(e1) <= eval(e2)
| Conj (e1, e2) => eval(e1) && eval(e2)
| Disj (e1, e2) => eval(e1) || eval(e2)
//
) (* end of [eval_boolexp] *)
//
(* ****** ****** *)

The datatypes presented in this chapter are simple datatypes. Other more advanced forms of datatypes
include polymorphic datatypes, dependent datatypes, and linear datatypes, which will be covered
elsewhere.

Please find on-line (https://github.com/ats-lang/ats-
lang.github.io/blob/master/DOCUMENT/ATS2TUTORIAL/CODE/chap_datatypes.dats) the entirety of
the code used in this chapter plus some code for testing.

21

Chapter 11. Functional Lists

A functional list is just a singly-linked list that is immutable after its construction. The following
datatype declaration introduces a type list for functional lists:

//
datatype
list(a:t@ype, int) =
| list_nil(a, 0) of ()
| {n:nat}
list_cons(a, n+1) of (a, list(a, n))

//

Given a type T and an integer N, the type list(T,N) is for a list of length N that contains elements of type
T. The interfaces for various functions on functional lists can be found in the SATS file
prelude/SATS/list.sats (https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/ATS-
Postiats/prelude/SATS/list.sats), which is automatically loaded by
atsopt.

There are various functions in ATSLIB for list construction. In practice, a list is usually built by making
direct use of the constructors list_nil and list_cons. For instance, the following function fromto builds a
list of integers between two given ones:

//
fun
fromto
{m,n:int | m <= n}
(
m: int(m), n: int(n)

) : list(int, n-m) =
if m < n then list_cons(m, fromto(m+1, n)) else list_nil()

//

Traversing a list is commonly done by making use of pattern matching. For instance, the following code
implements a function for computing the length of a given list:

//
fun
{a:t@ype}
list_length
{n:nat}

(
xs: list(a, n)

) : int(n) = let
//
fun
loop
{i,j:nat}
(

22

Chapter 11. Functional Lists

xs: list(a, i), j: int(j)
) : int(i+j) =
(
case+ xs of
| list_nil () => j
| list_cons (_, xs) => loop(xs, j+1)
)
//
in
loop (xs, 0)

end // end of [list_length]
//

Given a non-empty list xs, xs.head() and xs.tail() refer to the head and tail of xs, respectively, where
.head() and .tail() are overloaded dot-symbols. For instance, the function list_foldleft for folding a given
list from the left can be implemented as follows:

//
fun
{a,b:t@ype}
list_foldleft
{n:nat}

(
f: (a, b) -> a, ini: a, xs: list(b, n)

) : a =
if iseqz(xs)
then ini else list_foldleft(f, f(ini, xs.head()), xs.tail())

// end of [if]
//

And the function list_foldright for folding a given list from the right can be implemented as follows:

//
fun
{a,b:t@ype}
list_foldright
{n:nat}

(
f: (a, b) -> b, xs: list(a, n), snk: b

) : b =
if iseqz(xs)
then snk else f(xs.head(), list_foldright(f, xs.tail(), snk))

// end of [if]
//

Note that list_foldleft is tail-recursive but list_foldright is not.

As an application of list_foldleft, the following code implements a function for reversing a given list:

fun
{a:t@ype}

23

Chapter 11. Functional Lists

list_reverse
(
xs: List0(a)

) : List0(a) =
(
list_foldleft<List0(a),a>
(lam (xs, x) => list_cons(x, xs), list_nil, xs)

)

where the type constructor List0 is for lists of unspecified length:

typedef List0(a:t@ype) = [n:nat] list (a, n)

Clearly, list_reverse is length-preserving, that is, it always returns a list of the same length as its input.
Unfortunately, this invariant is not captured in the above implementation of list_reverse based on
list_foldleft. For the purpose of comparison, another implementation of list_reverse is given as follows
that captures the invariant of list_reverse being length-preserving:

fun
{a:t@ype}
list_reverse
{n:nat}

(
xs: list(a, n)

) : list(a, n) = let
//
fun
loop{i,j:nat}
(
xs: list(a, i), ys: list(a, j)

) : list(a, i+j) =
case+ xs of
| list_nil () => ys
| list_cons (x, xs) => loop (xs, list_cons (x, ys))

//
in
loop (xs, list_nil)

end // end of [list_reverse]

As an application of list_foldright, the following code implements a function for concatenating two given
lists:

//
fun
{a:t@ype}
list_append
(
xs: List0(a), ys: List0(a)

24

Chapter 11. Functional Lists

) : List0(a) =
list_foldright<a, List0(a)>(lam (x, xs) => list_cons(x, xs), ys, xs)

//

The type assigned to list_append states that this function takes two lists as its arguments and returns one
of unspecified length. For the purpose of comparison, another implementation of list_append is given as
follows:

//
fun
{a:t@ype}
list_append
{m,n:nat}

(
xs: list(a,m), ys: list(a,n)

) : list(a,m+n) =
(
case+ xs of
| list_nil () => ys
| list_cons (x, xs) => list_cons (x, list_append (xs, ys))
)
//

where the type assigned to list_append states that this function takes two lists of length m and n,
respectively, and returns another list of length m+n.

One may think of a functional list as a representation for the finite mapping that maps each natural
number i less than the length of the list to element i in the list. The following function list_get_at is for
accessing a list element at a given position:

//
fun
{a:t@ype}
list_get_at
{n:nat}

(
xs: list(a, n), i: natLt(n)

) : a =
if i > 0 then list_get_at(xs.tail(), i-1) else xs.head()

//

This function can be called through the use of the bracket notation. In other words, xs[i] is automatically
interpreted as list_get_at(xs, i) whenever xs and i are a list and an integer, respectively. Note that the
time-complexity of list_get_at(xs, i) is O(i). If one uses list_get_at frequently when handling lists, then it
is almost always a sure sign of poor programming style.

There is no destructive update on a functional list as it is immutable. The following function list_set_at
can be called to construct a list that differs from a given one only at a given position:

//

25

Chapter 11. Functional Lists

fun
{a:t@ype}
list_set_at
{n:nat}

(
xs: list(a, n), i: natLt(n), x0: a

) : list(a, n) =
if i > 0
then list_cons(xs.head(), list_set_at(xs.tail(), i-1, x0))
else list_cons(x0, xs.tail())

// end of [if]
//

While it is fine to call list_set_at occasionally, a need to do so repeatedly often indicates that another data
structure should probably be chosen in place of functional list.

Functional lists are by far the most widely used data structure in functional programming. However, one
should not attempt to use a functional list like an array as doing so is inefficient both time-wise and
memory-wise.

Please find on-line (https://github.com/ats-lang/ats-
lang.github.io/blob/master/DOCUMENT/ATS2TUTORIAL/CODE/chap_list.dats) the entirety of the
code used in this chapter plus some testing code.

26

Chapter 12. Functional Sets and Maps

Both (finite) sets and (finite) maps are commonly used data structures. Functional sets and maps are
immutable after their construction. Insertion into or removal from a functional set/map results in the
construction of a new set/map while the original is kept intact. Usually the newly constructed set/map
and the original one share a lot of underlying representation. Note that a functional set/map cannot be
safely freed explicitly and the memory for representing it can only be reclaimed through garbage
collection (GC).

12.1. Functional Sets

Suppose that a set is needed for collecting values of type elt_t. The following code essentially sets up an
interface for creating and operating on such a set based on a balanced-tree implementation in
ATSLIB/libats:

local
//
typedef elt = elt_t
//
staload
FS = "libats/ML/SATS/funset.sats"
implement
$FS.compare_elt_elt<elt>(x, y) = compare(x, y)
//
in (* in-of-local *)

#include "libats/ML/HATS/myfunset.hats"

end // end of [local]

Please find on-line (https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/ATS-
Postiats/libats/ML/HATS/myfunset.hats) the HATS file mentioned in the code, which is just a
convenience wrapper made to simplify programming with functional sets. Note that it is assumed here
that there is a comparison function on values of the type elt_t that overloads the symbol compare. If this
is not the case, one needs to implement such a function.

Assume that elt_t is int. The following line of code creates a functional set (of integers) containing no
elements:

val myset = myfunset_nil()

The function for inserting an element into a given set is assigned the following type:

//
fun myfunset_insert(xs: &myset >> _, x0: elt): bool
//

27

Chapter 12. Functional Sets and Maps

The dot-symbol .insert is overloaded with the function myfunset_insert. Note that the first argument of
myfunset_insert is call-by-reference. If the given element is inserted into the given set, then the newly
created set is stored into the call-by-reference argument and false is returned (to indicate no error).
Otherwise, true is returned (to indicate a failure). The following few lines of code shows how insertion
can be operated on a functional set:

//
var myset = myset
//
val-false = myset.insert(0) // inserted
val-(true) = myset.insert(0) // not actually inserted
val-false = myset.insert(1) // inserted
val-(true) = myset.insert(1) // not actually inserted
//

The first line in the above code may seem puzzling: Its sole purpose is to create a left-value to be passed
as the first argument to myfunset_insert. During the course of debugging, one may want to print out the
values contained in a given set:

//
val () = fprintln! (stdout_ref, "myset = ", myset)
//

where the symbol fprint is overloaded with fprint_myset. The function for removing an element from a
given set is assigned the following type:

//
fun myfunset_remove(xs: &myset >> _, x0: elt): bool
//

The dot-symbol .remove is overloaded with the function myfunset_remove. Note that the first argument
of myfunset_remove is call-by-reference. If the given element is removed from the given set, then the
newly created set is stored into the call-by-reference argument and true is returned. Otherwise, false is
returned. The following few lines of code shows how removal can be operated on a functional set:

val-true = myset.remove(0) // removed
val-false = myset.remove(0) // not actually removed
val-true = myset.remove(1) // removed
val-false = myset.remove(1) // not actually removed

The following function is available for generating a module (that is, a record) containing various
operations on myset-values:

//
fun myfunset_make_module((*void*)): myset_modtype
//

28

Chapter 12. Functional Sets and Maps

For instance, a module of the name MYSET is created as follows:

val MYSET = myfunset_make_module()

With MYSET, we can create a (functional) set and then perform certain insertion and removal
operations:

//
var myset = (MYSET.nil)()
//
val-false = (MYSET.insert)(myset, 0) // inserted
val-false = (MYSET.insert)(myset, 1) // inserted
//
val ((*void*)) = assertloc((MYSET.size)(myset) = 2)
//
val-(true) = (MYSET.remove)(myset, 0) // removed
//
val ((*void*)) = assertloc((MYSET.size)(myset) = 1)
//
val-(true) = (MYSET.remove)(myset, 1) // removed
//
val ((*void*)) = assertloc((MYSET.size)(myset) = 0)
//

Various common set operations can be found in libats/ML/HATS/myfunset.hats (https://github.com/ats-
lang/ats-lang.github.io/blob/master/DOCUMENT/ATS-Postiats/libats/ML/HATS/myfunset.hats). By
following the types assigned to these operations, one should have no difficulty in figuring out how they
are supposed to be called. Please find the entirety of the code used in this section on-line
(https://github.com/ats-lang/ats-
lang.github.io/blob/master/DOCUMENT/ATS2TUTORIAL/CODE/chap_funsetmap_set.dats).

12.2. Functional Maps

Suppose that a map is needed for mapping keys of type key_t to items of type itm_t. The following code
essentially sets up an interface for creating and operating on such a map based on a balanced-tree
implementation in ATSLIB/libats:

local
//
typedef
key = key_t and itm = itm_t
//
staload
FM = "libats/ML/SATS/funmap.sats"
implement

29

Chapter 12. Functional Sets and Maps

$FM.compare_key_key<key>(x, y) = compare(x, y)
//
in (* in-of-local *)

#include "libats/ML/HATS/myfunmap.hats"

end // end of [local]

Please find on-line (https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/ATS-
Postiats/libats/ML/HATS/myfunmap.hats) the HATS file mentioned in the code, which is just a
convenience wrapper made to simplify programming with functional maps. Note that it is assumed here
that there is a comparison function on values of the type key_t that overloads the symbol compare. If this
is not the case, one needs to implement such a function.

Assume that key_t is string and itm_t is int. The following line of code creates an empty functional map:

val mymap = myfunmap_nil()

The following few lines insert some key/item pairs into mymap:

//
var mymap = mymap
//
val-~None_vt() = mymap.insert("a", 0)
val-~Some_vt(0) = mymap.insert("a", 1)
//
val-~None_vt() = mymap.insert("b", 1)
val-~Some_vt(1) = mymap.insert("b", 2)
//
val-~None_vt() = mymap.insert("c", 2)
val-~Some_vt(2) = mymap.insert("c", 3)
//

The dot-symbol .insert is overloaded with a function of the name myfunmap_insert. The first line in the
above code may seem puzzling: Its sole purpose is to create a left-value to be passed as the first argument
to myfunmap_insert. Given a key and an item, mymap.insert inserts the key/item pair into mymap. If the
key is in the domain of the map represented by mymap before insertion, then the original item associated
with the key is returned. Otherwise, no item is returned. As can be expected, the size of mymap is 3 at
this point:

val () = assertloc (mymap.size() = 3)

The dot-symbol .size is overloaded with a function of the name myfunmap_size, which returns the
number of key/item pairs stored in a given map. During the course of debugging, one may want to print
out the key/item pairs in a given map:

//
val () = fprintln! (stdout_ref, "mymap = ", mymap)
//

30

Chapter 12. Functional Sets and Maps

where the symbol fprint is overloaded with fprint_mymap. The next two lines of code show how search
with a given key operates on a map:

val-~None_vt() = mymap.search("")
val-~Some_vt(1) = mymap.search("a")

The dot-symbol .search is overloaded with a function of the name myfunmap_search, which returns the
item associated with a given key if it is found. The next few lines of code remove some key/item pairs
from mymap:

//
val-true = mymap.remove("a")
val-false = mymap.remove("a")
//
val-~Some_vt(2) = mymap.takeout("b")
val-~Some_vt(3) = mymap.takeout("c")
//

The dot-symbol .remove is overloaded with a function of the name myfunmap_remove for removing a
key/item pair of a given key. If a key/item pair is removed, then the function returns true. Otherwise, it
returns false to indicates that no key/item pair of the given key is stored in the map being operated on.
The dot-symbol .takeout is overloaded with a function of the name myfunmap_takeout, which is similar
to myfunmap_remove excepting for returning the removed item.

