Improving Trust in the Wikipedia

Thomas Rune Korsgaard

Kongens Lyngby 2007
IMM-MASTER-2007-67

Technical University of Denmark

Informatics and Mathematical Modelling

Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk

www.imm.dtu.dk

IMM-PHD: ISSN 0909-3192

Abstract

The Wikipedia is a free online encyclopedia collaboratively edited by Internet
users with a minimum of administration. Anybody can write an article for the
Wikipedia and there is no verification of the author’s expertise on the particular
subject. This may lead to problems relating to the quality of articles, complete-
ness and accuracy of the information in the articles, and this could result in
distrust in the Wikipedia. It is our opinion that users should be able to assess
the correctness, completeness and impartiality of information in the Wikipedia,
and by that improve their personal trust in the Wikipedia.

In this thesis, we propose a recommendation system, which allows Wikipedia
users to calculate a personalized recommendation for a specific article based on
all the feedback (recommendations) provided by other Wikipedia users. Recom-
mendations are calculated decentralized, which means that recommendations
from users that one user has found useful in the past carries more weight than
recommendations from unknown users or users that the user did not agree with
in the past. This prevents a large population of people with similar political,
social or religious norms from determining the global recommendation of all
Wikipedia articles.

There are currently thousands of wiki installations through out the web, besides
the Wikipedia. The introduction of a recommendation system should therefore
not require any modifications to the Wikipedia engine. The proposed recommen-
dation system is implemented in a proxy placed between the user’s web-browser
and the Wikipedia, for instance on the user’s own machine, so there is no need
to modify the Wikipedia.

A recommender system is build based on recommendations from trusted users.

ii Abstract

The recommendation system continuously updates each trustees trust value
based on the feedback given from the user.

The recommendation system has been evaluated and meets the functional re-
quirements. The recommender system shows correct behavior. Experiments and
benchmarking tests show that using the recommender system does not influence
the Internet experience for its’ users. In our evaluation we propose an approach
to long term usability testing of the recommender system.

Resumé

Wikipedia er et frit internetbaseret encyklopaedi som skrives af Internettets
brugere med et minimum af adminitration. Alle kan skrive en artikel pa Wiki-
pedia og der er ingen verifikation af forfatterens ekspertise pa det pagaeldende
omrade. Dette kan medfgre problemer med artiklernes fuldsteendighed, ngjagtig-
hed og kvalitet af artiklens information, hvilket kunne medfgre mistillid til Wi-
kipedia. Vi mener at brugere skal have mulighed for at vurdere ngjagtigheden,
fuldstezendigheden og objektiviteten af artiklernes information, og derigennem
forbedre deres personlige tillid til Wikipedia.

Denne afhandling foreslar et anbefalingssystem, som tillader Wikipedias brugere
at udregne en personlig anbefaling for en enkel artikel, baseret pa anbefalinger
fra andre brugere pa Wikipedia. Anbefalinger er udregnet decentraliseret hvilket
betyder, at anbefalinger fra brugere som brugeren tidligere har fundet brugbare,
vaegter mere i udregningen af anbefalingen, end anbefalinger fra brugere, som
brugeren ikke kender eller ikke er enige med. Dette modvirker at store popula-
tions grupper i samfundet med samme politiske, sociale, seksuelle eller religigse
normer kan pavirke de globale anbefalinger for en artikel.

Der er tusindvis af wiki installationer, udover Wikipedia, overalt pa nettet.
Ved at indfgre et anbefalingssystem skulle det ikke veere ngdvendigt at lave
modifikationer til det eksisterende wiki software. Det foreslaede anbefalingssys-
tem er udviklet som en proxy mellem brugerens browser og Wikipedia, saledes at
det ikke er ngdvendigt at foretage sendringer til softwaren der kgrer Wikipedia.

Vi har udviklet et anbefalingssystem baseret pa anbefalinger fra betroede brug-
ere. Anbefalingssystemet opdaterer lgbende hver betroet brugers tillidsveerdi
baseret pa de tilbagemeldinger som den betroede bruger giver.

iv Resumé

Anbefalingssystemet er blevet evalueret og det er konstateret at det passer til
de funktionelle krav der bliver stillet, og det udviser den forventede opfarsel.
Eksperimenter og malinger viser at brugen af anbefalingssystemet ikke har no-
gen naevneverdig indflydelse pa Internet oplevelsen. Vi foreslar en metode til
at udfgre en langvarig anvendlighedstest, for at undersgge om det udviklede
anbefalingssystem yder den hjeelp til Wikipedia som er efterspurgt.

Preface

This thesis was prepared at Informatics and Mathematical Modelling, at the
Technical University of Denmark in partial fulfillment of the requirements for
acquiring the M.Sc. degree in engineering.

The thesis deals with the aspects of creating a recommender system for the
Wikipedia, that can provide its’ users with recommendations based on recom-
mendations from trusted users.

The project was completed in the period from January 1%, 2007 to July 31",
2007 under the supervision of Associate Professor Christian Damsgaard Jensen.

An article containing the major findings from this project was submitted to
the 34 International Workshop on Security and Trust Management in con-
junction with ESORICS 2007 in Dresden, with Christian Damsgaard Jensen as
Co-author. Notification concerning the article was not received at the date for
submission of this thesis.

Lyngby, July 2007

Thomas Rune Korsgaard
s011564

Acknowledgements

I would like to thank my superviser Christian D. Jensen for his great support
throughout the entire phase of the project, and for providing ideas, solutions
and general discussion on the topic.

I would also like to thank Kirstine Sandg Hgjland, Esben Kolind, Anders Dohn
Hansen and Susanne Korsgaard for their ideas and proofreading.

Thanks also goes to the friends of IMSOR (Anders, Teis, Kristian, Jens and
Aske) for providing amusement and some good table tennis matches throughout

the project.

Finally a special thanks goes to Bodil for your patience throughout the project.

Contents

Abstract

Resumé

Preface

Acknowledgements

1 Introduction
1.1 Imtroduction e
1.2 Definition of terms

1.3 Structure of this thesis

2 State of the Art
2.1 Theory and Research on Trust and Trust Management

2.2 General Research on Recommender Systems

iii

vii

CONTENTS

2.3 Security 17
2.4 Programmable Proxies 0L 22
25 MediaWiki 24
2.6 Resilient Aggregation. oL oL 25
2.7 Semantic Similarity between Sentences 26
2.8 Summary 27
Analysis 29
3.1 The Scenario 29
3.2 Specification of Requirements 30
3.3 Wikipedia Architecture L L. 33
34 Key Challenges o 35
3.5 SUMMATY . . . oo e e e e e 39
Trust Model 41
4.1 Model Background oL 41
4.2 General Architecture 43
4.3 Structure of the Trust Model 45
4.4 Formalizing the Model 0. 52
4.5 Conclusion on the Trust Model 56
4.6 SUMMATY . . . o v v e vt e e e e e e 57
Design 59

5.1 Internal Architecture of the Proxy 59

CONTENTS Xi
5.2 The HTTP Module 61
5.3 The Page Module oL 63
5.4 The Rating Module 64
5.5 The Trust Module 66
5.6 Security design Lo 67
5.7 Summary e e e 69

6 Implementation 71
6.1 Technologies Used 71
6.2 Scone ... e 72
6.3 Implementation of WRS 74
6.4 Implementation Overview 75
6.5 WRSSetup 86
6.6 SUummaryo e e 87

7 Evaluation 89
7.1 White box testing Lo oo 89
7.2 Black Box Testing 90
7.3 Benchmarking o o 93
7.4 Requirementso 95
7.5 Long Term Usability Testing 96
7.6 SUMMATY . . . v v e e e e 98

8 Future Work and Research

99

xii

CONTENTS

8.1 Areas in Need of Research

8.2 Future Work

Conclusion

An Example

A.1 Trust Updating

A.2 Calculating a Racommendation

Installation Instructions
B.1 Components needed
B.2 Installation

B.3 Register plugins

Code

C.1 Benchmark Package
C.2 Page Package
C.3 Rating Package

C.4 Remote Package
C.5 Sconeplugin Package
C.6 Statictools Package
C.7 Trust Package
C.8 Test Package

C.9 Test.Page package

103

CONTENTS xiii
C.10 Test.Rating package 165
C.11 Test.Statictools Package 168
C.12 Test. Trust Package 172
C.13 Static Text Files 176

D Test Material 183
D.1 Serving a Recommendation 183
D.2 Giving Feedback oo 183
D.3 Output from Scone o 184

E Content of the CD-ROM 187

F Foldout diagrams 189

xiv CONTENTS

List of Figures

2.1 Simple trust model as presented by Jonker and Treur [19]
2.2 Forgetabillity in trust dynamics

2.3 Encryption an decryption with a public and private key cryp-
tosystemo oL

2.4 Signing and verification of a message with digital signature algo-
rithm

2.5 A model of Public Key Infrastructure. Trustee A trusts Trustee
B because they both got their certificate from the same CA. . . .

2.6 FEve fabricates a message to Alice, making it look like it originates
from Bob

2.7 Eve intercepts a message that Bob sends off to Alice. Eve alters
the content and forwards it to Alice

2.8 Eve intercepts all message that Bob sends off to Alice. All mes-
sages are deleted, and Alice never receives a message

2.9 The Scone framework

2.10 The general architecture of MediaWiki.

20

XVi LIST OF FIGURES
2.11 Structure of the words on WordNet 27
3.1 Simplified overview of the Wikipedia architecture 34
3.2 Before and after the proxy is inserted in the the network. 36
4.1 Co-ordinate system where trust is represented 44
4.2 Initial linear trust evolution function. 48
4.3 Trust evolution function, the cautious and the optimistic curve . 49
4.4 Trust evolution function, several possible curves 49
4.5 Positive experience in trust 51
4.6 Negative experience in trust 51
4.7 Trust Evolution Function represented with a polynomial expression 53
4.8 The superellipse plotted where a =1, b=1andn=4 54
4.9 The trust function plotted wherea =1, b=1landn=2 55
5.1 Internal architecture of the proxy 60
5.2 Sequence diagram: Finding the ratings. 61
5.3 Sequence diagram: Calculating the recommendation and feeding

the recomendation in a modified HTML document back to the

USET. o v v v v e e e e e e e e e e e e 62
5.4 Sequence diagram: Updating the trust values based on the user-

feedback. 63
5.5 Distribution of the public and private key 68
6.1 Overview of the plugin setup. 73
6.2 Overview of the Scone Proxy API. 74

LIST OF FIGURES xvii

6.3

6.4

6.5

6.6

6.7

6.8

B.1

B.2

B.3

D.1

D.2

D.3

F.1

F.2

Overview of the packages that are used in the WRS. 76
Overview of the Sconeplugin classes 76
Overview of the Rating classes 79
Overview of the Remote classes 81
Overview of the Trust classes 82
Overview of the Statictools classes 85
Register the WRS plugin 111
WRS plugin successfully registered 112
Setup the username and password for the database 112
A recommendation is inserted into the browser 184
Feedback given L 184
Scone output after feedback giveno 185
Package and class diagramo 191

A recommendation is inserted into the browser 192

xviii LIST OF FIGURES

List of Tables

7.1

7.2

7.3

7.4

7.5

7.6

Al

A2

A3

White box test for the test.page package 90
White box test for the test.rating package 91
White box test for the test.trust package 91
White box test for the test.statictools package 92

Loadtimes for the proxy based on number of ratings related to
an article L L L 94

Initialization times on the proxy based on the number of certificates
that have to be downloaded 94
Diana’s RoR, which showing the trust values towards the other

USEIS + v v v v e e e e e e e e e e e e e e e 107

Charlies’s RoR, which showing the trust values towards the other
USETS « « v v v v e e e e e e e e e e e e e e e e 107

Ratings on article Alpha 107

XX

LIST OF TABLES

CHAPTER 1

Introduction

1.1 Introduction

The Wikipedia is a free online encyclopedia where the content is written by
voluntary writers from all over the world. All the articles in the Wikipedia can
be edited by everybody and content can be removed or added. There are no
restrictions on how to write, which content may be created and there are no
requirements to the author’s knowledge or writing capabilities. The Wikipedia
is based on the wiki philosophy [7] that allows users to freely create and edit
Web page content using a browser.

As a result of the freedom, the number of articles in the Wikipedia is growing
rapidly. Alone in the English Wikipedia there are close to 1.8 million articles
at the time of writing and there are around 2000 new articles emerging each
day in the English Wikipedia [38]. These articles are created by voluntarily by
individuals, who provide information on their own field of expertise or interest.
This increases the chances of finding an article on a topic, even though there
might only be a few experts in the world. Because all these articles are written
by individuals, the articles can become subjective and not reflecting an objective
description on the topic. This is especially the case when the article’s content
is political, religious, racial, sexual or otherwise dependent on taste.

2 Introduction

The open and flexible nature of the Wikipedia has exposed weaknesses of col-
laborative authoring, which is that malicious or incompetent users may com-
promise the integrity of the documents by introducing erroneous entries or cor-
rupting existing entries.

Jimmy Wales, the co-founder of the Wikipedia, claims to receive 10 emails every
day from students who failed their courses because information cited from the
Wikipedia turned out to be wrong [30].

Another example of the weaknesses in Wikipedia was in January 2006, when
an IP scope from the US Congress was banned from editing in the Wikipedia
because both the House and the Senate had been treating the Wikipedia as a
personal battleground, fighting turf wars and repeatedly altering content about
congressmen listed on the site [34].

A third example of misuse of the Wikipedia was a conflict between Adam Curry
and Dave Winer, who both believed themselves to be the father of podcasting.
An anonymous IP address kept making changes to the article on podcasting
leaving only Curry as the Father of podcasting. The IP address was traced back
to Curry [26].

A final example of misuse was an article on the Wikipedia about the assassina-
tion of president John F. Kennedy, which claiming that an innocent journalist
(John Seigenthaler) had been involved in the planning and execution of the
assassination. The false article was a part of the Wikipedia for four months

[32].

These examples show how easy it is to be misinformed by the content of the
Wikipedia. We propose a solution to filter the good content from the bad
content.

1.1.1 Quality of the Content

The quality of a Wikipedia article is determined by a few simple properties,
i.e., if the article complete, correct and unbiased. However, these properties
are difficult to determine automatically and despite some promising work in
this area [12, 39], which proposes systems that analyze an article automatically
based on a predefined set of rules, we do not believe that these techniques are
sufficiently mature at the moment. Instead we propose to rely on feedback
from the users, i.e., to use some some recommendation system similar to the
ones used by Amazon [1], IMDDb [2] or the ”"WOT” plugin for Firefox [1]. A
recommendation system cannot prevent undesirable content from entering the

1.1 Introduction 3

Wikipedia, but it may help readers assess the quality of Wikipedia articles
and allow them to decide whether to trust the article or look for more reliable
information elsewhere. Moreover, introducing a reputation system is in line
with the Wiki philosophy, where we find few mechanisms to prevent malicious
or accidental modification of a Wiki page; detection is left to the users and the
only means of response is to restore the previous page.

In our proposal recommendations are gathered from feedback from other users
that have given similar feedback, and use the feedback from these other users as
recommendations for the active user. With this approach we can create a system
that relies on decentralized calculations, that are carried out on the client side,
instead of centralized calculations that are carried out on server side.

Relying on a central database means that large populations holding certain be-
liefs will dominate smaller populations with different cultural standards, e.g.,
feedback from the so-called Bible Belt in the Unites States (86.5 million in-
habitants) will dominate feedback from a small progressive country, such as
Denmark with 5.5 million inhabitants. Bearing in mind the significant cultural
differences in those tow populations regarding what is considered appropriate
information for young people regarding subjects like sex education and contra-
ception we find this insufficient. We therefore believe it is essential to extend
this simplistic way of approaching the issue in two ways. Firstly, for systems
relying on central databases, we find it important for users to be able to choose
a database reflecting values in a community that match their own culture, as
far as definitions of content acceptability and unacceptability are concerned.
Secondly, experience shows that combining trust based on personal experience
with recommendations (direct reports of reputation) tends to give stable and
reliable evaluations [22].

1.1.2 Objective

In this thesis we propose a recommender system that offers the users an evalu-
ation of an article before they deside to read it.

The recommender system provides a central repository for feedback, which al-
lows individual users to calculate their own subjective recommendation for a
given article in the Wikipedia. The system does not calculate or distribute re-
putation values, but simply the recommendations (signed feedback) from other
users, what brings us to refer to our system as the Wikipedia Recommender Sys-
tem (WRS). Through the recommendations from other people, the local com-
ponent of the recommender system on the user’s machine is able to calculate
a recommendation, which indicates the quality of the article. The recommen-

4 Introduction

der system then receives feedback from the reader, which allows the WRS to
determine whether the recommendations where useful and to identify the re-
commenders whose feedback coincided with the user. The recommender system
uses this information to update the profile from the user that provided the re-
commendations, in order to decide how recommendations should be interpreted
and provide a more precise recommendation next time.

This means that Wikipedia articles are classified on the basis of recommen-
dations from other users, and individual users can use this classification to
define their own blocking criteria. A tool that will initially be integrated with
web-browser technology, but the techniques developed are generally applicable.
Every user that visits an article will be offered the opportunity to classify this
site using a simple classification and respond to whether the recommendation
were useful or not.

The recommender system is implemented with existing Wikipedia and the idea
is to give the active users a personal recommendation to an article. This re-
commendation is based on a set of trustees that the active user trusts. A
recommendation is calculated, based on recommendations given by other users
and on how much these users are trusted.

The WRS is created so that it will work with the existing Wikipedia as it is.
The Wikipedia is therefore treated as a legacy system and the WRS cannot
be implemented on the same server running Wikipedia. Consequently it is
not possible to integrate the WRS with the existing Wikipedia software. The
recommender system will have to be implemented as middleware between the
Wikipedia and the browser.

The initial idea for the system is to have no configuration. Upon initialization
of the system, the user should not have to enter his/hers psychological profile
on how he trusts other people. The system will, through interactions with the
active user, learn the users trust profile and will over time provide more and
more precise recommendations to the active user.

1.1.3 Achievements

In this thesis we have implemented a decentralized recommender system, that
builds a trust profile for each user in the database. The recommender system
operates without configuration and is built as middleware between the user and
the Wikipedia. A proxy based prototype of the WRS has been developed, which
allows us to evaluate the feasibility of the proposed architecture. Experiments
indicate that the computational overhead involved in verifying the recommen-

1.2 Definition of terms 5

dations and storage overhead needed by the recommendations are acceptable.

1.2 Definition of terms

In this section a set of terms are defined and used through out the thesis.

