Design of Multi-loop control systems

Consider a single loop system as shown in Fig.1.
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Suppose controller is fixed, substantial changés,invariably lead to deteriorate the

control system response (see Figure 2).
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Now consider a2x 2 control system in Fig. 3
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Let us consider open loop 1 (Fig.4)
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One may notice that there are two transmissionsgatm m, tox, .let us define a
relative gain fromm, tox,.as:
1= Gain m - x,,l00p2 open
Gain m —x,,loop2 close
When A =0.5, the responses ok, to a unit step input atm is shown in Fig. 5
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In this case, when loop 2 is closed, the open tmop of m —x, becomes doubled.
The increase in the loop gain results in more ladwh in the closed loop response as
shown.

On the other hand, whed = 2, the open loop and closed loop responses are also



given in Fig. 6.
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In this latter case, the open-loop gain decreasvdop 2 is switched from open to
close. As a result, the close of loop 1 leads yiséesn to a more sluggish response to
the r,input.

The increase or decrease of the loop gain isudtref closing loop2, and , hence, is
considered loop interaction. From the above examplis a measure of such
interaction and is named as relative gain of loopoll may also find the other
relative gain for loop2. But, in this case, the metative gains will be equal.

Algebraic Properties of the RGA
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2. PG} P,=A{P:G R}, P;iand B are two permutation matrices.
3. NG}=A{S:G S}, Siand S are two diagonal matrices.
4. If transfer matrix, G, is diagonal or trianguldren: A{G}=I.

[Proof]:

x 00...0

x x 0.0
Let, G=

X X X..X
Then,
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RGA-implications:

Pairing loops o\ values that are positive and close to 1.
Reasonable Pairings: 0.9\ 4.0

Pairing on negativa; values results in at least one of the following;
a. Closed loop system is unstable,
b. Loop with negative\; is unstable,
c. Closed loop system becomes unstable if loop witfatiee isA; turned off.

Plants with large RGA-elements are always ill-ctioded. (i.e., a plant with a
largey(G) may have small RGA-elements)

Plants with large RGA-elements around the crossfreguency are fundamentally

difficult to control because of sensitivity tqoumt uncertainties.

----- —>decouplers or other inverse-based controllers shootl be used for plants
with large RGA-elements.

Large RGA-element implies sensitivity to elementddgment uncertainty.

If the sign of RGA-element changes from s=0 teesthen there is a RHP-zero
in G or in some subsystem of G.

The RGA-number can be used to measure diagonaindmece:

RGA-number = IN(G)-1 |}nin-
For decentralized control,, pairings with RGA-rhemat crossover frequency
close to one is preferred.

For integrity of whole plant, we should avoid inqmutput pairing on negative
RGA-element.

For stability, pairing on an RGA-number close toozat crossover frequency is
preferred.



The Relative Disturbance Gain (RDG)

Ref: Galen Stanley, Maria Marino-Galarraga, and T. J. MdAvoy, Shortcut
Operability Analysis. 1. The relative disturbanceing I&EC, Process Des. Dev.
1985,24, 1181-1188

The use of RDG:

1. To decide if interaction resulting from a distance is favorable or unfavorable.

2. To decide whether or not decoupling should lesl@nd what type of decoupling
structure is best.

yl = I‘(11m1+ klﬁ]2+ kF p
y2 = k21m1+ k2gn2+ kF }j

[0_”1) _ ke
ad Y1,My kll

(amlj is derived when both;yand y are held still:
Y1 Y2

od
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Substitute Eq.(3) into E.(2), we have:
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So,
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It can be shown that:
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Figure 4. General 2 X 2 system.
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If d is a unit step, then the area undgecwrve is given as:
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On the other hand, when loop 2 is opened, theardar gbecomes:

o Kex

f Odt = — L
Jerdi=—2a

Thus,

(6)
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Similarly, we have:
_[ezdt K
. =2 2x B, = 1,05,
_[ejdt Tro kcz
0

Notice that the Pl parameters in the interactimp#oare used to be more conservative
than those in single loops. In another words,

f,21, f,21
The multi-loop control should be beneficial whea #um of absolute values of the

Remarks:

1. If Ais assumed not vary with frequency, and the psoaesler study is FOPDT,
A>1, f; lies in the range 1< k2, while 0.5<I<1, flies in the range 1< k3.

2. When f =1, is equal to the ratio of response areas.

3. IfBis small andf=is close to one, then the interacting contré&isored for that
particular disturbance.

4. If B is large, the interacting control is un favorataethat particular disturbance.

The Relative Gain for Non-square Multivariable Sysems
(J.C. Chang and C.C. Yu, CES \ol.45, pp. 1309-1B2%))

Consider a non-square MV system.

ymxl(s) = c;mxn (s)unxl(s)

Define Moore-Penrose pseudo-inverse of the mafiix) as:

G'(5=(G"G) " G"(9)

Then, under close-loop control, the steady-statgrol input will be:
ou,

u=G"(0)y" and( ] =g;(0).
ayi cL

Thus, the non-square relative gain is defined siryilto the square RGA, that is:



(o) (e | T
"= [aul]oL{{aulJcL} _G(O)D[G (0)]

Properties of the non-square RGA
1. Row sum of A:

RS=[rs(1), rs(2), -, rs(m)]:{zn:/T1j Zn: Ay v Zn‘]m. } ;

i=1 i=1 =1

Where, rs(i) = G(0)G" (0)].

o CS=[csD), os(2), - cs(nﬂ:{njjly "jjz e "jjn } =[1 1, L

Where, cs(i) :[(3+<3(0)]ii ; (Note: G'G=(G'G)'G'G=1)
3. 0<rsi)<1, Oi=12--m

4, ZI’S(I) ZCS(I) n

=1

Note: ZI’S(I) ZZAIJ—ZZAU—ZCSU) n

i=1 j=1 j=1i=1
5. Non-square RGA is invariant under input scaling,ibwariant under output
scaling:

(s)o[(es)] =(coG") (s6)o[(se)'] #(c0G")

6. Let rRand P, are permutation matrices. Then(RGP,) = PA(G)P,

A. Multi-loop BLT-Tuning:

l. BLT-1 method:

a. Calculate the Ziegler-Nichol settings for each &itcoller by using the
diagonal element of G, i.e;;g
b. Assume a detuning factor “F”, and calculate cotgradettings for loops.

kc,. = kZN |/ Y :(TRJ )ZN F
c. DefineW,,, =-1+def | +G, G, |

10



d. Calculate the closed-loop functiogl):

Wiw)
ey = 20log—02
1+ W)

e. Calculate the detuning factor F until the peakhm tc log modulus curve is
equal to 2N, that is:

(iw)

W.
Lom = Max{ZO'O%ﬁ

. BLT-2

a. Find BLT-1 PI controllers.
b. Choose a second detuning facter Fp should be greater than one.
c. Computerp; as:

d. Calculate W) and L(iw).

e. Change B until LZ* is minimized, maintainingd=1. The trivial case may
result where L¢*is minimized for F, =, i.e., no derivative action.

f. Reduce F in the P and | modes, uritfl*=2N.

. BLT-3

The objective is to estimate the level of imbalaimcdetuning the BLT-1
controller and compensate for it.
Consider the PI controller:

_ 1 : _
u; =u; (0)+k ; (ej +T—JejdtJ, u;(0)=0

Rj 0

At steady state,

11



[y, (t)]: Te(t)dt

So,

< Tg U ()
(t)ydt =———1—
!ej() ke

Ny

Notice that:
u(e0) =G(0)R-G™'G, (0)d ()

For unit step set-point input:
u; () =G™(0)[0,...,0,1,0,...,0]
=, (0)i ,j=1..N ][0,..,0,1,0,..]C

For unit step load disturbance:

(=) =ith rowof G(0)G, (0)=Y.[g,, (O)g, , (O)

j=1
Then, ITE becomes:

Let,

F = F [P
S

]

The PI controller parameters becpme:
Kei =Kani I Fj5 T :(TR,i)ZN F;

V. BLT-4

12



a. BLT-3is used to get individual PI controllers assdribed above.
b. BLT-2 procedure is used with individuag Factors for each loop:

FD,j = FD Ssm

]

V. Tyreus Load-Rejection Criterion (TLC)
The best variable pairing is the one that givessthallest magnitudes for each
element of X,(i.e. ¥ of the following:

Xiw) = ([l +GGC]_lGLL)

(iw)

VI.  Summary

BLT-1--- PI, BLT-2---PID,

equal K > equal K
BLT-3---Pl, BLT-4-----PID,
unequal K > unequal K

B. Parallel-design method---Modified Z-N methods fo

TITO Processes

This method is based on A modified Z-N method ft8G control system. To derive
this modified Z-N method, ageneral formulationdsstart with a given point of the
Nyquist curve of the process:

G, (jw) =r,e! ) 1)

And to find a regulator GR

13



Gr(j®) :k(1+ j[er - jrle @)
R

To move this point toB =re! 7% @)

An amplitude margin (i.e. gain margin) design cspending tog, =0 and
1

rg=—.
An
A phase margin design correspondsr{c=1and ¢, = ¢,

j(-mtg,+ée

From Egs.(1)~Equ.(3), we haveye! %) =1 r.e ), so that

r

=== and ¢z =@, 9,
Mo

In other words,

) . 1
G.(jw) =k|1+ || wry —
r(jw) ( J[ D T

B = rReWR) =Ir COSPr + jIg SiPr
Or,
r 1
k=rgcosg, == cos€¢S —¢p) and (a)rD ——J = tan(¢S —¢p)
M TrW

The gain is uniquely determined. Only one equatieterminesry and 7.