The following function is available for generating a module (that is, a record) containing various
operations on mymap-values:

//
fun myfunmap_make_module((*void*)): mymap_modtype
//

For instance, a module of the name MYMAP is created as follows:

val MYMAP = myfunmap_make_module()

With MYMAP, we can create a (functional) map and then perform various insertion and removal
operations:

//
var mymap = (MYMAP.nil)()
//
val-~None_vt() = (MYMAP.insert)(mymap, "a", 0)
val-~None_vt() = (MYMAP.insert)(mymap, "b", 1)
val-~None_vt() = (MYMAP.insert)(mymap, "c", 2)
//
val-~Some_vt(0) = (MYMAP.insert)(mymap, "a", 1)
val-~Some_vt(1) = (MYMAP.insert)(mymap, "b", 2)
val-~Some_vt(2) = (MYMAP.insert)(mymap, "c", 3)

31

Chapter 12. Functional Sets and Maps

//
val-(true) = (MYMAP.remove)(mymap, "a")
val-(true) = (MYMAP.remove)(mymap, "b")
val-(true) = (MYMAP.remove)(mymap, "c")
//
val () = assertloc((MYMAP.size)(mymap) = 0)
//

Various common map operations can be found in libats/ML/HATS/myfunmap.hats
(https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/ATS-
Postiats/libats/ML/HATS/myfunmap.hats). By following the types assigned to these operations, one
should have no difficulty in figuring out how they are supposed to be called. Please find the entirety of
the code used in this section on-line (https://github.com/ats-lang/ats-
lang.github.io/blob/master/DOCUMENT/ATS2TUTORIAL/CODE/chap_funsetmap_map.dats).

32

Chapter 13. Exceptions

While exceptions can be very useful in practice, it is also very common to see code that misuses
exceptions.

Generally speaking, there are exceptions that are meant to be raised but not captured for the purpose of
aborting program execution, and there are also exceptions (often declared locally) that are meant to be
raised and then captured so as to change the flow of program execution. For instance, the exception
ArraySubscriptExn is raised when out-of-bounds array subscripting is detected at run-time. Once it is
raised, ArraySubscriptExn is usually not meant to be captured. While there is certainly nothing
preventing a programer from writing code that captures a raised ArraySubscriptExn, a major concern is
that reasoning can become greatly complicated on code that does so. In the following presentation, I will
soley focus on exceptions that are meant to be raised and then captured.

Let us now take a look at the following code that implements a function for finding the rightmost element
in a list that satisfies a given predicate:

extern
fun{a:t@ype}
list_find_rightmost
(List (a), (a) -<cloref1> bool): Option_vt (a)

//
implement{a}
list_find_rightmost
(xs, pred) = let

//
fun aux
(
xs: List(a)

) : Option_vt (a) =
case+ xs of
| nil () => None_vt ()
| cons (x, xs) => let

val res = aux (xs)
in
case+ res of
| Some_vt _ => res
| ~None_vt () =>

if pred (x) then Some_vt (x) else None_vt ()
// end of [None]

end (* end of [cons] *)
//
in
aux (xs)

end // end of [list_find_rightmost]

Suppose that list_find_rightmost is called on a list xs of length N (for some large natural number N) and
a predicate pred. The evaluation of this call leads to a call to the inner function aux, which in turn

33

Chapter 13. Exceptions

generates N additional recursive calls to aux. Assume that only the last element of xs satisfies the
predicate pred. Then there are still N-1 call frames for aux on the call stack when the rightmost element
satisfying the given predicate is found, and these frames need to be unwinded one-by-one before the
found element can be returned to the original call to list_find_rightmost. This form of inefficiency is
eliminated in the following exception-based implementation of list_find_rightmost:

implement{a}
list_find_rightmost
(xs, pred) = let

//
exception Found of (a)
//
fun aux
(
xs: List(a)

) : void =
case+ xs of
| nil () => ()
| cons (x, xs) => let

val () = aux (xs)
in
if pred (x) then $raise Found(x) else ()

end (* end of [cons] *)
//
in
//
try let
val () = aux (xs)

in
None_vt ()

end with
| ~Found(x) => Some_vt (x)

//
end // end of [list_find_rightmost]

When a try-with-expression is evaluated, a label is created for the portion of the call stack needed to
evaluate the clauses (often referred to as exception-handlers) following the keyword with, and this label
is then pushed onto a designated global stack. When an exception is raised, the labels on the global stack
are tried one-by-one until the raised exception is captured by an exception-handler (that is, the value
representing the exception matches the pattern guard of the exception-handler) or the current program
evaluation aborts. The above exception-based implementation of list_find_rightmost uses a raised
exception to carry the element found during a recursive call to aux so that this element can be returned in
a single jump to the original call to list_find_rightmost, bypassing all the intermediate call frames (for
recursive calls to aux) on the call stack. In general, the range between the point where an exception is
raised and the point where the raised exception is captured should span multiple call frames. If not, then
the use of exception may be questionable.

The implementation of the run-time support for exceptions in ATS makes use of the function alloca
declared in alloca.h and the functions setjmp and longjmp declared in setjmp.h. If gcc or clang is

34

Chapter 13. Exceptions

used to compile the C code generated from ATS source, one can pass the flag -D_GNU_SOURCE so as
to make sure that the header file alloca.h is properly included.

Please find on-line (https://github.com/ats-lang/ats-
lang.github.io/blob/master/DOCUMENT/ATS2TUTORIAL/CODE/chap_exception.dats) the entirety of
the code used in this chapter.

35

Chapter 14. References

A reference is a singleton array, that is, an array of size 1. It is persistent in the sense that the
(heap-allocated) memory for storing the content of a reference cannot be freed manually in a type-safe
manner. Instead, it can only be reclaimed through garbage collection (GC).

Given a viewtype VT, the type for references to values of viewtype VT is ref(VT). For convenience, the
type constructor ref is declared to be abstract in ATS. However, it can be defined as follows:

typedef
ref(a:vt@ype) = [l:addr] (vbox(a @ l) | ptr l)

The interfaces for various functions on references can be found in prelude/SATS/reference.sats
(https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/ATS-
Postiats/prelude/SATS/reference.sats).

For creating a reference, the function template ref_make_elt of the following interface can be called:

fun{a:vt@ype} ref_make_elt (x: a):<!wrt> ref(a)

It is also allowed to use the shorthand ref for ref_make_elt. Note that the symbol !wrt indicates that the
so-called wrt-effect may occur when ref_make_elt is called.

For reading from and writing through a reference, the function templates ref_get_elt and ref_set_elt can
be used, respectively, which are assigned the following types:

fun{a:t@ype} ref_get_elt (r: ref a):<!ref> a
fun{a:t@ype} ref_set_elt (r: ref a, x: a):<!refwrt> void

Note that the symbol !ref indicates that the so-called ref-effect may occur when ref_get_elt is evaluated.
Similarly, !refwrt means both ref-effect and wrt-effect may occur when ref_set_elt. Given a reference r
and a value v, ref_get_elt(r) and ref_set_elt(r, v) can be written as !r and !r := v, respectively, and can
also be written as r[] and r[] := v, respectively, in terms of bracket-notation.

A reference is typically employed to record some form of persistent state. For instance, following is such
an example:

local
//
#define BUFSZ 128
//
val count = ref<int> (0)
//
in (* in of [local] *)

fun genNewName
(prfx: string): string = let

36

Chapter 14. References

val n = !count
val () = !count := n + 1
var res = @[byte][BUFSZ]((*void*))
val err =
$extfcall (
int, "snprintf", addr@res, BUFSZ, "%s%i", prfx, n

) (* end of [$extfcall] *)
in
strptr2string(string0_copy($UNSAFE.cast{string}(addr@res)))

end // end of [genNewName]

end // end of [local]

The function genNewName is called to generate fresh names. As the integer content of the reference
count is updated whenever a call to genNewName is made, each name returned by genNewName is
guaranteed to have not been generated before. Note that the use of $extfcall is for making a direct call to
the function snprintf in C.

Misuse of References References are commonly misused in practice. The following program is often
written by a beginner of functional programming who has already learned (some) imperative
programming:

fun fact
(n: int): int = let
val res = ref<int> (1)
fun loop (n: int):<cloref1> void =
if n > 0 then (!res := n * !res; loop(n-1)) else ()

val () = loop (n)
in
!res

end // end of [fact]

The function fact is written in such a style as somewhat a direct translation of the following C code:

//
int
fact (int n) {
int res = 1 ;
while (n > 0) { res = n * res; n = n - 1; } ;
return (res) ;

}
//

In the ATS implementation of fact, res is a heap-allocated reference and it becomes garbage (waiting to
be reclaimed by the GC) after a call to fact returns. On the other hand, the variable res in the C
implementation of fact is stack-allocated (or it can even be mapped to a machine register), and there is no
generated garbage after a call to fact returns. A proper translation of the C implementation in ATS can
actually be given as follows:

fun fact

37

Chapter 14. References

(n: int): int = let
fun loop (n: int, res: int): int =
if n > 0 then loop (n-1, n * res) else res

// end of [loop]
in
loop (n, 1)

end // end of [fact]

which makes no use of references at all.

Unless strong justification can be given, making extensive use of (dynamically created) references is
often a sure sign of poor coding style.

Statically Allocated References Creating a reference by calling ref_make_elt involves dynamic memory
allocation. If this is not desirable or even acceptable, it is possible to only employ statically allocated
memory in a reference creation as is shown below:

var myvar: int = 0
val myref = ref_make_viewptr (view@(myvar) | addr@(myvar))

The function ref_make_viewptr takes a pointer and a proof of some at-view associated with the pointer
and returns a reference after consuming the proof. As ref_make_viewptr is a cast-function, it causes no
run-time overhead. In the above code, myvar is statically allocated and it is no longer available after its
at-view proof is consumed by ref_make_viewptr. It should be interesting to observe that both myvar and
myref are just the same pointer in C but they are the reification of fundamentally different concepts in
ATS: the former is a linear variable while the latter is a non-linear reference.

Please find on-line (https://github.com/ats-lang/ats-
lang.github.io/blob/master/DOCUMENT/ATS2TUTORIAL/CODE/chap_reference.dats) the entirety of
the code used in this chapter.

38

Chapter 15. Boxed Tuples and Records

A boxed tuple/record is just a reference to some location in memory where a flat tuple/record is stored.
Often the word unboxed is also used to describe a flat tuple/record.

In the following code, the types abc_tup and abc_rec are for boxed tuples and records, respectively:

typedef
abc_tup = ’(int, int, string) // for tuples
typedef
abc_rec = ’{a=int, b=int, c=string} // for records

Note that a tuple is just a special record in the sense that the labels in the tuple are fixed to be ranging
from 0 to n-1, inclusive, where n is the tuple length. In the case of abc_tup, the three associated labels are
0, 1, and 2. Note that ’(and ’{ are special symbols in ATS and there is no space allowed after the single
quote. If the use of these special symbols is to be avoided, then one can declare the types abc_tup and
abc_rec as follows in a slightly different syntax:

typedef
abc_tup = $tup(int, int, string) // for tuples
typedef
abc_rec = $rec{a=int, b=int, c=string} // for records

Also, the keywords $tup and $rec can be replaced with $tuple and $record, respectively.

The following code demonstrates how tuples and records can be created and their components (i.e.,
fields) taken out:

//
val x_tup = ’(0, 1, "2") : abc_tup
val x_rec = ’{a=0, b=1, c="2"} : abc_rec
//
val ((*void*)) = assertloc(x_tup.0 = x_rec.a)
val ((*void*)) = assertloc(x_tup.1 = x_rec.b)
val ((*void*)) = assertloc(x_tup.2 = x_rec.c)
//

It should be noted that both x_tup and x_rec are immutable. If one tries to typecheck the following code,
then he or she should see error messages reporting that x_tup.0 and x_rec.a are non-left-values:

//
val () = x_tup.0 := 100 // *ERROR*: x_tup.0 not a left-value
val () = x_rec.a := 100 // *ERROR*: x_tup.0 not a left-value
//

39

Chapter 15. Boxed Tuples and Records

In order to have a tuple/record with mutable fields, we can just literally create a reference to a flat
tuple/record. In the following code, the types abc_tup_ and abc_rec_ are declcared for flat tuples and
records, respectively:

//
typedef
abc_tup_ = @(int, int, string) // for tuples
typedef
abc_rec_ = @{a=int, b=int, c=string} // for records
//

and the types abc_tup_r and abc_rec_r are for references to tuples and records classified by abc_tup_ and
abc_rec_, respetively:

//
typedef abc_tup_r = ref(abc_tup_) // for tuples
typedef abc_rec_r = ref(abc_rec_) // for records
//

The code below demonstrates how tuples and records with mutable fields can be created and their fields
accessed and updated.