WRS. Wikipedia Recommender System (WRS) is the general term for the
implementation of the recommender system, that provides the recommen-
dations to the users.

The active user. The active user is the user that uses the WRS to obtain
recommendations about the articles on the Wikipedia. Also referred to as
trustor.

The users. The term "the users” or ”"the other users” refers to all the other
users of the Wikipedia that use the WRS, but not the active user. The
active user benefits from the recommendations from the other users. Also
referred to as trustees.

Ring of Reviewers. The Ring of Reviewers (RoR) is the set of Wikipedia
users from which the active user has collected recommendations. The
RoR is used to calculate the individual user’s trust value.

Trust profile. Each trustee, that the trustor has in the Ring of Reviewers,
has a trust profile. This trust profile holds information on how many
interactions the active user has had with the other user, what kind of
experience the interactions have been, if the active user trust or distrusts
this user and if the active user is optimistic or cautious towards this user.
This information in the trust profile calculates to a trust value.

Trust value. The trust value is a decimal value between —1 and 1, that de-
scribes how much the trustor user trusts a trustee. 1 is complete trust and
—1 is complete distrust.

Article. The term article refers to an article on the Wikipedia. An article is
similar to an entry in an ordinary encyclopedia.

Recommendation. The recommendation is the actual mark given to an ar-
ticle. The mark is between 1 and 9, where 9 is the highest mark, that can
be given.

Rating. The rating is the text string that is inserted in the edit page of an
article.

6 Introduction

Wikipedia. When referring to the Wikipedia this refers to the English Wiki-
pedia, which is found on http://en.wikipedia.org.

Interaction. The trustor and the trustees have interactions with other, based
on the recommendations that the both give an article. The similarity of
these recommendations define if it is a positive interaction.

Experience. The trustor has an experience with a provided rating from the
WRS. The trustor defines through feedback if the experience is positive
or negative.

1.3 Structure of this thesis

This thesis is structured as follows: This chapter (Chapter 1) contains an in-
troduction to the Wikipedia and the concept of a recommender system. The
chapter defines the objectives of the thesis.

Chapter 2 (State of the Art) contains a short description of the different tech-
nologies that are used in this project. It gives an overview of the research that
has been put into trust and trust management. The chapter gives an overview
of existing recommender systems.

Chapter 3 (Analysis) contains a specification of the requirements for the system,
based on a scenario. The chapter gives an analysis of the existing recommender
systems and points out the pros and cons of these systems. In the chapter we
analyze some of the major problems that the specifications of requirements give.

Chapter 4 contains the trust model for the WRS and how it has emerged. The
chapter describes why it is important to have trust model. Furthermore, it de-
scribes the necessary parts in a trust model, and how these parts are formalized
so they can be implemented in software.

Chapter 5 describes the design of the WRS. The chapter describes the analysis
of the Wikipedia and the result of this analysis shows how the middleware can fit
into the Wikipedia. The design chapter also describes how the WRS is designed
internally and which measures have to be taken in place to ensure security and
privacy.

Chapter 6 describes the implementation of the WRS. The chapter goes through
the different components of the WRS software, the general setup of the WRS,
and the requirements in order to get the system running.

http://en.wikipedia.org

1.3 Structure of this thesis 7

Chapter 7 describes the evaluation of the WRS. The chapter gives an overview
of the white box and the black box test carried out. The chapter contains a
discussion of the general need for a large scale usability test and propose an
approach to perform such a large long-term test, with feedback from the users.

Chapter 8 gives an overview of which areas that are in need of further research
and which interesting areas that have come to our attention, which could be a
future project.

Chapter 9 describes the conclusion to this thesis and point out our major findings
to this thesis.

Introduction

CHAPTER 2

State of the Art

This chapter gives an insight to the essential technologies and research that
are used in this thesis. First we review some of the basic ideas of trust and
management of trust. We cover definitions of trust and the fundamentals for
a trust model, discuss the components of the trust model and look at some
experiments on trust.

Secondly, we list some existing recommender systems and point out the im-
portant considerations in the give recommender system in order to be able to
analyze the needs for the WRS in chapter 3.

Thirdly, we look at some of the technologies and security measures that we use
in this thesis and theories behind them.

Finally we look at some research within linguistics and statistics which we use
in the implementation of our recommender system.

10 State of the Art

2.1 Theory and Research on Trust and Trust
Management

A lot of research has carried out in the field of trust and trust management.
This section identifies the most important definitions and components needed
in a trust model

2.1.1 Definitions of Trust and Trust Management

Josang, Keser and Dimitrakos [21] describe the fundamental terms, which have
to be defined when building a trust management system, and the emphasize
the importance of having a proper and robust trust management system. They
describe the need for trust as following:

Lack of trust is like sand in the social machinery, and represents
a real obstacle for the uptake of online services, for example for
entertainment, for building personal relationships, for conducting
business and for interacting with governments. Lack of trust also
makes us waste time and resources on protecting ourselves against
possible harm, and thereby creates significant overhead in economic
transactions. [21]

The management of trust is important because if we are able to distrust an
entity, then we can be protected from the harm that it might have caused us.
The trust management system should be used as "a compass for guiding us
safely through a world of uncertainty, risk and moral hazards” [21].

Jgsang et al. define several useful terms and definitions, that will be used in the
thesis:

A trustee is a term that is borrowed from the legal terminology. The trustee
is a user that states some information that can be trusted or not.

Trustor is the active user, or some other ”thinking entity”, who has trust in
a trustee. The trustor evaluates (to some degree) the information that a
trustee has given, based on how much the trustor trusts the trustee.

Trust management is the term used about a system, that allows the parties
to extract information about each other in order to obtain a degree of

2.1 Theory and Research on Trust and Trust Management 11

how much a trustor trust a trustee. The model that underlies the trust
management system is referred to as the trust model.

2.1.2 Formalization of Trust

In his Ph.d. thesis Marsh [23] introduces a method to formalize trust as a
computational concept. Marsh presents a model where trust can be represented
as a decimal number between -1 and 1. In this interval -1 represents complete
distrust and 1 represents blind trust. 0 represents initial trust, where it is not
determined if the trustee have trust or distrust. 0 is the neutral starting point
when the trustee is inserted in the trust management system.

2.1.3 Trust Model

A trust model is designed to represent the way individuals trust each other.
Jonker and Treur [19] base their work in Marsh’s model of formalizing trust [23],
and introduce a framework for a trust model and conclude that the trust model
is not static. The trust model must be able to change over time, and therefore
the trust model must continuously process the inputs given to the model in
order to determine the degree that a trustee is trusted. Consider figure 2.1 as a
simple trust model. A user’s trust can evolve over time and therefore it must be
updated by verification and validation constantly over time. A plus (4) means
that there has been a positive experience and a (-) means that there has been
a negative experience.

The user can move between the four different states of the trust model. It is the
trust characteristics that define how a user moves up and down in the model.
Jonker and Treur argue that any trust model is defined by three different parts:
Initial trust, trust dynamics and trust evolution. The trust dynamics define the
actual development in trust, and the trust evolution function defines how this
development progress.

2.1.3.1 Initial trust

Initial trust defines how trust has to be initialized. When a trustor has in-
teractions with a trustee for the first time, the trustor relies on the default
configuration in the trust management system. Jonker and Treur claim that
there can be two possibilities for setting op initial trust.

12 State of the Art

RN

UNCONDITIONAL

TRUST
+
CONDITIONAL
) TRUST
CONDITIONAL
DISTRUST
UNCONDITIONAL

DISTRUST

o

Figure 2.1: Simple trust model as presented by Jonker and Treur [19]

Initially trusting. Without any previous experience the trustee has a positive
trust value. This trust value will have to be determined by configuration.

Initially distrusting. Without any previous experience the trustee is distrusted
from the start. This trust value will have to be determined by configuration.

2.1.3.2 Trust dynamics

The trust dynamics determine how trust progresses over time, and how much
trust is worth when it age. Jonker and Treur distinguish six types of trust
dynamics:

Blindly positive defines a trust profile, where a trustor trusts a trustee blindly
after a set of positive experiences. After this set of experiences the trustee
is trusted blindly for all future interactions, no matter what.

Blindly negative defines the opposite of blindly positive. After a number of
negative experiences the trustor will never trust the trustee again, and the
trustee will have unconditional distrust, no matter what

Slow positive, fast negative dynamics, define a trustor that takes a lot of
positive experiences to build trust to a trustee, but only takes a few neg-
ative experiences to spoil the build up trust.

2.1 Theory and Research on Trust and Trust Management 13

Balanced slow defines a trustor that progresses slowly on building trust and
slowly loosing trust.

Balanced fast defines a trustor the progress fast on building trust and looses
it fast as well.

Fast positive, slow negative dynamics define a trustor that takes a few pos-
itive experiences to build trust to a trustee but takes a lot of negative
experience to spoil it again.

2.1.3.3 Trust evolution

One of the central properties in Jonker’s and Treur’s definition on a trust based
on experiences is the trust evolution function. The idea is that this trust evo-
lution function is dynamic. It can change over time, if trust to a given user
changes. This means that at some point in time the active user can be a trust-
ing person, where trust progresses fast, but over time the active user can change
to a more sceptical approach and therefore trust will not progress that fast.
This change could be due to external factors in everyday life.

Jonker and Treur describe a formal framework that helps us define a trust
evolution function. They define 16 properties that define the trust evolution
function. Ten of these properties are briefly summarized below:

Future independence. A trust evolution function is future independent. This
means that the output of the function only depends on the experiences in
the past.

Monotonicity. The trust evolution function is monotonic.

Indistinguishable past. It is not possible to determine what actions led to
the output.

Maximal initial trust. There is a maximum on how much trust a trustee can
have initially.

Minimal initial trust. There is a minimum on how little trust a trustee can
have initially.

Positive trust extension. The trust can progress positively.
Negative trust extension. The trust can progress negatively.

Degree of memory based. The trust evolution function will forget about the
past, leaving old experiences not as valuable as new ones.

14 State of the Art

7 4
2 _ N/

pos pos pos pos pos neg neg neg neg neg

trust value
w
trust value

neg neg neg neg neg pos pos pos Pos pos

1.2 3 4 5 1 2 3 4 5 1.2 3 4 5 1 2 3 45
(a) Trust dynamics, forgetabillity fa- (b) Trust dynamics, fogetabillity favors
vors the negative experience. the positive experience

Figure 2.2: Forgetabillity in trust dynamics

Degree of trust dropping. The acceleration of distrust differs from trustee
to trustee.

Degree of trust gaining. The acceleration of trust differs from trustee to
trustee.

In an experiment carried out by Jonker, Treur, Shalken and Threeuwes [I8]
published in 2004 (five years after the first article [19]) some of the original
proposed theories were empirically verified.

In the experiment the test subjects are presented a set of positive and negative
interactions with an object. Throughout these interactions the subjects are
asked to evaluate how much they trust that given object. The conclusion drawn
from the experiment is that the final trust value differs a lot depending on the
order that the interactions are presented to the user. On figure 2.2(a) and 2.2(b)
two of the results are shown.

We see that the order of the interactions is not indifferent. The final trust value
is different in the two cases, even though the interactions are the same. The
experiment shows that the interactions, which a subject has had with an object
weight more the closer they are in time. The trust dynamics need to contain
some way to represent that old interactions count for less than new interactions.
This property is defined as forgetabillity.

2.2 General Research on Recommender Systems

Reputation systems for the Internet have been proposed ever since the content of
the Internet grew too large to keep track of. Several companies have introduced

2.2 General Research on Recommender Systems 15

software that helps users assess the quality of information and services on the
Internet. This section describes different solutions for recommender systems,
which have been proposed. Later (in section 3.2.2) we discuss the pros and cons
of these suggested solutions.

2.2.1 Content Analysis through Attributes

The European Consumer Center Denmark (ECCD) has as a part of a cross
European-country project introduced an internet based shopping assistant called
Howard [33]. Whenever a customer wants to make a purchase in an internet
shop, Howard can provide information on when the company was started, and
if the company holds some of 29 different European trust marking schemes.
Howard also links to information on the company and previous versions on the
site, through archive.org. ECCD has made the shopping assistant in order to
help the consumers avoid fraudulent and frivolous web traders, get good advice
on shopping online and knowing your rights when shopping online in Europe.

Dondio et al [12] propose a system minded on the Wikipedia. The system is
designed to analyze a set of attributes of an article on the Wikipedia. This
system looks on the history of the article, and evaluates an article on how is
has evolved. There are several properties that are considered in the history. A
selection of these properties is:

e Written by an expert.

e (Clear leadership in the development.

e Constantly reviewed by authors.

e The article is stable.

e The article’s length.

e The number of other articles that links to this article (importance).

e The article is well referenced.

All these properties are assessed in a computational approach. The proposed
algorithm evaluates all the attributes or the lack of them, and creates an estimate
to the trust worthiness of the article. This evaluation is made by a set of logical
rules that determines the quality of the article, such as:

archive.org

16 State of the Art

1. IF leadership is high AND dictatorship is high THEN warning
2. IF length is high AND importance is low THEN warning

3. IF stability is high AND (length is low OR edits is low OR importance is
low) THEN warning

These rules are interpreted as following (rule no. 1): There is one author that
has written the majority of an article is written by one person and the same
person reverts a lot of changes that other users contributes with. This indicates
that there is a chance that the article is probably not neutral, and therefore a
warning flag is raised.

2.2.2 Using Trust in a Recommender System

IWTrust [39] is used to introduce trust into a question answering environment.
The idea is that IWTrust tries to proof that an answer to a given question is
correct. The IWTrust introduces a TrustNet, which is a network of trusted users,
who can contribute to a proof. Every user that is connected to this network has
a trust value - a degree of how much this user is trusted. IWtrust uses Proof
Markup Language (PML), as defined by Pinheiro et al [10], to determine if the
content is of high quality or not. Proofs that originate from trusted users weigh
more, and there fore trusted users will influence the result more. IWtrust has
a answering engine that aggregates all these proofs to a final answer to a posed
question.

2.2.3 Rating Content

MyWOT [4] is a free product from Against Intuition Inc. It is an extention
for the Mozilla Firefox browser. The extention uses user feedback to gather
reputation information about websites. Through this extension the users can
give a recommendation on how a visited site is as a business partner, how it
keeps personal information, and how safe this site is for children. There are
several trust and privacy issues to the myWOT approach to reputation. The
reputation system relies on a single database, which collects the reputations
given, and therefore the users browsing history will be stored at the myWOT
database.

MovieLens is a movie recommendation Internet portal !, maintained by Group-

Thttp://movielens.umn.edu/

http://movielens.umn.edu/

2.3 Security 17

Lens Research at the University of Minnesota?. MovieLens carries out an expe-
riment [24] on the users of the MovieLens site, where the users are asked how
high error rate is accepted before the users will be annoyed by the recommenda-
tions. The experiment has several findings. When a movie has about 80 ratings,
then the error rate (the chance that the recommendation is wrong) is about 5%,
and this is accepted by the users. If movies have a lower number of ratings
there will be a higher rate of errors which annoy the users. However, the users
accept this high error rate as long at they are informed that this recommen-
dation is insecure, because of a low number of ratings. The experiment shows
that as long as the users are informed on calculations risk, and how calculations
are made, they will not get annoyed with the recommendations given. When
calculating recommendations to its’ users, the MovieLens calculates a recom-
mendation based on users that rate similar to the active user. In this way the
recommendations are calculated based on the decentralized database.

2.2.4 General Recommender Systems

Jpsang, Ismail and Boyd [20] have conducted a survey of a wide range of existing
online reputation systems. Basically, this survey points out four basic criteria
that the quality of a reputation system can be judged on. (1) Accuracy for
long term performance, (2) Weighting towards current behavior, (3) Robustness
against attacks, (4) Robustness against single votes. Jgsang argues that making
sure that these criteria are implemented satisfactory, will give a good reputation
system, that the users will have confide in.

2.3 Security

This section gives a brief overview of the security measures used in this thesis, to
secure the ratings and the WRS from attacks that can compromise the system
and the ratings.

2.3.1 Asymmetric Cryptography

Asymmetric cryptography is a form of cryptography in which a user has a pair of
cryptographic keys - a public key and a private key. Asymmetric cryptography
is also referred to as public key encryption.

?http://www.grouplens.org/

http://www.grouplens.org/

18 State of the Art

The private key is kept secret, whereas the public key is not secret. This key is
normally kept in a certificate that the owner can publish. The public key derives
from the private key, but the private key cannot be found from the public key.
Asymmetric cryptography is used for two purposes:

1. Exchanging symmetric keys, which is used to symmetric key encryption,
where the same key is used for decryption and encryption.

2. Creating and verifying digital signatures.

2 ¢

SYMETRIC . ENCRYPTED | ALICE'S
KEY SYMETRIC KEY PUBLIC KEY

v

INTERNET

2
ENCRYPTED . SYMETRIC

ALICE'S SYMETRIC KEY KEY

PRIVATE KEY

ALICE

Figure 2.3: Encryption an decryption with a public and private key cryptosys-
tem

Exchanging symmetric keys are shown on figure 2.3. Bob chooses a symmetric
key of his choice and encrypts this with Alice’s public key. Bob sends the en-
crypted message to Alice and she decrypts the key with her private key. Because
Alice keeps her private key private, she alone is able to decrypt the message.
Alice and Bob now have a symmetric key that they can use for transmitting
data between one and other, with the symmetric key.

As shown on figure 2.4 asymmetric cryptography can also be used to as a digital
signature scheme. A digital signature scheme simulates the security properties
of a signature in digital form (rather than written form). Digital signature
schemes consist of two different algorithms: One algorithm for signing data and
one for verifying data. When Alice wants to send some information to Bob, she
wants to make sure that the message, that she sends is not modified or some
one is able to send information on her behalf. When sending a message to Bob,

2.3 Security 19

@ NZ
ALICE V

MESSAGE TO | | SIGNED ALICE'S
SIGN MESSAGE PRIVATE KEY

v

INTERNET
NZ
SIGNED . VERIFIED
ALICE'S MESSAGE MESSAGE
PUBLIC KEY E
BOB

Figure 2.4: Signing and verification of a message with digital signature algorithm

Alice signs (the same procedure as encryption) this message with her private
key. She now sends the encrypted message along with the clear text message
to Bob. As in this case Alice and Bob do not have the need for the message to
be secret, but only to be able to determine that the sender is truly Alice. Bob
can now verify that Alice sends this message by decrypting the message with
Alice’s public key. If the decrypted message is the same as the one in the clear
text, Alice must be the one that has send the message, as she is the only one
that has the private key that was used to encrypting the message.

2.3.2 Key Management

Key management includes all of the following actions in a crypto system: Key
generation, key exchange, key storage, key safeguarding, use, replacement of
keys and infrastructure there are between the keys.

Sun Microsystems have developed the tool KeyTool [6], which can be used for
key management. KeyTool offers the possibility of generating keys, storing keys,
safeguarding keys and keeping an infrastructure on the keys.

In order to use a digital signature scheme as described in section 2.3.1, we
need to have a public key infrastructure (PKI). The PKI arrange for entities
without prior contact to be authenticated to each other, and to use the public
key information in a public key certificates to encrypt messages to each other
or digitally sign messages to each other. In other words, the PKI enables the

20 State of the Art

users in the PKI to identify each other.

In a PKI a Certificate Authority (CA) created a certificate and signed the
certificate by itself (a self signed certificate).

The CA can issue certificates to the users and these certificates are signed by
the root certificate. The new certificates can now issue a new level of certificates
and then build up a large hierarchy of users with a certificate that trust each
other. This is due to the fact that they at some point further up in the hierarchy
will have a common entity that they both believe in. A PKI hierarchy are shown
in figure 2.5.

CERTIFICATE
AUTHORITY
(CA)
v
TRUSTEE TRUSTEE TRUSTEE
A B [

Figure 2.5: A model of Public Key Infrastructure. Trustee A trusts Trustee B
because they both got their certificate from the same CA.

Web of Trust ia an alternative way of ordering the certificates. In the Web of
Trust concept users build a trusted network based on derived trust. Users build
up their network of trusted users by trusting other users that their trustees
trust.

A third approach is not to have a PKI at all. All users have their own self-signed
root certificate that they use to verify their identity.

2.3.3 Attacks

When designing a system cith some sort of communication between two entities
there are three kinds of attacks that a system needs to be resistant to.

In this thesis we will only focus on the active attacks and not on the passive
attacks. A passive attack (like eavesdropping) will not benefit the attacker, as
there is no information that has to be kept secret.

2.3 Security 21

2.3.3.1 Fabrication

Nobody should be able to send unauthorized messages. When Alice receives a
message from Bob, she has to trust that Bob is the sender. It should not be
possible for any other entity to send a message on behalf of Bob. See figure 2.6.
We do not want anybody to be able to fabricate any false messages.

A &

BOB
ALICE

FABRICATED
MESSAGE

&

EVE

Figure 2.6: Eve fabricates a message to Alice, making it look like it originates
from Bob

2.3.3.2 Modification

When Bob sends a message to Alice, she should be confident that the content
of this message is from Bob. A system should be resistant to attacks where
unauthorized persons can alter the content of a message, as shown on figure 2.7.

2.3.3.3 Deletion/Denial of Service

A system should be secured, in a way that malicious entities is not able to
prevent authorized users to use the system. If a person is able to delete all the
messages that Alice sends off to Bob and vice versa the system is useless. This
is shown of figure 2.8.

22 State of the Art

& &

BOB INTERCEPTED ALICE
MESSAGE

MODIFIED
MESSAGE

&

EVE

Figure 2.7: Eve intercepts a message that Bob sends off to Alice. Eve alters the
content and forwards it to Alice

o

ALICE

&

BOB

o xx

EVE

Figure 2.8: Eve intercepts all message that Bob sends off to Alice. All messages
are deleted, and Alice never receives a message

2.4 Programmable Proxies

There are a few programmable proxies available as open source. The three
proxies that have been analyzed in order to be determined if it could be used
in this project are. PAW [28], Muffin [25] and Scone [30].

2.4 Programmable Proxies 23

24.1 PAW

PAW (Pro-Active Webfilter [28]) is a Open-Source filtering HTTP proxy based
on the Brazil Framework®. Paw is very light and it is easy to write plugins to
the proxy. Paw is developed to work with Java 1.1 and supports costume made
plugins. Paw only supports HTTP connections and not SSL connections.

The light programmable proxy seemed ideal for the development of the WRS.
However, PAW is based on Java 1.1 and it does not compile with Java 1.5, as a lot
of the operations used are deprecated. Developing with 1.1 would introduce a lot
of problems with threads and network connections that have been implemented
in later versions of Java. Furthermore, documentation of PAW is very sparse.

2.4.2 Muffin

Muffin [25] is a web filter written in Java 1.1 and supports both HT'TP and SSL
connections, and offers the possibility to create costume made plugins. Muffin
is designed to enhance web surfing experience, and can be used to filter out
banners, Java applets, protect from privacy threads.

Muffin is a bit heavier than PAW. It offers a range of pre-programmed filtering
options, and runs with 1.5. However, the Muffin proxy is only intended as a
filtering proxy and does not offer the possibility to run internal code, perform
calculations and interact with a database. Furthermore, last development has
been in the early 2004.

2.4.3 Scone

Scone is a programmable proxy that is written in Java and is based on the WBI
technology from IMB reseach [17]. WBI is an architecture and framework for
creating intermediary applications on the web. Scone is designed as a plugin to
the WBI framework, with the intention to develop new web technologies that
will enhance the browsing experience. On figure 2.9* shows the architecture of
Scone.

Scone downloads pages from the web into the proxy. The proxy basically ana-
lyzes the streams which flow through the proxy. The HTML pages requested is

3 http://www.experimentalstuff.com/Technologies/Brazil/index.html
4The figure is taken from http://scone.de/architecture.html

http://www.experimentalstuff.com/Technologies/Brazil/index.html
http://scone.de/architecture.html

24 State of the Art

i Scone

PI'OX:*} Applets, Pictures, HTML.. |
i Yy T pplets, Pictures, i

/{:]-[:]G Modfied HTMLXML-Data... | | Browser

“ NetObjects

Cache)
Events
—

Web

Figure 2.9: The Scone framework

downloaded in to the proxy and is tokenized into token streams and there by
the requested page can be manipulated by the proxy. The proxy can operate
with NetObjects that can be used to store information about the user, store
elements in a database and store previous events and requests.

In addition Scone offers the possibility of having a Robot that can perform tasks
and harvest information on behalf of the user. Information harvested can be
stored in the database and used for later manipulation in the proxy.

These functionalities can be offered through the programmable interface that
Scone provides. Plugins can be written that will enhance the users browsing
experience.

Scone offered a large API. It is large proxy based on the WBI framework from
IBM. Development of Scone have been continuous and it offered a quite a com-
prehensive documentation (majority in English and some in German). Scone
offered full database access, and a supporting structure for threaded code and
network development. Scone seemed the ideal choice for the WRS.

2.5 MediaWiki

A wiki is a web application designed to allow multiple authors to add, remove,
and edit content. The wiki is run by a wiki engine, that renders the HTML

2.6 Resilient Aggregation 25

pages to the browser. There are several wiki engines, but the most popular and
the most used is MediaWiki which runs the Wikipedia. [3]

MediaWiki is written in the PHP programming language, and can use either the
MySQL or PostgreSQL relational database management system. The general

architecture of MediaWiki is shown in figure 2.10°. MediaWiki is distributed
under the terms of the GNU General Public License.

WEB BROWSER

APACHE WEBSERVER

MEDIAWIKI PHP SCRIPTS (MEDIA WIKI ENGINE)

PHP

FILE SYSTEM DATABASE CHACHE

Figure 2.10: The general architecture of MediaWiki.

2.6 Resilient Aggregation

David Wagner has written an article on aggregating of feedback from sensor
nodes [35]. The article deals with the fact that in a sensor node network,
there may be some nodes that have gone rogue or have been compromised. In
either case the node will produce a result, which is not what it was supposed to
produce.

Consider a set of sensors in a building measure the temperature and send their
result back to a main server in order to calculate the average temperature in
the building. If someone holds a lighter close to one of the sensors, then the
sensor sends back a very high temperature and the calculated average will be
increased, and therefore the node has been compromised.

By using classic ideas from robust statistics, Wagner points out that calculating

5The figure is inspired by http://meta.wikimedia.org/wiki/MedialWiki_architecture

http://meta.wikimedia.org/wiki/MediaWiki_architecture

26 State of the Art

a simple average all the nodes are not enough, some robust aggration method
is needed. Taken from the field of robust statistics, Wagner points out that a
5% trimmed average, where the upper and the lower 5% are trimmed off and
the average is calculated from the rest of the data, is a robust method and will
provide a reliable result.

Consider an example set of sorted integer numbers: [2, 2, 3, 3, 4, 4, 5, 5, 5, 6,
6,7, 7,7, 7,8, 9,12, 12, 12, 37] of 20 numbers. The average of this set is :
8.15 and the 5% trimmed average is: 6.9. The last number in the set, 37, has
17% influence on the untrimmed average. Using the trimmed mean provides a
measure for removing outliers that would affect the average significantly. We
will use this approach when aggregating the several recommendations in to one,
in order to minimize possible outliers affecting the result significantly.

2.7 Semantic Similarity between Sentences

In 1973 Richard P. Honeck published his article ”Semantic Similarity Between
Sentences” in Journal of Psycholinguistic Research [15]. This article presents
a method to measure if two sentences are semantically similar. Consider the
two sentences: John’s uncle shot the sheriff and The brother of John’s mother
shot the sheriff. The sentences are not the same, but the meaning is the same.
After Honeck published this article a lot of research was made to this topic and
in 1985 psychology professor George A. Miller from Princeton University began
development on WordNet [5]. WordNet is a semantic lexicon for the English
language, which groups English words into sets of synonyms. The purpose of
WordNet is to support automatic text analysis and artificial intelligence appli-
cations. WordNet groups words like shown of figure 2.11 ©

Honneck’s work and the research provided with WordNet, can be used to deter-
mine of two articles in the Wikipedia contain the same information, even though
they are not identical. We use this to evaluate if previous given ratings are still
valid for the current version of the article.

6The graph is inspired by http://www.codeproject.com/cs/library/
semanticsimilaritywordnet.asp

http://www.codeproject.com/cs/library/semanticsimilaritywordnet.asp
http://www.codeproject.com/cs/library/semanticsimilaritywordnet.asp

2.8 Summary 27

object
artilfact
/\
‘ |nstrumenta||ty ‘ ‘ article
‘ transport ‘ \ware
‘ vehlcle ‘ hware
|

wheeled vehile ‘ \
/\ ‘ cutlery

‘ automotive bike ‘ knife ‘

‘ car, auto ‘ ‘ s ‘

Figure 2.11: Structure of the words on WordNet

2.8 Summary

In this chapter we look at some recent research on trust and trust management,
and emphasize a set of definitions and terms that are central for this thesis.
Secondly, we go through resent research and proposals of recommender systems
that are relevant to our project, and outline the different perspectives that are
proposed in this research as being important to creating a recommender system.
Thirdly, we give an overview of the security measures and techniques that are
relevant for use in this project. Fourthly, we analyze a set of open source proxies
that could be relevant for development of the WRS, and sum up the reasons
for choosing the Scone Proxy over the other proxies proposed. Finally we look
at some areas of research that are not within the area of computer science, but
still are relevant to this project.

28

State of the Art

CHAPTER 3

Analysis

In this chapter we present a general scenario for the use of the WRS. We describe
the different challenges that will have to be addressed in the implementation
and we analyze of the Wikipedia as it is. In this chapter a specification of
requirements for the WRS will be presented based on the analysis of the different
aspects of the WRS.

3.1 The Scenario

As described in section 1.1.2, the general purpose of the WRS is to the user
with a personalized recommendation based on trusted users.

When a user downloads an article from the Wikipedia the user is presented
with a recommendation that informs the user about the quality of the article.
This recommendation is created by gathering all the recommendations that are
assigned to that article for analysis. First the ratings have to be verified, to
prevent an attacker from inserting false ratings into the system. When the
ratings have been verified the ratings provided by users, which the active user
has had interacted with before, are extracted and aggregated into the combined
recommendation that is presented to the user. The aggregation is based on the

30 Analysis

trust value that the other users have (the trustees). If a trustee for instance has
a high trust value this trustees recommendation will influence the aggregation
more than a the trustees that have a low trust value.

The active user is now asked to perform some feedback on the recommendation
and on the article. This feedback is used to update the trust values of existing
trustees and evaluate potential new trustees.

3.2 Specification of Requirements

This section define the functional and the non-functional requirements of the
WRS. First we describe a set of basic requirements and after this other recom-
mender systems are discussed. Finally, we describe which areas will be in focus
in the development.

3.2.1 Basic Requirements to a Recommender System

Roger Dingledine [27] has proposed at set of basic criteria to asses the quality
and robustness of a reputation system. In a survey, by Jgsang, Ismail and Boyd
of online reputation systems [20], the four most important of these criteria are
outlined as the following:

1. Accuracy for long-term performance. The system must reflect the confidence
of a given score. It must also have the capability to distinguish between a
new entity of unknown quality and an entity with poor long-term perfor-
mance.

2. Weighting toward current behaviour. The system must recognise and
reflect recent trends in entity performance. For example, an entity that
has behaved well for a long time but suddenly goes downhill should be
quickly recognised as untrustworthy.

3. Smoothness. Adding any single recommendation should not influence the
score significantly.

4. Robustness against attacks. The system should resist attempts of entities
to manipulate reputation scores.

3.2 Specification of Requirements 31

In the requirements we will try to satisfy these four criteria in order to get
a recommender system, which is robust and so the recommendations that are
provided to the users will satisfy them.

3.2.2 Other Recommender Systems

Section 2.2 gives a brief overview of existing recommender systems. The pros
and cons of these recommender systems are discussed in this section. This leads
to the identification of the attributes which we think is valuable and will try to
build into the WRS, and which attributes we should try to avoid.

When using Howard the Shopping Assistant [33] (section 2.2.1), the active user
has to start a separate browser window, and enter the information on the in-
ternet shop (the URL and the CBR number!). A problem with this approach
is that this solution is centrally controlled, and it is up to the ECCD to update
the database. Furthermore, the user has to find the CBR number, which could
be hard if it is a fraudulent shop. The users have to make their own decision,
based on the facts provided. Centrally controlled values, like requirements to
obtain a trust marking scheme, tend to favor the majority. In addition Howard’s
usability is not the best solution as the users have to open a separate bowser
window and search for information by them selves

Dondio presents a recommender system for the Wikipedia [12], which analyzes
the articles attributes. We believe that evaluation of the content based solely
on the content attributes (as Dondio and Howard does it) is not enough to
evaluate the content. In such an automated system there is no room for ”soft”
issues. Such as the language of the article, neutrallity, containing present day
information etc. These soft values can only be detected by a human reader, and
therefore we believe that recommendations will be the better choice to determine
trust.

IWTrust [39] (See section 2.2.2) proposed a network of trusted users. We adopt
the idea of having a network of trusted users, where each member has a trust
value, in the WRS. With this trust value users find other users that are similar
to themselves.

Although some simple tools based on reputation, such as the WOT extension
for the Mozilla Firefox browser [4], are starting to appear, they typically rely
on a single database for all reputation information, and all user feedback is
collated into the same database, and an overall average calculated from all

LCentral Business Register - http://www.cvr.dk/Site/Forms/CMS/DisplayPage.aspx?
pageid=21

http://www.cvr.dk/Site/Forms/CMS/DisplayPage.aspx?pageid=21
http://www.cvr.dk/Site/Forms/CMS/DisplayPage.aspx?pageid=21

32 Analysis

the recommendations. As earlier mentioned, there are obvious problems with
relying on a single centralized database of feedback for a recommender system
that should provide useful information across national, political, social, religious
and cultural boundaries. Storing recommendations in one single database gives
the advantage that the recommendations are always available and tamper proof.
But it gives the disadvantage that the result is also calculated centrally, and
therefore a minority is not able to remove the influence from the majority from
their recommendation. Therefore centrally calculated recommendations only
favor the majority of the users, which is not preferable. Experiments with the
myWOT extension show that when giving ratings to sites, which are not in
the WOT database, this single rating will be displayed to subsequent visitors.
For example, when a site that is not in the WOT database is rated the lowest
possible mark, the site will be tagged as a malicious site and it will not be
recommended to subsequent users. They will be presented to a warning that
this site is unsafe and are urged not to carry on their actions.

The MovieLens project addresses the problem with centralized calculation (as
outlined above), by analyzing how a user rates movies, and tries to establish
a collection of raters that rates similar as the user. The rating from the users
that rate alike can be used as recommendations. We want to use this approach
in the WRS, by only using the recommendations from users that rate alike and
by calculating ratings based on a decentralized database.

3.2.3 Functional requirements

e The WRS should have a trust model implemented that maintains trust
values and perform trust update operations

e The WRS should give the active users recommendation based on other
recommendations from trusted users.

e The WRS should keep information on the trustees and calculate trust
values.

e The WRS should be able to continuously update trust information through
the user feedback.

e The WRS should be able to secure ratings to prevent them from being
falsified (masquerade attack).

e The WRS should be able to verify that ratings have not been tampered
with (modification attack).

e The WRS should be able to determine if a rating is too old to contribute
to the aggregation, due to the large amount of change in the article.

3.3 Wikipedia Architecture 33

e The WRS should work with an out-of-the-box installation of MediaWiki.

3.2.4 Non-Functional requirements

e The WRS should work as middleware between the user and the Wikipedia.
e The WRS needs to be platform independent and browser independent.

e The user’s browsing experience should not be worsened by the use of WRS.

Ratings should be stored centrally.

Recommendations should be calculated decentralized.

3.2.5 Area of Focus

In this thesis we have chosen to focus on the topics that are most relevant to
the computer science and the trust management part of WRS. Therefore there
are some areas that are still in need of research and further development. This
is summarized in section 8.1.

The main focus has been on development, implementation and testing of a
realistic trust management system, how a decentralized database is extracted
from these trust values, how the trust management system deals with a no-
configuration requirement, and on how the feedback from the user should be
interpreted. Furthermore developing the WRS as middleware, implemented
with a open source proxy has been one of the main areas of focus. As a result of
this large focus on the development there has also been a large focus on testing
and benchmarking the WRS.

Secondly there has been focus on development, implementation and testing of
the security measures, infrastructure and the functionality that is needed in the
WRS.

3.3 Wikipedia Architecture

It is a requirement that the WRS is implemented as middleware, because the
Wikipedia is treated as a legacy system. It is a requirement that the system
works with a clean MediaWiki installation, and no changes should be required
in the underlying Wiki engine.

34 Analysis

In order to access data from the Wikipedia, an HTTP connection should be
used, and the facilities that comes with submitting data over the HTTP forms.
This section gives an analysis on the options available from the Wikipedia.

An article on the Wikipedia is a description on a topic that is presented to the
active user like a normal encyclopaedic entry. An article has several sub-pages,
which are useful in the WRS. Please consider figure 3.1.

‘ User H Wikipedia Article ‘

‘ History H Edit H Watch H Discussion

User Page
User Preferences

@
c
0
4
o
>
)
3
L
>
o
-

Change Tracking
Wiki Markup Language

Figure 3.1: Simplified overview of the Wikipedia architecture

Each article has the main Wikipedia article presented to the viewer. Further
more there are 4 pages that are related to each article. The history page, the
edit page, the watch page, and the discussion page. The watch page is not
visible unless the user is logged in. In the WRS, only the edit page and the
history page are used.

The basic philosophy behind the a wiki is that everyone should be allowed to edit
everything, but that it should be easy to restore the document to its prior state
if the modifications are considered undesirable. The traditional security pro-
cess is based on prevention, detection and response, where security mechanisms
are introduced to prevent unauthorised access to protected resources. Auditing
procedures and intrusion detection systems are introduced to detect unautho-
rized use of the system. A combination of automatic and manual procedures are
used to stop unauthorized access and return the system to a consistent state.
Applying this to the wiki philosophy, we see that there are few mechanisms to
prevent malicious or accidental modification of a Wiki article. Detection is left
to the users and the only means of response, is to restore the previous page.

The edit page is where the active user can alter the content of the article.
The main content in the edit page is a HTML textarea, where the article can
be written in plain text. It is not possible to format the article in a rich text
editor. The textarea, however, supports Wiki Markup Language (WML), which
is parsed by the wiki engine into normal HTML in order to make the article

3.4 Key Challenges 35

displayable by the browser. The WML has a wide range of tags that can be
used to write Wikipedia articles.

The history page contains all the previous versions of an article. In the
history page it is possible to see which users (or IP addresses, if the user is not
logged in), have made modifications to the article, when these changes were
made and a small summary of the changes. The history page can be used to
show the difference between two prior versions of an article. Wikipedia stores
all the previous versions of an article. Finally, the history page also holds the
possibility to revert a page prior state if the current version has been vandalized.

The watch page is used to keep a page under surveillance. If a watched page
is changed then the user, who has that page under surveillance, is informed of
the change. This helps vandalism to be reverted fast. The discussion page
is used to discuss possible changes or additions in an informal tone. The watch
page and the discussion page is not used in the WRS, and are therefore not
taken into further consideration.

When a user is logged in to the Wikipedia there is a personal user page available.
On the active user page the user can set up preferences for the Wikipedia and
keep a personal homepage, where the user can write some personal information.
Due to the nature of the wiki philosophy all user pages are editable by everybody
else. Wikipedia users cannot lock their user page for further editing by others.
The only way to protect a user page is to keep it under watch.

3.4 Key Challenges

The specification of requirements set up some challenges that will have to be
addressed. This section points out a solution to the challenges and why this
solution is chosen.

3.4.1 Network Layout

Implementing on top of the legacy system, without modifying in the Wikipedia
source code, leaves us with several options. One of the obvious solutions is to
create a plug-in to a browser. An other option is to create a proxy, between the
user and the Wikipedia, that keeps track of trustees, parses ratings, calculates
trust values and calculates averages. In this scope of the project the proxy is
chosen, because developing an extension will take up too much time and is not

36 Analysis

part of the objective of this thesis. Furthermore a proxy also supports multiple
user, when integrated in a network environment, as network users would only
have to point their browser to the network address of the proxy. The network
layout is shown in figure 3.2.

P @
&Y

Figure 3.2: Before and after the proxy is inserted in the the network.

3.4.2 Recommendation Repository

The recommender system requires a repository that stores feedback (the recom-
mendations) from users and makes these recommendations available to other
users. This repository may either be implemented as a distributed database
running on the proxies or as a centralized database running on a single separate
server. Neither of these solutions are desirable because they introduce additional
complexity and dependencies into the system, as some sort of P2P system be-
tween the proxies would be required. However, the Wikipedia itself provides
a repository of information that can be read and updated by all its users, so
it should be possible to store recommendations on the Wikipedia servers. We
do not wish to modify the MediaWiki system to include recommendations, but
instead propose to store recommendations as WML comments on the edit pages
of the Wikipedia articles. This allows us to store the recommendations in a cen-
tral location, available to everyone, without modifying the MediaWiki system or
interfering with Wikipedia users who do not wish to avail of the recommender
system (the WML comments will not be rendered by the user’s browser). This
solution also allows the WRS, running on the user’s proxy, to create a subset of
these recommendations based on trust in the recommender and use this subset
as a decentralized database.

3.4 Key Challenges 37

3.4.3 Security

Some measurements towards security have to be taken in order to prevent
falsification of the recommendations, because we store the recommendations
on in the edit page. As described in section 3.3, every one is able to change
what is in the edit page. Therefore we need some security measures to pro-
tect the ratings and a security infrastructure to enable authentication between
entities.

There are three different approaches to making a security infrastructure. The
first is to have a public key infrastructure (PKI) where a Certificate Authority
(CA) issues certificates to the users. The second approach is to user Web of
Trust, and the third approach is not to have PKI at all. All the users have their
own self-signed root certificate that they use to verify their identity. These
schemes are described more closely in section 2.3.2.

The choice of security scheme falls upon having no PKI at all. There are several
reasons for this. Making it up to the users to make a certificate themselves
removes the administration and maintenance of a CA related to this project. If
a CA would have to be operated, there would still be problems in validating the
user’s identity. Everybody that has an email-address can create an account on
the Wikipedia, and if this is the criteria for validating the users identity there
would be no point in having a CA. Therefore it is administrative much easier
not to have a PKI. Finnally, one of the ideas in the WRS is that the active
users have to determine which users to trust and which not to trust through the
feedback mechanism provided.

As pointed out by Seigneur et al. [31] a system that has a weak recognition
scheme towards identification, will also lack accountability. Consequently, a non-
sophisticated identification scheme, like the one implemented the Wikipedia,
where it is easy to create an identity, there is no value in the identity. However,
there should not be any value in knowing the identity of the trustees that a
trustor interacts with, because it is not the identity of our trustees that lead to
the trust value, it is the actions that they perform that lead to a trust value,
and therefore the actual identity of the trustee is indifferent. The identity
(Wikipedia username) is merely used to identify the public key. Therefore the
identifier could simply be the public key, but this introduces some problems
with the size of the ratings and an unsolved issue when users want to revoke
their certificate.

All users therefore keep and maintain their own self signed certificate that con-
tains the public key, which is used to verifying the ratings and a keystore that
contains a private key which is used to create signed ratings.

38 Analysis

In order for other users to verify a rating, users have to make their certificate
public. To publish a certificate the user will need to create a page where the
certificate is stored. This is defined as a sub page named cert on the user page
(http://en.wikipedia.org/wiki/User:Username/cert). The certificate will
have to be BASE64 encoded, so it will become displayable by the browser. In
the user page the certificate is surrounded by <nowiki> </nowiki> tags. This
prevents that there would be combination in the certificate that is parseable by
the WML.

3.4.3.1 Preventing Attacks

There are several kind of attacks that need to be prevented in order to satisfy
the criteria set in 3.2.1 about making the recommendation system robust to
attacks, and give the user trust that the recommender system cannot be com-
promised. The primary attacks that we want to prevent are the sybil attack [13],
where an attacker tries to circumvent a reputation system, by creating a large
amount of fake identities and use them to introduce a large number of recom-
mendations that will influence the recommendation result significantly towards
the attackers favour. In the WRS the sybil attack is attempted prevented by
ignoring recommendation from unknown users, with whom there have been no
other interactions.

As Wikipedia articles, including the WML comments, can be modified by any-
one, we need to secure the ratings, to prevent attacks described in section 2.3.3.
Ratings have to be secured against masquerading, modification and deletion.
Masquerading and modification can be prevented by introducing cryptographic
measures, where every rating is signed with a private key and in order to verify
the rating other users have to download a public key from the user page on
the Wikipedia (as described in section 3.4.3). The wiki philosophy states that
everybody can delete everything, which makes the WRS open to DoS attacks.
It is, however, always possible to revert the existing article to a previous version
of the article if this happens. Normally when a page is vandalized the page
restores quite fast by users of the Wikipedia [14]. As another result of the wiki
philosophy the certificates that are stored on the user page can be modified by
everybody. Modifying the certificate leaves it useless as the public key cannot be
extracted and therefore ratings cannot be verified. In order to prevent this the
WRS only downloads certificates that are modified by the user that owns this
certificate. This means that the user will have to be logged in to the Wikipedia
to make changes to the certificates, such as revoking it.

http://en.wikipedia.org/wiki/User:Username/cert

3.5 Summary 39

3.4.4 Article Versioning

Another problem is that the contents of an article change over time, so ratings
that were submitted for a prior version of an article may not longer be valid,
because the contents of the article have changed. It is obvious that ratings should
still be valid if changes only are minor (e.g., typos, adjectives, punctuation etc),
but the rating should no longer be valid if the changes are extensive or contains
words that may completely change the meaning of the text (e.g., words like not,
no, don’t, without, does not, un-). We therefore introduce a threshold, which
defines a limit to acceptable change. As default this percentage is set to 15 %
difference.

It is quite a complex problem to determine the difference between two sentences.
A method to determine this difference is described by Honeck [15] and is outlined
in section 2.7. In this implementation we use Wikipedia’s history page to obtain
the difference between two versions of an article. The implementation counts
the number of changed words and holds it up against how many words that
are in the article. The percentage of changed words gives the percentage of the
change. There are basically three kinds of changes:

Reversal. If the some of the following words are added to the paragraph, then
the paragraph is consideres reversed: ”"not”, "dont”, "don’t”, ”doesnt”,
”doesn’t”, "no”, ”without”, "wont” or "won’t”. If there are added follow-
ing to a word: "n’t”, "esn’t” or "un”, the paragraph is also considered
reversed. If the meaning of the content is reversed, then the entire para-

graph is considered changed.

Amplification and typos. If a change is a single character is it likely to
be a punctuation correction, spelling correction, bracket, or other minor
change. Therefore these changes does not count as a change.

Addition. Extra words in a paragraph is counted and added to he total amount
of changed words.

This will provide a naive idea of how changed much a text is changed. However,
more in-depth research is needed by a linguist (See section 8.1).

3.5 Summary

This chapter provides a general scenario that describes how the WRS should
operate and what functionality it should provide. We take a look on some

40 Analysis

general research on recommender systems and point out the most important
general requirements to a recommender system. With the general requirements
in mind we make an analysis of some existing recommender systems and point
out what kind of functionality the WRS should have. With basis in this analysis
we create a set of functional and non-functional requirements for the WRS.

We make an analysis of the Wikipedia architecture as it is, and analyzes some
of the challenges that come with implementing the WRS as middleware. This
analysis covers the choice for creating the WRS as a proxy, the choice for stor-
ing the recommendations centrally on the Wikipedia pages and the security
measures that have to be taken in order to make these choices feasible.

CHAPTER 4

Trust Model

This chapter shows how trust is managed in WRS. The chapter describes the
reason and background for having a dynamic trust function and the motivation
behind. It describes the three different parts of the trust model. The initial
trust, trust dynamics and the trust evolution model. The chapter also describes
the mathematical ideas behind the trust model and what considerations that
have been taken in order to define this model.

4.1 Model Background

When working with people in everyday life we tend to trust some people more
that others. Often we do not know what is the determining factor that makes
us trust or distrust this person. If we have known a person for a long time it is
easier to decide whether this person is a trusted person or not, and if we have
just met the person it is harder tell if that person is reliable or not.

The trust model for the WRS is based on the same basic principle. When
meeting a new person or entity the active user has not had any prior interactions
with, it is not possible to determine whether that person is trusted or not. This
has to be determined through the actions of the users. Consequently, it can be
hard to tell if a user, that the active user only has one or two interactions with

42 Trust Model

should be trusted or not. However, the more interactions we perform with a
person the more we know whether to trust this person or not.

There are several motivating factors for making such a trust model. One of the
obvious is that if trustors only take account of the trustees that they know and
they trust are prevented from having their result polluted by dishonest users.

An other motivation for this approach is to build up relation management with-
out configuration. Configuration is often used to determine what kind of a
person a user is:

e Does the user want to make quick progress, is the user more careful and a
cautious user? A cautious user needs a lot more positive interactions with
a user, than a optimistic user needs, in order to obtain the same trust
value.

e Does it take long time to develop trust in another person or does the user
only need one or two positive results?

e When a trusted person suddenly acts differently that expected, will this
destroy the relation ship or are the user more forgiving and needs several
betrayals in order to loose trust.

With a system that requires an initial trust configuration, upon installation or
initiation the user would have to decide on the questions above. This would
determine what kind of a person the user is in terms of trust. But these things
change. Users might change their opinion over time, and become a more opti-
mistic or cautious person, but the user will probably not know that they changed
their mind. Another point is that this configuration might not be the same for
all the people in the user’s ring of trusted persons.

Therefore it would be more realistic to make a trust model for each person that
the user is interacting with. Each trustee that a trustor interacts with has a
different trust model, that will change over time, based on the feedback that the
user gives to the model. Every time a user is given a recommendation for a page
the user is asked to tell whether the provided recommendation is satisfactory
and what the user would have rated this article. This feedback can be used to
determine the kind of relationship between the trustee and the trustor. And
with this feedback the trust function is updated. See section 4.3.3.

When a user downloads an article the user gathers ratings from the different
trustees that have rated the page. Some of these reviewers have a higher trust
value and therefore the recommendation from that reviewer counts more.

4.2 General Architecture 43

This gives the user weighted recommendations, and therefore the result is sub-
jective. Because a user can choose (based on which users the active user trusts)
which recommendations should be incorporated in the average the result will
be different from user to user.

This approach has a downside. It has a steep learning curve. In order to
provide the user with proper results the user has to put some effort in teaching
the system about the user’s preferences, and therefore the system will not work
out of the box.

4.2 General Architecture

In order to create a formal way of representing trust, a set of definitions has to
be made. Stephen Paul Marsh defines trust as a variable in the interval | —1; 1],
where -1 is complete distrust and 1 is complete trust [23]. There are several
advantages to this approach:

Sensitivity. When using a small interval, a small change in the trust value can
cause a large difference in the final result, This is also applicable for an
everyday situation, for example reading a article in the newspaper about
a politician can totally change your point of view of that politician, even
though you concurred with him or her for years.

Formalizing. The interval defines how much a trust a user has. A number is
easy to interpret and implement. The statement "I trust trustee A a lot”
is not easy to implement.

On the other hand Marsh mentions some disadvantages as well:

Subjectivity. It may be different from one user to another user what a drop
of for instance. 0.4 in trust means.

Fudging. If the trust value is a simple number it is easier to manipulate and
perform attacks on compared to statements (Such as: 7T trust user A a
lot”)

44 Trust Model

4.2.1 Model Basis

In order formalize trust model more dynamic a coordinate system from -1 to
1 on both the X axis and the Y axis is introduced. (Cf. Figure 4.1) This will
improve the representation of trust, making it easier to explain and understand.
Furthermore, it will ease the implementation of trust.

(1,0)

Trust

(0,0) (0,1)

('1"1)

Distrust

(O"1)

Number negative of Number positive of
interactions interactions

Figure 4.1: Co-ordinate system where trust is represented

Trust is represented as a function, where the trust value is represented on the
Y-axis, determining if the trustee is in trust or distrust. Each trustee has his/her
own coordinate system. The X-axis determines if there has been a majority of
positive interactions or negative interactions. Calculating an X value from the
previous interactions, gives the possibility of calculating a trust value as function
of the X value. These definitions result in the trust function, which is present in
the 1% quadrant and in the 3'9 quadrant. For instance, it does not make sense
that a user is in distrust and there is a majority of positive interactions. This
would be the case if the function was placed in the 4" quadrant. Likewise a
situation where the function is present in the 2"? quadrant would be a scenario
where the user has trust and majority negative interactions. The construction
of the actual trust evolution function is specified in section 4.4 on page 52.

4.3 Structure of the Trust Model 45

4.2.2 Ring of Reviewers

Each trustee that the trustor has interactions with has a different trust profile
and therefor a different curve, because of interactions and feedback differ from
user to user. Each curve is regarded as an instance of the trust model that
represents each trustee. In order to keep track of these curves we have a trust
management system that keeps track of all the curves. We need to be able
to store all the data in one place, where the active user can access previous
interactions and extract a trust value. In this trust model we define a Ring
of Reviewers (RoR), that keeps track of all the information that is extracted
from encounters with other users of the WRS. The RoR operates as a database
and performs all the operations with respect to trust initialization and trust
updating.

4.3 Structure of the Trust Model

The trust model is based on Jonker’s and Treur’s model of trust dynamics [19]
and uses Marsh’s formalized way of representing trust [23].

The trust model has three main parts as described in section 2.1.3.

e Initial trust. Represents how a new trustee in the Ring of Reviewers is
initialized.

e Trust dynamics. Represents the speed that a trustee in the Ring of Re-
viewers progresses in trust.

e Trust evolution model. The model defines a function for trust evolution
and how this function can evolve to describe to progresses in trust.

We adopt this model because this would give a more flexible trust model than
presented in figure 2.1 on page 12. Furthermore Jgsang, Ismail and Boyd [20]
points out, that if a recommender system is too simple the users will loose faith
in it and the model will not fulfil its purpose.

4.3.1 Setting up Initial Trust

Reviewing articles on the Wikipedia opens the possibility that the newly en-
countered users can become trusted users. When a new user is introduced into

46 Trust Model

the system, the user has to have some sort of initial trust. Junker and Treur have
two options when defining initial trust. Initially trusting and initial distrusting,
where both these approaches requires a configuration in trust.

The idea is to have a system, which do not need configuration upon initialization.
Therefore the system cannot predict if a user is initially trusting or distrusting.
In order to avoid configuration the system has a neutral view of new users.
Therefore all new users that are given the trust value of 0. And since there is
no interactions with this new user, the user starts the trust function in point
(0,0).

4.3.2 Trust Dynamics

Trust Dynamics describes the development in trust. As described in section
2.1.3.2 Junker and Treur defines six ways that trust can progress: Blindly posi-
tive, Blindly negative, Fast positive - slow negative, Balanced slow, Slow positive
- fast negative and Balanced fast.

These six approaches describe how the X-value on the X-axis moves, by intro-
ducing granularity on the X-axis. For example, if the user is a fast positive
and slow negative, then when encountering a positive experience then the user
moves a big step forward in the trust evolution function (described in section
4.3.3) and a small step back if the experience was negative. This granularity
could be used to model the trust dynamics towards the trustee.