Let 7, =arg, where ais often chosen agr = 0.25. Another method to specifyr

is as follows:
:ﬁ, where x = ﬂ
3.302 + 1 g(ja)

From (a)rD —%LJ = tan‘l(qzﬁs —¢p), I, can be solved to obtain:
R

T :i[—tan(gbs—qﬁp )+\/4cr+ taf ¢, -, )} and

Ir=—T7
R D
a

Consider a stable2x 2process :

14



_Y1(3)}:{911(5) 912(9}{”1(5)}
L Y2(9) 921(8) 9249 JLuAS)

'cl(s)} _{cl(s) 0 }

| C,(9) Lo C,(s)

> Y1

> 2

6 =g -9z _ 9

1+C,0,, H C£1+922
_ 12921
0, =000 ———
2= C11+911
Let

A =€ =g (ja)

B =1, %) =g (jw)c(jw)

. . 1 .
=kl1 ' C =1z
509 (Jr][er'Jrjrmej T

Take PI controller as example.

G(jw) =ky (1-jtan@, —¢5)) ; i= 1.

And, g;(ja)ky =cos@ — 4, Yue'

15



ra] eJ(_”+¢|a) mq (1_ J tan@bl _¢al )): rb| eJ(_ﬂ+¢|a)

U
%ejwa ) :%Cos@ai ~ @ )t j% Sin@, ~ @y ks (] @k, —¢y )
U

K :%Cos@ai ~ P )

al

: I N o
ks [0, (jw :%Cos@ai - By )Djaiej( THG,) — ry oS, — @, EJ( T+g,,)

al

By setting i equal one and two, one will obtain teguations with k& and k, as
unknowns, and, thus, can be solved. But, thergemetedious procedures to find the
controller gains (such as:such k&nd k) and frequencya;, and w,,that satisfy the

phase criteria. (see the reference: I&EC Res. 19884725-4733, Q-G Wang, T-H
Lee, and Y. Zhang)

C. Independent design method

---IMC Multi-loop PID Controller

16



—> -1
;A > fl [(gll) '] » »
- G
R [ (92917 >
> »Y
Ou _
> »Y
022 _

"f:i=1..n

G, =(G,).

The stability is guaranteed for any stable IMCfilthat satisfies either of the
following:

|f.(iw)| < Tz, (ia)):M i=1,2,..n
> 9., ()
|fi(ia))|<f(;(ia))_M =1,2,..n

> 190

IBEd

Imc Row interaction measure [Economou and Morari]

. > g, J(iw)\

] ]¢|

1+ fo, (iw) z\g. J(la»\

R(iw) =

. z\gj.(lw)\

i, j#i

O @ z\gj.(lw)\

For significant interaction0.5s R C <1 = f'<

17



For small interaction: 0.0< RC <05 = f >

D. Chien-Huang-Yang’s multi-loop PID---with no

proportional and derivative kicks
1. Controllers for SISO loop:
Controller:  u(s) =k, {—y(s) +Tis[r(s) -y(9)] - rDsy(g}

y_ ke /(TRS)Gp
T 1tk [(7,9)G,

a. Time constant dominant processes:

Ls
G, = Re ; R=slope of the initial unit step respor
Re"™ R(I-L
GP = € = ( S)
S S
y_ 1-Ls ~ 1-Ls
ro r2s? +1.414 s+ 1
(F;?C —rRLjsz+(rR—L)s+1 ¢ ¢
. +
= k.= (LA1%c+L) T, = 1414 +L

CR(2+1.414.L+12)

b. Deadtime dominant processes:

_k.e"” _k,(1-Ls)
G = =
7s+1 7s+1

18



y 1-Ls
r

(TRT —rRLJSZ{ ’r +rR—LJs+1
keko keko
1-Ls
s’ +1.414 s+ 1
1 -2 +1.414 1+L1
= kC :k_ 2C < > ;
o Tc+1414 T+
-1 +1.414 T+L1
r+L

= I,=

Derivation of the PID controller parameters is $amto the above PI
derivations except that the deadtime approximation:

ois 1708
1+0.8.s

19



Appendix: Derivation of PID Tuning Rules

The closed-loop transfer function between controlled
variable (j) and setpoint (1) is

Y= (K‘::“s’ % (A.1)
r
y 4 K7 r; s+ 1) ,

For time constant dominant processes, the process

model, G, can be approximated using Padé approxima-
tion as

(A.2)

Substituting eq A.2 into A.1 and simplifying, we get

L3 Lr, Lrgy
R

T, Lz, L
(ﬁ‘f’ Ty —Z—)SZ . (71 E)S'i‘ l] (A.3)
Let us assume our desired closed-loop servo response
to be a underdamped system with damping coefficient
of 0.707. This corresponds to a closed-loop system with
about 5% overshoot. The desired closed-loop servo

response is

e—Ls

admd TS+ 1Aldrs+1
1 1—(L/2)s
(%5 + 1.4147,s+ 1) 1 + (L/2)s

(A.4)

where 7, is an user-specified closed-loop effective time
constant. Equating eqs A.3 and A.4 and doing some
algebraic manipulation, we can solve for the PID tuning

parameters as

20



1.4147,+ L

& = Lz (A.S)
R(rf, +0.7077,L + T)
7,= 14147, + L (A.6)
(L?/4) + 0.707x,L
T T Ala, + L A

For processcs with deadtime greater than '/s of the
process time constant, it is better for controller
purposes to model the processes as a first-order-plus
deadtime model. With the same Padé approximation as

"‘L\’ 5
- K - K, 1~ (l2)s AS)
ts+1 ws+11+ (L/2)s

Substituting eq A.8 into A.1 and simplifying, we obtain

L Lrvg Lz,
f““‘”””’/[(zm‘ 7 +

(Z;{’jﬁ + KZ’;{P+ Toq— %‘r—“)sz +

T;

e

Again, equating eqs A.9 and A4 and doing some
algebraic manipulation, we can solve for the PID tuning

parameters as
oL+ (LY4) + 1414r 7 — 7

gy U2)3+ l] (A.9)

- .10
K (@ + 0.7077,L + L*/4) ety
tL + (LY/4) + 1.4147 7 — 7°
T, = T D g R AL
0.707z,,L + (L4/4)t — ©5(L/2
o S rOTe e LA o

r =
T L+ (L4) + 1.4147,7 — 74

By selecting 7 as in Figure 2, the negative terms in
egs A.10—A.12 will not cause any problem in changing
the signs of the PID tuning parameters. With the 7y
selection as in Figure 2, combining with eqs A.5—A.7
and A.10—A.12, the final PID tuning rules in Table 2
can be obtained.

21



2. Controllers for multi-loop system

k
Atw - 0; [l] = 91’1(1— Ko 24} -_9u
loop 2 closed kl,1k2,2 RGA(A)

U

Atw — o] {lj =0
U loop 2 closed

a. For RGA>1, multi-loop controller tuning based oe tirocess
model in the main loop should provide satisfactdosed loop
results. This is because:

b. For RGA<1,

kC,i = (kC )based on main IoopRGA(Ai i )

(70 )sasadonima
_ »' /based on main loo}

7. =
RGA(4,)

GA(A;)

o =(10)
Dii D.i /based on main loop

The closed-loop time constant is chosen accordirie value of Lt
in three different ranges, that istLK 0.2, 0.2 < ¥ < 0.5, and 1 >

0.5.
For details, see the original paper.

IX. Robustness of Closed-loop System.

The final pairing and the controller tuning is cked for robustness by
plotting DSO and DSI as functions of frequency, yi@oand Stein]. The
singular values below 0.3-0.2 indicate a lack ab#ity robustness.

DSO,,, =gfl +(GGc) 1
S, =l +(6:6) o

22



E. Design Method based on Passivity

1. Hardware simplicity and relative effortlessnesacbieve failure tolerant design,
multi-loop control is the most widely used stratégyhe industrial process
control.

2. Current multi-loop control design approaches canlassified into three
categories: detuning methods (Luyben, 1986), indépet design methods
(Skogestard and Morari, 1989), and sequential desigthods (Mayne, Chiu and
Arkun, 1992).

3. Loop interactions have to be taken into considenatias they may have
deteriorating effects on both control performance elosed-loop stability.

4. It is desirable if the multi-lop control systemdecentralized unconditionally
stable (i.e., any subset of the control loops eambependently to an arbitrary
degree or even turned off without endangering elosp stability.

5. Independent design is based on the basis of thedpansfer function while
satisfying some stability constraints due to predeteractions.

6. Perhaps the mostwidely used decentralized stabiitylitions are those
W-interaction measure.

7. Passivity Concept:

The rate of change of the stored energy in the imtdss than the power supplied
to it. —>

Inlet Flowrate
Fi ¢

i -

h — Outlet Flowrate
L = — >

Potential energy stored in the tank: S(h) =1 Ahp gh =%A,ogh2

Increment of potential energy per unit time(t) = poF, (t) gh(t)
The rate of change of the storage function:

%} o+ pgrh=-C, pghwh +w<w Oh>0
The rate of change of the stored energy in the igfess than the power

supplied to it. Therefore this process is saidetoictly passive.
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Passive(Willems 1972) if a non-negativetorage function§x) can be found s.t.:

S0)=0and S(x)-S(x°) < foyT(r)u(r)dr for all t>t0=0, X0, x/7X, u/7U.

Srrictly passive: if S(x) - S(X°) < J'tto y' (r)u(r)dr

Where, y is the output of a system, u is the inpihe system.

® KYP Lemma
® Nonlinear control affine systems (Hill & Moylan 18)/
x=f(x)+g(xu
y=h(x)
where xOX OR", u0dU OR™, yOY OR™
The process is passive if

L S(x) :$ f(x) <0,
L,s(0=22 g (= (4

® KYP Lemma
A linear system (Willems 1972)(s):=(A,B,C,D) is passive if there exists a
positive definite matriP such that:

ATP+PA PB-C'
<0
B'P-C -D-D'

The system is strictly passive if

ATP+PA PB-C'
<0
B'P-C -D-D'

Definition:
An LTI system S: G(sis passive if :
(1) G(s) is analytic in Re>0;
(2) G(jw)+G*(jw)=0 for all thatw is not a pole of G(s);
(3) If there are poles of G(s) on the imaginarsattiey are non-repeated and the
residue matrices at the poles are Hermitian andip@semi-definite.
G(s) is strictly passive if:
(1) G(s) is analytic in Rej = 0;
(2) G(jW)+G*(jw)>0 Owl (=00, ).

24



Theorem 1 For a given stable non-passive process withrestea function matrix
G(s), there exists a diagonal, stable, and passwsfer function matrix
W(s)=w(s) such thaH(s)=G(s)+W(s) is passive.

[Proof]:
Anin(H (i) +H™ (j&)) = A (G(j@) + G (ja) + W(je) +W (ja))

Since both (G+G*) and (W+W*) are Hermitiamrin the Weyl inequality, we
have:

Anin(H(j@) +H' (j&) 2 A (G(j@) + G (@) + ApinW(ja) +W (ja))
Jein Gli® G @ ) 2RE(jg )
Thus, if:
ReW ()2 5 i 6 (0)+ G (1)
H(s) can be render passive. On the other hand, if
ReW (j0))> > An G (1@)+ G ()

H(s) will be strictly passive.

Properties of Passive Systems:
® A passive system is minimum phase. The phaseinéarlprocess is within
[-90°, 90°]
® Passive systems are Lyapunov stable
® A passive system is of relative degree < 2
® Passive systems can have infinite gain (e.g., 1/s)

Passivity Theorem :

e + u »

Gl‘

+

)2 2] &
@, s
+

If G1is strictly passive an@2 is passive, then the closed-loop systeirRis
stable.

® A strictly passive process can be stabilized by@assive controller
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(including multi-loop PID controllers) even if & highly nonlinear and/or
highly coupled
= Control design based on passivity
® Excess or shortage of passivity of a process carsée to analyse whether
this process can be easily controlled
= Passivity based controllability study

A non-passive process can be made passive usidipfeard and/or feedback
passification:

fo Gfb

=L 1=

The excess or shortage of passivity can be quedtifsing:
® Input Feedforward Passivity (IFP) (Sepulchre et97) - If a system
G with anegative feedforward oWl is passive, then G has excessive
input feedforward passivity, i.e., G is IF}(

® Output Feedback Passivity (OFP) (Sepulchre et@rjp9 If a system
G with apositive feedback opl is passive, then G has excessive
output feedback passivity, i.e., G is OFp. (

Agin, use the following figure:

e + u »

Gl‘

+

)2 2] &
63 s

+

If G1 is IFPg) andG2 is OFPg), then the closed-loop system is stable pit+v>0.
In other words, a processs shortage of passivitypeacompensated by another
process’s excess of passivity.

® Passivity Index
The excessive IFP of a system G(s) can be quahbifjea frequency dependent
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passivity index
A
VEIG(9), 1A 31 i) +G*( ) |

Assume the true process 3; (s) = G(s) + A(Ss)
The passivity index of the true process can beneséid as

V(Gr (@) = =i {%[A(Jw)+A*(Jw)]+§[e(jw>+e*(Jw)]}

< =Arin {%[A (w )'A* (w j} = Anin {%I:G (w )'G* (w }}
¥ 6 [w)v 4 [w))

Properties of the Passivity Index
1. Comprises gain & phase information of the uraiaty

Maximum gain

A\

A(o)

Passivity/index

2. Always no greater than the maximum singular value.

VelA(9), | < 0, d A ] for any wO R
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Passivity Theorem 2: If the multivariable process is strictly passitleen the
closed-loop system is stable if the multi-loop coltr is passive.

Multi-loop controller ~ Multivariable process

v

K(s) > G(s)

Theorem 1: A closed-loop system comprising a stable subsystfs) and a
decentralized controller K(s)=diag()), w(s) is a stable and minmum phase, and

vW(j@) <-V(G"(jw)
Then the closed-loop system will be decentralizecbuditional stable, if
K(s)=diag{k (s) } is passive, where,
k() =k L-w(9)k"(9]™ and k" =U;k

K'(9)=UK(9[ 1 -w(eU K(9)]

Notice that the above figure is equivalent to the m the following:

}('(s) i G(s) Wl
2o —to-[ K |- UT— :T
i i

Rescaling of the system

Let D(s) be a diagonal, real and constant scaliatyira
> D aLG‘(s) L» '

D' ¢ K'(s) D

The scaling matrix D(s) is to make
V(DG D(je) <V(G"(jw))

and
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DG'(0)D+DG'(0)] D>0

Design procedures:

1. Find matrix U and calculat&s* (s).

2. Check the pairing. Examine the proposed pairingguBilC condition:

G'(OM +M[G'(0)] >0
3. Use matrix M obtained in the step 2 to derive D=M*'?

4. Calculate v(D™'G*(jw)D) for different frequency points. These frequency

points form a setQ D[O,a)E] where a is the frequency which is high enough

sych tantv(D™G*(jw)D) - 0 for w> a.

5. For each loop of the controller, solve problem:

mgbm)
such that
1 .i<1
1+G; (jkgy | 1+ | 1]
! ! jTgjw
and
“v(w
TR = keivs() , DwOR, i=14-n

I:l_ k:,i Vs (a)):| of

6. Obtain the final controller settingsk,; =U; kZ;

This method is limited to open-loop stable procsesse
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Ve (8(s), @)= v (W(s),a), DeOR

Robust Stability Condition

If the uncertainty is passive, then the contraBewnly required to render system
strictly passive to achieve robust stability evenA is very large.

If the uncertaintls passivity index is bounded by

Ve (A(S), w) = Ve (W(s),w), DwOR

whereW(s) is minimum phase, the closed-loop system wiltdigust stable if
system

T(S[ -W(IT(9] "

is strictly passive.

