
TUGboat, Volume 9 (1988), No. 3

I t e m Pa rag raphs

Items are hanging paragraphs that "hang of f

an identifier. The syntax for this instruction is

\itemC\signif) where (signifier) is any letter,

number, or symbol with optional punctuation; the

braces must be included if the (signifier) is more

than one character.

A second level of indention for itemized lists

is given by \itemitem, which indents twice the

\par indent value. These instructions automati-

cally end the previous paragraph. Refer to Figure 7

for an example.

% Figure 7 Items

\parskip 9pt % spaces between pars
\item(l . 1% curly braces contain number
Skillin, Marjorie, Robert Gay, et al.

1964.

Words Into Type.

Mew York: Appleton-Century-Crofts.

\item(2.1

Carter, Rob, Ben Day, and Philip Megs.

1985.

Typographic Design: Process and

Communication.

New York: Van Nostrand Reinhold Co.

\par

Figure 7. Item Paragraphs Source

Items are useful for lists, outlines, and bibliogra-

phies. Figure 8 shows a bibliography.

Skillin, Marjorie, Robert Gay, et al. 1964.

Words Into Type. New York: Appleton-

Century-Crofts.

Carter, Rob, Ben Day, and Philip Megs. 1985.

Typographic Design: Process and Communi-

cation. New York: Van Nostrand Reinhold

Co.

Figure 8. Formatted Items

The instructions presented in this article create

paragraphs. Therefore, you should remember to

end each one with a \par instruction or a blank

line.

There is a lot more to paragraphs, including

ragged margins, repetition of instructions for each

paragraph, and special shapes, but that will be

presented much later. The next of these training

tutorials will address the contents of paragraphs:

special characters, accents, fonts, and lines.

Macros

A Tutorial o n \futurelet

Stephan v. Bechtolsheim

This is the second in a series of tutorials by this

author. This time we will deal with \futurelet,

a rather interesting instruction which causes many

people unnecessary difficulties. This article is

condensed from a draft of my books Another Look

at m. See the end of this article for more

information about the books.

In t roduc t ion

The \futurelet primitive is a instruction

allowing the user to look ahead. The term "look

ahead" means that TJ$ will look at a future

token and provide a copy of that token without

absorbing it, i.e. without removing that token from

the main token list. This operation allows the

programmer to perform a test for "what token is

coming" (to express it in a rather informal way) on

the main token list. The token looked at through

\futurelet will be removed later, typically as part

of an argument of a later macro call as we will see

shortly. It is no t removed by the action of the

\f uturelet primitive.

Let us be more precise now; the \futurelet

instruction has the following format:

\futurelet (tokenl) (token2) (tokens)

Here is what T&X will do:

rn will execute a \let (tokenl) = (tokeng).

We therefore have generated a copy of (tokens)

stored under the name of (tokenl).

TEX removes (tokenl) from the main token list.

TJ$ expands (tokenn). This token is for all

practical purposes a macro with the following

properties:

(a) The macro will use (tokenl), which is a

copy of (tokens), to find out what (tokens)

is, in other words what token is to be

expected later.

(b) It will cause another macro to be expanded

which will ultimately absorb (tokens).

This other macro ordinarily depends on

what (tokenl) is.

There are many applications of \futurelet.

will here present only one example, although

we will present it in quite some detail so the user

will know how to apply \futurelet in different

circumstances.

TUGboat, Volume 9 (1988), No. 3 277

Using \futurelet in Macros with Optional

Arguments

A typical application of \futurelet is the handling

of macros with optional arguments as they are used,

for instance, in IPW. By "optional argument" we

mean an argument which in most cases is omitted,

and is provided only occasionally in macro calls.

Defining the Problem

Let us give a specific example: we would like to

define a macro \xx, which can be called in two

different ways:

1. With optional argument as in \xx [opt] Carg)

where opt is the optional argument enclosed

in square brackets and arg is the regular

argument.

2. Without optional argument as in \xx{arg)

where arg is again the regular argument.

Before we discuss how this can be done in w,
observe that we do not really have to use an

optional argument. We could simply define two

different macros \xxWithOpt for the case where an

optional argument is given, and \xxNoOpt for the

case where no optional argument is given:

How we can use \futurelet to find out

whether an optional argument was given or not?

We will define a macro \xx whose only function is

to check whether there is an opening square bracket

(optional argument is present) or not (no optional

argument). The \xx macro will, after this has been

determined, cause the \xxWithOpt macro to be in-

voked when there is an optional argument, and the

\xxNoOpt macro to be called if there is no opening

bracket. In other words the macros \xxWithOpt

and \xxNoOpt do the "real work while the only

purpose of the \xx macro is to decide which of the

two macros should be invoked.

Here is the completely worked out example.

% (1) First define two macros

% \xxWithOpt and \xxNoOpt which

% \xx will call.

% These macros do "the real work".

% \xxWithOpt : optional argument ([#I] ,
% enclosed in square brackets), and

% regular argument (C#2),

% undelimited) .
% \xxNoOpt : assume no opt. argument,
% but regular argument only {#I).