However, choosing this approach to trust dynamics would be difficult to imple-
ment, due to the requirement that the implemented system has to be able to
work without configuration. It is difficult to determine through the users actions
what kind of the six approaches the trust towards a trustee can progress.

Instead the trust dynamics is based on later research by Jonker, Schalken,
Treeuwes and Treur [18]. With this approach is trust dynamics is based on
experience that can change over time and is not defined by different granulari-
ties in progress. Instead Jonker et al. sugges that trust dynamics are influenced
by forgettabillity as described in section 2.1.3. Our trust model applies this
approach to trust dynamics. They perform an experiment where an object has
the same positive and negative interactions, the only difference is in which order
they are encountered. The experiment shows that the further back in time an
event is the more insignificant this event is. There are two ways to approach
this:

4.3 Structure of the Trust Model 47

Amount defined implies that only the latest number of interactions have
influence. For example only the last 25 interactions that have influence
on the final trust value. If for instance if a trustor has had 25 interac-
tions within a week with a trustee, they are the only ones that count,
even though there might be hundreds in the past. On the other hand if
the trustee and trustor only have an interaction every second months, the
trust value would be based on 2 year old interactions.

Time defined. After a certain point in time (e.g. a year) the interactions do
not count any more, no matter how many interactions there have been. If
there is only one interaction with a trustee within a year, then that is the
only one that will be used to calculate a trust value.

The model adopted in our trust model is a weighted time definition. This means
that the longer an item is back in time the less it means. This gives the most
realistic approach to a trust system.

4.3.3 Trust Evolution Model

The trust evolution model consists of a trust evolution function and a methods
for adjusting the function, in order to have a dynamic evolution function on
stead of a static function.

Junker and Treur define 16 properties for the trust evolution function. Ten
of these are listed in section 2.1.3.3. These 10 properties will be the basis for
developing the trust evolution function. The last 6 properties are not considered
as they deal with approximation of the trust evolution function. But as we see
later our trust evolution curve does not originate from a data set but from a
mathematical formula, there are not need for approximation.

When designing a system that has no configuration, it is impossible to tell what
kind of a person is using the system. Therefore the system takes a neutral point
of view when a new user is introduced in the Ring of Reviewers. The first curve
is a linear function, f(x) = x.

This approach is neutral because the first interaction will lead to the same
relative growth in final trust, whether this is a negative or a positive experience.

Every time the user has read an article the user is asked to rate this article, and
state if he is content with the initial result given. This feedback is used to update
the trust evolution function and helps the recommender system determine what
kind of trust profile the user has.

48 Trust Model

(1,0)

(0,0 (0,1)

(-1,-1)

(0,-1)

Figure 4.2: Initial linear trust evolution function.

In general people can be more optimistic or cautious when it comes to evolving
trust. A user is optimistic if the user tends to trust a person based on a few
set recommendations. If a person is more cautious it takes more interactions to
obtain a high trust value, where optimistic persons get a high trust value fast.
The optimistic and cautions curve is shown in figure 4.2.

We see that both curves ends in trust value 1, but the optimistic curve will have
higher trust values while approaching 1. Basically this means that an optimist
have higher trust value on a fewer recommendations. This on the other hand
leads to recommendations that are based on fewer reviews and therefore is more
likely to be misinforming. Fewer interactions mean that the user is not that
acquainted with the user. A set of possible curves are seen on figure 4.4.

4.3.4 Adjusting the Trust Evolution Model

As described above the trust function can change over time through feedback
from the user. This is done through the recommendations given by the user.
The user is asked to give the page a recommendation and state if this presented
recommendation is satisfying or not. This gives an idea on what fault tolerance
the user has. For instance, if the WRS provide the recommendation 7 (on a
scale from 1 to 9), and the user gave the recommendation 5, and stated that
the user is content with feedback. This gives an indication that the user is a
more forgiving person that does not mind a little slack and therefore the curve is

4.3 Structure of the Trust Model

49

(1,0)

(0,0)

Figure 4.3: Trust evolution function, the cautious and the optimistic curve

(1,0)

(0,0)

0,1)

('1!'1)

(05'1)

Figure 4.4: Trust evolution function, several possible curves

adjusted towards a more optimistic curve. On the other hand, if the user states
that he do not like that the recommendation is 2 steps off, then this states that

50 Trust Model

a user does not like to be betrayed. Hence a more cautions curve should be
applied to the users in RoR.

Basically the system should deal with six different situations when getting feed-
back from the user, and altering the user trust values in RoR

e A user can be in the trust region (15* quadrant) and the recommendation
can be a positive experience.

e A user can be in the trust region (15* quadrant) and the recommendation
can be a negative experience.

e A user can be in the distrust region (3'¢ quadrant) and the recommenda-
tion can be a positive experience

e A user can be in the distrust region (3'¢ quadrant) and the recommenda-
tion can be a negative experience.

e The user can be in Origin (0, 0), and has a positive experience.

e The user can be in Origin (0, 0), and has a negative experience.

In the scenario where the user is in the trust region and has a positive experience,
then this must lead to an improvement in trust for people who rated likewise
the user. For the optimistic and the cautious curve the development in the
evolution curve would look like figure 4.5(a) and 4.5(b).

The evolution function extends from the full-line curve to the dashed curve. We
see that there is a difference in the progress of trust, depending on whether the
user is an optimistic person or cautions person.

On the other hand if the experience is negative then trust value must be de-
creased for that users, who provided the information which is unsatisfactory.
This is shown on figure 4.6(a) and 4.6(b).

The function moves from the full-line curve to the dashed, and again there is a
different progress in trust depending on the user is cautious or optimistic.

When adopting this way of changing the evolution function, there are some
definitions that have to be made. In this model it is only when a negative
episode have occurred that it is possible to have a cautious curve, and only
possible to have an optimistic curve if there has been an positive interaction.
This also makes sense to the human nature.

4.3 Structure of the Trust Model

51

(1,0t

©0)| -~

(0,1)

(-1,-1)

(0,-1)

(1,0)

©0) |

(0,1)

“)

0,-1)

(a) A user with a cautious curve has
a positive experience, and the curve is
updated accordantly.

(b) A user with a optimistic curve has
a positive experience, and the curve is
updated accordantly.

Figure 4.5: Positive experience in trust

(1,0)

0o

(0,1)

(-1,-1)

(0,-1)

(1,0

e

0,1)

(-1,-1)

0.-1)

(a) A user with a cautious curve has
a negative experience, and the curve is
updated accordantly.

(b) A user with a optimistic curve has
a negative experience, and the curve is
updated accordantly.

Figure 4.6: Negative experience in trust

52 Trust Model

This approach for changing the trust evolution function does also apply to dis-
trust region. If the user has a negative experience then the trust evolution curve
is pushed further down towards (0, -1) and if the user encounters a positive ex-
perience, then the curve is pushed further up against (-1, -1).

4.4 Formalizing the Model

We want a mathematical interpretation of the trust model as defined by the
trust evolution function and the trust dynamics.

In this trust model there are two parameters that can be adjusted in order to
calculate a trust value. The first is the X value, which is based on the trust
dynamics, and adjustments are based on how the interactions with the trustees
are interpreted. A positive interaction is defined by the trustee and the trustor
give an article a similar recommendation. The N value is based on the experience
with the provided recommendation. If the trustor is content with the provided
recommendation, those trustees that contributed significantly have their N value
adjusted towards a more positive curve.

4.4.1 Trust Evolution Function

As described in section 4.3.3 the initial trust function is determined be the
mathematical function f(x) = x. This is assumed in order to have a neutral
basis upon initialization of a user in the RoR.

Using the linear formula as suggested does not bring all the possibilities as
wanted.

When the user’s profile is changed in to a more optimistic or cautious curve,
then this is not possible to make this representation with a linear curve. Another
approach would be to represent the functions as a polynomial function with
different degrees power. The disadvantage of using a polynomial function is
that it is not mirrored in f(z) = —x + 1 and f(z) = —x — 1, as shown in figure
4.7. By having a function expression that is not weighted equally the steps
closest to 0 on the X axis is much less significant to that the steps closest to 1
and -1, which would not be fair as step towards trust should only depend on
the curves parameters and not the functional expression of the curve.

A third approach (and the approach chosen) is to represent the trust function as

4.4 Formalizing the Model 53

v 05

T T e T T
SLONGDe 08 07 -3 04 03 02 o1 ° 01 02 03 04 05 06 07 08 09 10

Figure 4.7: Trust Evolution Function represented with a polynomial expression

a superellipse (or Lamé curve). The superellipse is represented by the formula:

‘ T
a

The superellipse can be adjusted by tweaking the parameters a,b and n. The
parameter a and b represent the radius of of the superellipse, and if they are
set to 1 then the radius is 1, which fits the function with in the interval defined
in section 4.3. In this case it is only needed to operate in the interval -1 to
1, and therefore is is not needed to adjust the a and b parameter. Hence only
the parameter n is needed to adjust the n-value in order to update the trust
evolution function.

n
=1

"o
+’b

However the superellipse needs some adjustments in order to fit the desired
curves as shown on figure 4.4. In the original form the super ellipse for n = 4 is
plotted on figure 4.8 and defined by the expression:

4 4
lz|" +[y[" =1

In order to fit the different part of the superellipse to the trust function, as it
is shown on figure 4.4, it needs some adjustments. Four sets of functions are

54 Trust Model

Figure 4.8: The superellipse plotted where a =1, b =1 and n =4

defined in order to fit the different curves needed:

Optimistic curve in trust. See Equation 4.1.

e Cautious curve in trust. See Equation 4.2.

Optimistic curve in distrust. See Equation 4.3.

Cautious curve in distrust. See Equation 4.4.

The four different curves are defined like this, where the parameter a and b are
set to 1

lo — 1"+ |y|" =1 (4.1)

lz|" +ly—1" =1 (4.2)

lz|" + |y + 1" =1 (4.3)

4.4 Formalizing the Model 55

lz+ 1"+ y|" =1 (4.4)

Combining equation 4.4, 4.2, 4.3 and 4.1 into a piecewise function that is only
are defined in 1% and 3" quadrant, gives the trust function:

="+ =102+ ly—-1"=1 forz>0andy >0
Trust(z) = { lz+ 1"+ y|" =1 |z"+ly+1/"=1 forz<0andy<0
(4.5)

This function plotted looks like figure 4.9, where a and b are 1 and n is 2:

Figure 4.9: The trust function plotted where a =1, b=1 and n = 2

This implementation has the advantage that the neutral trust function, that has
been assumed to be linear, can be represented for n=1.

4.4.2 Trust dynamics

As described in section 4.3.2 trust dynamics are based on forgetability over time.
In our approach to trust dynamics we have made some assumptions based on

56 Trust Model

the experimental research by Jonker, Treur, Theeuwes and Schalken [18]. From
the research we see that after 5 successive positive interactions and no previous
interactions, the trust value is almost at a maximum. Therefore we make the
definition that after 10 successive positive interactions the trust value should be
at a maximum.

Based on the coordinate system where the X value goes from -1 to 1, we define
a positive experience to an increase to be % of the possible interval. As the
experiment is based on no previous actions this interval would be from 0 to 1,
hence a positive experience should increase the x value with 0.1.

The same experimental research shows that negative interactions reach almost
maximum distrust on 5 recommendations as well. Based on this we define a
negative interaction should decrease the X value of 0.1.

We define that after 3 months an interaction is only worth 50% of its’ original
value and after 9 months it is only 25% worth and after a year it is not worth
anything any more. For example, if a person has 2 positive experiences within
the last week, a negative experience that is 4 months old, a negative experience
that is 10 months old and a positive experience that is 2 years old the X value
will be calculated as following

XValue=0.1+0.1-0.1-50% —0.1-25% + 0.1 - 0% = 0.125

There is no scientific approach of these time limits and the decrease factors.
Consequently, this area needs more research. Please see section 8.1.

4.5 Conclusion on the Trust Model

These definitions on the trust evolutions functions fulfil the 10 properties which
were defined as a requirements by Jonker and Treur (See section 2.1.3.3).

Future independence. This definition of the trust evolution function is only
dependent on the previous interactions as defined by the trust dynamics.

Monotonicity. The trust evolution function is monotonic, because the func-
tions make sure that a higher X value can never give a lower trust value
than the actual trust value. The trust value will always progress positively
when the X value progress positively.

4.6 Summary 57

Indistinguishable past. We cannot determine the trust evolution curve (N
value) or the trust dynamics (X value) by analyzing the from the trust
value

Maximal initial trust. There is a maximum trust value of 1.
Minimal initial trust. There is a minimum trust value of -1.
Positive trust extension. The trust can progress positively.
Negative trust extension. The trust can progress negatively.

Degree of memory based. The trust evolution function will forget about the
past with the definition of the trust dynamics.

Degree of trust dropping It is possible to change the acceleration of trust
dropping by the feedback from the user. By having a larger N value trust
can drop faster.

Degree of trust gaining It is possible to change the acceleration of trust
gaining by the feedback from the user. By having a larger N value trust
can be gained faster.

In appendix A on page 105 an example for calculating the trust values are given.

4.6 Summary

This chapter describes the backgrounds for having a trust model that represent
the trust between a trustor and a trustee. First we define a coordinate system
between -1 and 1 on both axis, that helps us represent the trust as function.
We define a trust model that contains three elements: Initial trust, that defines
how trust is initialized, trust dynamics, which defines the actual development
in trust and the trust evolution model which is a function expression for how
the actual trust value should be calculated. The trust evolution model contains
the functionality to change according to user feedback. The trust model is
formalized in order to make it easier to implement into the WRS software, and
follows resent research.

58

Trust Model

CHAPTER 5

Design

This chapter describes the design of the system and the problems that are
outlined in the analysis (chapter 3) are solved.

5.1 Internal Architecture of the Proxy

The internal design of the WRS are split in to four central modules. The central
modules in the system are sketched in figure 5.1 and described here:

e The HTTP module handles the communication between the user and the
between proxy, and the communication proxy and the Wikipedia.

e The Page Module handles the HTML pages which are used to find the
edit and history page, and the modification of the HTML pages.

e The Rating Module handles the rating that defines the recommendation
an article has been given, how these are created, verified and parsed.

e The Trust Module handles the trustees, the trust values that are assigned
to trustees, how they are calculated, updated and used to modify the
ratings.

60 Design

REQUEST ;l—,->: PAGE Module, Do
] EXTRACTOR —] PROXY

Lf

FEEDBACK

USER PROCESSOR HTTP PAGE MODIFIER

i

I | '

. Module | : I

ro 'y USERAND | |

——————————————— ot h RATING RATING i

| | EXTRACTOR VERIFICATION | !

- - | Aniututeieiei ettt | !

I I

} . | | |

! TRUST — I I |

UPDATER I ! T T

| RING OF I I 7

I

[REVIEWRS | | ! RATING SESSION | |

| RATING
! I 7 caLcuLaTor 0B

i Trust - ! | |

| Module T ! ! T T

I I

L ___—/——= T T o ____ I

Figure 5.1: Internal architecture of the proxy

5.1.1 Flow in the Proxy

All browser based traffic goes through the proxy. The proxy filters out traffic
that is not sent from or originates from the wikipedia.org domain. When a
HTTP request comes in to the proxy, it is analyzed and if is not for the Wikipedia
domain, it is rerouted from the proxy. If the request is to the Wikipedia domain,
the proxy retrieves the HTML page and passes the HTML page along to the
Page Extractor module. The Page Extractor then extracts the URL for the
edit page and for the history page. The URL for the edit page is then passed
on to the Rating Extractor, which extracts the ratings from the WML in the
edit page, and stores them in a Session Rating Database, which operates as a
temporary database that contains the ratings from an article that are relevant
for this session only. The Ratings are then verified with help of user certificates,
which are stored in the user page on Wikipedia. The Session Rating Database
is updated and the ratings which are not valid or is below the threshold that
defines them as unacceptable for this version of the page is removed. (See section
3.4.4). A sequence diagram for finding the ratings can be seen on figure 5.2.

The temporary Session Rating Database is then compared to the trustees that
the user previously has had interactions with. The interactions with these
trustees are stored in the Ring of Reviewers. These trustees already have a
certain trust value, because of previous interactions. The Rating Calculator
now calculates a personal recommendation based on the ratings in the tempo-
rary Session Rating Database and the trust values in the RoR. This recommen-

5.2 The HTTP Module 61

Rating Extractor

Page Extractor Session Rating DB

Request Handler ‘ Main Thread
T T

Rating Verifyer
T

HTTP Request

I
| |
I
HTML Page ! |
'
'l URL request |

Edit URL

Ed:it Page

! Raw Ratings

Verified Ratings

i
i
i
i
i
i
i
! :
Verified Ratings i
i
i
i
i
i
i
i
i
i
i
i
!

|

Figure 5.2: Sequence diagram: Finding the ratings.

dation is passed on to the Page Modifier. The Page Modifier then inserts the
calculated recommendation into the HTML page along with the feedback option
to the user. On figure 5.3 a sequence diagram shows how a recommendation is
calculated and given to the user.

The user now gives feedback on the quality of the article and feedback about the
satisfaction with the provided recommendation. from the WRS. The feedback
is used to update the trust values in the Trust Updater, and the updated trust
values and the potential new users are inserted into the RoR. The feedback is
the only way to know if the used trust values are correct or not, and is thereby
used to determine how trust should evolve for each user in the RoR. Figure 5.4
shows a sequence diagram of the trust update process.

5.2 The HTTP Module

The HTTP module contains the tools for general communication between the
proxy and Internet and between the proxy and the user.

The Request Handler takes care on the initial HT'TP request by the user. The
Request Handler filters out all the requests that are not for the Wikipedia

62 Design

Page Modifier

‘ Main Thread || Rating Calculator ‘ Ring of Reviewrers || Page Extractor
T T T T

|
ﬂVerified Ratings

Request Trust Values

N

Trust Values

|
I
I
I
i
i
|
|
I
I
I
i
|
|
I
I
I
:
|
Calculated Rating
I
i
|
|
I
I

Request original HTML

U Original HTML page

I\llodified HTML Document

-

————— |4

T
1
1
|
1
|
T
1
1
1
|
1
1
1
1
1
1
1
1
1
1
1
1
1
1
|

Figure 5.3: Sequence diagram: Calculating the recommendation and feeding the
recomendation in a modified HTML document back to the user.

domain. These requests are passed trough the proxy.

When a HTTP request enters the proxy to the English Wikipedia, and the
request is for an article, the Request Handler downloads the requested article
and then passes the raw downloaded page to the Page Extractor. If the request
is for the edit page, discussion page, or any other page that is not with in the
scope of the recommendation software the page is simply passed along as if it is
a page from out side the Wikipedia domain, because the subpages do not have
any recommendations affiliated.

The HTTP Module also contains the Feedback Processor. The Feedback Proces-
sor deals with the feedback from the user. In the modified page (see section 5.3)
the feedback mechanism is embedded. The user is given two feedback options.

The first feedback option is the possibility to rate a page. The user clicks a
link on the Wikipedia article to give the page a recommendation. The feedback
processor then creates a rating, as described in section 5.4, and puts this rating
into the edit page, and submits the changes to the Wikipedia.

The second feedback option that the Feedback Processor gives the user is a sat-
isfactory feedback. The user can, through a click, tell the system what he/she
thinks of the recommendation. This reply is then passed on to the Trust Up-
dater. See section 5.5.

5.3 The Page Module 63

Feedback Processor Trust Updater Ring of Revievers Session Rating DB

Feedback

N

Feedback

N

i
I
I
I
I
I
I
I
I
I
I
I
|
Get existing trust values |
1

Existing trust values

Verified ratings

Updated trust values
Figure 5.4: Sequence diagram: Updating the trust values based on the userfeed-
back.

|

|

I

|

|

|

|

|

|

I

|

|

| T
i !
! Get verified ratings
| 4
I

|

|

|

|

|

|

|

|

|

|

|

|

5.3 The Page Module

The Page Module contains the components that are used to work with the
HTML pages. The Page Extractor is used to obtain URLs for the edit and the
history page, and scans through the HTML documents for the markers that the
Wikipedia use to mark the two pages. After the scanning the original HTML
document is stored, for use by the Page Modifier.

The Page Modifier is used to change the HTML page that is obtained from
the Page Extractor. The Page Modifier inserts the recommendation calculated
in the rating module. Furthermore, the Page Modifier inserts the HTML that
contains the feedback mechanism as described in section 5.2. The HTML that
is introduced into the webpage must have several properties.

The feedback mechanism must be placed somewhere on the webpage, where it
does not interfere with the article. Consequently, it must be placed somewhere

64 Design

where it can be seen at once, and so that the active user will not have to scroll
through to the bottom of the page to see the recommendation. A Wikipedia ar-
ticle is a quite dense webpage, where there is a lot of information. The structure
of the articles change a lot, and the users setup changes a lot as well (resolution,
browser, etc). Therefore it would be preferable if the recommendation could be
moved around on the webpage or minimized.

5.4 The Rating Module

The rating is what binds the users together and enables collaboration between
users. The rating consists of five parts:

e The recommendation. The mark that the user has given the article. A
numeric value between 1 and 9.

e The user. The name of the user who put the rating on the article. This is
the registered Wikipedia user name. It is a necessity to have a registered
user account, in order to keep a certificate.

e The version. This describes which version of the article, that the rating
was added.

e Name of the article. Because the ratings are stored in the WML, they
can be copied and inserted in to a any article. The name of the article
is inserted in to the rating, in order to prevent that ratings are copied to
other articles.

e A digital signature. The signature protects the recommendation from
fraud. The title of the page, the mark, the username and the version are
concatenated and signed with the users private key. This security measure
prevents the ratings are tampered with, moved to other pages or moved
to or to a later version of an article.

The Rating Extractor is given the URL of the edit page. The Rating Extractor
then initiates a new URL connection to the URL of the edit page. The HTML
code of the edit page is then downloaded, and the source code is now scanned
for the marking that indicates a recommendation. The recommendations are
now parsed in order to validate them.

The recommendations are filtered in a specific order, due to some of the filtering
take more computation power that others. This order will make the filtering
fastest.

5.4 The Rating Module 65

Firstly, the recommendations are filtered by name and recommendation. In the
rating the name of the article is inserted. The ratings are filtered by name
to avoid that ratings from other articles are inserted in to the article. Hence,
the rating is discarded if the recommendation is not within the limit. If an
recommendation is not an integer between 1 and 9 (both included) they are
removed. This is a computational easy task, as is is only a string match that is
required.

Secondly the ratings are filtered on duality. This prevents a user from inserting
more that one rating into an article, by removing the oldest recommendation
from the page.

Thirdly, the signatures are validated with the signer’s public key. The public
key is stored in X.509 certificate that the signer must keep on his user page.

Finally, the ratings that are below a certain threshold are removed. The thres-
hold are described in section 3.4.4. This filtering are done last because it requires
to open an URL connection to obtain the previous versions of the acticle. Open-
ing an URL connection takes time and therefore we would like to do this as few
times as possible.

After the ratings have been filtered the ratings that are left, are inserted into the
Session Rating Database. The raw ratings are parsed, and stored as an object
in the database. This is a small temporary database that is only kept during
the HTTP session. The Session Rating DB is stripped of the security measures,
because the ratings have already been verified.

The Session Rating Database is now passed on to the Rating Calculator which
calculates the final rating to the user. The Rating Calculator queries the Ring of
Reviewers to obtain the trust values from the users of the ratings that are in the
Session Rating Database. To obtain a final recommendation, the ratings that
are in the Session Rating Database needs to be aggregated robustly. There are
several ways to attack the system that could affect the result. See section 3.4.3.
These attacks are prevented by filtering the ratings and the security measures in
place. However there might still be some false or pollutes ratings inserted into
the final Session Rating Database. Therefore the ratings need to be aggregated
securely. David Wagner has in [35] proposed a way to aggregate measurements
from a sensor network, based on robust statistics. We take the same approach
in aggregating our recommendations. Firstly the Rating Calculator adjusts the
recommendations according to trust values in the Ring of Reviewers and then
aggregates these signatures a 5% trimmed average. An example of the calculated
average, 5 % mean trim and ratings adjusted for trust values can be found in
appendix A.2 on page 106.

66 Design

5.5 The Trust Module

The trust module deals with the management of trust in the WRS. The trust
module has two components: The Trust Updater and the Ring of Reviewers.
The detailed description of the trust model is documented in chapter 4. This
section describes how this trust model is fitted into the WRS.

As described in section 5.1, the Ring of Reviewers (RoR) is basically a database
of trustees that the active user previously has had some interaction with. These
trustees are defined as Reviewers. Each reviewer is basically defined by a user-
name and a trust value. This trust value can change over time, according to
the Trust Model. As the RoR evolve over time it is important that the values
obtained through the feedback can be stored. In this case it would be ideal to
have a database to store the different values as the RoR could become large over
time. However, in order to ease the implementation the RoR will be stored as
file on the disk on the proxy. Upon initialization of the proxy the RoR is read
from the disk and old values are restored.

The Trust Updater takes the feedback from the active user and uses this feedback
along with the existing ratings to calculate the updated trust values and to
calculate if there are any new potential users that could be inserted in the RoR.
If new trustees can be found a trust value is calculated, so the system is ready
next time the WRS encounters a rating from that user.

5.5.1 Dealing with the Feedback

Dealing with the feedback from the user is performed in the Trust Updater as
well. The user has some feedback options in the browser. This feedback can
adjust the N and the X values in the trust model. This is explained in section
4.3.4.

The feedback mechanism distinguishes between interactions and experiences.
Experiences adjust the N value and interactions adjust the X value.

An interaction is based on the recommendation that the active user gives the
article. We define two intervals: One interval is less that £1 of the recommen-
dation that the trustor has given the article and one interval is more than +3
of the recommendation that trustor has given. All other users that have rated
similar (within the £1 interval) will be seen as a positive interaction and will
influence the X value (trust dynamics) positively. All recommendations that
are far away (more than + 3) from the given recommendation will be seen as a

5.6 Security design 67

negative interaction and decreases the X value. Recommendations that are not
within the defined interval will not be dealt with. See an example in section
6.4.6.3.

Similar is the adjustment of the N value, that is based on the user is content
about the result or not. If the active user gives positive feedback on the recom-
mendations that have had a high influence on the mark, the N value is adjusted
towards a more optimistic curve and if it is a negative experience then the N
value is adjusted towards a more cautious curve.

5.6 Security design

As described in section 3.4.3 some implementation of security is required in the
WRS. In order to prevent the described attacks the ratings have to be secured.
We cannot rely on the Wikipedia to safeguard our ratings. Therefore users have
to secure their ratings themselves.

5.6.1 Initialization of Security

In order to set up the WRS with the necessary security features, each user has
to have a public and a private key. As described in section 2.3.2 the WRS does
not have a central PKI. Each user creates a public and private key and creates
a self signed X.509 certificate.

In order to use the WRS the generated keys will have to be distributed properly.
The private key is used to sign ratings that are put into the articles. It has to
be inserted into the proxy and the public key will have to be distributed to the
Wikipedia, so other users can verify the rating that the active user had given

The public key will have to be available to everyone that need to verify ratings,
so storing the public key on the Wikipedia seems a proper solution.

5.6.2 Domain

WRS are designed to work with one single wiki at a time. In this project our
focus is on English Wikipedia, mainly because it is the largest and has the most
users.

68 Design

PUBLIC KEY

PRIVATE KEY

Proxy

Figure 5.5: Distribution of the public and private key

There is, however, also a quite important security aspect to this design choice.
When using the WRS, there has to be an associated user name. There has to
be issued as an identifier to the public key. This is used to identify who put the
ratings on a page, in order to get different trust value. And in order to identify
persons we have to validate identity through their certificates. This certificate
have to be stored somewhere where it is public available. In the WRS it is
obvious to store this certificate on the user page, and then user the Wikipedia
username as identifier that will be associated to the public key.

It would be preferred if we were to be able to use the same certificate and
identifier on a different wiki (for instance the Danish wikipedia, or Simple Wi-
kipedia). This would enlarge to possible number of trustees, and there by we
could get more trustees in our RoR and by that, users would get better and
more reliable results. But this opens up to a set of security related problems.

Identity theft. One username does not give access to all wikipedia databases.
A login to the English Wikipedia cannot be used on the Danish Wikipe-
dia and vice versa. Two people can register the same username on two
different databases. Registering some one else’s username, access to that
database is prevented and the user who got his/hers name registered is
prevented from obtaining information and submit recommendations on
that wiki. This way the system would be prone to a denial of service
attack.

Ratings Moving. The name of the article is included in the rating. This
introduces a challenge when the same words have different meanings on
different languages. For example, the English word ”coin” in French means
corner. Naturally the two articles would be totally different. If a users
identity covered the all possible wikis then it would be possible to move the

5.7 Summary 69

rating from one article to another, and there would be no way of knowing
which one is real.

A solution to this problem could be to use the public key as identifier. This
way a public key would be trusted instead of a username and each key could be
used on several wikis. This however introduces another set op problems. With
this approach all ratings that are put on the Wikipedia would be much larger
and take up much more space. A 1024 bit key takes up 128 bytes compared
to a 12-14 byte username. Furthermore a user would not be able to revoke his
certificate and issue a new because this would lead to a new identity and all
trust previously build in that user would be lost.

5.7 Summary

The design chapter describes the internal design of the WRS. We describe how
a request from a user, is processed, and the different operations that are per-
formed in order to provide the active user with a personalized recommendation.
We describe how the feedback, which the user gives is processed and how it
influences the trust management system in the WRS.

This chapter also describes general security measures that have to be taken in
order to protect the WRS from being prone to attacks.

70

Design

CHAPTER 6

Implementation

This chapter concern the implementation of the WRS. This chapter shows that
implementation of the proposed system is feasible, within the described require-
ments and design. However, the implementation should not be seen as a final
product that is ready to be deployed.

6.1 Technologies Used

In the development of the WRS several technologies have been used. This
section lists the technologies and the reason for choosing that specific technology.

Java SE Java is chosen as development language mainly because the WRS
is an internet application and Java offers a good and solid framework for
development of Internet based applications. Furthermore, Java is platform
independent which suits the requirements of a proxy well. The WRS will
fit on any operating system, as long as the operating system can run a
Java Virtual Machine. With this platformindependence the WRS will be
able to fit into any network environment required. With the choice of
Java, several other development tools become clear.

72 Implementation

Junit. As a unit testing framework JUnit is a excellent choice to perform white
box testing. Read more in chapter 7

Java Remote Invocation Method. For performing communications over a
network Java RMI offers a simple and direct way of communication and
invoking methods over a network.

WIKI bot. There are several frameworks for development of bots to the Wi-
kipedia. One of the larges and most used is Java Wiki Bot Framework
[3]. However this framework is quite large and although it can perform
a large set of different tasks. However, our need is restricted to perform
page edits. Therefore we user WIKIbot by MER-C [16], because it is much
smaller and more light.

Scone Proxy. Scone is programmable proxy that is written in Java, which is
developed to create new web technologies that will enhance the browsing
experience.

ADC parser. Arthur Do from Standford University has written an library for
parsing HTML documents [11]. This library is used by Scone.

WBI Framework. IMB has developed a framework for developing web appli-
cations in Java. Scone uses this framework.

6.2 Scone

As outlined in section 2.4 there are three proxies that have been evaluated in
order to find a proper proxy that could be used for developing the WRS, but as
outlined on section 2.4 the choice fell upon the Scone proxy.

The Scone API allows plugins to be written. Plugins ease the insertion of code
and new functionalities to the proxy, and the removal of such again. The WRS
are written as a plugin to Scone. Figure 6.1' shows a general overview of the
plugin setup for Scone. Implementing as a plugin gives access to all features
and components of Scone. These features are: The TokenHandler, Generator,
RAS-Handler and Robot Task, where the WRS are written, with the use of
TokenHandler.

Plugins can easily manipulate the HTML streams flowing through the proxy,
gather and process data from the Internet and serve this information as static
or dynamic documents to the browser.

IThe figure is taken from http://scone.de/architecture.html

http://scone.de/architecture.html

6.2 Scone 73

Scone Plugin Browser

TokenHandler Modifed

HTMLAML

Images,
Applets
Web RAS-Handler P Applet I

data

Rabot Task

Events &
Objects
Robot DB _. User
—* || Tracking~—

Figure 6.1: Overview of the plugin setup.

6.2.1 Scone Proxy API

The architecture of scone is described in section 2.4.3. This section gives a
brief overview of the four modules in Scone: Proxy, Robot, NetObjects, and
UserTracking. In the implementation of the WRS it is only the proxy module
that is used. This section describes the technical details of the proxy API. An
overview of the of the different components in the Scone API can be seen on
figure 6.2 2. The Scone Proxy API consists of a set of interfaces, that can
be inherited and in the development of a plugin to the Proxy. Plugins that
are inserted to the proxy are controlled by the SconePluginInterface. Scone
extends the HttpProxy interface that is provided by WBI, and enables all the
networking operations. Consequently, Scone contains an AccessTrackingMeg,
GeneralResourceGenerator and a TokenHandlerMeg. A Meg is a component
within the WBI framework that can monitor, edit, or generate requests.

The AccessTrackingMeg is used to obtain the actions performed by the user in
the browser. The GeneralResourceGenerator is used to transfer the documents
from and to the user. The TokenHandlerMeg is used to manipulate HTML
documents and other data send over a HI'TP connection.

The TokenHandlerMeg is used to do the actual manipulation of the HTML doc-

2The figure have been taken from http://scone.de/doc/scone/scone/proxy/
package-summary.html

 http://scone.de/doc/scone/scone/proxy/package-summary.html
 http://scone.de/doc/scone/scone/proxy/package-summary.html

74 Implementation

AccessTrackinghleg

HttpProxy

contains

extends 1

contains

GeneralResource Generator

Zoone W'
TokenHandlerMeg

contains 1

4"

contains
1

L.

T olcenHandlerController

contains containe
1 1

StandardHtmlTokenHandler AddPreambleHtmIT okenHandler

SconePlugininterface

Figure 6.2: Overview of the Scone Proxy API.

uments. The manipulation is controlled by the TokenHandlerController, and
the HTML header is manipulated by the AddPreambleHtmlTokenHandler and
the body of a HTML document is manipulated in StandardHtmlTokenHandler.

6.3 Implementation of WRS

The WRS is as mentioned above implemented as a plugin that uses the Scone
API to handle the HTML documents. Setting up a plugin for Scone is done like
this:

public class WRSPlugin extends Plugin{
public void init (){
WRS wirtu = new WRS(this);
wirtu.setup (” WikipediaRecommenderSystem” ;HTDOCCONDITION, 60) ;
addMeg (wirtu) ;

An instance of the plugin is created in the init() function. The WRS object
contains all the code that the proxy needs to execute. The WRS object extends
the HtmlTokenEditor:

public class WRS extends HtmlTokenEditor {
WRSPlugin plugin = null;

6.4 Implementation Overview 75

The HtmlTokenEditor enables the manipulation of HTML documents. The
method handleRequest () is extended from the HtmlTokenEditor. This metod
is invoked by the GeneralResourceGenerator. Everytime a request comes in
to the proxy the handleRequest method is invoked and executed in a thread.
Two streams are initialized in order to extracting the HTML document which
is downloaded to the proxy. One stream is for reading the content and one is
for writing the content. The streams are obtained over a SconePipe:

public void handleRequest (SconePipe pipe) {
TokenInputStream in = pipe.getTokenInputStream () ;
TokenOutputStream out = pipe.getTokenOutputStream () ;

And HTML tokens can now be read from the in stream like this:

[Token t = in.read();

And written to the browser like this:

[out.write(token) ;]

6.4 Implementation Overview

Implementing the design of the proxy reflects the design described in chapter
5. Each module described in the internal architecture is implemented as a Java
package with some modification. Consider the package diagram shown on figure
6.3.

e The HTTP module is implemented by the sconeplugin package, which is
also the main thread. The Feedback Processor from the design has been
implemented in the remote package.

e The page module is implemented by the page package.
e The rating module is implemented by rating package.
e The trust module is implemented by the trust package.

e The package statictools contains a set of tools that is used throughout
the implementation. Such as Security tools, network tools (which is not
provided by Scone), bot tools etc.

e the adc.parser contains tools to parse a HTML page.

76 Implementation

1

benchmark

remote i rating 1

i -------- | test

—l N —

adc.parser

| page | trust statictools

Figure 6.3: Overview of the packages that are used in the WRS.

e The benchmark package contains the benchmarking tests described in
chapter 7.

e The test package contains the white box tests described in chapter 7.

The actual code is not described in detail here. The code is very well commented
and should be self-explaining. See appendix C for the code. In appendix F a
complete package diagram and class diagram can be seen, as well as a sequence
diagram for flow in the proxy.

6.4.1 Sconeplugin package

The sconeplugin contains the main thread and from here the handleRequest ()
is invoked. The WRS initializes all the objects from the other packages that are
needed to calculate the recommendation. The WRS inserts a Java applet for
the feedback mechanism. A simplified class diagram is shown on figure 6.4

WRS | __________| WRSPlugin

Figure 6.4: Overview of the Sconeplugin classes

6.4 Implementation Overview 77

6.4.2 Page package

The page package contains three Java classes, which do not have any interaction
with each other but all three of them perform some operation on an HTML
document.

6.4.2.1 PageExtractor Class

The PageExtractor class extracts the URLs for the edit and the history page.
Furthermore, it extracts the page title and the current version number. Both
values are needed to put a rating on a page.

The information is found by scanning for markers in the Wikipedia HTML.
These markers are used to identify information fields.

<LI id="ca-edit"> marks the URL of the edit page.
<LI id="ca-history"> marks the URL of the history page

<LI id="t-permalink"> marks the URL of a permanent link, where the ver-
sion number can be found. This marker can also be used to obtain the
title.

An example that scans for the edit page marker is shown here:

(//scanning through the tokens
for (int i = 0; i < HTMLdocument. size (); i++) {
Token t=(Token)HTMLdocument.elementAt(i);
//1f the token is a HIML Tag and not text
if (t instanceof HtmlTagToken) {

HtmlTagToken tag = (HtmlTagToken) t;

// Find the <LI id="ce—edit”> tag

if (tag.getTagType() HtmlTagToken. T_LI) {

if (tag.getParam(”id”) != null) {
if ((tag.getParam(”id”)).equals(”ca—edit”)) {
//Perform task

6.4.2.2 ExtractRatings Class

The ExtractRatings class is used to extract the ratings from the Edit URL that
was obtained from the PageExtractor. Due to the fact that the user does not

78 Implementation

download the edit page, where the ratings are stored, a URL connection has to
be opened and to the Edit url and the ratings have to be extracted. A rating
looks like this:

<!-- WikiTrustComment. Read more on:

http://en.wikipedia.org/wiki/User:Korsgaard

;Korsgaard;7;94723853;Bass_Strait; MCwCFBRZ3bjvzQk5qygSa0d8k1FNnzTeAhROuRCDktVV033/4xRLA==
-—>

ExtractRatings scans for a comment with the marker ”WikiTrustComment”,
and then extracts the required information (username, recommendation, ver-
sion, article name, and signature)

According to the design chapter extracting the ratings and verifying them are
two different operations. In the implementation these operations have been put
together, so that ratings are parsed and verified at the same time. This speeds
up the process due to the fact that ratings do not have to be stored to the disk
in between operation.

6.4.3 PageModifier Class

The PageModifier class is used to modify the content of the page shown to the
active user. The PageModifier needs to insert two things: The recommendation
that is calculated based on the trust values, and the feedback mechanism. The
HTML that needs to be inserted to the modified webpage is located in two
static text files that are located in the static_textfiles/ directory in the root
of the proxy. See appendix C.13. These files contain markers that are replaced
at runtime, with the relevant information. These markers identify:

The recommendation. The marker ###RATING### is replaced by the calcu-
lated recommendation.

The IP address. The marker ###IP### is replaced by the IP address that
hosts the applet that is used for obtaining feedback from the user.

The modified applet is inserted into the webpage with the use of Yahoo! UI
Library: Drag & Drop Library 3. In this way the recommendation and the
feedback mechanism can be moved around on the Wikipedia article, by dragging
it with the mouse, in case of the recommendation should cover some text in the
article.

3http://developer.yahoo.com/yui/dragdrop/

6.4 Implementation Overview 79

6.4.4 Rating Package

The rating package administrates ratings and storing of ratings in the WRS. A
simplified overview of the classes can be seen on figure 6.5.

RatingCalculator | _ _ _ __________________ > SessionRatingDB

Rating

RatingHistory RecommendationSubmitter

Figure 6.5: Overview of the Rating classes

6.4.4.1 Rating Class

The rating class is the central class in the Rating package. The rating is basically
a data type that contains all the information relevant for a rating:

The version number of the Wikipedia article that the rating is put on.
The recommendation is the actual mark that the article is given.

The username of the Wikipedia user who put the rating on the page. This
username is also the key identifier to the certificate used for validating the
rating.

Article URL contains the URL from where the article is obtained.

Experience: The feedback about the experience relevant to this article. The
experience indicates if the user felt the recommendation provided a rele-
vant contribution or not. The experience value is used to alter the trust
evolution function (N value).

Interaction: Interaction is used to describe if the interaction with this recom-
mendation is positive or negative. A positive interaction occurs if the

80 Implementation

active user has given a recommendation that is similar to other recom-
mendations that are related to the article. The interaction are used to
determine the X value in the trust dynamics.

The date is the time that a rating was first discovered and inserted into the
database. The date is used to calculate how old a rating is and also to
calculate trust dynamics (the X value).

6.4.4.2 RatingHistory Class

The RatingHistory class is used to store the ratings in an array. Every time a
rating is put into the RatingHistory an X value is calculated based on the design
of the trust dynamics, which is described in section 4.4.2. This way X values
can easily be extracted for use in the Trust evolution function.

6.4.4.3 SessionRatingDB class

The SessionRatingDB class is used to keep a temporary set of ratings, that
is extracted from the edit page. Once they are verified they are put into the
temporary database.

6.4.4.4 RatingCalculator class

The RatingCalculator class calculates a recommendation based on the descrip-
tion in section 5.4. The RatingCalculator uses the temporary database (Ses-
sionRatingDB) to calculate a 5% trimmed average.

In order to give recommendation the weight of their trust value, we generate an
empty set of recommendations and for each reviewer that should contribute to
the final recommendation we put the recommendation into the set, one hundred
multiplied with trust value of recommendations. If for instance, a trustee has
a trust value of 0.34 and gave the recommendation 2 to the article, then 34
2-recommendations are put into the set of recommendations. The set is now
sorted and the lower and upper 5% of the ratings are trimmed off and an average
is calculated from the rest.

A numerical example on how a recommendation is calculated is presented in
appendix A on page 105.

6.4 Implementation Overview 81

6.4.4.5 RecommendationSubmitter class

This class is used to submit a recommendation to the Wikipedia. The Recom-
mendationSubmitter generates a rating with the provided tools in the Securi-
tyProvider, and then submits the recommendations to the Wikipedia by using
a bot provided by MER-C [16].

6.4.5 Remote Package

The remote package is used to obtain the feedback from the user. The feedback
mechanism is implemented with Java RMI technology. A class diagram is seen
on figure 6.6.

«interface» EmbeddedApplet

FeedbackiInterface | - - — __ T

Figure 6.6: Overview of the Remote classes

6.4.5.1 FeedbackInterface class

The FeedbackInterface is the interface that the WRS class (from the sconeplugin
package) implements. The interface consists of a methods that is invoked when
the active user performs feedback through the browser.

6.4.5.2 EmbeddedApplet Class

The EmbeddedApplet class contains the applet that is inserted in to the proxy.
The applet is build with the java.applet * package and the java.awt ° package.

Whenever an action is invoked over the ActionListener, a RMI connection is
set up and the code related to the feedback mechanism is invoked in the WRS
object. With this architecture code execution is left within the proxy and the
external applet only invokes the code.

4http://java.sun.com/applets/
5 http://java.sun.com/j2se/1.5.0/docs/api/java/awt/package-summary.html

http://java.sun.com/applets/
 http://java.sun.com/j2se/1.5.0/docs/api/java/awt/package-summary.html

82 Implementation

6.4.6 Trust Package

The trust package is an implementation of the Trust Model that is described
in chapter 4. The trust package holds the RoR and the Trust Updater. An
overview is shown in figure 6.7

RoR Reviewer

TrustUpdater

N 6
! |
! 1
! 1
! |
! |
! |
! |

|
|
|
|
1
|

Figure 6.7: Overview of the Trust classes

6.4.6.1 Reviewer class

The reviewer class is a datatype that holds all information on each trustee in the
Ring of Reviewers. Furthermore, the reviewer class holds the implementation of
the trust model. Every time a new rating is inserted in to a reviewer the trust
evolution function is updated, and a new trust value in calculated.

The reviewer class maintains the variables in the trust model about the trustee.
It keeps and updates information about the evolution curve (cautious or opti-
mistic), it keeps track of whether the trustee is in trust or distrust, and contin-
uously updates the trust value based on the input.

We need to solve the four equations presented in section 4.4.1, in order to isolate
the y value, which is our trust values. We use MAPLE 6 to solve the equations,
and get the following equations, which are straight forward to implement with
the java.lang.Math package. Equation 6.1 solves 4.1, equation 6.2 solves 4.2,
equation 6.3 solves 4.3, and equation 6.4 solves 4.4. We get the following equa-
tions:

y=(=l@=1)"]+1)" (6.1)

Shttp://www.maplesoft.com/

http://www.maplesoft.com/

6.4 Implementation Overview 83

y=—(—|z"| +)7 +1 (6.2)

3=

y=(—]z"|+1)" +1 (6.3)

y=(—l@+1)"[+1)" (6.4)

The reviewer class only holds the methods for dealing with positive and negative
experiences. The invocation of these functions is done from the Trust Updater
class, which contains the logic for determining positive and negative experiences.

6.4.6.2 RoR Class

The RoR class contains the Ring of Revievers. The class is serializable in order
to be able to store it and retrieve it from the disk. The RoR is implemented as
a Java HashMap where the username is the key and the Reviewer class is the
value.

The RoR caches the users X.509 certificates. The certificates are cached for
performance reasons. If the WRS should download a certificate every time it
needed, then it would take a long time to calculate a recommendation, because
it takes a substantial amount of time to download a certificate and parse a
certificate. If an article contains 100 ratings, then 100 certificates would have
to be downloaded. Therefore the RoR needs to be able to cache certificates
and use the cached certificates when verifying a signature. This introduces a
problem, as users should be able to revoke their certificate. Therefore the RoR
are programmed to update certificates every time the proxy is initialized. As a
result of the wiki philosophy, then every one can alter a page. This opens the
possibility that an attacker can perform a DoS attack by modifying certificates
on the user pages. Therefore when the WRS downloads a certificate, it scans the
history of the certificate page and obtains the certificate from the version that
the owner last edited. This is possible because the history page states which
users made which edits. This gives a longer start uptime, but a much better
running time. See section 7.3.2 on benchmarking.

84 Implementation

6.4.6.3 TrustUpdater Class

The TrustUpdater class contains the logic and methods for dealing with the
feedback from the user. The TrustUpdater can adjust the N value in the trust
model based on the experience with this recommendation, and the X value can
be adjusted based on the interactions.

If a user states that he is content with the result then the users that have put
ratings on the article, within a 41 interval of the provided recommendation, we
define this as a positive experience. And their N value is adjusted towards a
more optimistic curve.

If a user states that he is not content with the result then user that have put
ratings on the article within a 41 interval of the provided recommendation we
define this as a negative experience. Their N value is adjusted towards a more
cautious curve.

Consider a page with three ratings from three different users. User A has rated
the page 4, User B rated 5 and user C rated 8. The calculated recommendation
to the user is 4.8 based on the trust values in the RoR. The user states that he is
content with the result. Now user A and B have their N value adjusted towards
a optimistic curve because their recommendation of 4 and 5 are with 3.8 and
5.8 (£1). User C is unadjusted as he has not influenced the result enough to
tell if it is significant.

The same actions are taken with the interactions. Ratings that are on the article
within +1 of what the active user rates, are considered as a positive interaction.
The recommendations that are £3 or more away from what the active user have
rated are considered as a negative interaction. The ratings in between are not
classified.

Consider a page with three ratings from three different users. User A has rated
the page 4, User B rated 5 and user C rated 8. The active user rates the article
3. User A is regarded as a positive interaction and trust dynamics (and there
by X value) are increased. User B is not classified and Users C is classified as a
negative interaction because it is more that 3 score points away.

6.4.7 Statictools Package

The statictools contains a set of tools that are used through out the implemen-
tation. The largest is the SecurityProvider class. A class diagram is shown on

6.4 Implementation Overview 85

figure 6.8.

Wiki
RatingCleanOut | ___________» Threshold nd

TokenInputStreamTools - SecurityProvider Serializer

Figure 6.8: Overview of the Statictools classes

Some of these classes are small and very straight forward and will only be
described shortly here:

TokenInputStreamTools is used to open up a URL connection to a webpage
and to create a token stream from the HTML page. This is used when
information is needed from a page that a user does not navigate through.
Such as obtaining ratings, downloading certificated etc.

Wiki contains the bot that is used to submit ratings to the Wikipedia. This
class is provided by MER-C [16].

Serializer is used to store and retrieve the RoR to and from the disk.

6.4.7.1 Threshold Class

The Threshold class calculates the difference between two versions of an article.
The Threshold uses the function in the Wikipedia that can provide the active
user with the difference between to versions of an article. Calling an article
with the parameter &diff=current&oldid=1234, where 1234 is the previous
version, returns an overview of the difference between that version and the
current version. The changes are marked with red words. The threshold is
based on the number of present the page has changed. The design is described
in section 3.4.4.

6.4.7.2 RatingsCleanout Class

The RatingCleanOut contains three methods for cleaning out ratings that should
not influence the result: RemoveRatingsTitleMismatch() removes ratings where
the title does not match, RemoveRatingsBelowThreshold() removes ratings that

86 Implementation

are below a threshold (described above), and RemoveUnvalidableRatings() that
removes ratings where the signature cannot be verified.

6.4.7.3 SecurityProvider Class

The SecurityProvider is the largest of the classes in statictools and covers all
security related operations. The security operations is performed by using Javas
build in classes and methods from the package java.security. The methods
are straight foreward and well commented. The SecurityProvider class can be
found in appendix C.6.2 on page 139.

6.5 WRS Setup

There is quite a bit of configuration needed in order to run the WRS. Please see
appendix B for installation and configuration manual for Scone and registration
of the WRS plugin.

6.5.1 Implementing Key Infrastructure

In order to have a key intrastructure, the users must generate their own keys
and keep them properly and deploy their certificate properly

6.5.1.1 Generate Keys, keystore and certificates

Key generation is done with Suns Keytool [6]. Executing the following com-
mand generates a selfsigned X.509 level 1 certificate.

$ keytool -genkey -alias wiki_username -keystore .keys

Where wiki_username is the username of the wikipedia account that should put
ratings on the articles. The keystore file .keys are stored in the root of the proxy.
Generation of a public X.509 certificate issue the following command:

6.6 Summary 87

$ keytool -storepass my-keystore-password -alias myalias -export
-rfc -file outfilename.cer

This generates a public certificate encoded with BASE64, and the certificates
are deployed by copying it to the userpage as described in section 3.4.3.

6.5.1.2 Password Management

In the root of the webserver a file password. txt should be stored. The structure
of the file should be like the example shown in appendix C.13.3. The marker
KeyStorePass marks the password used to unlock the keystore and the marker
WikiUserPass marks the username and password that ratings are submitted
with. This is naturally not a proper password management system, and upon
deployment this has to be stored in some keystore that could be unlocked with
a password. However this is not the objective in this project.

6.5.2 Applet Deployment

The applet that invokes the RMI method needs to be deployed to a webserver.
In this implementation we have used NanoHTTPD?, but any webserver will
do. The webserver has to be accessible by ipadress and RMI registry has to be
started on port 1099. The remote package will has to be present in the root
directory and readable. Read detailed instructions in appendix B.

6.6 Summary

The implementation chapter describes how the WRS has been implemented
in Java SE, as a plugin to the Scone Proxy. The chapter described which
technologies that makes the implementation possible, and we give a description
of the Scone API, which is used for developing the WRS.

The chapter goes through how the WRS modules are developed with the Scone
API and we describe how the design is implemented in packages. In each pack-
age there are a number of classes that are described. The complex classes are
explained regarding how the problems were solved.

"http://elonen.iki.fi/code/nanohttpd/

88 Implementation

Finally we describe how the general setup of the WRS are performed, includ-
ing key generation, certificate generation, certificate distribution and password
management.

CHAPTER 7

Evaluation

This chapter describes the evaluation of the WRS. The chapter analyzes whether
the requirements (described in section 3.2.3) have been met, it describes the
white and black box testing that has been performed on the software, and we
describe how the proxy have been benchmarked and give an evaluation on the
performance of the proxy.

The chapter discusses the general requirements to a recommender system, the
lack of long term evaluation of the WRS and finally we propose a method to
perform a long term usability test.

7.1 White box testing

White box testing is performed by looking internally on the source code and the
system design to create test cases based on internal structure. In this project we
have build a large test suite that tests each class. The tests are build upon the
JUnit 4.3.1 framework', and a test package has been written to each package
that is described in section 6.4 (test.trust, test.page, test.sconeplugin,
test.rating and test.statictools). The test packages, contain a test suite

Ihttp://www.junit.org/index.htm

http://www.junit.org/index.htm

90 Evaluation

Class method What is tested Success

TestExtractRating | testExtractRatings() Tests if ratings can be ex- | YES
tracted from an edit page.

PageExtractorTest | testPageExtractor() Tests if the edit url and the | YES

history url can be extracted
from an article.

PageModifierTest testInsertYUIandRating() | Test if text can be inserted | YES
in to a webpage.

Table 7.1: White box test for the test.page package

for running all the 37 tests, in the above described packages, and the tests show
that all the test succeed. The names of the tests and their testing area are
summarized in the following tables: Table 7.1, 7.2. 7.2, and 7.4.

7.2 Black Box Testing

In order to justify that the WRS runs as expected, a set of black box tests are
created, which will test the usability of the WRS. These tests have the purpose
to show that the WRS performs normally and does not show any errors through
ordinary use. This section can not prove that there are no errors in the software,
because this would require that the program should be tested in all branches of
the code.

The tests have been conducted where the browser and the proxy is running on
the same machine. The following tests have been conducted.

Get a recommendation. The user can obtain a recommendation based on
the trust values. In appendix D.1 a screenshot of a provided recommen-
dation is seen and the four recommendations it is based on.

Put a recommendation. The user can submit a recommendation by clicking
one of the buttons on the feedback mechanism. The new rating is cre-
ated and inserted into the edit page of the article. See appendix D.2 for
screenshots.

Give feedback. The user can provide feedback on the article and trust values
are adjusted based on the feedback. Screenshots are provided in appendix
D.2.

Moving feedback mechanism. The feedback mechanism can be dragged aro-
und in the window if the recommendation and feedback mechanism blocks
important text in the article.