//
val x_tup_r = ref<abc_tup_>(@(0, 1, "2"))
val x_rec_r = ref<abc_rec_>(@{a=0, b=1, c="2"})
//
(* ****** ****** *)
//
val () = assertloc(x_tup_r->0 = x_rec_r->a)
val () = assertloc(x_tup_r->1 = x_rec_r->b)
val () = assertloc(x_tup_r->2 = x_rec_r->c)
//
(* ****** ****** *)
//
val () = x_tup_r->0 := 100 // *OKAY*: x_tup_r.0 is a left-value
val () = x_rec_r->a := 100 // *OKAY*: x_rec_r.a is a left-value
//

If we want to have records of a type where certain fields are read-only while the others may be updated,
we can do this by making use of the support for abstract types in ATS. In the following example, myrec
is declared to be abstract; there are three fields associated with myrec that are of the names a, b, and c;
the first two may be updated while the third one is read-only:

(* ****** ****** *)

40

Chapter 15. Boxed Tuples and Records

abstype myrec = ptr

(* ****** ****** *)
//
extern
fun{}
myrec_make
(
a: int, b: int, c: string

) : myrec // end-of-function
//
extern
fun{}
myrec_get_a : myrec -> int
extern
fun{}
myrec_set_a : (myrec, int) -> void
extern
fun{}
myrec_get_b : myrec -> int
extern
fun{}
myrec_set_b : (myrec, int) -> void
extern
fun{}
myrec_get_c : myrec -> string
//
overload .a with myrec_get_a
overload .a with myrec_set_a
overload .b with myrec_get_b
overload .b with myrec_set_b
overload .c with myrec_get_c
//
(* ****** ****** *)

local
//
assume myrec = abc_rec_r
//
in (* in-of-local *)
//
implement
{}(*tmp*)
myrec_make
(a, b, c) = ref(@{a=a, b=b, c=c})

//
implement{} myrec_get_a(x) = x->a
implement{} myrec_set_a(x, a) = x->a := a
//
implement{} myrec_get_b(x) = x->b
implement{} myrec_set_b(x, b) = x->b := b
//
implement{} myrec_get_c(x) = x->c

41

Chapter 15. Boxed Tuples and Records

(*
//
// there is no update for the c-field:
//
implement{} myrec_set_a(x, c) = x->c := c

*)
//
end // end of [local]

(* ****** ****** *)

Following is some code that creates a record of the type myrec and then accesses and updates certain
fields of the created record:

//
val x_abc = myrec_make(0, 1, "2")
//
val ((*void*)) = assertloc(x_abc.a() = 0)
val ((*void*)) = assertloc(x_abc.b() = 1)
val ((*void*)) = assertloc(x_abc.c() = "2")
//
val ((*void*)) = x_abc.a(100)
val ((*void*)) = assertloc(x_abc.a() = 100)
//
val ((*void*)) = x_abc.b(101)
val ((*void*)) = assertloc(x_abc.b() = 101)
//
(*
val ((*void*)) = x_abc.c("102") // *ERROR*: unsupported

*)
//

While this example (myrec) demonstrates an approach to constructing records containing both read-only
fields and fields that can be updated, this approach does seem a bit too verbose. One possibilty is to
develop meta-programming support so as to greatly reduce the verbosity (due to the need for boilerplate
code).

Please find on-line (https://github.com/ats-lang/ats-
lang.github.io/blob/master/DOCUMENT/ATS2TUTORIAL/CODE/chap_tuprec_1.dats) the entirety of
the code used in this chapter plus some testing code.

42

Chapter 16. Persistent Arrays

A persistent array of size n is just n heap-allocated cells (or references) in a row. It is persistent in the
sense that the memory allocated for the array cannot be freed manually. Instead, it can only be safely
reclaimed through systematic garbage collection (GC).

Given a viewtype VT, the type for persistent arrays containing N values of viewtype VT is arrayref(VT,
N). Note that arrays in ATS are the same as those in C: There is no size information attached to them.
The interfaces for various functions on persistent arrays can be found in the SATS file
prelude/SATS/arrayref.sats (https://github.com/ats-lang/ats-
lang.github.io/blob/master/DOCUMENT/ATS-Postiats/prelude/SATS/arrayref.sats), which is
automatically loaded by atsopt.

There are various functions in ATSLIB for array creation. For instance, the following two are commonly
used:

fun{a:t@ype}
arrayref_make_elt
{n:nat} (asz: size_t n, elt: a):<!wrt> arrayref(a, n)

// end of [arrayref_make_elt]

fun{a:t@ype}
arrayref_make_listlen
{n:int} (xs: list(a, n), n: int n):<!wrt> arrayref(a, n)

// end of [arrayref_make_listlen]

Applied to a size and an element, arrayref_make_elt returns an array of the given size in which each cell
is initialized with the given element. Applied to a list of elements and the length of the list,
arrayref_make_listlen returns an array of size equal to the given length in which each cell is initialized
with the corresponding element in the given list.

For reading from and writing to an array, the function templates arrayref_get_at and arrayref_set_at can
be used, respectively, which are assigned the following interfaces:

fun{a:t@ype}
arrayref_get_at
{n:int} (A: arrayref(a, n), i: sizeLt (n)):<!ref> a

fun{a:t@ype}
arrayref_set_at
{n:int} (A: arrayref(a, n), i: sizeLt (n), x: a):<!ref> void

Given an array A, an index i and a value v, arrayref_get_at(A, i) and arrayref_set_at(A, i, v) can be
written as A[i] and A[i] := v, respectively.

As an example, the following function template reverses the content of a given array:

43

Chapter 16. Persistent Arrays

fun{a:t@ype}
arrayref_reverse{n:nat}
(
A: arrayref(a, n), n: size_t(n)

) : void = let
//
fun loop
{i: nat | i <= n} .<n-i>.

(
A: arrayref(a, n), n: size_t n, i: size_t i

) : void = let
val n2 = half (n)

in
if i < n2 then let
val tmp = A[i]
val ni = pred(n)-i

in
A[i] := A[ni]; A[ni] := tmp; loop(A, n, succ(i))

end else () // end of [if]
end // end of [loop]
//
in
loop(A, n, i2sz(0))

end // end of [arrayref_reverse]

If the test i < n2 is changed to i <= n2, a type-error is to be reported. Why? The reason is that A[n-1-i]
becomes out-of-bounds array subscripting in the case where n and i both equal zero. Given that it is very
unlikely to encounter a case where an array of size 0 is involved, a bug like this, if not detected early, can
be buried so scarily deep!

The careful reader may have already noticed that the sort t@ype is assigned to the template parameter a.
In other words, the above implementation of arrayref_reverse cannot handle a case where the values
stored in a given array are of some linear type. The reason for choosing the sort t@ype is that both
arrayref_get_at and arrayref_set_at can only be applied to an array containing values of a nonlinear type.
In the following implementation, the template parameter is given the sort vt@ype so that an array
containing linear values, that is, values of some linear type can be handled:

fun{a:vt@ype}
arrayref_reverse{n:nat}
(
A: arrayref(a, n), n: size_t(n)

) : void = let
//
fun loop
{i: nat | i <= n} .<n-i>.

(
A: arrayref(a, n), n: size_t n, i: size_t i

) : void = let
val n2 = half (n)

44

Chapter 16. Persistent Arrays

in
if i < n2 then let
val () = arrayref_interchange(A, i, pred(n)-i) in loop(A, n, succ(i))

end else () // end of [if]
end // end of [loop]
//
in
loop(A, n, i2sz(0))

end // end of [arrayref_reverse]

The interface for the function template arrayref_interchange is given below:

fun{a:vt@ype}
arrayref_interchange{n:int}
(A: arrayref(a, n), i: sizeLt n, j: sizeLt n):<!ref> void

// end of [arrayref_interchange]

Note that arrayref_interchange can not be implemented in terms of arrayref_get_at and arrayref_set_at
(unless some form of type-unsafe code is employed).

There are various functions available for traversing an array from left to right or from right to left. Also,
the following two functions can be conveniently called to traverse an array from left to right:

//
fun{a:t0p}
arrayref_head{n:pos} (A: arrayref(a, n)): (a) // A[0]
fun{a:t0p}
arrayref_tail{n:pos} (A: arrayref(a, n)): arrayref(a, n-1)
//
overload .head with arrayref_head
overload .tail with arrayref_tail
//

For instance, the fold-left function for arrays can be implemented as follows:

fun{a,b:t@ype}
arrayref_foldleft{n:int}
(
f: (a, b) -> a, x: a, A: arrayref(b, n), n: size_t(n)

) : a =
(
if n > 0
then arrayref_foldleft<a,b> (f, f (x, A.head()), A.tail(), pred(n))
else x

// end of [if]
) (* end of [arrayref_foldleft] *)

As can be expected, A.head and A.tail translate into A[0] and ptr_succ<T>(p0), respectively, where T is
the type for the elements stored in A and p0 is the starting address of A.

45

Chapter 16. Persistent Arrays

Please find on-line (https://github.com/ats-lang/ats-
lang.github.io/blob/master/DOCUMENT/ATS2TUTORIAL/CODE/chap_arrayref.dats) the entirety of
the code used in this chapter.

46

Chapter 17. Persistent Arrays-with-size

I use the name array-with-size to refer to a persistent array with attached size information. Given a
viewtype VT, the type for an array-with-size that contains N values of viewtype VT is arrszref(VT, N).
Essentially, such a value is a boxed pair of two components of types arrayref(VT, N) and size_t(N). The
interfaces for various functions on persistent arrays-with-size can be found in prelude/SATS/arrayref.sats
(https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/ATS-
Postiats/prelude/SATS/arrayref.sats).

For creating an array-with-size, the following functions arrszref_make_arrpsz and
arrszref_make_arrayref can be called:

fun{}
arrszref_make_arrpsz
{a:vt0p}{n:int} (arrpsz(INV(a), n)): arrszref(a)

fun{}
arrszref_make_arrayref
{a:vt0p}{n:int} (arrayref(a, n), size_t(n)): arrszref(a)

// end of [arrszref_make_arrayref]

As an example, the following code creates an array-with-size containing all the decimal digits:

val DIGITS =
(arrszref)$arrpsz{int}(0, 1, 2, 3, 4, 5, 6, 7, 8, 9)

Note that arrszref is overloaded with arrszref_make_arrpsz.

For reading from and writing to an array-with-size, the function templates arrszref_get_at and
arrszref_set_at can be used, respectively, which are assigned the following interfaces:

fun{a:t@ype}
arrszref_get_at (A: arrszref(a), i: size_t): (a)
fun{a:t@ype}
arrszref_set_at (A: arrszref(a), i: size_t, x: a): void

Given an array-with-size A, an index i and a value v, arrszref_get_at(A, i) and arrszref_set_at(A, i, v) can
be written as A[i] and A[i] := v, respectively. Notice that array-bounds checking is performed at run-time
whenever arrszref_get_at or arrszref_set_at is called, and the exception ArraySubscriptExn is raised in
case of out-of-bounds array access being detected.

As a simple example, the following code implements a function that reverses the content of the array
inside a given array-with-size:

fun{a:t@ype}
arrszref_reverse
(
A: arrszref(a)

47

Chapter 17. Persistent Arrays-with-size

) : void = let
//
val n = A.size()
val n2 = half (n)
//
fun loop
(i: size_t): void = let

in
if i < n2 then let
val tmp = A[i]
val ni = pred(n)-i

in
A[i] := A[ni]; A[ni] := tmp; loop (succ(i))

end else () // end of [if]
end // end of [loop]
//
in
loop (i2sz(0))

end // end of [arrszref_reverse]

Arrays-with-size can be a good choice over arrays in a prototype implementation as it is often more
demanding to program with arrays. Also, for programmers who are yet to become familiar with
dependent types, it is definitely easier to work with arrays-with-size than arrays. When programming in
ATS, I often start out with arrays-with-size and then replace them with arrays when I can see clear
benefits from doing so.

Please find on-line (https://github.com/ats-lang/ats-
lang.github.io/blob/master/DOCUMENT/ATS2TUTORIAL/CODE/chap_arrszref.dats) the entirety of
the code used in this chapter.

48

Chapter 18. Persistent Matrices

A persistent matrix of dimension m by n is just a persistent array of size m*n. Like in C, the
representation of a matrix in ATS is row-major. In other words, element (i, j) in a matrix of dimension m
by n is element i*n+j in the underlying array that represents the matrix.

Given a viewtype VT and two integers M and N, the type matrixref(VT, M, N) is for persistent matrices
of dimension M by N that contain elements of the viewtype VT. There is no dimension information
attached to matrixref-values explicitly. The interfaces for various functions on persistent matrices can be
found in the SATS file prelude/SATS/matrixref.sats (https://github.com/ats-lang/ats-
lang.github.io/blob/master/DOCUMENT/ATS-Postiats/prelude/SATS/matrixref.sats), which is
automatically loaded by atsopt.

The following function is commonly used to create a matrixref-value:

fun{a:t0p}
matrixref_make_elt{m,n:int}
(m: size_t m, n: size_t n, x0: a):<!wrt> matrixref(a, m, n)

// end of [matrixref_make_elt]

Given two sizes m and n plus an element x0, matrixref_make_elt returns a matrix of dimension m by n in
which each cell is initialized with the element x0.

Also, the following cast function can be called to turn an array into a matrix:

castfn
arrayref2matrixref
{a:vt0p}{m,n:nat} (A: arrayref(a, m*n)):<> matrixref(a, m, n)

// end of [arrayref2matrixref]

For accessing and updating the content of a matrix-cell, the following two functions matrixref_get_at and
matrixref_set_at can be called:

//
fun{a:t0p}
matrixref_get_at
{m,n:int}

(
A: matrixref(a, m, n), i: sizeLt(m), n: size_t(n), j: sizeLt(n)

) :<!ref> (a) // end of [matrixref_get_at]
//
fun{a:t0p}
matrixref_set_at
{m,n:int}

(

49

Chapter 18. Persistent Matrices

A: matrixref(INV(a), m, n), i: sizeLt(m), n: size_t n, j: sizeLt(n), x: a
) :<!refwrt> void // end of [matrixref_set_at]
//

Note that it is not enough to just supply the coordinates of a matrix-cell in order to access it; the column
dimension of the matrix needs to be supplied as well.

In the following presentation, I give an implementation of a function that turns a given square matrix into
its transpose:

//
extern
fun{a:t0p}
matrixref_transpose
{n:nat}

(
M: matrixref(a, n, n), n: size_t(n)

) : void // end of [matrixref_transpose]
//
implement{a}
matrixref_transpose
{n} (M, n) = let

//
macdef
mget(i, j) =
matrixref_get_at(M, ,(i), n, ,(j))

macdef
mset(i, j, x) =
matrixref_set_at(M, ,(i), n, ,(j), ,(x))

//
fun loop
{i,j:nat |
i < j; j <= n

} .<n-i,n-j>.
(
i: size_t(i), j: size_t(j)

) : void =
(
if j < n then let
val x = mget(i, j)
val () = mset(i, j, mget(j, i))
val () = mset(j, i, x)

in
loop (i, j+1)

end else let
val i1 = succ (i)

in
if i1 < n then loop(i1, succ(i1)) else ()

end // end of [if]
) (* end of [loop] *)
//
in

50

Chapter 18. Persistent Matrices

if n > 0 then loop(i2sz(0), i2sz(1)) else ()
end // end of [matrixref_transpose]

Please find on-line (https://github.com/ats-lang/ats-
lang.github.io/blob/master/DOCUMENT/ATS2TUTORIAL/CODE/chap_matrixref.dats) the entirety of
the code used in this chapter.

51

Chapter 19. Persistent Matrices-with-size

I use the name matrix-with-size to refer to a persistent matrix with attached dimension information (that
is, number of rows and number of columns). Given a viewtype VT, the type for a matrix-with-size that
contains M rows and N columns of elements of viewtype VT is mtrxszref(VT, M, N). Essentially, such a
value is a boxed record of three components of types arrayref(VT, N), size_t(M) and size_t(N). The
interfaces for various functions on persistent matrices-with-size can be found in
prelude/SATS/matrixref.sats (https://github.com/ats-lang/ats-
lang.github.io/blob/master/DOCUMENT/ATS-Postiats/prelude/SATS/matrixref.sats).

The following function is commonly used to create a matrix-with-size:

fun{a:t0p}
mtrxszref_make_elt (m: size_t, n: size_t, x0: a): mtrxref(a)
// end of [mtrxszref_make_elt]

Given two sizes m and n plus an element x0, mtrxszref_make_elt returns a matrix-with-size of the
dimension m by n in which each matrix-cell is initialized with the given element x0.

For accessing and updating the content of a matrix-cell, the following two functions mtrxszref_get_at
and mtrxszref_set_at can be called:

fun{a:t0p}
mtrxszref_get_at (M: mtrxszref(a), i: size_t, j: size_t): (a)
fun{a:t0p}
mtrxszref_set_at (M: mtrxszref(a), i: size_t, j: size_t, x: a): void

Given a matrix-with-size M, two indices i and j, and a value v, mtrxszref_get_at(M, i, j) and
mtrxszref_set_at(M, i, j, v) can be written as M[i,j] and M[i,j] := v, respectively. Notice that
matrix-bounds checking is performed at run-time whenever mtrxszref_get_at or mtrxszref_set_at is
called, and the exception MatrixSubscriptExn is raised in case of out-of-bounds matrix access being
detected.

As a simple example, the following code implements a function that transpose the content of the matrix
inside a given matrix-with-size:

//
extern
fun{a:t0p}
mtrxszref_transpose (M: mtrxszref(a)): void
//
implement{a}
mtrxszref_transpose
(M) = let

//
val n = M.nrow()
//

52

Chapter 19. Persistent Matrices-with-size

val ((*void*)) = assertloc (M.nrow() = M.ncol())
//
fun loop
(
i: size_t, j: size_t

) : void =
if j < n then let
val x = M[i,j]
val () = M[i,j] := M[j,i]
val () = M[j,i] := x

in
loop(i, succ(j))

end else let
val i1 = succ (i)

in
if i1 < n then loop(i1, succ(i1)) else ()

end // end of [if]
//
in
if n > 0 then loop(i2sz(0), i2sz(1)) else ()

end // end of [mtrxszref_transpose]

Like arrays-with-size, matrices-with-size are easier to program with than dependently typed matrices.
However, the latter can not only lead to more effective error detection at compile-time but also more
efficent code execution at run-time. For someone programming in ATS, it is quite reasonable to start out
with matrices-with-size and then replace them with matrices when there are clear benefits from doing so.

Please find on-line (https://github.com/ats-lang/ats-
lang.github.io/blob/master/DOCUMENT/ATS2TUTORIAL/CODE/chap_mtrxszref.dats) the entirety of
the code used in this chapter.

53

Chapter 20. Persistent Hashtables

Hashtables are commonly used to implement finite maps. In ATSLIB/libats, there are hashtable
implementations based on linear chaining and linear probing. There is also support for linear hashtables
as well as persistent hashtables. The linear ones can be safely freed by the programmer, and the
persistent ones (which are directly based on linear ones) can only be safely reclaimed through garbage
collection (GC). In this chapter, I show how persistent hashtables can be created and operated on.

Suppose that a map is needed for mapping keys of type key_t to items of type itm_t. The following code
essentially sets up an interface for creating and operating on such a map based on a hashtable
implementation in ATSLIB/libats:

local

typedef
key = key_t and itm = itm_t

in (* in-of-local *)

#include "libats/ML/HATS/myhashtblref.hats"

end // end of [local]

Please find on-line (https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/ATS-
Postiats/libats/ML/HATS/myhashtblref.hats) the HATS file mentioned in the code, which is just a
convenience wrapper made to simplify programming with hashtables.

Assume that key_t is string and itm_t is int. The following line of code creates a hashtable with its initial
capacity set to be 1000:

val mymap = myhashtbl_make_nil(1000)

Note that the capacity in this case is the size of the array associated with the created hashtable. The
underlying hashtable implementation is based on linear chaining, and this hashtable can store up to 5000
(5*1000) items without need for resizing. When resizing is indeed needed, it is done automatically. The
following few lines insert some key/item pairs into mymap:

//
val-~None_vt() = mymap.insert("a", 0)
val-~Some_vt(0) = mymap.insert("a", 1)
//
val-~None_vt() = mymap.insert("b", 1)
val-~Some_vt(1) = mymap.insert("b", 2)
//
val-~None_vt() = mymap.insert("c", 2)
val-~Some_vt(2) = mymap.insert("c", 3)
//

54

Chapter 20. Persistent Hashtables

The dot-symbol .insert is overloaded with a function of the name myhashtbl_insert. Given a key and an
item, mymap.insert inserts the key/item pair into mymap. If the key is in the domain of the map
represented by mymap before insertion, then the original item associated with the key is returned.
Otherwise, no item is returned. As can be expected, the size of mymap is 3 at this point:

val () = assertloc (mymap.size() = 3)

The dot-symbol .size is overloaded with a function of the name myhashtbl_get_size, which returns the
number of key/item pairs stored in a given hashtable. During the course of debugging, one may want to
print out the key/item pairs in a given hashtable:

//
val () =
fprintln! (stdout_ref, "mymap = ", mymap)

//

where the symbol fprint is overloaded with fprint_myhashtbl. The next two lines of code show how
search with a given key operates on a hashtable:

val-~None_vt() = mymap.search("")
val-~Some_vt(1) = mymap.search("a")

The dot-symbol .search is overloaded with a function of the name myhashtbl_search, which returns the
item associated with a given key if it is found. The next few lines of code remove some key/item pairs
from mymap:

//
val-true = mymap.remove("a")
val-false = mymap.remove("a")
//
val-~Some_vt(2) = mymap.takeout("b")
val-~Some_vt(3) = mymap.takeout("c")
//

The dot-symbol .remove is overloaded with a function of the name myhashtbl_remove for removing a
key/item pair of a given key. If a key/item pair is removed, then the function returns true. Otherwise, it
returns false to indicates that no key/item pair of the given key is stored in the hashtable being operated
on. The dot-symbol .takeout is overloaded with a function of the name myhashtbl_takeout, which is
similar to myhashtbl_remove excepting for returning the removed item. The next few lines of code make
use of several less commonly used functions on hashtables:

//
val () = mymap.insert_any("a", 0)
val () = mymap.insert_any("b", 1)
val () = mymap.insert_any("c", 2)
val kxs = mymap.listize1((*void*))
val ((*void*)) = fprintln! (stdout_ref, "kxs = ", kxs)
val kxs = mymap.takeout_all((*void*))

55

Chapter 20. Persistent Hashtables

val ((*void*)) = fprintln! (stdout_ref, "kxs = ", kxs)
//
val () = assertloc (mymap.size() = 0)
//

The dot-symbol .insert_any is overloaded with a function of the name myhashtbl_insert_any, which
always inserts a given key/item pair regardless whether the key is already in use. One should really avoid
using this function or only call it when it is absolutely sure that the given key is not already in use for
otherwise the involved hashtable would be corrupted. The dot-symbols .listize1 and .takeout_all are
overloaded with two functions of the names myhashtbl_listize1 and myhashtbl_takeout_all, respectively.
Both of them return a list consisting of all the key/item pairs in a given hashtable; the former keeps the
hashtable unchanged while the latter empties it. Last, I present as follows the interface for an iterator
going over all the key/item pairs in a given hashtable:

//
extern
fun
myhashtbl_foreach_cloref
(
tbl: myhashtbl

, fwork: (key, &(itm) >> _) -<cloref1> void
) : void // end-of-function
//

As an example, the following code prints out all the key/item pairs in a given hashtable:

//
val () =
myhashtbl_foreach_cloref
(
mymap

, lam (k, x) => fprintln! (stdout_ref, "k=", k, " and ", "x=", x)
) (* myhashtbl_foreach_cloref *)
//

Please find the entirety of the code used in this chapter on-line (https://github.com/ats-lang/ats-
lang.github.io/blob/master/DOCUMENT/ATS2TUTORIAL/CODE/chap_hashtable.dats). Also, there is
a hashtable-based implementation of symbol table available on-line (https://github.com/ats-lang/ats-
lang.github.io/blob/master/DOCUMENT/ATS2TUTORIAL/CODE/chap_hashtable2.dats).

56

Chapter 21. Tail-Recursion

Please see this article
(http://ats-lang.sourceforge.net/EXAMPLE/EFFECTIVATS/loop-as-tailrec/main.html) for a detailed
explanation on tail-recursion and the support in ATS for turning tail-recursive calls into local jumps.

57

Chapter 22. Higher-Order Functions

A higher-order function is one that takes another function as its argument. Let us use BT to range over
base types such as int, bool, char, double and string. A simple type T is formed according to the
following inductive definition:

• BT is a simple type.

• (T
1
, ..., T

n
) -> T

0
is a simple type if T

0
, T

1
, ... T

n
are simple types.

Let order be a function from simple types to natural numbers defined as follows:

• order(BT) = 0

• order((T
1
, ..., T

n
) -> T

0
) = max(order(T

0
), 1 + order(T

1
), ..., 1 + order(T

n
))

Given a function f of some simple type T, let us say that f is a nth-order function if order(T) = n. For
instance, a function of the type (int, int) -> int is 1st-order, and a function of the type int -> (int -> int) is
also 1st-order, and a function of the type ((int -> int), int) -> int is 2nd-order. In practice, most functions
are 1st-order and most higher-order functions are 2nd-order.

As an example, let us implement as follows a 2nd-order function find_root that takes as its only argument
a function f from integers to integers and searches for a root of f by enumeration:

fn find_root
(
f: int -<cloref1> int

) : int = let
//
fun loop
(
f: int -<cloref1> int, n: int

) : int =
if f (n) = 0 then n else (
if n <= 0 then loop (f, ~n + 1) else loop (f, ~n)

) // end of [else] // end of [if]
in
loop (f, 0)

end // end of [find_root]

The function find_root computes the values of f at 0, 1, -1, 2, -2, etc. until it finds the first integer n in this
sequence that satisfies f(n) = 0.

As another example, let us implement as follows the famous Newton-Raphson’s method for finding roots
of functions on reals:

typedef
fdouble = double -<cloref1> double
//

58

Chapter 22. Higher-Order Functions

macdef epsilon = 1E-6 (* precision *)
//
// [f1] is the derivative of [f]
//
fun
newton_raphson
(
f: fdouble, f1: fdouble, x0: double

) : double = let
fun loop (
f: fdouble, f1: fdouble, x0: double

) : double = let
val y0 = f x0

in
if abs (y0 / x0) < epsilon then x0 else
let val y1 = f1 x0 in loop (f, f1, x0 - y0 / y1) end

// end of [if]
end // end of [loop]

in
loop (f, f1, x0)

end // end of [newton_raphson]

With newton_raphson, both the square root function and the cubic root function can be readily
implemented as follows:

// square root function
fn sqrt (c: double): double =
newton_raphson (lam x => x * x - c, lam x => 2.0 * x, 1.0)

// cubic root function
fn cbrt (c: double): double =
newton_raphson (lam x => x * x * x - c, lam x => 3.0 * x * x, 1.0)

Higher-order functions can be of great use in supporting a form of code sharing that is both common and
flexible. As function arguments are often represented as heap-allocated closures that can only be
reclaimed through garbage collection (GC), higher-order functions are used infrequently, if at all, in a
setting where GC is not present. In ATS, linear closures, which can be freed explictly in a safe manner,
are available to support higher-order functions in the absence of GC, making it possible to employ
higher-order functions extensively in systems programming (where GC is unavailable or simply
disallowed). The details on linear closures are to be given elsewhere.

Please find on-line (https://github.com/ats-lang/ats-
lang.github.io/blob/master/DOCUMENT/ATS2TUTORIAL/CODE/chap_hordfun.dats) the entirety of
the code used in this chapter.

59

Chapter 23. Stream-Based Lazy Evaluation

While the core of ATS is based on call-by-value evaluation, there is also direct support in ATS for lazy
(that is, call-by-need) evaluation.

There is a special language construct $delay for delaying or suspending the evaluation of an expression
(by forming a thunk), and there is also a special function lazy_force for resuming a suspended evaluation
(represented by a thunk). The abstract type constructor lazy of the sort (t@ype) => type forms a (boxed)
type when applied to a type. Given an expression exp of type T, the value $delay(exp) of the type lazy(T)
represents the suspended evaluation of exp. Given a value V of the type lazy(T) for some type T, calling
lazy_force on V resumes the suspended evaluation represented by V. If the call returns, then the returned
value is of type T. The interface for the function template lazy_force is given as follows:

fun{a:t@ype} lazy_force (lazyval: lazy(a)):<!laz> a

where the symbol !laz indicates a form of effect associated with lazy-evaluation. Note that the special
prefix operator ! in ATS is overloaded with lazy_force.

In prelude/SATS/stream.sats (https://github.com/ats-lang/ats-
lang.github.io/blob/master/DOCUMENT/ATS-Postiats/prelude/SATS/stream.sats), the following types
stream_con and stream are declared mutually recursively for representing lazy streams:

datatype
stream_con (a:t@ype+) =
| stream_nil of ((*void*)) | stream_cons of (a, stream(a))

where stream (a:t@ype) = lazy (stream_con(a))

Also, a number of common functions on streams are declared in prelude/SATS/stream.sats
(https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/ATS-
Postiats/prelude/SATS/stream.sats) and implemented in prelude/DATS/stream.dats
(https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/ATS-
Postiats/prelude/DATS/stream.dats).

The following code gives a standard implementation of the sieve of Eratosthenes:

//
fun
from (n: int): stream (int) =
$delay (stream_cons (n, from (n+1)))

//
fun sieve
(
ns: stream(int)

) :<!laz> stream(int) = $delay let
//
// [val-] means no warning message from the compiler
//

60

Chapter 23. Stream-Based Lazy Evaluation

val-stream_cons(n, ns) = !ns
in
stream_cons (n, sieve (stream_filter_cloref<int> (ns, lam x => x mod n > 0)))

end // end of [$delay let] // end of [sieve]
//
val thePrimes = sieve(from(2))
//

A stream is constructed consisting of all the integers starting from 2; the first element of the stream is
kept and all the multiples of this element are removed from the tail of the stream; this process is then
repeated on the tail of the stream recursively. Clearly, the final stream thus generated consists of all the
prime numbers ordered ascendingly.

The function template stream_filter_cloref is of the following interface:

fun{a:t@ype}
stream_filter_cloref
(xs: stream(a), pred: a -<cloref> bool):<!laz> stream(a)

// end of [stream_filter_cloref]

Given a stream and a predicate, stream_filter_cloref generates another stream consisting of all the
elements in the given stream that satisfy the given predicate.

Let us see another example of lazy evaluation. The follow code demonstrates an interesting approach to
computing the Fibonacci numbers:

//
val _0_ = $UNSAFE.cast{int64}(0)
val _1_ = $UNSAFE.cast{int64}(1)
//
val // the following values are defined mutually recursively
rec theFibs_0
: stream(int64) = $delay (stream_cons(_0_, theFibs_1)) // fib0, fib1, ...

and theFibs_1
: stream(int64) = $delay (stream_cons(_1_, theFibs_2)) // fib1, fib2, ...

and theFibs_2
: stream(int64) = // fib2, fib3, fib4, ...

(
stream_map2_fun<int64,int64><int64> (theFibs_0, theFibs_1, lam (x, y) => x + y)

) (* end of [val/and/and] *)
//

The function template stream_map2_fun is assigned the following interface:

fun{
a1,a2:t0p}{b:t0p
} stream_map2_cloref
(
xs1: stream (a1), xs2: stream (a2), f: (a1, a2) -<fun> b

) :<!laz> stream (b) // end of [stream_map2_cloref]

61

Chapter 23. Stream-Based Lazy Evaluation

Given two streams xs1 and xs2 and a binary function f, stream_map2_fun forms a stream xs such that
xs[n] (that is, element n in xs), if exists, equals f(xs1[n], xs2[n]), where n ranges over natural numbers.

Let us see yet another example of lazy evaluation. A Hamming number is a positive natural number
whose prime factors can contain only 2, 3 and 5. The following code shows a straightforward way to
generate a stream consisting of all the Hamming numbers:

//
val
compare_int_int =
lam (x1: int, x2: int): int =<fun> compare(x1, x2)

//
macdef
merge2 (xs1, xs2) =
stream_mergeq_fun<int> (,(xs1), ,(xs2), compare_int_int)

//
val
rec theHamming
: stream(int) = $delay

(
stream_cons(1, merge2(merge2(theHamming2, theHamming3), theHamming5))

) (* end of [theHamming] *)

and theHamming2
: stream(int) = stream_map_fun<int><int> (theHamming, lam x => 2 * x)

and theHamming3
: stream(int) = stream_map_fun<int><int> (theHamming, lam x => 3 * x)

and theHamming5
: stream(int) = stream_map_fun<int><int> (theHamming, lam x => 5 * x)

//

The function template stream_mergeq_fun is given the following interface:

fun{a:t0p}
stream_mergeq_fun
(
xs1: stream (a), xs2: stream (a), (a, a) -<fun> int

) :<!laz> stream (a) // end of [stream_mergeq_fun]

Given two streams and an ordering (represented by a function) such that the two streams are listed
ascendingly according to the ordering, stream_mergeq_fun returns a stream listed ascendingly that
represents the union of the two given streams such that any elements in the second stream that also occur
in the first stream are dropped.

With stream-based lazy evaluation, an illusion of infinite data can be readily created. This illusion is
given a simple programming interface plus automatic support for memoization, enabling a programming
style that can often be both elegant and intriguing.

62

Chapter 23. Stream-Based Lazy Evaluation

In general, it is difficult to estimate the time-complexity and space-complexity of a program based on
lazy evaluation. This is regarded as a serious weakness. With linear stream-based lazy evalution, this
weakness can essentially be removed.

Please find on-line (https://github.com/ats-lang/ats-
lang.github.io/blob/master/DOCUMENT/ATS2TUTORIAL/CODE/chap_stream.dats) the entirety of the
code used in this chapter.

63

Chapter 24. Linearly Typed Lists

A linearly typed list in ATS is also referred to as a linear list, which essentially corresponds to a
singly-linked list in C. The following linear datatype declaration introduces a linear type list_vt for linear
lists:

//
datavtype
list_vt(a:vt@ype, int) =
| list_vt_nil(a, 0) of ()
| {n:nat}
list_vt_cons(a, n+1) of (a, list_vt(a, n))

//

Note that the keyword datavtype can also be written as dataviewtype. Given a (possibly linear) type T
and an integer N, the type list_vt(T,N) is for a list of length N that contains elements of type T. The
interfaces for various functions on linear lists can be found in the SATS file prelude/SATS/list_vt.sats
(https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/ATS-
Postiats/prelude/SATS/list_vt.sats), which is automatically loaded by
atsopt.

The following function list_vt_length shows a typical way of handling a linear list in a read-only
situation:

//
fun
{a:vt@ype}
list_vt_length
(xs: !list_vt(a, n)): int(n) =

(
case+ xs of
| list_vt_nil() => 0
| list_vt_cons(x, xs2) => 1 + list_vt_length<a> (xs2)
)
//

When xs is matched with the pattern list_vt_nil(), the type of xs is list_vt(a, 0). When xs is matched with
the pattern list_vt_cons(x, xs2), the type of xs is list_vt(a, N+1) for some natural number N and the types
of x and xs2 are a and list_vt(a, N), respectively. Note that both x and xs2 are names for values, and their
types are required to stay unchanged.

The following function list_vt_foreach shows a typical way of modifying elements stored in a linear list:

//
fun
{a:vt@ype}
list_vt_foreach
(

64

Chapter 24. Linearly Typed Lists

xs: !list_vt(a, n)
, fwork: (&(a) >> _) -<cloref1> void
) : void =
(
case+ xs of
| list_vt_nil() => ()
| @list_vt_cons(x, xs2) => (fwork(x); list_vt_foreach<a> (xs2, fwork); fold@(xs))
)
//

When xs is matched with the pattern @list_vt_cons(x,xs2), the type of xs is list_vt(a, N+1) for some
natural number N and the types of x and xs2 are a and list_vt(a, N), respectively. Note that both x and
xs2 are variables (that are a form of left-values). At the beginning of the body following the pattern
@list_vt_cons(x,xs2), the type of xs is assumed to be list_vt_cons_unfold(L0, L1, L2), which is a
viewtype for a list-node created by a call to list_vt_cons such that the node is located at L0 and the two
arguments of list_vt_cons are located at L1 and L2 while the proofs for the at-views associated with L1
and L2 are put in the store for currently available proofs. Therefore, as left-values, x and xs2 have
addresses L1 and L2, respectively, and the views of the proofs associated with L1 and L2 are a@L1 and
list_vt_cons(a, N)@L2, respectively. The application fold@(xs) turns xs into a value of the type list_vt(a,
N+1) while consuming the proofs associated with L1 and L2. Please notice that the type of xs can be
different from the original one assigned to it after folding. For instance, the following example shows a
case as such:

//
fun
{a:vt@ype}
list_vt_append
{m,n:nat}

(
xs: list_vt(a, m), ys: list_vt(a, n)

) : list_vt(a, m+n) = let
//
fun
loop{m:nat}
(
xs: &list_vt(a, m) >> list_vt(a, m+n), ys: list_vt(a, n)

) : void =
(
case+ xs of
| ~list_vt_nil() => (xs := ys)
| @list_vt_cons(x, xs2) => (loop(xs2, ys); fold@(xs))
)
//
in
case+ xs of
| ~list_vt_nil () => ys
| @list_vt_cons (x, xs2) => (loop(xs2, ys); fold@(xs); xs)

end // end of [list_vt_append]
//

65

Chapter 24. Linearly Typed Lists

The meaning of the symbol ~ in front of a pattern is to be explained below. The implementation of
list_vt_append exactly corresponds to the standard implementaion of concatenating two singly-linked
lists in C: Let xs and ys be two given lists; if xs is empty, then ys is returned; otherwise, the last node in
xs is located and ys is stored in the field of the node reserved for the next node.

The following function list_vt_free frees a given linear list containing non-linear elements:

//
fun
{a:vt@ype}
list_vt_free
{n:nat}

(
xs: list_vt(a?, n)

) : void =
(
case+ xs of
| ~list_vt_nil() => ()
| ~list_vt_cons(x, xs2) => list_vt_free<a> (xs2)
)
//

When xs is matched with the pattern ~list_vt_nil(), the type of xs changes to a special one indicating that
xs is no longer available for subsequent use. When xs is matched with the pattern ~list_vt_cons(x,xs2),
the type of xs changes again to a special one indicating that xs is no longer available for subsequent use.
In the latter case, the two values representing the head and tail of the list referred to as xs can be
subsequently referred to as x and xs2, respectively. So what is really freed here is the memory for the first
list-node in the list referred to as xs.

Please find on-line (https://github.com/ats-lang/ats-
lang.github.io/blob/master/DOCUMENT/ATS2TUTORIAL/CODE/chap_list_vt.dats) the entirety of the
code used in this chapter plus some testing code.

66

II. Advanced Tutorial Topics

Chapter 25. Extvar-Declaration

ATS puts great emphasis on interacting with other programming languages.

Suppose that I have in some C code a (global) integer variable of the name foo and I want to increase in
some ATS code the value stored in foo by 1. This can be done as follows:

val x0 = $extval(int, "foo") // get the value of foo
val p_foo = $extval(ptr, "&foo") // get the address of foo
val () = $UNSAFE.ptr_set<int> (p_foo, x0 + 1) // update foo

where the address-of operator (&) in C is needed for taking the address of foo. If I want to interact in
ATS with a language that does not support the address-of operator (e.g., JavaScript and Python), then I
can do it as follows:

extvar "foo" = x0 + 1

where the keyword extvar indicates that the string following it refers to an external variable (or
left-value) that should be updated with the value of the expression on the right-hand side of the equality
symbol following the string. Of course, this works for languages like C that do support the address-of
operator as well. This so-called extvar-declaration can also be written as follows:

extern var "foo" = x0 + 1

where extvar expands into extern var.

As for another example, let us suppose that foo2 is a record variable that contains two integer fields
named first and second. Then the following code assigns integers 1 and 2 to these two fields of foo2:

extvar "foo2.first" = 1
extvar "foo2.second" = 2

By its very nature, the feature of extvar-declaration is inherently unsafe, and it should only be used with
caution.

Please find on-line (https://github.com/ats-lang/ats-
lang.github.io/blob/master/DOCUMENT/ATS2TUTORIAL/CODE/chap_extvar.dats) the entirety of the
code presented in this chapter.

68

Chapter 26. Linear Closure-Functions

A closure-function is a boxed record that contains a pointer to an envless function plus bindings that map
certain names in the body of the envless function to values. In practice, a function argument of a
higher-order function is often a closure-function (instead of an envless function). For instance, the
following higher-order function list_map_cloref takes a closure-function as its second argument:

fun{
a:t@ype}{b:t@ype
} list_map_cloref{n:int}
(xs: list (a, n), f: (a) -<cloref> b): list_vt (b, n)

Closure-functions can be either linear or non-linear, and linear ones can be explicitly freed in a safe
manner. The keyword -<cloref> is used to form a type for non-linear closure-functions. As a variant of
list_map_cloref, the following higher-order function list_map_cloptr takes a linear closure-function as its
second argument:

fun{
a:t@ype}{b:t@ype
} list_map_cloptr{n:int}
(xs: list (a, n), f: !(a) -<cloptr> b): list_vt (b, n)

As can be easily guessed, the keyword -<cloptr> is used to form a type for linear closure-functions. Note
that the symbol ! indicates that the second argument is still available after a call to list_map_cloptr
returns.

A typical example making use of list_map_cloptr is given as follows:

fun foo{n:int}
(
x0: int, xs: list (int, n)

) : list_vt (int, n) = res where
{
//
val f = lam (x) =<cloptr> x0 + x
val res = list_map_cloptr (xs, f)
val () = cloptr_free ($UNSAFE.cast{cloptr(void)}(f))
//
} (* end of [foo] *)

Note that a linear closure is first created in the body of the function foo, and it is explicitly freed after its
use. The function cloptr_free is given the following interface:

fun cloptr_free {a:t0p} (pclo: cloptr (a)): void

69

Chapter 26. Linear Closure-Functions

where cloptr is abstract. The cast $UNSAFE.cast{cloptr(void)}(f) can certainly be replaced with
something safer but it would make programming more curbersome.

There is also some interesting interaction between currying and linear closure-functions. In functional
programming, currying means turning a function taking multiple arguments simutaneously into a
corresponding one that takes these arguments sequentially. For instance, the function acker2 in the
following code is a curried version of the function acker, which implements the famous Ackermann
function (that is recursive but not primitive recursive):

fun
acker(m:int, n:int): int =
(
case+ (m, n) of
| (0, _) => n + 1
| (m, 0) => acker (m-1, 1)
| (_, _) => acker (m-1, acker (m, n-1))

) (* end of [acker] *)

fun acker2 (m:int) (n:int): int = acker (m, n)

Suppose that we apply acker2 to two integers 3 and 4: acker2(3)(4); the application acker2(3) evaluates
to a (non-linear) closure-function; the application of this closure-function to 4 evaluates to acker(3,4),
which further evaluates to the integer 125. Note that the closure-function generated from evaluating
acker2(3) becomes a heap-allocated value that is no longer accessible after the evaluation of acker2(3)(4)
finishes, and the memory for such a value can only to be safely reclaimed through garbage collection
(GC).

It is also possible to define a curried version of acker as follows:

fun acker3 (m:int) = lam (n:int): int =<cloptr1> acker (m, n)

While the evaluation of acker3(3)(4) yields the same result as acker2(3)(4), the compiler of ATS
(ATS/Postiats) inserts code that automatically frees the linear closure-function generated from evaluating
acker3(3) after the evaluation of acker3(3)(4) finishes.

In ATS1, linear closure-functions play a pivotal role in supporting programming with higher-order
functions in the absence of GC. Due to advanced support for templates in ATS2, the role played by linear
closure-functions in ATS1 is greatly diminished. However, if closure-functions need to be stored in a
data structure but GC is unavailable or undesirable, then using linear closure-functions can lead to a
solution that avoids the risk of generatig memory leaks at run-time.

Please find on-line (https://github.com/ats-lang/ats-
lang.github.io/blob/master/DOCUMENT/ATS2TUTORIAL/CODE/chap_cloptr.dats) the entirety of the
code used in this chapter.

70

Chapter 27. Stack-Allocated Closure-Functions

Higher-order functions are a very convenient programming feature for supporting certain forms of code
reuse. Often a function passed as an argument to a higher-order function call is a closure-function created
on heap at run-time, and it is most likely of no more use after the call. If the closure-function is linear,
then it needs to be freed explicitly by the programmer (or a type-error would occur during typechecking).
If the closure-function is non-linear, then its memory should be reclaimed through garbage-collection
(GC) (or the memory is leaked).

Creating heap-allocated closure-functions implies the need for dynamic memory allocation (DMA). In a
restricted environment (e.g., one for embedded programming), DMA may not be (fully) supported. One
option for constructing a closure-function in the absence of support for DMA is to store it in the
stack-frame of the calling function, and there is special systax in ATS for doing so.

Let us see a concrete example of stack-allocated closure. The following code implements a higher-order
function template:

//
fun
{res:t@ype}
ifold{n:nat}
(
n: int(n)

, fopr: (res, natLt(n)) -<cloref1> res, ini: res
) : res = let
//
fun
loop
{i:nat | i <= n} .<n-i>.
(i: int(i), res: res): res =
if i < n then loop(i+1, fopr(res, i)) else res

//
in
loop(0, ini)

end // end of [ifold]
//

Essentially, ifold(n, fopr, ini) evaluates the expression fopr(...fopr(fopr(ini, 0), 1)..., n-1). For instance,
the function dotprod for computing the dot product (or inner product) of two vectors can be implemented
with a call to ifold:

//
typedef res = double
//
fun
dotprod
{n:nat}

(

71

Chapter 27. Stack-Allocated Closure-Functions

n: int(n)
, A: arrayref(res, n)
, B: arrayref(res, n)
) : res =
(
ifold<res>(n, lam(res, i) => res + A[i]*B[i], 0.0)

)
//

The second argument passed to the call to ifold is a closure created on heap at run-time, and it is of no
more use after the call returns. The function dotprod can also be implemented as follows:

//
fun
dotprod
{n:nat}

(
n: int(n)

, A: arrayref(res, n)
, B: arrayref(res, n)
) : res = let
//
var
fopr =
lam@(res: res, i: natLt(n)): res => res + A[i]*B[i]
//
in
ifold<res>(n, $UNSAFE.cast(addr@fopr), 0.0)

end // end of [dotprod]
//

The keyword lam@ (instead of lam) initiates the creation of an unboxed closure at a given location. In
the above case, the variable fopr is located in the stack-frame of dotprod, and the created closure is stored
in the memory reserved for fopr. It is the obligation of the compiler of ATS to make sure that the
memory is large enough for storing the closure. The call to the (unsafe) cast turns the address of fopr into
a boxed closure so that it can be passed to ifold.

In order to remove the (unsafe) cast in the implementation of dotprod, we need to implement a slight
variant of ifold as follows:

//
fun
{res:t@ype}
ifold_{n:nat}
(
n: int(n)

, fopr: &(res, natLt(n)) -<clo1> res, ini: res
) : res = let
//
fun
loop

72

Chapter 27. Stack-Allocated Closure-Functions

{i:nat | i <= n} .<n-i>.
(
i: int(i)

, fopr: &(res, natLt(n)) -<clo1> res, res: res
) : res =
if i < n
then loop(i+1, fopr, fopr(res, i)) else res

// end of [if]
//
in
loop(0, fopr, ini)

end // end of [ifold_]
//
(* ****** ****** *)
//
fun
dotprod_
{n:nat}

(
n: int(n)

, A: arrayref(res, n)
, B: arrayref(res, n)
) : res = let
//
var
fopr =
lam@(res: res, i: natLt(n)): res => res + A[i]*B[i]
//
in
ifold_<res>(n, fopr, 0.0)

end // end of [dotprod_]
//

Note that the second argument of ifold_ is call-by-reference. The anotated arrow -<clo1> is used to form
function types for unboxed closures. So only a left value (representing some unboxed closure) can be
passed as the second argument to a call to ifold_, and what is really passed at run-time is the address of
the left value. The function dotprod can be safely implemented as dotprod_ with a call to ifold_.

Please find on-line (https://github.com/ats-lang/ats-
lang.github.io/blob/master/DOCUMENT/ATS2TUTORIAL/CODE/chap_stkclo.dats) the entirety of the
code used in this chapter plus some testing code.

73

Chapter 28. Linear Stream-Based Lazy
Evaluation

In ATS, there is also support for lazy evaluation based on linear streams. As far as I can tell, linear
stream-based lazy evaluation is currently a unique language feature of ATS.

In practice, it is most likely that (non-linear) stream-based lazy evaluation requires the support of
garbage collection (GC). As the behavior of GC can in general be very difficult to predict, lazy
evaluation may not be suitable in a setting where great precision in control is needed. With linear
stream-based lazy evaluation, the need for GC to reclaim values representing streams is eliminated as
such values can be explicitly freed in a safe manner.

There is a special language construct $ldelay for delaying or suspending the evaluation of an expression
(by forming a linear thunk), and there are also a pair of special functions lazy_vt_force and lazy_vt_free
for resuming and freeing, respectively, a suspended evaluation (represented by a linear thunk). Unlike
delay, $ldelay applies to two expressions to form a linear lazy stream; the first expression is the one
whose evaluation is suspended; the second expression is the one whose evaluation results in all the linear
values contained in the first expression being freed.

The abstract type constructor lazy_vt of the sort (vt@ype) => vtype forms a (boxed) viewtype when
applied to a viewtype. Given two expressions exp1 of some type T and exp2 of the type void, the value
$ldelay(exp1, exp2) is of the type lazy_vt(T); calling lazy_vt_force on $ldelay(exp1, exp2) resumes the
suspended evaluation of exp1; calling lazy_vt_free on $ldelay(exp1, exp2) initiates the evaluation of
exp2 (to free linear values contained in exp1).

The interface for the function template lazy_vt_force is given as follows:

fun{a:vt@ype} lazy_vt_force (lazyval: lazy_vt(a)): (a)

Note that the special prefix operator ! in ATS is overloaded with lazy_vt_force.

The interface for the function lazy_vt_free is given as follows:

fun lazy_vt_free {a:vt@ype} (lazyval: lazy_vt(a)): void

Note that the special prefix operator ~ in ATS is overloaded with lazy_vt_free.

In prelude/SATS/stream_vt.sats (https://github.com/ats-lang/ats-
lang.github.io/blob/master/DOCUMENT/ATS-Postiats/prelude/SATS/stream_vt.sats), the following
viewtypes stream_vt_con and stream_vt are declared mutually recursively for representing linear lazy
streams:

datavtype

74

Chapter 28. Linear Stream-Based Lazy Evaluation

stream_vt_con (a:vt@ype+) =
| stream_vt_nil of ((*void*)) | stream_vt_cons of (a, stream_vt(a))

where stream_vt (a:vt@ype) = lazy_vt (stream_vt_con(a))

Also, a number of common functions on linear streams are declared in prelude/SATS/stream_vt.sats
(https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/ATS-
Postiats/prelude/SATS/stream_vt.sats) and implemented in prelude/DATS/stream_vt.dats
(https://github.com/ats-lang/ats-lang.github.io/blob/master/DOCUMENT/ATS-
Postiats/prelude/DATS/stream_vt.dats).

The following code gives an implementation of the sieve of Eratosthenes in which a linear stream of all
the prime numbers is constructed:

//
fun
from (n: int): stream_vt (int) =
$ldelay (stream_vt_cons (n, from (n+1)))

//
fun sieve
(
ns: stream_vt(int)

) : stream_vt(int) = $ldelay
(
let
//
// [val-] means no warning message from the compiler
//
val ns_con = !ns
val-@stream_vt_cons(n, ns1) = ns_con
val n = n
val ns1_ = ns1
val ((*void*)) = ns1 := sieve (stream_vt_filter_cloptr<int> (ns1_, lam x => x mod n > 0))
prval ((*void*)) = fold@(ns_con)

in
ns_con

end // end of [let]
,
~ns // [ns] is freed
) (* end of [$ldelay] *) // end of [sieve]
//
val thePrimes = sieve(from(2))
//

The function template stream_vt_filter_cloptr is given the following interface:

fun{a:t0p}
stream_vt_filter_cloptr
(xs: stream_vt (a), pred: (&a) -<cloptr> bool): stream_vt (a)

// end of [stream_vt_filter_cloptr]

75

Chapter 28. Linear Stream-Based Lazy Evaluation

Given a stream xs and a predicate pred, the function stream_vt_filter_cloptr returns another stream
consisting of all the elements in the stream xs satisfying the predicate pred. Note that both xs and pred
are consumed by the call to stream_vt_filter_cloptr.

Please find on-line (https://github.com/ats-lang/ats-
lang.github.io/blob/master/DOCUMENT/ATS2TUTORIAL/CODE/chap_stream_vt.dats) the entirety of
the code used in this chapter. One can readily use a tool like valgrind (http://www.valgrind.org) to verify
that the implementation given above leaks no memory.

76

Chapter 29. Automatic Code Generation

In practice, one often encounters a need to write boilerplate code or code that tends to follow certain
clearly recognizable patterns. It is commonly seen that meta-programming (of various forms) is
employed to automatically generate such code, thus not only increasing programming productivity but
also potentially eliminating bugs that would otherwise be introduced due to manual code construction.

In the following presentation, I am to show that the ATS compiler can be directed to generate the code
for certain functions on values of a declared datatype. Following is the datatype used for illustration:

//
datatype expr =
| Int of int
| Var of string
| Add of (expr, expr)
| Sub of (expr, expr)
| Mul of (expr, expr)
| Div of (expr, expr)
| Ifgtz of (expr, expr, expr) // if expr > 0 then ... else ...
| Ifgtez of (expr, expr, expr) // if expr >= 0 then ... else ...

//

which is for some kind of abstract syntax trees representing arithmetic expressions.

29.1. Generating a datcon-function

Given a datatype, its datcon-function is the one that takes a value of the datatype and then returns a string
representing the name of the (outmost) constructor in the construction of the value. We can use the
following directive to indicate (to the ATS compiler) that the datcon-function for the datatype expr needs
to be generated:

#codegen2("datcon", expr)

By default, the name of the generated function is datcon_expr_. If a different name is needed, it can be
supplied as the third argument of the #codegen2-directive. For instance, the following directive indicates
that the generated function is of the given name my_datcon_expr:

#codegen2("datcon", expr, my_datcon_expr)

Assume that a file of the name expr.dats contains the following directive (as a toplevel declaration):

#codegen2("datcon", expr)

and the definition for expr is accessible at the point where the codegen2-directive is declared. By
executing the following command-line:

77

Chapter 29. Automatic Code Generation

patscc --codegen-2 -d expr.dats

we can see some output of ATS code that implements datcon_expr_:

(* ****** ****** *)
//
implement
{}(*tmp*)
datcon_expr_
(arg0) =

(
case+ arg0 of
| Int _ => "Int"
| Var _ => "Var"
| Add _ => "Add"
| Sub _ => "Sub"
| Mul _ => "Mul"
| Div _ => "Div"
| Ifgtz _ => "Ifgtz"
| Ifgtez _ => "Ifgtez"
)
//
(* ****** ****** *)

If the output needs to be stored in a file of the name fprint_expr.hats, we can issue the following
command-line:

patscc -o fprint_expr.hats --codegen-2 -d expr.dats

Note that the funtion template datcon_expr_ is required to be declared somewhere in order for the
generated code to be compiled properly:

fun{}
datcon_expr_ : (expr) -> string // a function template

Please find on-line (https://github.com/ats-lang/ats-
lang.github.io/blob/master/DOCUMENT/ATS2TUTORIAL/CODE/CHAP_CODEGEN2) the entirety of
this presented example plus a Makefile (for illustrating the code generation process).

29.2. Generating a datcontag-function

A datcontag-function is very similar to a datcon-function. Given a datatype, its datcontag-function is the
one that takes a value of the datatype and then returns the tag (which is a small integer) assigned to the

78

Chapter 29. Automatic Code Generation

(outmost) constructor in the construction of the value. We can use the following directive to indicate (to
the ATS compiler) that the datcontag-function for the datatype expr needs to be generated:

#codegen2("datcontag", expr)

By default, the name of the generated function is datcontag_expr_. If a different name is needed, it can
be supplied as the third argument of the #codegen2-directive. For instance, the following directive
indicates that the generated function is of the given name my_datcontag_expr:

#codegen2("datcontag", expr, my_datcontag_expr)

The following ATS code is expected to be generated that implements datcontag_expr_:

(* ****** ****** *)
//
implement
{}(*tmp*)
datcontag_expr_
(arg0) =

(
case+ arg0 of
| Int _ => 0
| Var _ => 1
| Add _ => 2
| Sub _ => 3
| Mul _ => 4
| Div _ => 5
| Ifgtz _ => 6
| Ifgtez _ => 7
)
//
(* ****** ****** *)

Note that the funtion template datcontag_expr_ is required to be declared somewhere in order for the
generated code to be compiled properly:

fun{}
datcontag_expr_ : (expr) -> intGte(0) // a function template

Please find on-line (https://github.com/ats-lang/ats-
lang.github.io/blob/master/DOCUMENT/ATS2TUTORIAL/CODE/CHAP_CODEGEN2) the entirety of
this presented example plus a Makefile (for illustrating the code generation process).

79

Chapter 29. Automatic Code Generation

29.3. Generating a fprint-function

A fprint-function takes a file-handle (of the type FILEref) and a value and then outputs a text
representation of the value to the file-handle. Given a datatype, one is often in need of a function that can
output certain kind of text representation for values of this datatype. For instance, such a function can be
of great use in debugging.

Let us first declare a function template fprint_expr_ as follows:

fun{}
fprint_expr_ : (FILEref, expr) -> void // a function template

We can then use the directive below to indicate (to the ATS compiler) that the fprint-function for the
datatype expr needs to be generated:

#codegen2("fprint", expr, fprint_expr_)

The third argument of the codegen2-directive can be omitted in this case as it coincides with the default.
The generated code that implements fprint_expr_ is listed as follows:

(* ****** ****** *)
//
extern
fun{}
fprint_expr_$Int: $d2ctype(fprint_expr_<>)
extern
fun{}
fprint_expr_$Var: $d2ctype(fprint_expr_<>)
extern
fun{}
fprint_expr_$Add: $d2ctype(fprint_expr_<>)
extern
fun{}
fprint_expr_$Sub: $d2ctype(fprint_expr_<>)
extern
fun{}
fprint_expr_$Mul: $d2ctype(fprint_expr_<>)
extern
fun{}
fprint_expr_$Div: $d2ctype(fprint_expr_<>)
extern
fun{}
fprint_expr_$Ifgtz: $d2ctype(fprint_expr_<>)
extern
fun{}
fprint_expr_$Ifgtez: $d2ctype(fprint_expr_<>)
//
(* ****** ****** *)
//

80

Chapter 29. Automatic Code Generation

implement{}
fprint_expr_
(out, arg0) =

(
case+ arg0 of
| Int _ => fprint_expr_$Int<>(out, arg0)
| Var _ => fprint_expr_$Var<>(out, arg0)
| Add _ => fprint_expr_$Add<>(out, arg0)
| Sub _ => fprint_expr_$Sub<>(out, arg0)
| Mul _ => fprint_expr_$Mul<>(out, arg0)
| Div _ => fprint_expr_$Div<>(out, arg0)
| Ifgtz _ => fprint_expr_$Ifgtz<>(out, arg0)
| Ifgtez _ => fprint_expr_$Ifgtez<>(out, arg0)
)
//
(* ****** ****** *)
//
extern
fun{}
fprint_expr_$sep: (FILEref) -> void
implement{}
fprint_expr_$sep(out) = fprint(out, ",")
//
extern
fun{}
fprint_expr_$lpar: (FILEref) -> void
implement{}
fprint_expr_$lpar(out) = fprint(out, "(")
//
extern
fun{}
fprint_expr_$rpar: (FILEref) -> void
implement{}
fprint_expr_$rpar(out) = fprint(out, ")")
//
extern
fun{a:t0p}
fprint_expr_$carg: (FILEref, INV(a)) -> void
implement{a}
fprint_expr_$carg(out, arg) = fprint_val<a>(out, arg)
//
(* ****** ****** *)
//
extern
fun{}
fprint_expr_Intcon: $d2ctype(fprint_expr_<>)
extern
fun{}
fprint_expr_Intlpar: $d2ctype(fprint_expr_<>)
extern
fun{}
fprint_expr_Intrpar: $d2ctype(fprint_expr_<>)
extern

81

Chapter 29. Automatic Code Generation

fun{}
fprint_expr_Intarg1: $d2ctype(fprint_expr_<>)
//
implement{}
fprint_expr_$Int(out, arg0) =
{
//
val () = fprint_expr_Intcon<>(out, arg0)
val () = fprint_expr_Intlpar<>(out, arg0)
val () = fprint_expr_Intarg1<>(out, arg0)
val () = fprint_expr_Intrpar<>(out, arg0)
//
}
implement{}
fprint_expr_Intcon(out, _) = fprint(out, "Int")
implement{}
fprint_expr_Intlpar(out, _) = fprint_expr_$lpar(out)
implement{}
fprint_expr_Intrpar(out, _) = fprint_expr_$rpar(out)
implement{}
fprint_expr_Intarg1(out, arg0) =
let val-Int(arg1) = arg0 in fprint_expr_$carg(out, arg1) end

//
extern
fun{}
fprint_expr_Varcon: $d2ctype(fprint_expr_<>)
extern
fun{}
fprint_expr_Varlpar: $d2ctype(fprint_expr_<>)
extern
fun{}
fprint_expr_Varrpar: $d2ctype(fprint_expr_<>)
extern
fun{}
fprint_expr_Vararg1: $d2ctype(fprint_expr_<>)
//
implement{}
fprint_expr_$Var(out, arg0) =
{
//
val () = fprint_expr_Varcon<>(out, arg0)
val () = fprint_expr_Varlpar<>(out, arg0)
val () = fprint_expr_Vararg1<>(out, arg0)
val () = fprint_expr_Varrpar<>(out, arg0)
//
}
implement{}
fprint_expr_Varcon(out, _) = fprint(out, "Var")
implement{}
fprint_expr_Varlpar(out, _) = fprint_expr_$lpar(out)
implement{}
fprint_expr_Varrpar(out, _) = fprint_expr_$rpar(out)
implement{}

82

Chapter 29. Automatic Code Generation

fprint_expr_Vararg1(out, arg0) =
let val-Var(arg1) = arg0 in fprint_expr_$carg(out, arg1) end

//
extern
fun{}
fprint_expr_Addcon: $d2ctype(fprint_expr_<>)
extern
fun{}
fprint_expr_Addlpar: $d2ctype(fprint_expr_<>)
extern
fun{}
fprint_expr_Addrpar: $d2ctype(fprint_expr_<>)
extern
fun{}
fprint_expr_Addsep1: $d2ctype(fprint_expr_<>)
extern
fun{}
fprint_expr_Addarg1: $d2ctype(fprint_expr_<>)
extern
fun{}
fprint_expr_Addarg2: $d2ctype(fprint_expr_<>)
//
implement{}
fprint_expr_$Add(out, arg0) =
{
//
val () = fprint_expr_Addcon<>(out, arg0)
val () = fprint_expr_Addlpar<>(out, arg0)
val () = fprint_expr_Addarg1<>(out, arg0)
val () = fprint_expr_Addsep1<>(out, arg0)
val () = fprint_expr_Addarg2<>(out, arg0)
val () = fprint_expr_Addrpar<>(out, arg0)
//
}
implement{}
fprint_expr_Addcon(out, _) = fprint(out, "Add")
implement{}
fprint_expr_Addlpar(out, _) = fprint_expr_$lpar(out)
implement{}
fprint_expr_Addrpar(out, _) = fprint_expr_$rpar(out)
implement{}
fprint_expr_Addsep1(out, _) = fprint_expr_$sep<>(out)
implement{}
fprint_expr_Addarg1(out, arg0) =
let val-Add(arg1, _) = arg0 in fprint_expr_$carg(out, arg1) end

implement{}
fprint_expr_Addarg2(out, arg0) =
let val-Add(_, arg2) = arg0 in fprint_expr_$carg(out, arg2) end