\def \xxWithOpt [#I1 #2{. . .)
\def\xxNoOpt #I{ . . .)

% (2) The \xx macro has no parameter!

% It only uses \futurelet to check

% whether there is an optional

% argument or not by checking

% whether or not ' [' follows \xx
% in the input.

\def\xx C%
\futurelet\xxLookedAtToken

\xxDecide

1

% (3) The \xxDecide macro, based on
% the lookahead of \xx, calls

% either \xxWithOpt or \xxNoOpt .
\def\xxDecide <%

\if x\xxLookedAtToken [%

\let\next = \xxWithOpt

\else

\let\next = \xxNoOpt

\f i

\next

1

A Macro Call with Optional Argument

Let us now look at the following macro call of the

\xx macro that we have defined: \xx[al (b). This

generates the following token list:

\xx l [* a e l e C e b e)

Now \xx is expanded, yielding the following token

list:

\futurelet l \xxLookedAtToken

l \xxDecide l C l a l 1 l C l b l

Observe that \xxLookedAtToken corresponds to

(tokenl) of \futurelet, \xxDecide to (tokenz) and

to (token3) (see the format of \futurelet in the

introduction above). Observe especially the value

of (token3): this is the token we are interested in.

\xxDecide will test this token to check whether or

not it is an opening square bracket, in order to

decide whether to call \xxWithOpt or \xxNoOpt.

Next executes the \futurelet, assigning [

to \xxLookedAtToken, and then expands \xxDe-

cide. This expansion leads to the following main

token list:

\ifx \xxLookedAtToken l [l \let

l \next l = l \xxWithOpt l \else

l \let l \next l = l \xxNoOpt l \fi

*\next .[.a e l e { e b e)

The \ifx conditional evaluates to true because

\futurelet has just assigned an opening square

bracket to \xxLookedAtToken. Therefore \let\next

= \xxWithOpt is executed and the whole conditional

(from \ifx through \f i) is removed from the main

token list. This leads to the following new main

TUGboat, Volume 9 (19881, No. 3

token list:

\next o C * a 0 1 O C o b 0 1
Because \next is equivalent to \xxWithOpt this is

equivalent t o the following main token list:

\xxWithOpt 0 [l a l 1 l { 0 b l 1
And this is of course exactly what we wanted: the

macro \xxWithOpt is executed and the expansion

of this macro will absorb the optional argument

enclosed in square brackets and the mandatory ar-

gument enclosed in curly braces. Observe that, up

to this point, the opening square bracket stayed on

the main token list.

A Macro Call without Optional Argument

Let us now look at a macro call of \xx with no

optional argument, as in \xx{a). Here is a short

description of what happens. \xx is expanded to

yield the following token list:

\futurelet l \xxLookedAtToken

l \xxDecide l C l a o 1
Therefore an opening curly brace, not an opening

square bracket, is assigned to \xxLookedAtToken.

\xxDecide is now expanded and the conditional

\ifx l \xxLookedAtToken l [this time eval-

uates to false. Therefore the assignment \next

= \xxNoOpt will be executed. This leads to the

following main token list:

\next l (l a l)

and now \next is the same as \xxNoOpt, exactly as

we wanted it to be.

Looking at the Previous Example

Once More, \DblArg

There are frequently cases where a macro requires

two arguments, but both may be identical. In

such a case, a macro may be defined with an o p

tional argument. where the absence of the optional

argument in the input is assumed to imply that

an optional argument identical to the mandatory

argument has been supplied. Using the notation of

the previous example, this means that \xxNoOpt{a}

is equivalent to \xxWithOpt La1 {a}.

The previous example can be easily modified

to define a generic macro \DblArg so that the

definition of \xx reads as follows:

The call \xx{1) is converted into \@xx [I] (1)

% \DblArg
% =======

% #1: the macro to be called
% ultimately (\@xx above).
\def\DblArg #I{%

\def \@DblArgTemp(#l)%

\futurelet\@DblArgTok\@DblArg

1

% \@DblArg: if there was an opening
% square bracket then simply continue.
% Otherwise the main argument has
% to be duplicated to also become
% the argument enclosed in square
% brackets.
\def\@DblArg{%

\ifx \@DblArgTok [%

% Optional argument!
\let\@DblArgTempA=\@DblArgTemp

\else

% No optional argument:
% duplicate!
\let\@DblArgTempA=\@DblArgB

\f i

\@DblArgTempA

% Read in the argument and duplicate
% to also become an optional argument.
\def \@DblArgB #l{\@DblArgTemp [#l] {#I}}

Concluding Remark

This article is. as briefly mentioned in the intro-

duction. an adaptation of a section of my books,

Another Look At m, which I am currently finish-

ing. These books, now two volumes totalling almost

1000 pages. grew out of my teaching and consulting

experience. The main emphasis of the books is to

give concrete and useful examples in all areas of

TEX. (The section on \f uturelet is 18 pages long.

The chapter on \halip contains over 100 tables.)

In Another Look at you should be able to find

an answer to almost any TEX problem.

and the call \xx [I] C2) is converted into \@xx [I] 12).
Here is the definition of the macro \DblArg:

