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Abstract: 

 

A plasticity-fracture constitutive model is presented for prediction of the behavior of 

confined plain concrete. A three-parameter yield surface is used to define the elastic limit. 

Volumetric plastic strain is defined as hardening parameter, which together with a nonlinear 

plastic potential forms a non-associated flow rule. The use of non-associated flow rule 

improves the prediction of the dilation behavior of concrete under compressive loading. To 

model the softening behavior, a fracture energy-based function is used to describe strength 

degradation in post-peak regime. The Euler-forward algorithm is used to integrate the 

constitutive equations. The proposed model is validated against the results of triaxial 

compressive experiments. Finally, the behavior of plain concrete confined by layers of carbon 

fiber reinforced polymer is studied to show capability of the model for passive confinement. 

d
 

 

1. Introduction 

 

In recent years, the emphasis on cost-efficient use of 

concrete as a structural material has resulted in an 

increasing attention towards the nonlinear analysis of 

concrete structures. This trend is all the more important 

when the efforts in improving computational techniques are 

combined with the ever increasing capabilities of digital 

computers. These techniques can ensure structural safety 

and cost-efficiency by taking advantage of the nonlinear 

behavior of concrete. 

Complex nonlinearities of plain concrete stem from its 

nonlinear stress-strain behavior, tensile cracking, crushing 

failure and creep-induced strains. All these characteristics 

strongly depend on triaxial states of stress. In a nonlinear 

analysis, aside from the numerical method used to solve the 

equations, the way the material behavior is modeled plays a 

significant role in the validity of the analysis.  Therefore,it 

is necessary to concentrate serious efforts on correct 

description of material behavior and its implementation in a 

numerical algorithm. 

 

 
*Corresponding Author: Assistant Professor, Department of Civil and 

Environmental Engineering at the University of Illinois at Urbana ,USA . 

Email : meidani@illinois.edu 

 

 

 

 

 

 

Various investigations have focused on proposing a 

proper description of concrete behavior under triaxial 

compression. Among the proposed models, only a few 

describe the entire response spectrum based on a unified 

formulation. In such cases, a constitutive model capable of 

describing various behaviors of concrete using unified 

formulation would invariably decrease the computational 

efforts. 

Considering the significant inelastic compressive 

behavior of concrete, the theory of plasticity is regarded as 

the most efficient basis to formulate the compressive 

behavior of concrete. Recent researches on plasticity-based 

constitutive modeling include a model by Imran and 

Pantazopoulou [1] in which damage is quantified by the 

volumetric expansion together with a non-associated flow 

rule. The softening behavior is modeled based on a 

formulation other than fracture energy base. Also in the 

literature is the model proposed by Grassl et al. [2] which 

uses volumetric plastic strain as the hardening parameter 

which together with a nonlinear non-associated flow rule 

constitutes the hardening formulation. The softening model 

is based on axial behavior of two specimens under different 

levels of confinement. More recently, Shen et al. [3] has 

proposed a constitutive model based on Drucker-Prager-

type plasticity.  
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To increase the compressive strength of concrete 

materials, the elements under compression are wrapped by 

Fiber Reinforced Polymer (FRP) layers resulting in 

different behavior for the confined material. Among the 

recent researches on constitutive modeling for FRP-

confined concrete, Spoelstra and Monti [4] have proposed a 

uniaxial model which is suitable for fiber type modeling, in 

which the cross section of the element is divided into a 

number of fiber elements with specified uniaxial stress 

strain relation. 

To take into account the effects of lateral confining 

stress on the axial performance of concrete, Mirmiran and 

Shahawy [5] investigated the difference between the 

behaviors of steel- and FRP-confined concrete. They 

performed several experiments on concrete columns and 

concluded that the dilation behavior of concrete leads to 

difference between the behaviors of steel- and FRP-

confined concrete. Later, Samaan et al. [6] proposed a 

bilinear stress-strain relation for the behavior of concrete in 

axial and lateral direction. Xia and Wu [7] have also 

proposed a bilinear relation between the stress and strain of 

FRP-confined concrete in axial and lateral directions and 

performed several experiments to verify the model.  

The current paper describes and summarizes the 

formulation of a plasticity-fracture constitutive model for 

confined concrete. As discussed before, the theory of 

plasticity is regarded as a suitable basis for modeling the 

hardening behavior of concrete. In comparison with the 

other constitutive models, the current model uses 

volumetric plastic strain as the hardening parameter. This 

parameter enables the model to correctly include the 

dilation characteristics of concrete. For softening branch, 

different from the aforementioned recent models, the 

current model uses fracture energy method. Since the 

failure characteristics of concrete are governed by the 

development of cracks, the fracture energy becomes a more 

reasonable choice. 

The simple triaxial formulations of the current model 

have enabled it to be used widely in analysis program. It 

will be shown that the behavior of FRP-confined concrete 

is well predicted by this model, while it has not the 

shortcomings of an axial or biaxial stress-strain relations 

proposed for this kind of modeling (Spoelstra and Monti 

[4], Mirmiran and Shahawy [5], Samaan et al. [6] and Xia 

and Wu [7]). 

 

 

2- Hardening Behavior  
 

Concrete is a semi-brittle heterogeneous material 

consisted of aggregates, air voids, water and cement. 

Nevertheless, for simplicity, an isotropic behavior is often 

assumed for plain concrete. This assumption does not 

significantly sacrifice the accuracy. To model post-yield 

behavior of concrete in the hardening branch, plasticity 

formulation is used. In plasticity formulation there should 

exists a yield surface, a hardening law and a flow rule. The 

yield surface defines elastic limit. The hardening law 

describes the evolution of loading surface. The flow rule 

defines the plastic strain vector. 

In general, numerical integration of constitutive 

equations is accomplished by predicting an elastic behavior 

which results in an elastic predictor stress. During each 

increment, if plastic loading occurs, the elastic predictor 

stress is returned to a suitably updated yield surface 

ensuring that consistency condition is maintained. Over the 

last three decades, many algorithms for constitutive 

integration of various elastoplastic models have been 

developed. Of these algorithms, the Euler forward 

algorithm has remained the most popular due to its 

simplicity and its avoidance of large iterations at Gauss-

point levels. 

In current constitutive modeling, an Euler forward 

algorithm is used to integrate the rate-independent, small-

deformation elastoplastic formulations. The elastoplastic 

tangent modulus, as described later, is constituted, using 

Euler forward algorithm, as 
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Where ijklD  is the elastic modulus, f is the yield 

surface, g is the plastic potential and H is defined by 
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where q is the hardening function and  is the 

hardening parameter. 

In each load increment, first an elastic predictor stress is 

calculated. If the stress lies outside the yield surface, it is 

corrected by consistency condition and the elastoplastic 

modulus is used to evaluate the stress increment from the 

strain increment.  

The yield surface used in this paper is a three-parameter 

criterion proposed by Menetrey and Willam [8]. The 

criterion is formulated in the Haigh-Westergard space, as 
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Where   is the deviatoric stress,   is the hydrostatic 

pressure, hq and sq are hardening and softening functions, 

respectively, and   and e are two parameters for defining 

the yield surface which will be explained later.  The 

parameters m and r are defined by equations (4) and (5): 

 
2 2

3. .
. 1

c t

c t

f f e
m

f f e





        (4) 

where cf and tf  are the compressive and tensile strength 

of concrete, 
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This failure criterion is a combination of the maximum 

tensile stress condition of Rankine (cut-off condition) and 

the Mohr-Coulomb friction law of limited shear strength. It 

provides a fair description of tensile/cohesive strength of 

cementitious materials as well as a reasonable description 

of shear strength of frictional materials. It takes into 

account the effect of all three principal stresses. Besides, 

the friction and cohesion parameters are decoupled so that 

direct control on hardening and softening behavior would 

be possible. The eccentricity e describes the out-of-

roundness of the deviatoric trace of yield surface. It is 

recommended to set 6.0e5.0   to predict an 

acceptable equi-biaxial strength envelope for low and 

medium strength concretes (Menetrey and Willam [8]) 

In this constitutive modeling, the volumetric plastic 

strain is used as hardening parameter, which is defined as 

 

  p
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p
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This parameter depends on hydrostatic pressure, and can 

consequently include the effects of this pressure on 

concrete behavior. Therefore, no other function is required 

to be calibrated, and fewer parameters are included in the 

formulation. 