The basic idea:

1. Characterise the uncertainty in terms of patysusing IFP or OFP.

2. Derive the robust stability condition for systemith uncertainties bounded by
their passivity indices.

3. Develop a systematic procedure to design thestatontroller which satisfies
the above stability condition.

Passivity Based Robust Control Design
® Blended approach
® Design a controller thet satisfies the small gaindition at high
frequencies and satisfies the passivity conditidowa frequencies
(Bao, Lee et al 1998)
® Based on the bilinear transformation
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® Multi-objective control design
® Design a controller that satisfies the passivitydition for robust

stability and achievesJ control performance (Bao, Lee et al 2000,

2003)
® Based on KYP lemma and Semi-Definite Programming

Example:
0126  -0.10E™*
G(s)=| B0s+1l  (4Bs+1)(45s+1)
0.094e™* - 012
38s+1 35s+1

Passivity index

-0.03
10-4 10-2 1 10+2 10+4

F. Design by Sequential Loop Closing

Advantages of sequential design:
1. Each step in the design procedure involves degigmity one SISO controller.
2. Limited degree of failure tolerance is guarantdestability has been achieved
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after the design of each loop, the system will i@nsgable if loop fail or are taken
out of service in the reverse order of they wergied.

3. During startup, the system will be stable if theds are brought into service in the
same order as they have been designed.

4.

Problems with sequential design:

1. The final controller design, and thus the contiadlgy achieved, may depend on
the order in which the controllers in the indivitliops are designed.

2. Only one output is usually considered at a time, the closing of subsequent
loops may alter the response of previously desidoels, and thus make iteration
necessary.

3. The transfer function between inpytand output ymay contain RHP zeros that
do not corresponding to the RHP zeros of G(s).

Notations:

1. G(s): the nxn matrix of the plant,G(s) ={g;,(9; i, j=1,--,n}
2. C(s)=diag{c(9; i=1,---,n}

3. S=(1+GC)*; H=1-S=GC(+GC)*

4. G=diag{g(9; i=1--,n}

5. S=diag{s(9; i=1---,n}= dlag{ =1,---, 1}
9uC|

6. H=diagh(3; =L n}=diag{ 210~ 9GS . =10
+0iC’

7. T=GG™"={y; i j=1--,n}

8. CLDG=GG'G,
9. E=(G-G)G™

e R B |

11.§ =(! +Gka)_1; H, =G,C (] +Gka)_l

12.|:|k:{|_(|)k §:|, S:{% g}’ i=k+1,K+ 2,---N
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S=(1+GC)* =[I +GC+(G-G)C] ™
:{P +G-G)C(l +éc)'1}(| +c§C)}_l

:{[I +(G-6)56C (I +éc)_l}(| +GC)}_

1

-1 -1

=(1+6¢) " (1+EA) " =51 +EA)
Design procedures:

- -~ - ~ -1
In each of the following stepS =S, (I + E.H,) ™ E, =(G-G,) (Gk)
Determine ¢ such that”\NpSNDHDis minimized.

Step Q Initialization. Determine the order of loop dlug by estimating the
required bandwidth in each loop. Also estimateitisievidual loop designs

in terms of H .
Step 1.Design of controller cby considering output 1 only. In this case, weehav

G, =G.and H, =H
Step k. Design of controller ck by consider outputs 1 tdlkre,

G =diag{G,, g}; i=k+,k+2,---,n and

Hy =daig{H,, R}; i=kk+L-n
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Sequential Design Using Relay feedback Tests of $hend Yu

The relay feedback system for SISO auto-tuning isteown in the follwing figure:

yser?(r_e‘i’:e—”* G(s) b ¥

When constant cycles appear after the system leasdwivated, the ultimate gain
and ultimate frequency of the open-loop systembmaapproximated by measuring
the magnitude and period (see the following figued by the following equations:

SIRVEVEY,

Ngipugny

AWAT A

=

The Z-N tuning method can be used to determinedmnéroller parameters:

Pl Controller: K,= 048, ,73=R, /1.2,
PID Controller: K. = 0.68, , x=PR, /1.2, 1,= B&BR,
Or, use the Tyreus-Luyben’s formula to give masaservative response:
Pl Controller: K. =K, /3.2, 13= 2B ,
PID Controller: K, =K, /2.2, 1= 2R, ,1,=R, /€
To avoid the difficult mathematics envolvedtye formulation of sequential
design, Shen and Yu suggested to use the relapdekdest as shown in the

following figure:
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The controller for a2x 2system is suggested:

Pl Controller:  K.=K_ .z /3, 1= B,

Analysis:
The sequential design is derived by consideringrib#i-loop control system as
coupled SISO loops. For @x 2system as example, the equivalent SISO loops are:

0,(9) = 91,(9) L -(L——2-) hy(s)}

A(9)

0,(9 = 055(9) {1 —(1—713)) hy(s)}

Where, h(s):M; i=12
c.ii;

Notice that, if there is damping i, or g,, this damping should come from either

h, or h,. According to tis study, a closed system havingc@®DT process and a
modified ZN tuned PI controller will result in aosled-loop system (i.ehyand h,)
having damping factor greater than 0.6. It is thastulate that the open-loop transfer
functions g,(s) andg, € )can be approximated by:

TPZS+1@—HS

k
G =57
r°s”+2r{s+1 1,5+l

Then, the stability region of the equivalent SI®0gs are explored with the

parameters:r,, 7, =0~10,k, = 1,7 = 5= 0.1-19 /= 0.02~C. The results
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are given in the following figure. It can be sebkattthe modified ZN tuning formula
proposed greatly improve the stability.

Modified Z—N method Modified Z—N method

2.0 .

1.5 Unstable Region
£
3 1.0
i =1.0

05 A

¢ =01
0.0 0.0
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
Tp1/Tp Tp1/Tp
Z—N method Z—N method

2.0 2.0

1.5 1.5 Unstable Region
& Unstable Region
10
¢

0.5 =01

=10
o 4 \W
0.0 0.5 1.0 15 2.0

On the other hand, the convergence of the sequeesan for the multi-loop
controller is formulated as the problem of findihg roots of simultaneous algebraic
equation using sequential iterations.

The simultaneous equations are obtained from thdittons of phase crossover for
the two loops, that is:

MG (42|
Re[gl (J'%,LJ.%,Z)}

Lm0y i D]
Re[ 9 (a1ie,2)]

Filjwp ja, ) =tan

Fo(laa o) = tan

The convergence of the iteration is guaranteed syffecient condition of the
following:

(aa} (an
0q, , @, 0, 1 “: g

[an (ag}
0w, @, 0w, » .
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The procedures of this proposed sequential desigisummarized with the flow

@ sign of diagonal elcmenj

chart as shown.

Rank the loop
speed from fast
to slow into 1,2,...,n

—
P Identification [re————————3p (Eq:_s;%‘nzz) Loop 1

1
J Reconfiguration |
no yes
Identification @ design Loop 2
C e

—

Reconfiguration
\ 4 B0
yes
Identification destgn Loopn
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Design of Multi-loop control systems

Consider a single loop system as shown in Fig.1.

Osp '+
—_—

Ge

Fig.1

Suppose controller is fixed, substantial changé§,invariably lead to deteriorate the

control system response (see Figure 2).

TIME

Now consider a2x 2 control system in Fig. 3

+ X1
Ger Gy i
B
Gz \‘
> G2
+
i
G2 G22 W, =g

Let us consider open loop 1 (Fig.4)

Fig.2

Fig.3
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\ 4

|
__.I.-‘_ G
1 . —
i/ > 21 o1
| !
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—GCZ — 622 e e %
\ ma + |
\\" l
| B oy e e e g ———

Fig.4

One may notice that there are two transmissionsgatm m, tox, .let us define a
relative gain fromm, tox,.as:
1= Gain m - x,,l00p2 open
Gain m —x,,loop2 close
When A =0.5, the responses ok, to a unit step input atm is shown in Fig. 5

— st I
STEP m1/—L00F]> 2 CLoSED— STEP Iy
| [ | (S
T L T
/ LOOP 2 OPENt———]
A r1 l
[ |/
Cq t
mf | b
t +
) |
|
L1
LOOP 1OPEN TIME LOOP 1 CLOSED
STEP IN MANIPULATIVE STEP IN SET POINT (ry)
VARIABLE (my) Fig 5

In this case, when loop 2 is closed, the open tmop of m —x, becomes doubled.
The increase in the loop gain results in more ladwh in the closed loop response as
shown.

On the other hand, whed = 2, the open loop and closed loop responses are also



given in Fig. 6.

T |
STEP m, e STEP I,

= /.LOOPi ZE;ENjF;? .
LOOP 2 CLOSED ~
Bl TR e | N\
o) /] |
C1 } —
B Ji
l |
I |
LOOP 1 OPEN TIME LOOP 1 CLOSED
STEP IN MANIPULATIVE STEP IN SET POINT(ry)

VARIABLE (my)

In this latter case, the open-loop gain decreasdop 2 is switched from open to
close. As a result, the close of loop 1 leads yiséesn to a more sluggish response to
the r,input.

The increase or decrease of the loop gain isudtref closing loop2, and , hence, is
considered loop interaction. From the above examplis a measure of such
interaction and is named as relative gain of looyoli may also find the other
relative gain for loop2. But, in this case, the tetative gains will be equal.

Algebraic Properties of the RGA

=

- Zgijgji :Z/‘ g =1 i
j j

2. PING} P,=A{P:G R}, P;and B are two permutation matrices.
3. NG}=A{S:G S}, Si;and S are two diagonal matrices.
4. If transfer matrix, G, is diagonal or trianguldren: A{G}=I.

[Proof]:

x 00...0

x x 0.0
Let, G=

X X X..X
Then,



x 00...0

Gl=G = x x 0.0
X X X..X
Thus, 9,9, =0=4,, O#i
and, g;g; =1=1,, Oj=i
So,A =l
99, __, 99;
9 ' g
S adj[ A] _ (=D det[G"]
' det[G] det[G]
o ddeBl i ey __
dg; - _ dg; - det[G"]? —
dg; det[G(g; )]’ det[G(g; )]’ !
dg dg| dgl
_— = _g“dgu - _gjlglj — == ij_]
gJI gij gij
da a1l . A.-1dg;
- (1 /1 u) g” nd L= d _g”
i i Ay Ay G
[Proof;
A4=9,9; =dA;=dg;g; +9,dg;
N dA | _ dg;g; "'_gijdgj'i — dg; (dg“ )= (1A ,)—L gu
/] ij gijgji gij ji ij
or,
- da _ dg;, +d_§ji 2(1_i d_gij _ Ay-1 d_gij
Ay LG ) G Ay G Ay ]G




10.

RGA-implications:

Pairing loops o values that are positive and close to 1.
Reasonable Pairings: 0.9\ 4.0

Pairing on negativa; values results in at least one of the following;
a. Closed loop system is unstable,
b. Loop with negative\; is unstable,
c. Closed loop system becomes unstable if loop witfatiee isA; turned off.

Plants with large RGA-elements are always ill-ctioded. (i.e., a plant with a
largey(G) may have small RGA-elements)

Plants with large RGA-elements around the crossfreguency are fundamentally

difficult to control because of sensitivity tqoumt uncertainties.

----- —>decouplers or other inverse-based controllers shiootl be used for plants
with large RGA-elements.

Large RGA-element implies sensitivity to elementddgment uncertainty.

If the sign of RGA-element changes from s=0 teesthen there is a RHP-zero
in G or in some subsystem of G.

The RGA-number can be used to measure diagonaindmoe:

RGA-number = IN(G)-1 |}nin-
For decentralized control,, pairings with RGA-rhenat crossover frequency
close to one is preferred.

For integrity of whole plant, we should avoid inqmutput pairing on negative
RGA-element.

For stability, pairing on an RGA-number close toozat crossover frequency is
preferred.



The Relative Disturbance Gain (RDG)

Ref: Galen Stanley, Maria Marino-Galarraga, and T. J. MdAvoy, Shortcut
Operability Analysis. 1. The relative disturbanceing I&EC, Process Des. Dev.
1985,24, 1181-1188

The use of RDG:

1. To decide if interaction resulting from a distance is favorable or unfavorable.

2. To decide whether or not decoupling should lesl@nd what type of decoupling
structure is best.

yl = I‘(11m1+ klﬁ]2+ kF p
y2 = k21m1+ k2ﬁ2+ kF g

[0_”1) _ ke
ad Y1,y kll

(amlj is derived when both;yand y are held still:
Y1 Y2

od
Yy =k + kK my+k. d =0 2)
Yy, =km +k,m,+k. d=0
so that:
_ 1 3)
m, _k_[_k21ml_kF zd]

22

Substitute Eq.(3) into E.(2), we have:

k., - KioKay m, +| K., — KiKe d=0
Kz Kz

Thus,
k., + KioKe
(amlj — Ko _ Kk = Ke Koy
Y. Y2

od _ KKz, - kKo =K K5y
kll k
22

(4)




So,

)
od VoY — —ﬁx KiKe o —Ke Koy _ KK 225 Kk skek, ®)

ﬁ =_ a2 =
" (amlJ kFl k11k22_k14< 21 kF k 22 k 1i§ zz_k }5 2;
ad Y,y

— k12kF2_kFlk22x KiK 2 :{1_k15F 2}/]
Ke 1Kz, KK = KoK o Ke K 2

Similarly, we have:

B
" (amlj KoKy
ad Yi.My
—kF2k12 :1—&:—/]_'81 = &:/]_'lek_zz
Ke1Kz A A F1 A ki,
Similarly, = Key = -5 xﬁ
F2 A Ky
So, kg, xﬁ: :[/]_,82 xﬁjx(/] B, k_22j
Kep  Kes A Ky A Ky,

or,
(B.-2)(B,-2)=21(A-1)

A(A-1) A(A-1) (B-9)4_1-5
, —A) = 2 = A= = A
7y B /7) R /1) I

It can be shown that:



Multi-loop €, area 0B and
SISO idealy decoupled e area

Multi-loop e, area
SISO idealy decoupled e area

2

5

+
Ge Gy L O'—"O—-'
+\S_ g

7+

+
+ + +
‘.(_f . Geo = Goa O C/ -
2 2

Figure 4. General 2 X 2 system.

i F GlZGc 2 1(l+ G 22Gc 2)
d (1+ Glchl)(l+ GZZGC 2) G ZGc 9 19 2]

If d is a unit step, then the area undecwrve is given as:

keok
F2k12 ka — 22kx:2

kF 2k12 ~ kF 1k 22

T
dt -Ilm 9 = Tro R2
J.el el( ) clkll k

LT S LI _kclknkzz(l_

T Tro Tro Try Ty

= )R [k L% kHj
clkll

On the other hand, when loop 2 is opened, theardar gbecomes:

o Kex

f Odt = — L
Jerdi=—2a

Thus,

(6)



0

qut , .
o :_T;Rlﬁx(_kmklz—l}hiﬁxﬁl: f.8,

Tefdt Z-I.?l kcl I’(Flk22 Z-IIRl kcl
0
Similarly, we have:
_[ezdt K
. =2 2x B, = 1,05,
_[ejdt Tro kcz
0

Notice that the Pl parameters in the interactimp#oare used to be more conservative
than those in single loops. In another words,

f,21, f,21
The multi-loop control should be beneficial whea #um of absolute values of the

Remarks:

1. If Ais assumed not vary with frequency, and the psooesler study is FOPDT,
A>1, f; lies in the range 1< k2, while 0.5<I<1, flies in the range 1< k3.

2. When f =1, is equal to the ratio of response areas.

3. IfBis small andf=is close to one, then the interacting contréaisored for that
particular disturbance.

4. If Bis large, the interacting control is un favorataethat particular disturbance.

The Relative Gain for Non-square Multivariable Sysems
(J.C. Chang and C.C. Yu, CES \ol.45, pp. 1309-1B2%))

Consider a non-square MV system.

ymxl(s) = Gmxn (s)unxl(s)

Define Moore-Penrose pseudo-inverse of the mafiix) as:

G'(=(G"G) " G"(9)

Then, under close-loop control, the steady-statgrol input will be:
ou,

u=G"(0)y" and( ] =g;(0).
ayi cL

Thus, the non-square relative gain is defined siryilto the square RGA, that is:



(v (e | T
"= (auJJOL{{aUIJCL} _G(O)D[G (0)]

Properties of the non-square RGA
1. Row sum of A:

RS=[rs(1), rs(2), -, rs(m)]:{zn:/T1j Zn: Ay v Zn‘]m. } ;

i=1 i=1 j=1

Where, rs(i) = G(0)G" (0)].

o CS=[sD), os(2), - cs(nﬂ:{njjly "jjz e "jjn } =[1 1,

Where, cs(i) :[(3+<3(0)]ii ; (Note: G'G=(G'G)'G'G=1)
3. 0<rs(i)<1, Oi=12--m

4, ZI’S(I) ZCS(I) n

=1

Note: ZI’S(I) ZZAIJ—ZZAU—ZCSU) n

i=1 j=1 j=1i=1
5. Non-square RGA is invariant under input scaling,ibwariant under output
scaling:

(s)o[(es)] =(coG") (s6)o[(se)'] #(c0G")

6. Let rRand P, are permutation matrices. Then(RGP,) = PA(G)P,

A. Multi-loop BLT-Tuning:

l. BLT-1 method:

a. Calculate the Ziegler-Nichol settings for each &itcoller by using the
diagonal element of G, i.e;;g
b. Assume a detuning factor “F”, and calculate cotgradettings for loops.

kc,. = kZN |/ Y :(TRJ )ZN F
c. DefineWw,,, =-1+ det[l +G(iw)Gc(iw):|

10



d. Calculate the closed-loop functiogl,):

Wiw)
ey = 20l0g—02
1+ W)

e. Calculate the detuning factor F until the peakhm tc log modulus curve is
equal to 2N, that is:

(iw)

W.
Lon = Max{ZO'O%ﬁ

. BLT-2

a. Find BLT-1 PI controllers.
b. Choose a second detuning facter iy should be greater than one.
c. Computerp; as:

d. Calculate W) and L(iw).

e. Change B until LZ* is minimized, maintainingd=1. The trivial case may
result where L¢*is minimized for F, =, i.e., no derivative action.

f. Reduce F in the P and | modes, uritl* = 2N.

. BLT-3

The objective is to estimate the level of imbalaimcdetuning the BLT-1
controller and compensate for it.
Consider the PI controller:

_ 1 : _
u; =u; (0)+k ; (ej +T—JejdtJ, u;(0)=0

Rj 0

At steady state,

11



[y, (t)]: Te(t)dt

So,

< Tg U ()
(t)ydt =————
!ej() ke

Ny

Notice that:
u(e0) =G(0)R-G™'G, (0)d ()

For unit step set-point input:
U; () =G™(0)[0,...,0,1,0,...,0]
=[0,;0);,j=1..N 10,...,0,1,0,...]C

For unit step load disturbance:

(=) =ith rowof G(0)G, (0)= Y. [g,, (O)g , (O)

j=1
Then, ITE becomes:

Let,

F = F [P
S

]

The PI controller parameters becpme:
Kei =Kani I Fj3 T :(TR,i)ZN F;

V. BLT-4

12



a. BLT-3is used to get individual Pl controllers asdribed above.
b. BLT-2 procedure is used with individuaj Factors for each loop:

FD,j = FD Ssm

]

V. Tyreus Load-Rejection Criterion (TLC)
The best variable pairing is the one that givessthallest magnitudes for each
element of X,(i.e. ¥ of the following:

Xiw) = ([l +GGC]_lGLL)

(iw)

VI.  Summary

BLT-1--- PI, BLT-2---PID,

equal K > equal K
BLT-3---Pl, BLT-4-----PID,
unequal K > unequal K

B. Parallel-design method---Modified Z-N methods fo

TITO Processes

This method is based on A modified Z-N method ft8G control system. To derive
this modified Z-N method, ageneral formulationdsstart with a given point of the
Nyquist curve of the process:

G, (jw) =r e/ 1)

And to find a regulator GR

13



Ga(j@) :k(1+ j[er - jrlej )
R

To move this point toB =r_e! ") @)

An amplitude margin (i.e. gain margin) design cspending tog, =0 and
1

I’S :E .
A phase margin design correspondsrtc=1and ¢, = ¢,

j(-mtg,+ée

From Egs.(1)~Equ.(3), we haveye! ™% =1 r.e ), so that

r

=== and ¢z =@, 9,
M

In other words,

) . 1
Go(jw) =k| 1+ || wry —
r(jW) ( J[ D T

D =rpe! %) =1 cospp + jry Singg
Or,
r 1
k=rgcosg, == cos(¢S —¢p) and (a)rD ——J = tan(¢s —¢p)
My TRW

The gain is uniquely determined. Only one equatieterminesry and 7.

Let 7, =arg, where ais often chosen agr = 0.25. Another method to specifyr

is as follows:
:ﬂ, where x = ﬂ
3.30% + 1 g(ja)

From (a)rD —%LJ = tan‘l(qzﬁs —¢p), I, can be solved to obtain:
R

T :i[—tan(gbs—qﬁp )+\/4cr+ taf ¢, -9, )} and

Irh=—T7
R D
a

Consider a stable2x 2process :

14



_Y1(S)}:{911(5) 912(9}{”1(5)}
L Y2(9) Uo1(8) 9249 JLUAS)

'cl(s)} _{cl(s) 0 }

| C(9) Lo c,(s)

> Y1

> 2

6 =g, -9y - 91fn

1+C,9,, H C£1+922
_ 12921
0, =000 ~———
2= C11+911
Let

A =rge' T =g (ja)

B =r,e %) =g (jw)c(jw)

. . 1 .
=kl1 ' C =1z
509 (H[MD'JroHwB T

Take PI controller as example.

G(jo) =ky (1~ jtan@, —¢5)) ; i= 1.

And, g;(ja)ky =cos@ ~ 4, Jue'

15



ra] eJ(_”+¢|a) [kq (1_ J tan@bl _¢al )): rb| eJ(_ﬂ+¢|a)

v
100 = B cosgh, ~ gy I sinfy ~ gy ok O tanks — s )
v

K :%Cos@ai — Py )

al

. I, N o
kg [0, (jw :%Cos@ai - By )maiej( T,) — ry oS, — @, EJ( T+g,,)

al

By setting i equal one and two, one will obtain teguations with k& and k, as
unknowns, and, thus, can be solved. But, thergemetedious procedures to find the
controller gains (such as:such knd k) and frequencya;, and w,,that satisfy the

phase criteria. (see the reference: I&EC Res. 19884725-4733, Q-G Wang, T-H
Lee, and Y. Zhang)

C. Independent design method

---IMC Multi-loop PID Controller

16



—> -1
;A > fl [(gll) '] » »
- G
P [ (G221 >
> »Y
Ou _
> »Y
022 _

"f:i=1..n

G, =(G;).

The stability is guaranteed for any stable IMCfilthat satisfies either of the
following:

|, (iw)| < fr, (ia)):M - i=1,2,..n
> 9., ()
|fi(ia))|<f(;i(ia))—M =1,2,..n

> |9 (ie)

IBEd

Imc Row interaction measure [Economou and Morari]

. > g, J(iw)\

] ]¢|

1+ fo, (iw) z\g. J(la»\

R(iw) =

. z\gj.(lw)\

jj#i

O @ z\gj.(lw)\

For significant interaction0.5< R C <1 = f'<

17



For small interaction: 0.0< RC <05 = f >

D. Chien-Huang-Yang’s multi-loop PID---with no

proportional and derivative kicks
1. Controllers for SISO loop:
Controller:  u(s) = k. {—y(s) +Tis[r(s) (9] - rDs;@}

y_ ke /(TRS)Gp
T 1tk [(7:9)G,

a. Time constant dominant processes:

Ls
G, = Re ; R=slope of the initial unit step respor
Re"™ R(I-L
GP = € = ( S)
S S
y_ 1-Ls ~ 1-Ls
ro r2s? +1.414 s+ 1
(F;Z —rRLjsz+(rR—L)s+1 ¢ ¢
. +
= k.= (LA1%c+L) T, = 1414 +L

CR(2+1.414.L+12)

b. Deadtime dominant processes:

_k.e"” _k,(1-Ls)
G, = =
s+l 7s+1

18



y 1-Ls
r

(TRT —rRLJSZ{ ’r +rR—LJs+1
keko keko
1-Ls
s’ +1.414 s+ 1
1 -2 +1.414 1+L1
= kc :k_ 2(: < > ;
o Tct1l414 T+
-1 +1.414 . T+L1
r+L

= I,=

Derivation of the PID controller parameters is $amto the above PI
derivations except that the deadtime approximation:

ois 1-08s
1+0.8.s
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Appendix: Derivation of PID Tuning Rules

The closed-loop transfer function between controlled
variable (j) and setpoint (1) is

Y= (K‘::“s’ % (A.1)
r
y 4 K7 r; s+ 1) ,

For time constant dominant processes, the process

model, G, can be approximated using Padé approxima-
tion as

(A.2)

Substituting eq A.2 into A.1 and simplifying, we get

L3 Lr, Lrgy
R

T, Lz, L
(ﬁ‘f’ Ty —Z—)SZ . (71 E)S'i‘ l] (A.3)
Let us assume our desired closed-loop servo response
to be a underdamped system with damping coefficient
of 0.707. This corresponds to a closed-loop system with
about 5% overshoot. The desired closed-loop servo

response is

e—Ls

admd TS+ 1Aldrs+1
1 1—(L/2)s
(%5 + 1.4147,s+ 1) 1 + (L/2)s

(A.4)

where 7, is an user-specified closed-loop effective time
constant. Equating eqs A.3 and A.4 and doing some
algebraic manipulation, we can solve for the PID tuning

parameters as

20



1.4147,+ L

& = Lz (A.S)
R(rf, +0.7077,L + T)
7,= 14147, + L (A.6)
(L?/4) + 0.707x,L
T T Ala, + L A

For processcs with deadtime greater than '/s of the
process time constant, it is better for controller
purposes to model the processes as a first-order-plus
deadtime model. With the same Padé approximation as

"‘L\’ 5
- K - K, 1~ (l2)s AS)
ts+1 ws+11+ (L/2)s

Substituting eq A.8 into A.1 and simplifying, we obtain

L Lrvg Lz,
f““‘”””’/[(zm‘ 7 +

(Z;{’jﬁ + KZ’;{P+ Toq— %‘r—“)sz +

T;

e

Again, equating eqs A.9 and A4 and doing some
algebraic manipulation, we can solve for the PID tuning

parameters as
oL+ (LY4) + 1414r 7 — 7

gy U2)3+ l] (A.9)

- .10
K (@ + 0.7077,L + L*/4) ety
tL + (LY/4) + 1.4147 7 — 7°
T, = T D g R AL
0.707z,,L + (L4/4)t — ©5(L/2
o S rOTe e LA o

r =
T L+ (L4) + 1.4147,7 — 74

By selecting 7 as in Figure 2, the negative terms in
egs A.10—A.12 will not cause any problem in changing
the signs of the PID tuning parameters. With the 7y
selection as in Figure 2, combining with eqs A.5—A.7
and A.10—A.12, the final PID tuning rules in Table 2
can be obtained.
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2. Controllers for multi-loop system

k
Atw - 0; (l] = 91’1(1— Kz 24} =_9u
loop 2 closed kl,lk2,2 RGA(A)

U

Atw — o] {lj =01
U loop 2 closed

a. For RGA>1, multi-loop controller tuning based oe firocess
model in the main loop should provide satisfactdosed loop
results. This is because:

b. ForRGA<1,

kC,i = (kC )based on main IoopRGA(Ai i )

(70 )sasadonia
_ »' /based on main loo}

Z-R,i -
RGA(4;)

GA(A;)

o =(10)
Dii D.i /based on main loop

The closed-loop time constant is chosen accordirie value of Lt
in three different ranges, that istLK 0.2, 0.2 < ¥ < 0.5, and i1 >

0.5.
For details, see the original paper.

IX. Robustness of Closed-loop System.

The final pairing and the controller tuning is cked for robustness by
plotting DSO and DSI as functions of frequency, yi@oand Stein]. The
singular values below 0.3-0.2 indicate a lack ab#ity robustness.

DSO,,, =gfl +(GGc) 1
S, =l +(6:6) o
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E. Design Method based on Passivity

1. Hardware simplicity and relative effortlessnesacbieve failure tolerant design,
multi-loop control is the most widely used stratégyhe industrial process
control.

2. Current multi-loop control design approaches caolassified into three
categories: detuning methods (Luyben, 1986), indépet design methods
(Skogestard and Morari, 1989), and sequential desigthods (Mayne, Chiu and
Arkun, 1992).

3. Loop interactions have to be taken into considenatias they may have
deteriorating effects on both control performance elosed-loop stability.

4. Itis desirable if the multi-lop control systemdecentralized unconditionally
stable (i.e., any subset of the control loops eambependently to an arbitrary
degree or even turned off without endangering elosp stability.

5. Independent design is based on the basis of thedpansfer function while
satisfying some stability constraints due to predeteractions.

6. Perhaps the mostwidely used decentralized stabiitylitions are those
p-interaction measure.

7. Passivity Concept:

The rate of change of the stored energy in the imtdss than the power supplied
to it. —>

Inlet Flowrate
Fi ¢

i -

h — Outlet Flowrate
L = — >

Potential energy stored in the tank: S(h) =1 Ahp gh :%A,ogh2

Increment of potential energy per unit time(t) = poF (t) gh(t)
The rate of change of the storage function:

%} ,pgwh + pgrh=-C pghwh +w<w Oh>0
The rate of change of the stored energy in thie igfess than the power

supplied to it. Therefore this process is saidetoictly passive.
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Passive(Willems 1972) if a non-negativetorage function§x) can be found s.t.:

S0)=0and S(x)-S(x°) < foyT(r)u(r)dr for all t>t0=0, X0, x/7X, u/7U.

Srrictly passive: if S(x) - S(X°) < J'tto y' (T)u(r)dr

Where, y is the output of a system, u is the inpdhe system.

® KYP Lemma
® Nonlinear control affine systems (Hill & Moylan 18)7
x=f(x)+g(xu
y=h(x)
where xOX OR", udOU OR™, yOY OR™
The process is passive if

L;S(x) :¥ f (x) <0,
L,5(0=2 g (= (4

® KYP Lemma
A linear system (Willems 1972)(s):=(A,B,C,D) is passive if there exists a
positive definite matriP such that:

ATP+PA PB-C'
<0
B'P-C -D-D'

The system is strictly passive if

ATP+PA PB-C'
<0
B'P-C -D-D'

Definition:
An LTI system S: G(sis passive if :
(1) G(s) is analytic in Re>0;
(2) G(jw)+G*(jw)=0 for all thatw is not a pole of G(s);
(3) If there are poles of G(s) on the imaginansattiey are non-repeated and the
residue matrices at the poles are Hermitian andip®semi-definite.
G(s) is strictly passive if:
(1) G(s) is analytic in Rej = 0;
(2) G(jW)+G*(jw)>0 Owl(-00, ).
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Theorem 1 For a given stable non-passive process withrestea function matrix
G(s), there exists a diagonal, stable, and passwsfer function matrix
W(s)=w(s) such thaH(s)=G(s)+W(s) is passive.

[Proof]:
Anin(H (i) +H™ (j&)) = A (G(j@) +G (ja) + W(je) +W (ja))

Since both (G+G*) and (W+W*) are Hermitiamrin the Weyl inequality, we
have:

Anin(H (i) +H™ (j&) 2 A (G(j@) + G (@) + ApinW(ja) +W (ja))
Jein Gli@ G @ ) 2RE(jq )
Thus, if:
ReW ()2 5 i 6 (10)+ G (1)
H(s) can be render passive. On the other hand, if
ReW (j0))> An G (1@)+ G ()

H(s) will be strictly passive.

Properties of Passive Systems:
® A passive system is minimum phase. The phaseinéarlprocess is within
[-90°, 90°]
® Passive systems are Lyapunov stable
® A passive system is of relative degree < 2
® Passive systems can have infinite gain (e.g., 1/s)

Passivity Theorem :

e + u »

Gl‘

+

)2 2] &
@, s
+

If G1is strictly passive an@2 is passive, then the closed-loop systeirRis
stable.

® A strictly passive process can be stabilized by@assive controller
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(including multi-loop PID controllers) even if & highly nonlinear and/or
highly coupled
= Control design based on passivity
® Excess or shortage of passivity of a process carsée to analyse whether
this process can be easily controlled
= Passivity based controllability study

A non-passive process can be made passive usidipfeard and/or feedback
passification:

fo Gfb

=L 1=

The excess or shortage of passivity can be quedtifsing:
® Input Feedforward Passivity (IFP) (Sepulchre et97) - If a system
G with anegative feedforward oWl is passive, then G has excessive
input feedforward passivity, i.e., G is IF}(

® Output Feedback Passivity (OFP) (Sepulchre et@rjp9 If a system
G with apositive feedback opl is passive, then G has excessive
output feedback passivity, i.e., G is OFp. (

Agin, use the following figure:

e + u »

Gl‘

+

)2 2] &
63 s

+

If G1 is IFPy) andG2 is OFPg), then the closed-loop system is stable pit+v>0.
In other words, a processs shortage of passivitypeacompensated by another
process’s excess of passivity.

® Passivity Index
The excessive IFP of a system G(s) can be quahbfjea frequency dependent
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passivity index
A
VEIG(9), 1A 31 i6) +G*( ) |

Assume the true process (3; (s) = G(s) + A(S)
The passivity index of the true process can beneséid as

V(Gr (@) = =i {%[A(Jw)+A*(Jw)]+%[G(jw)+G*(Jw)]}

< ~Anin {%[A (w )'A* (w j} = Anin {%I:G (w )'G* (2 }}
¥ 6 [w)v 4 [w))

Properties of the Passivity Index
1. Comprises gain & phase information of the uraiaty

Maximum gain

A\

A(o)

Passivity/index

2. Always no greater than the maximum singular value.

VelA(9), | < 0l A ] for any wO R
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Passivity Theorem 2: If the multivariable process is strictly passitleen the
closed-loop system is stable if the multi-loop colt¢r is passive.

Multi-loop controller ~ Multivariable process

v

K(s) > G(s)

Theorem 1: A closed-loop system comprising a stable subsys@&f®) and a
decentralized controller K(s)=diag()), w(s) is a stable and minmum phase, and

vW(j@) <-V(G"(jw)
Then the closed-loop system will be decentralizecbuditional stable, if
K(s)=diag{k (s) } is passive, where,
k() =k L-w(9k"(9]™ and k" =U;k

K'(89)=U K91 -weU K(9)]

Notice that the above figure is equivalent to the m the following:

}('(s) i G(s) Wl
2o —to-[ K |- UT— :T
i i

Rescaling of the system

Let D(s) be a diagonal, real and constant scaliatyir
> D aLG‘(s) L» '

D' ¢ K'(s) D

The scaling matrix D(s) is to make
vV(DG'D(je) <V(G"(jw))

and
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DG (0)D+D G (0)] D>0

Design procedures:

1. Find matrix U and calculat&s™ (s).
2. Check the pairing. Examine the proposed pairingguBiIC condition:

+ + T
G(@M+M[G(®]>o
3. Use matrix M obtained in the step 2 to derive D= M*'?
4. Calculate v(D™'G*(jw)D) for different frequency points. These frequency

points form a setQ D[O,a)E] where a is the frequency which is high enough

sych tantv(D™G*(jw)D) - 0 for w> a.

5. For each loop of the controller, solve problem:

QQPM)
such that
1 .i<1
1G] (jokg, | 1+ | 1]
! ! jTgjw
and
V(W
TR = keivs(@) , DwOR, i=14-n

I:l_ k:,i Vs (a)):| 2

6. Obtain the final controller settingsk,; =U; kZ;

This method is limited to open-loop stable processe
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Ve (8(s), @)= v (W(s),a), DeOR

Robust Stability Condition

If the uncertainty is passive, then the contrdBesnly required to render systéim
strictly passive to achieve robust stability evenA is very large.

If the uncertaintls passivity index is bounded by

Ve (A(S), w) 2 Ve (W(s),w), DwOR

whereW(s) is minimum phase, the closed-loop system wiltdigust stable if
system

T(S[ -W(IT(9] ™"

is strictly passive.

The basic idea:

1. Characterise the uncertainty in terms of patysiising IFP or OFP.

2. Derive the robust stability condition for systemith uncertainties bounded by
their passivity indices.

3. Develop a systematic procedure to design thestatontroller which satisfies
the above stability condition.

Passivity Based Robust Control Design
® Blended approach
® Design a controller thet satisfies the small gaindition at high
frequencies and satisfies the passivity conditidowa frequencies
(Bao, Lee et al 1998)
® Based on the bilinear transformation
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® Multi-objective control design
® Design a controller that satisfies the passivitgdition for robust

stability and achievesJ control performance (Bao, Lee et al 2000,

2003)
® Based on KYP lemma and Semi-Definite Programming

Example:
0126  -0.10E™*
G(s)=| B0s+1l  (4Bs+1)(45s+1)
0.094e™* - 012
38s+1 35s+1

Passivity index

-0.03
10-4 10-2 1 10+2 10+4

F. Design by Sequential Loop Closing

Advantages of sequential design:
1. Each step in the design procedure involves degigmity one SISO controller.
2. Limited degree of failure tolerance is guarantdestability has been achieved
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after the design of each loop, the system will i@nsgable if loop fail or are taken
out of service in the reverse order of they werggled.

3. During startup, the system will be stable if theds are brought into service in the
same order as they have been designed.

4.

Problems with sequential design:

1. The final controller design, and thus the contiadlgy achieved, may depend on
the order in which the controllers in the indivitliops are designed.

2. Only one output is usually considered at a time, the closing of subsequent
loops may alter the response of previously desidmegs, and thus make iteration
necessary.

3. The transfer function between inpytand output ymay contain RHP zeros that
do not corresponding to the RHP zeros of G(s).

Notations:

1. G(s): the nxn matrix of the plant,G(s) ={g;,(9; i, j=1,--,n}
2. C(s)=diag{c(9; i=1,---,n}

3. S=(1+GC)*; H=1-S=GC(+GC)*

4. G=diag{g(9; i=1--,n}

5. S=diag{s(9; i=1,--,n}= dlag{ =1,---, 1}
guq

6. H=diag(3; =L n}=diagl - 2%~ 9SG . =10
+0i¢’

7. T=GG™={y; i j=1--,n}

8. CLDG=GG'G,
9. E=(G-G)G™

e R B

11.§ =(! +Gka)_1; H, =G,C (] +Gka)_l

12'|:|k:{|_(|)k §:|, S:{% 2}’ i=k+1,K+ 2,---N
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S=(1+GC)™* =[I +GC+(G-G)C] ™
={[| +G-G)C(l +G~C)_1}(I +GC)}_l

={[| +(G-G)G G|l +éc)_l}(| +GC)}

-1

-1 -1

=(1+6¢) " (1+EA) " =51 +EA)
Design procedures:

- -~ - ~ -1
In each of the following stepS= S, (I + E.H,) ™ E, =(G-Gy) (Gk)
Determine ¢ such that”\NpSNDHDis minimized.

Step Q Initialization. Determine the order of loop dlug by estimating the
required bandwidth in each loop. Also estimateitisievidual loop designs

in terms of H .
Step 1.Design of controller cby considering output 1 only. In this case, weehav

G, =G.and H, =H
Step k. Design of controller ck by consider outputs 1 tdlkre,

G =diag{G,, g}; i=k+,k+2,---,n and

Hy =daig{H, R}; i=kk+L-n
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Sequential Design Using Relay feedback Tests of $hend Yu

The relay feedback system for SISO auto-tuning isteown in the follwing figure:

yser?(r_e‘i’:e—”* G(s) b ¥

When constant cycles appear after the system leasdwdivated, the ultimate gain
and ultimate frequency of the open-loop systembmaapproximated by measuring
the magnitude and period (see the following figwed by the following equations:

SIRVEVEY,

Ngipugny

AWAT A

=

The Z-N tuning method can be used to determinednéroller parameters:

Pl Controller: K_.= 0.48, ,7;=R, /1.2,
PID Controller: K. = 0.68, , x=PR, /1.2, 1,= B&BR,
Or, use the Tyreus-Luyben’s formula to give masaservative response:
Pl Controller: K. =K, /3.2, 13= 2R ,
PID Controller: K, =K, /2.2, 1= 2R, ,1,=R, /€
To avoid the difficult mathematics envolvedtie formulation of sequential
design, Shen and Yu suggested to use the relapdekdest as shown in the

following figure:
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The controller for a2x 2system is suggested:

Pl Controller:  K.=K_ .z /3, 1= B,

Analysis:
The sequential design is derived by consideringrib#i-loop control system as
coupled SISO loops. For @x 2system as example, the equivalent SISO loops are:

0,(9) = 91,(9) LL-(L——=-) hy(s)}

A(9)
0,(9 = 05.5(9) {1 —(1—713)) hy(s)}
_ 9c¢i%; .. _
Where, h(S)—m, | —1,2

Notice that, if there is damping i, or g,, this damping should come from either

h, or h,. According to tis study, a closed system havingc@®PDT process and a
modified ZN tuned PI controller will result in aosled-loop system (i.ehyand h,)
having damping factor greater than 0.6. It is thastulate that the open-loop transfer
functions g,(s) andg, € )can be approximated by:

k r,S+1
G(S): — p p2 @—93
r°s”+2r{s+1 1,s+1

Then, the stability region of the equivalent SI®0ds are explored with the

parameters:r, 7, =0~10,k,=1r=5¢= 0.1~-19 /= 0.02~C. The results

pl’
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are given in the following figure. It can be sebkattthe modified ZN tuning formula
proposed greatly improve the stability.

Modified Z—N method Modified Z—N method

2.0 .

1.5 Unstable Region
£
o
L] 10 =1.0

o8 )

¢ =01
0.0 0.0
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
Tp1/Tp Tp1/Tp
Z—N method Z—N method

2.0 2.0

1.5 1.5 Unstable Region
& Unstable Region
10
¢

0.5 =01

=10
o 4 \W
0.0 0.5 1.0 15 2.0

On the other hand, the convergence of the seqlielesggn for the multi-loop
controller is formulated as the problem of findihg roots of simultaneous algebraic
equation using sequential iterations.

The simultaneous equations are obtained from thdittons of phase crossover for
the two loops, that is:

MG (aws 4] _
Re[gl (j%,bj%,z)]

MG (s )]
ReL g (0.i6, 2)]

Fillwp i@, ) =tan

Fo(jaua ja o) = tan”

The convergence of the iteration is guaranteed siyffecient condition of the
following:

(aa} (an
0q, , @, 0, 1 “: g

[an (ag}
0w, @, 0w, » .
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The procedures of this proposed sequential desigisummarized with the flow

@ sign of diagonal elcmenj

chart as shown.

Rank the loop
speed from fast
to slow into 1,2,...,n

—
P Identification [re————————3p (Eq:_s;%‘nzz) Loop 1

1
J Reconfiguration |
no yes
Identification @ design Loop 2
C e

—

Reconfiguration
\ 4 B0
yes
Identification destgn Loopn
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