//
extern
fun{}
fprint_expr_Subcon: $d2ctype(fprint_expr_<>)
extern

83

Chapter 29. Automatic Code Generation

fun{}
fprint_expr_Sublpar: $d2ctype(fprint_expr_<>)
extern
fun{}
fprint_expr_Subrpar: $d2ctype(fprint_expr_<>)
extern
fun{}
fprint_expr_Subsep1: $d2ctype(fprint_expr_<>)
extern
fun{}
fprint_expr_Subarg1: $d2ctype(fprint_expr_<>)
extern
fun{}
fprint_expr_Subarg2: $d2ctype(fprint_expr_<>)
//
implement{}
fprint_expr_$Sub(out, arg0) =
{
//
val () = fprint_expr_Subcon<>(out, arg0)
val () = fprint_expr_Sublpar<>(out, arg0)
val () = fprint_expr_Subarg1<>(out, arg0)
val () = fprint_expr_Subsep1<>(out, arg0)
val () = fprint_expr_Subarg2<>(out, arg0)
val () = fprint_expr_Subrpar<>(out, arg0)
//
}
implement{}
fprint_expr_Subcon(out, _) = fprint(out, "Sub")
implement{}
fprint_expr_Sublpar(out, _) = fprint_expr_$lpar(out)
implement{}
fprint_expr_Subrpar(out, _) = fprint_expr_$rpar(out)
implement{}
fprint_expr_Subsep1(out, _) = fprint_expr_$sep<>(out)
implement{}
fprint_expr_Subarg1(out, arg0) =
let val-Sub(arg1, _) = arg0 in fprint_expr_$carg(out, arg1) end

implement{}
fprint_expr_Subarg2(out, arg0) =
let val-Sub(_, arg2) = arg0 in fprint_expr_$carg(out, arg2) end

//
extern
fun{}
fprint_expr_Mulcon: $d2ctype(fprint_expr_<>)
extern
fun{}
fprint_expr_Mullpar: $d2ctype(fprint_expr_<>)
extern
fun{}
fprint_expr_Mulrpar: $d2ctype(fprint_expr_<>)
extern
fun{}

84

Chapter 29. Automatic Code Generation

fprint_expr_Mulsep1: $d2ctype(fprint_expr_<>)
extern
fun{}
fprint_expr_Mularg1: $d2ctype(fprint_expr_<>)
extern
fun{}
fprint_expr_Mularg2: $d2ctype(fprint_expr_<>)
//
implement{}
fprint_expr_$Mul(out, arg0) =
{
//
val () = fprint_expr_Mulcon<>(out, arg0)
val () = fprint_expr_Mullpar<>(out, arg0)
val () = fprint_expr_Mularg1<>(out, arg0)
val () = fprint_expr_Mulsep1<>(out, arg0)
val () = fprint_expr_Mularg2<>(out, arg0)
val () = fprint_expr_Mulrpar<>(out, arg0)
//
}
implement{}
fprint_expr_Mulcon(out, _) = fprint(out, "Mul")
implement{}
fprint_expr_Mullpar(out, _) = fprint_expr_$lpar(out)
implement{}
fprint_expr_Mulrpar(out, _) = fprint_expr_$rpar(out)
implement{}
fprint_expr_Mulsep1(out, _) = fprint_expr_$sep<>(out)
implement{}
fprint_expr_Mularg1(out, arg0) =
let val-Mul(arg1, _) = arg0 in fprint_expr_$carg(out, arg1) end

implement{}
fprint_expr_Mularg2(out, arg0) =
let val-Mul(_, arg2) = arg0 in fprint_expr_$carg(out, arg2) end

//
extern
fun{}
fprint_expr_Divcon: $d2ctype(fprint_expr_<>)
extern
fun{}
fprint_expr_Divlpar: $d2ctype(fprint_expr_<>)
extern
fun{}
fprint_expr_Divrpar: $d2ctype(fprint_expr_<>)
extern
fun{}
fprint_expr_Divsep1: $d2ctype(fprint_expr_<>)
extern
fun{}
fprint_expr_Divarg1: $d2ctype(fprint_expr_<>)
extern
fun{}
fprint_expr_Divarg2: $d2ctype(fprint_expr_<>)

85

Chapter 29. Automatic Code Generation

//
implement{}
fprint_expr_$Div(out, arg0) =
{
//
val () = fprint_expr_Divcon<>(out, arg0)
val () = fprint_expr_Divlpar<>(out, arg0)
val () = fprint_expr_Divarg1<>(out, arg0)
val () = fprint_expr_Divsep1<>(out, arg0)
val () = fprint_expr_Divarg2<>(out, arg0)
val () = fprint_expr_Divrpar<>(out, arg0)
//
}
implement{}
fprint_expr_Divcon(out, _) = fprint(out, "Div")
implement{}
fprint_expr_Divlpar(out, _) = fprint_expr_$lpar(out)
implement{}
fprint_expr_Divrpar(out, _) = fprint_expr_$rpar(out)
implement{}
fprint_expr_Divsep1(out, _) = fprint_expr_$sep<>(out)
implement{}
fprint_expr_Divarg1(out, arg0) =
let val-Div(arg1, _) = arg0 in fprint_expr_$carg(out, arg1) end

implement{}
fprint_expr_Divarg2(out, arg0) =
let val-Div(_, arg2) = arg0 in fprint_expr_$carg(out, arg2) end

//
extern
fun{}
fprint_expr_$Ifgtz$con: $d2ctype(fprint_expr_<>)
extern
fun{}
fprint_expr_$Ifgtz$lpar: $d2ctype(fprint_expr_<>)
extern
fun{}
fprint_expr_$Ifgtz$rpar: $d2ctype(fprint_expr_<>)
extern
fun{}
fprint_expr_$Ifgtz$sep1: $d2ctype(fprint_expr_<>)
extern
fun{}
fprint_expr_$Ifgtz$sep2: $d2ctype(fprint_expr_<>)
extern
fun{}
fprint_expr_$Ifgtz$arg1: $d2ctype(fprint_expr_<>)
extern
fun{}
fprint_expr_$Ifgtz$arg2: $d2ctype(fprint_expr_<>)
extern
fun{}
fprint_expr_$Ifgtz$arg3: $d2ctype(fprint_expr_<>)
//

86

Chapter 29. Automatic Code Generation

implement{}
fprint_expr_$Ifgtz(out, arg0) =
{
//
val () = fprint_expr_$Ifgtz$con<>(out, arg0)
val () = fprint_expr_$Ifgtz$lpar<>(out, arg0)
val () = fprint_expr_$Ifgtz$arg1<>(out, arg0)
val () = fprint_expr_$Ifgtz$sep1<>(out, arg0)
val () = fprint_expr_$Ifgtz$arg2<>(out, arg0)
val () = fprint_expr_$Ifgtz$sep2<>(out, arg0)
val () = fprint_expr_$Ifgtz$arg3<>(out, arg0)
val () = fprint_expr_$Ifgtz$rpar<>(out, arg0)
//
}
implement{}
fprint_expr_$Ifgtz$con(out, _) = fprint(out, "Ifgtz")
implement{}
fprint_expr_$Ifgtz$lpar(out, _) = fprint_expr_$lpar(out)
implement{}
fprint_expr_$Ifgtz$rpar(out, _) = fprint_expr_$rpar(out)
implement{}
fprint_expr_$Ifgtz$sep1(out, _) = fprint_expr_$sep<>(out)
implement{}
fprint_expr_$Ifgtz$sep2(out, _) = fprint_expr_$sep<>(out)
implement{}
fprint_expr_$Ifgtz$arg1(out, arg0) =
let val-Ifgtz(arg1, _, _) = arg0 in fprint_expr_$carg(out, arg1) end

implement{}
fprint_expr_$Ifgtz$arg2(out, arg0) =
let val-Ifgtz(_, arg2, _) = arg0 in fprint_expr_$carg(out, arg2) end

implement{}
fprint_expr_$Ifgtz$arg3(out, arg0) =
let val-Ifgtz(_, _, arg3) = arg0 in fprint_expr_$carg(out, arg3) end

//
extern
fun{}
fprint_expr_$Ifgtez$con: $d2ctype(fprint_expr_<>)
extern
fun{}
fprint_expr_$Ifgtez$lpar: $d2ctype(fprint_expr_<>)
extern
fun{}
fprint_expr_$Ifgtez$rpar: $d2ctype(fprint_expr_<>)
extern
fun{}
fprint_expr_$Ifgtez$sep1: $d2ctype(fprint_expr_<>)
extern
fun{}
fprint_expr_$Ifgtez$sep2: $d2ctype(fprint_expr_<>)
extern
fun{}
fprint_expr_$Ifgtez$arg1: $d2ctype(fprint_expr_<>)
extern

87

Chapter 29. Automatic Code Generation

fun{}
fprint_expr_$Ifgtez$arg2: $d2ctype(fprint_expr_<>)
extern
fun{}
fprint_expr_$Ifgtez$arg3: $d2ctype(fprint_expr_<>)
//
implement{}
fprint_expr_$Ifgtez(out, arg0) =
{
//
val () = fprint_expr_$Ifgtez$con<>(out, arg0)
val () = fprint_expr_$Ifgtez$lpar<>(out, arg0)
val () = fprint_expr_$Ifgtez$arg1<>(out, arg0)
val () = fprint_expr_$Ifgtez$sep1<>(out, arg0)
val () = fprint_expr_$Ifgtez$arg2<>(out, arg0)
val () = fprint_expr_$Ifgtez$sep2<>(out, arg0)
val () = fprint_expr_$Ifgtez$arg3<>(out, arg0)
val () = fprint_expr_$Ifgtez$rpar<>(out, arg0)
//
}
implement{}
fprint_expr_$Ifgtez$con(out, _) = fprint(out, "Ifgtez")
implement{}
fprint_expr_$Ifgtez$lpar(out, _) = fprint_expr_$lpar(out)
implement{}
fprint_expr_$Ifgtez$rpar(out, _) = fprint_expr_$rpar(out)
implement{}
fprint_expr_$Ifgtez$sep1(out, _) = fprint_expr_$sep<>(out)
implement{}
fprint_expr_$Ifgtez$sep2(out, _) = fprint_expr_$sep<>(out)
implement{}
fprint_expr_$Ifgtez$arg1(out, arg0) =
let val-Ifgtez(arg1, _, _) = arg0 in fprint_expr_$carg(out, arg1) end

implement{}
fprint_expr_$Ifgtez$arg2(out, arg0) =
let val-Ifgtez(_, arg2, _) = arg0 in fprint_expr_$carg(out, arg2) end

implement{}
fprint_expr_$Ifgtez$arg3(out, arg0) =
let val-Ifgtez(_, _, arg3) = arg0 in fprint_expr_$carg(out, arg3) end

//
(* ****** ****** *)

The code for fprint_expr_ is entirely template-based. This style makes the code extremely flexible for
adaption through template re-mplementation. As the datatype expr is recursively defined, the following
template implementation needs to be added in order to make fprint_expr_ work:

implement fprint_expr_$card<expr> = fprint_expr_

For instance, applying fprint_expr_ to the expression Add(Int(10),Mul(Int(1),Int(2))) outputs the same
text representation. As an example of adaptation, let us add the following template implementations:

88

Chapter 29. Automatic Code Generation

implement
fprint_expr_Addcon<> (_, _) = ()
implement
fprint_expr_Addsep1<> (out, _) = fprint! (out, "+")

When fprint_expr_ is applied to the expression Add(Int(10),Mul(Int(1),Int(2))) this time, the output is
expected to read (Int(10)+Mul(Int(1),Int(2))).

After proper adaptation is done, one can introduce a (non-template) function as follows:

//
extern
fun
fprint_expr
(out: FILEref, x: expr): void

//
implement
fprint_expr(out, x) = fprint_expr_<>(out, x)
//

In this way, only one instance of fprint_expr_ is compiled even if repeated calls to fprint_expr are made.

Please find on-line (https://github.com/ats-lang/ats-
lang.github.io/blob/master/DOCUMENT/ATS2TUTORIAL/CODE/CHAP_CODEGEN2) the entirety of
this presented example plus a Makefile (for illustrating the code generation process).

89

	A Tutorial on Programming Features in ATS
	Table of Contents
	Preface
	I. Basic Tutorial Topics
	Chapter 1. SyntaxColoring for ATS code
	Chapter 2. Filename Extensions
	Chapter 3. File Inclusion inside ATS Code
	Chapter 4. Fixity Declarations
	Chapter 5. Static Load
	Chapter 6. Dynamic Load
	Chapter 7. Bracket Overloading
	Chapter 8. DotSymbol Overloading
	Chapter 9. Recursion
	Chapter 10. Datatypes
	Chapter 11. Functional Lists
	Chapter 12. Functional Sets and Maps
	12.1. Functional Sets
	12.2. Functional Maps

	Chapter 13. Exceptions
	Chapter 14. References
	Chapter 15. Boxed Tuples and Records
	Chapter 16. Persistent Arrays
	Chapter 17. Persistent Arrayswithsize
	Chapter 18. Persistent Matrices
	Chapter 19. Persistent Matriceswithsize
	Chapter 20. Persistent Hashtables
	Chapter 21. TailRecursion
	Chapter 22. HigherOrder Functions
	Chapter 23. StreamBased Lazy Evaluation
	Chapter 24. Linearly Typed Lists
	II. Advanced Tutorial Topics
	Chapter 25. ExtvarDeclaration
	Chapter 26. Linear ClosureFunctions
	Chapter 27. StackAllocated ClosureFunctions
	Chapter 28. Linear StreamBased Lazy Evaluation
	Chapter 29. Automatic Code Generation
	29.1. Generating a datconfunction
	29.2. Generating a datcontagfunction
	29.3. Generating a fprintfunction