The aforementioned hardening parameter together with 

a nonlinear plastic potential defines the hardening behavior 

of concrete (Grassl et al. [2]). As mentioned, the plastic 

flow defines the plastic strain with the aid of a function, g, 

called plastic potential. Here a non-associated flow rule is 

used, i.e., the plastic potential is different from the yield 

surface. Since approximating the plastic potential with a 

quadratic function result in good agreement with 

experimental data, the nonlinear plastic potential is defined 

as (Grassl et al. [2]): 

 

0.. 2   BAg        (7)

       

Two parameters of plastic potential need to be calibrated 

based on uniaxial and triaxial compression test data. As 

mentioned before, the volumetric plastic strain is chosen as 

the hardening parameter. There are three fundamental 

assumptions based on which the two parameters are 

calibrated, as follows (Grassl et al. [2]): 

a. The peak stress in uniaxial compression 

,cf corresponds to zero volumetric strain. This assumption 

is corroborated by reports by Kupfer et al. [9], Van- Mier 

[10], and Imran [11].  

b. The failure threshold for all stress states is 

assumed to be volumetric plastic strain in peak stress in 

uniaxial compression.  

c. The inclination of total plastic strain is equal 

to the inclination of plastic strain increment at 

corresponding stress state. The report by Smith [12] 

supports this assumption. 

 

Therefore, parameters A and B are derived as below 

a. Plastic strain at the peak stress in uniaxial 

compression 

The axial component of plastic strain is equal to the total 

axial strain minus the elastic portion: 
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and considering zero volumetric strain at the peak stress, 

the lateral components are derived as 
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Therefore, the volumetric plastic strain would be equal 

to the volumetric elastic strain, as 
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b. Plastic strain at the peak stress state in triaxial 

compression 

The axial component of plastic strain at peak stress state 

is therefore, as 
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and the lateral components are 
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Using Eqs. (8) to (12), the inclination of plastic strain at 

peak stress in uniaxial and triaxial compression states is 

calculated as 
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Besides, the length of deviatoric stress vector is derived 

for uniaxial compression as 

 

3

2
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and for triaxial compression, as 

 

 

c

3311
2

f
.

3

2 
       (15)

       

 

D
ow

nl
oa

de
d 

fr
om

 n
m

ce
.k

nt
u.

ac
.ir

 a
t 1

9:
19

 +
04

30
 o

n 
W

ed
ne

sd
ay

 M
ay

 6
th

 2
02

0

http://nmce.kntu.ac.ir/article-1-42-en.html


Numerical Methods in Civil Engineering, Vol.1, No. 3, March.2015 

 

The inclination of the total strain is derived by 
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and finally, the two parameters A and B are determined 

by solving a set of two equations corresponding to two 

different stress states 
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where the indices indicate the corresponding stress state. 

 

 

3. Strain-Softening Behavior 
 

There are different methods for modeling strain-

softening behavior of plain concrete. Among them, 

plasticity-based models and continuum damage mechanics 

are categorized in the continuum mechanics approach. 

Originally developed for metals, classic plasticity theory 

fails to present an acceptable description of failure process 

in concrete due to its fundamentally different nature. 

Therefore, some modified plasticity models have been 

proposed for plain concrete. 

The plasticity-based and continuum damage-based 

models regard the strain-softening as a distributed or 

average characteristic. On the other hand, the crack band 

model (Bazant et al. [13]) and the fictitious crack model 

(Hillerborg et al. [14]) deal with localized tensile crack 

based on the concept of fracture energy. There are 

computational advantages in using a distributed fracture 

versus localized crack based models. 

Among others, Pramono and Willam [15] have proposed 

a fracture energy-based macro model describing the loss of 

strength in post peak regime based on the loss of tensile 

strength with increasing crack displacement. The softening 

function is thus defined as a function of uniaxial tensile 

stress 
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in which t is defined as 
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in which fu is crack displacement and ru is rupture 

displacement. The crack displacement is related to the 

fracture strain as 
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and 

I

f

II

f

G

G
is proposed as a function of major principal 

stresses as 
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where 1  is the normal stress in which the parameters 

As and Bs are determined using test data with low and high 

levels of confinement. 

The softening function used in present study is defined 

as a function of tensile crack displacement. It is calibrated 

by a function for taking into account the effects of different 

levels of confinement on post-peak behavior, as 
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The increment of tensile crack displacement is defined 

as 

 

ftf ε.hu          (24) 

 

in which ht is crack spacing and f  is defined as 
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where <.> denotes the length of the vector. The two 

parameters in the softening function are calibrated using 

the data of two experiments with different confinement 

levels. The curves of the proposed models with different 

values of As and Bs are compared with corresponding test 

data until the parameters result in curves which are in 

reasonable agreement with the two data sets. The softening 

function is schematically illustrated in Fig. 1. 

Finally, the remaining problem is to integrate the 

softening constitutive equations. Satisfying the consistency 

condition, the updated stress is related to the total strain 

through an elastoplastic modulus, as [16] 
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Fig.1: Schematic illustration of softening function 
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                Fig.2: Comparison of the proposed model with results of 8.6 MPa confinement experiment 

 

                               

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Verification 
 

The capability of proposed model is evaluated in 

comparison with experimental data of confined concrete. 

The proposed constitutive equations are used in a computer 

program to produce stress-strain behavior of concrete based  

on the assumption that the confining stresses remain 

constant during loading, i.e., active confinement.  

The performance of the proposed model is compared 

with the results of triaxial compression test by Imran [11] 

for different levels of confinement. The comparisons are 

presented in the stress-strain curves in the axial and lateral 

directions in Figs. 2 to 5. The model parameters are set to 

f’c=47.4 MPa, ft

e=0.52. The hardening and softening functions are 

calibrated as Ah=-15.63, Bh=32.26, As=0.07, Bs=0.12. 

The performance is also verified by comparison with the 

experimental data reported by Kotsovos and Newman [17]. 

The comparison is illustrated in Figs. 6 to 9. The concrete 

specimens are loaded under four different levels of 

confinement, i.e., 18 MPa, 35 MPa, 51 MPa, and 70 MPa. 

The material properties are set to E= 30 GPa, c = 

46.9 MPa, ft = 4.69 MPa, and e = 0.52. 

The performance of the model under high hydrostatic 

pressures is also verified by comparison with the 

experimental data of Bazant et al. [18] in Figs. 10 to 12. 

The model parameters are set to E = 35 MP c 

= 45.5 MPa, ft = 4.55 MPa, and e = 0.52. 

Good agreement observed in prediction of stress-strain 

relations of experiment results in both the medium and high 

levels of confinement pressure. 
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                            Fig.3: Comparison of the proposed model with results of 17.2 MPa confinement experiment 
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Fig.4: Comparison of the proposed model with results of 30.1 MPa confinement experiment 
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-250

-200

-150

-100

-50

0

-0.07 -0.06 -0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04

Proposed Model

Experimental Results

33  (MPA)



33 11 = 22

33

22

11

             Fig.8: Comparison of the proposed model with results of 51 MPa confinement experiment 
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Fig.9: Comparison of the proposed model with results of 70 MPa confinement experiment 
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                          Fig.10: Comparison of the proposed model with results of 100 MPa confinement experiment 
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                          Fig.11: Comparison of the proposed model with results of 200 MPa confinement experiment 

-900

-800

-700

-600

-500

-400

-300

-200

-100

0

-0.06 -0.05 -0.04 -0.03 -0.02 -0.01 0

Proposed Model

Experimental Results

33 (MPA)

33

                        Fig.12: Comparison of the proposed model with results of 400 MPa confinement experiment 

D
ow

nl
oa

de
d 

fr
om

 n
m

ce
.k

nt
u.

ac
.ir

 a
t 1

9:
19

 +
04

30
 o

n 
W

ed
ne

sd
ay

 M
ay

 6
th

 2
02

0

http://nmce.kntu.ac.ir/article-1-42-en.html


65 

 

5. Passively Confined Plain Concrete 
 

The objective of this section is to demonstrate the need 

of considering the different governing equations for 

passively confined concrete. As mentioned earlier, the 

confinement significantly affects strength and ductility of 

concrete. The confinement in structural concrete is 

activated by preventing its lateral dilation through 

circumferential restraining mechanisms. Therefore, the 

confining stresses depend on the strains imposed during the 

loading, hence accentuating the need of including passive 

confinement relationships. 

The confining stresses in the model should account for 

the passive nature of the confinement mechanism, through 

the use of two springs in the two lateral directions which 

correlate the confining stresses to the lateral strains of 

concrete core.  

In the present study, the behavior of plain concrete 

confined by carbon fiber reinforced polymer (CFRP) layers 

is considered. The confining layers remain linear elastic to 

failure, thus it is expected that up to final steps of loading, 

plain concrete undergoes increasing confinement. 

The constitutive equations of passively confined plain 

concrete are studied by Grassl       et al. [2]. Fig. 13 shows 

the free body diagrams, based on which the formulations 

are developed. Only the concrete core is assumed to be 

loaded. The cohesive stresses at the interface of concrete 

and CFRP layers are neglected, and the radial stresses are 

assumed to be constant and uniform throughout the cross 

section. Finally, the radial stiffness created by confining 

layers, Kr, is derived in term of the axial tensile stiffness of 

the layers, E, as 

 

E.
r

t
K r  .                     (27)

         

The element considered in the present study is a 3D 

element confined in the two lateral directions by linear 

springs and loaded in the axial direction (Fig. 14). The 

behavior of CFRP layers is assumed to remain elastic up to 

the ultimate stress. The Young modulus of the layers is set 

u = 2000 

MPa. A specimen with the radius r=75 mm confined by 

1mm CFRP layers is analyzed. According to Eq. (27), the 

radial stiffness would be Kr = 1.33 GPa.  

The results of the analysis performed considering 

passive confinement equations are presented in Fig. 15. 

The analysis is terminated when either the radial confining 

stresses reaches its ultimate value or the confined concrete 

reaches its failure. It can be inferred from the curve that the 

axial stress continually increases up to the failure of the 

specimen, mainly due to the increasing level of confining 

stresses in the CFRP jacket. This reinforces the earlier note 

that modeling of plain concrete confined by CFRP jacket 

should account for the passive nature of confinement in the 

equations. 

 

 

 

 

6. Conclusion 
 

A constitutive model was represented for confined 

concrete. Volumetric plastic strain was used as a hardening 

parameter, and a nonlinear plastic potential was introduced 

and verified. To model the failure behavior of concrete, 

fracture energy-based equation were utilized. Crack 

displacement was considered as a post-peak measure of 

failure and was imposed onto the yield surface by the 

decoupled softening function. 

The model showed capability of predicting behavior of 

confined concrete under different levels of confining 

pressure. The stress-strain curve agreed favorably with the 

experimental data, especially in the peak and post-peak 

regions, signifying the robustness of the proposed model. 

The behavior of plain concrete confined by a CFRP 

jacket was studied using passive confinement equations. It 

was shown that the passive nature of confinement should 

be included in the constitutive equations to appropriately 

model the behavior of plain concrete. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

              Fig.13: The free body diagram of confined concrete  

                and confining layer [After Grassl et al. 2002 [2]] 

Fig.14: Schematic presentation of considered volume 

           element [After Grassl et al. 2002 [2]] 
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               Fig.15: The stress-strain curves in axial and lateral axes for CFRP-confined concrete 
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