7.2 Black Box Testing

91

Class

method

What is tested

Success

RatingTest

RatingCalculatorTest

RatingHistoryTest

TestSessionRatingDB

testRating()
testRating2()
testSetExp()
testSetInteraction()
testComputeAverage

testRatingHistory()

testInsertRating()

testGetX Value()

testSessionRatingDB()

testPush()

testPop()

testSize()

Tests that a simple rating
can be created.

Tests that a full rating
can be initialized.

Tests if the Experience
value can be set.

Tests if the interaction
value can be set.

Tests if a rating can be
properly calculated.
Tests that a RatingHis-
tory object can be initial-
ized.

Tests that a rating can be
inserted int a RatingHis-
tory.

Tests that a X value can
be obtained based upon
the ratings put in to the
RatingHistory.

Tests if SessionRatingDB
can be created.

Tests that a rating can be
inserted in to the a Ses-
sionRatingDB.

Tests that a rating can be
removed from a Session-
RatingDB.

Tests if a size can be cal-
culated from a Session-
RatingDB.

YES

YES

YES

YES

YES

YES

YES

YES

YES.

YES

YES

YES

Table 7.2:

White box test for the test.rating package

Class

method

What is tested

Success

ReviewerTest

RoRTest

TrustUpdaterTest

testReviewer|()

testInsertRating()

testGetTrustValue()
testRoR()

testReadRoRFromDisk()

testTrustUpdater()

Tests if a Reviewer object can
be initialized.

Tests if ratings can be inserted
to the Reviewer and if trust
values calculated is correct.
Tests if a trust value can be
obtained from a Reviewer.
Tests is a RoR can be initial-
ized and a reviewer inserted.
Tests that the RoR can be
written to disk and then re-
trieved again.

Tests that trust can be up-
dated based on the logic in the
TrustUpdater

YES

YES

YES

YES

YES

YES

Table 7.3: White box test for the test.trust package

92 Evaluation
Class method What is tested Success
RatingCleanOutTest | testRemoveRatings- Tests that ratings are re- | YES

TitleMismatch() moved based on if the title
does not match.
testRemoveRatings- Tests that ratings are re- | YES
BelowThreshold() moved if the version of the ar-
ticle have changed too much.
testRemoveUnvalidable-| Tests that ratings are re- | YES
Ratings() moved if their signature can-
not be verified.
SecurityProviderTest | testInitKeyStore() Tests that a KeyStore can be | YES
opened from the disk.
testInitCertificate() Tests that a certificate can be | YES
created from the KeyStore.
testInitKeyPair() Tests that a private and pub- | YES
lic key can be generated from
the KeyStore.
testCreateSignature- Tests that a signature can be | YES
AndVerify () created and verified.
testSignatureEncoding- | Tests that signatures can be | YES
AndDecoding() encoded to BASE64 encoding
and decoded back.
testGenerate- Tests that X.509 certificates | YES
Certificate() can be generated.
testCreateRating- Tests that the content of a | YES
AndVerification() rating can be created and
verified.
testGetUser- Tests that a User certificate | YES
Certificate() can be downloaded and
parsed.
testGenerate-Ratings() | Tests that ratings can be gen- | YES
erated.
testGetWikiUser- Tests that Wikipedia user- | YES
PassFromDisk() name and Password can be
retrieved.
testGetKeyStore- Tests that keystore password | YES
PassFromDisk() can be retrieved from disk.
SerializerTest testWriteAndRead- Tests that a RoR can be writ- | YES
RoRToDisk() ten to the disk and retrieved
again.
Threshold Test testThreshold- Tests that a threshold can be | YES
Calculator() calculated.

Table 7.4: White box test for the test.statictools package

7.3 Benchmarking 93

Tampering with ratings. There have been several attempts to tamper with
the ratings on the articles (Modification, moving and falsification). All
attempts failed.

All these tests show that a general use of the proxy is possible. Sceenshots from
the use of the proxy can be seen in appendix D.

7.3 Benchmarking

We have implemented a prototype of the WRS, which allows us to determine
the feasibility and performance of the proposed architecture.

7.3.1 Impact on the Wikipedia

The size of the ratings depends on the length of the username and the title of the
article that is rated. The average size of usernames and article titles indicates
that a rating has an average size between 110 and 140 characters. Assuming a
worst case scenario, we presume that a rating is 140 characters. If we assume
that one third of the article on the English Wikipedia, has 80 ratings each. This
gives us:

1
3 1.8 million articles - 80 ratings pr. article - 140 bytes = 6712 million bytes

An estimated 6.7 GB will be spend on storing the ratings in the Wikipedia. From
the MediaWiki Foundation download page [37] a compressed database dump
can be downloaded. These dump takes up 84.6 GB, and users are warned that
uncompressed it will take up 20 times more space. This gives an uncompressed
size of the Wikipedia of 1692 GB. This suggests that the ratings will take op
0.3% of the total size of the Wikipedia, which we regard as acceptable.

7.3.2 Benchmarking the Proxy

In the benchmark test the proxy and the browser are located on the same
machine and are connected to the Internet through a 100 Mbit/s Fast Ethernet

94 Evaluation

connection. The proxy is running on a AMD Athlon 2000+ machine with 512
MB ram, which represents a modest configuration for modern PCs. Load times
have been measured with Ethereal > and the load times can be found in table
7.5. Two kind of benchmark test have been made. One for measuring the load
times of a webpage and one for measuring the time it takes to initialize the
proxy. The proxy takes a long time to initialize because all cached certificates
are updated to ensure that no certificates have expired or been revoked. The
initialization of the proxy is normally only done when the proxy is rebooted, so
it is not considered a problem that these load times are quite large. Load times
for initialization can be seen in table 7.6.

Test no. | Proxy | No. of Ratings | Time for a page to load
1 No 0 2.74 seconds

2 Yes 0 5.23 seconds

3 Yes 3 6.2 seconds

4 Yes 12 6.6 seconds

5 Yes 100 8.5 seconds

Table 7.5: Loadtimes for the proxy based on number of ratings related to an
article

Test no. | Proxy | No. of certificates | Proxy initialization
1 No 0 2.74 seconds

2 Yes 0 5.23 seconds

3 Yes 3 9.9 seconds

4 Yes 12 21.54 seconds

5 Yes 100 96.27 seconds

Table 7.6: Initialization times on the proxy based on the number of certificates
that have to be downloaded

The load times for the webpages are quite good. As described by Mc Nee et al.
[24] an entity must have around 80 recommendations in order to give a confident
result. We assume that a general article in the Wikipedia has between 80 and
100 recommendations, in order to give a proper result. This gives us an extra
load time of 1.5 second, which is quite acceptable. In November 2006 Akamai
and JupiterResearch published an extensive report about their research within
acceptance of loadtimes of webpages [9]. They conclude that there is a 4 second
limit, where users loose interest in a page. Each article can have up to 300
recommendations before the loadtime surpasses the allowed time limit.

2http://www.ethereal.com/

 http://www.ethereal.com/

7.4 Requirements 95

7.4 Requirements

Josang et al [20] identify four criteria that are important for the creating a
recommender system (mentioned in section 2.2.4 and analyzed in section 3.2.1).
The creteria are:

Accuracy for long-term performance.

Weighting toward current behavior.

Smoothness.

Robustness against attacks.

As described above the WRS has not been tested for long time performance.
But initial testing shows no indications that the system would not work over
long time.

The WRS is implemented with a trust model and therefore recommendations
from trustees that have high trust value weigh more, than newly encountered
users. Furthermore, a trustee who has only had a few interactions with others,
might have the same trust value as trustees with a lot of interactions. The trust
value is low for the trustee that is new due to uncertainty and the trust value is
low to the old trustee because of previous disagreements. It will take longer time
to build up trust for the old trustee because the negetive interaction that lies
in the past weigh down. Therefore the WRS has the capability to distinguish
between a new entity of unknown quality and an entity with poor longterm
performance. Because of the implemented forgettabillity the old trustee can
come into trust again.

The WRS builds up information about the users that it interacts with. The
more information is gathered the more smooth the WRS run, and the less a
single recommendation will over time not influence the trust so significantly.

Tests in section 7.2 and 7.1 show that the system is resistant to attacks and will
be able to resist the most basic attacks.

In sum, three out the four criteria is fulfilled by the WRS and with further testing
the fourth criteria can be fulfilled. This gives an indication of the robustness of

the WRS, and the possibility of becomming a permanent recommender system
for the Wikipedia.

96 Evaluation

7.5 Long Term Usability Testing

Testing the software functionality and determining if the software meets the
specified requirement, are normally not a proper way to determine if the soft-
ware is useful. This relies on where the requirements originate from. If the
requirements originate from a thorough analysis of the demands of potential
users (which in this case could be Wikipedia users that need a helping hand in
evaluating the content of the Wikipedia), there is a good chance that that the
developed software is useful. But if the the requirements originates from tech-
nical people who intend to create a proof-of-concept, which is the case in this
project, there is a chance that the software will not fulfil its’ purpose. Based
on the cases described in section 1.1, there is a lot of cases where people have
had a loss due to the false information on the Wikipedia, and that tells us that
a system like the WRS is needed. Determing if the proposed system is exactly
what is needed to improve the individual’s trust in the Wikipedia is difficult.
At this point in time there is no hard evidence that the system will provide the
trust, the Wikipedia users are looking for.

It is clear that it cannot be determined if the WRS will satisfy its’ users by doing
a theoretical analysis. We need to perform a large scale test, where feedback is
collected from the users of the WRS. We propose a method to perform such a
large scale test, but this method is not implemented due to time constraints.

The idea is simply too keep a log of all operations that are performed by the
WRS and a log of the user feedback and then gather these logs from all the
users to perform a statistical analysis.

The log would simply be a text file with comma separated values (.csv), that
would be easy to insert into a database or some statistical software. For each
time the WRS calculates a recommendation to the user, the log is updated with
every trust update information performed. This means there is a line in the log
for each rating there is on an article. The log should contain 18 elements, which
are:

1. Wikipedia username of user who put the rating on the article.
2. Article name of the evaluated article.

3. Own recommendation given.

4. WRS calculated recommendation.

5. Content feedback (did the user like the result).

7.5 Long Term Usability Testing 97

6. Curve state before feedback (cautious or optimistic).
7. Curve state after feedback (cautious or optimistic).
8. Trust state before feedback (trust or distrust).
9. Trust state after feedback (trust or distrust).
10. N value value before feedback.
11. N value value after feedback.
12. X value value before feedback.
13. X value value after feedback.
14. User trust value before feedback.
15. User trust value after feedback.
16. Classification of interaction with this rating (positive or negative).
17. Classification of experience with this rating (positive or negative).

18. Timestamp.

This introduces some privacy issues, as users of the WRS properly do not want
to provide information on what pages they visit and which users they agree
with. A solution to this would be to use a one-way hash function to hash the
usernames and the article names. A one-way hash function will always hash
a string to the same value, but it is not possible to determine what string the
hash originates from. Introducing this measure, ensures that all the names are
are still comparable, but it will not be posible to track the users history from
the logs. This way usernames and article names can be hashed before send to a
central location, and it would still be posible to compare usernames and article
titles without interfering with the users privacy.

A lot of the logged values are before and after values (no. 6 to 15.), which
allows us to analyze if the test group can actually make progress in trust, and
how trust typically will progress. The user name is used to keep track of how
trust progress in the individual user, and the article name can be used to see
if there is a general tendency towards some articles provide better feedback that
others. The calculated recommendation, the given recommendation and
the content feedback are used to get an general idea about the users content
about the system, and to be able to analyze if the intervals that have been set
for defining positive and negative values are realistic or if they need adjustment.

98 Evaluation

The timestamp can be used to keep track of how much and how often the WRS
are used.

We believe that through analysis of this feedback we could get a general idea if
the system would provide usable recommendations, or if there need to be some
adjustments in the system.

7.6 Summary

This chapter shows the white and black box tests performed on the WRS, and
all tests show that the WRS works as intended.

We have performed some benchmarking tests on the proxy and these show that
the performance of the proxy is acceptable, and will not make users loose interest
in the pages due to long load and computation times.

We discuss the general requirements to a recommender system and evaluate if
these requirements have been met by the WRS. We give a general discussion
on the usability of the WRS and point out that a long term usability test is
needed. We propose a method for evaluating, if the WRS provides the results
that is acceptable by its’ users.

CHAPTER 8

Future Work and Research

This chapter describes the areas that are in need of further research and future
work that is within the scope of this project.

8.1 Areas in Need of Research

Throughout the thesis there have been areas where the research has been scaled
down, which leaves some areas somewhat incomplete. In the implementation it
has been made easy to change these areas, whenever the proper research has
been made. These areas include:

8.1.1 Semantic differences in sentences

The articles change in the Wikipedia and as described in the requirements (and
outlined in section 3.4.3.1) the WRS should be able to determine if a rating has
become invalid. The approach that is implemented is not a very sophisticated
solution, as it only counts how many words have changed and looks into if
there has been inserted or removed any negating words. A thorough analysis

100 Future Work and Research

to determine the difference between two versions of the same article is needed,
and would properly need the help of a linguist.

8.1.2 15% threshold accepted difference between docu-
ments

In this document we have defined that if two versions of an article differ more
that 15% the rating is not accepted. This threshold is chosen with no back-
grounds or research on how much change in an article is accepted by humans,
and therefor this area is in need of research, possibly by an experiment.

8.1.3 Forgettabillity in trust dynamics

The in trust dynamics, forgettabillity has been implemented with a naive ap-
proach, where the interactions are worth 50% after 3 months, 25% after 9 months
and worth 0% after 12 months. There is no justification for choosing these limits
and research is needed to determine the correct interval for lowering the values,
and research is needed to determine if the degree that the interactions have been
lowered, is correct.

8.2 Future Work

In connection with the development of the WRS, it has come to our attention,
that there are several areas that would be interesting to examine. We give a
short description of these areas and a potential solution.

8.2.1 Discussion Page as Repository

After finishing the implementation of the WRS, the community of the Wikipedia
started complaining about the ratings that polluted the edit page. Many editors
on the Wikipedia believe that the edit page should not be filled up by comments.
A solution to this problem is quite simple. The discussion page is similar to the
edit page, and holds a forum for discussion about the article, in more informal
tone, where the ratings properly would be accepted. A direct problem with
moving the ratings to the discussion page is that the wiki bot, which is used to

8.2 Future Work 101

submit ratings to the edit page is not currently programmed to store text on
the discussion page, and is therefore in need of reprogramming.

8.2.2 Browser Plugin

An interesting task would be build the recommender system as a extension
for a browser, especially if the recommender system were to face commercially
deployment. Creating an extension for a browser, such as the Mozilla Firefox
is an open possibility that however requires the code to be converted into C++
or JavaScript which are currently the only supported languages for writing a
Firefox Extension.

8.2.3 Confidence Displays

Introducing confidence displays in the provided recommendations, where the
user is warned if the provided recommendation is calculated from a few ratings,
would give the users an idea about how precise this provided recommendation is.
The more ratings an article has, the more precise the provided recommendation
will be. Research show that users are more likely to forgive that a rating is
wrong if they are warned beforehand by the confidence display [24].

8.2.4 Cross Wiki WRS

As mentioned in the introduction there are thousands of wiki installations cross
the web, and a WRS that could operate across the different wiki installations
would increase the possible number of reviewers and thereby better recommen-
dations could be provided. As mentioned in section 5.6.2 there are several
security issues that will have to be addressed to provide this functionality. Fur-
thermore the WRS would have to be language independent, as the provided
implementation only supports English wiki installations.

8.2.5 Wiki Robots for Maintenance

As described earlier the Wikipedia supports the feature of creating bots, that can
perform automated alterations to the wiki. Creating a bot that could perform

102 Future Work and Research

maintenance tasks, as for instance removal of unverifiable ratings, would ease
the load times for the users and thereby give a better experience using the WRS.

8.2.6 WRS outside a Wiki Domain

An improvement of the WRS could be to implement the WRS outside of a wiki
domain. For instance, the popular open source forum phpBB [29], is widely
used on the Internet and supports the markup language BBCode, which provides
the functionality of inserting comments. Porting the WRS to fit other systems
gives the possibility to create a recommender system that is independent of
domain and there by provide more trust in the general information provided by
the Internet.

CHAPTER 9

Conclusion

In this thesis we address the problems of incomplete, incorrect or biased articles
in the Wikipedia. Simple attribute based article verification schemes are not
considered adequate, so we propose a mechanism based on feedback from the
users of the Wikipedia, where users of the recommender system build a network
of trusted users. Users store information about the recommendations of review-
ers that they have seen before and use this information to calculate an individual
and subjective trust value, which influences the weight that feedback from that
recommender will have in future trust calculations. The recommender system
is developed as a proxy that is located between the user and the Wikipedia,
and therefore no modifications to the Wikipedia are needed. The recommender
system is supposed to give the user a recommendation about the if user should
trust the content or whether he should seek information elsewhere.

In this thesis we present a general analysis of the challenges that accompany
this approach to a recommender system. We address the problems with de-
veloping the recommender system as middleware by introducing a proxy, and
choose to use the Wikipedia as a central recommendation repository. We use
a set of cryptographic measures to secure these recommendations from attacks,
and we create the ratings as comments in the Wikipedia, which makes them
transparent to Wikipedia users that do not want to use the recommender sys-
tem. We also address the problem that comes with the continuous change in
the Wikipedia articles, by introducing a method for determining how much an

104 Conclusion

article is changed, in order to determine if older ratings still are valid.

We present a trust model that fulfils the general requirements, that recent re-
search show is required to build a trust model. We introduce a model that can
build trust in users without configuration, but is solely based on the feedback
that the users give the trust model. We present a formalized model, based on
the super ellipse curve, which can be used to represent trust dynamics and trust
evolution. The trust model is based on satisfactory feedback from the user and
the recommendation that a user puts on an article.

We present a full design and an implementation of the recommender system
based on the open source proxy Scone. A prototype of the recommendation
system is build on top of the existing Wikipedia without requiring modifications
to the existing Wikipedia system. The recommender system i developed in Java
SE and is developed as a plugin to the Scone proxy. The implementation relies
on a flat public key infrastructure, where the users is responsible for generating
and maintaining their certificates and private keys themselves.

Evaluation of the proxy is done by a large scale white box testing and a smaller
set of black box tests, where all the tests succeed. However, the recommender
system lacks a long term usability testing to ensure that the recommender sys-
tem delivers a desired solution the problems stated with the Wikipedia. We
propose a method to perform such a long term test.

Experiments with the implemented prototype indicate that the overhead of the
proposed architecture is negligible (both with respect to computational overhead
and storage space) and the system is unlikely affect the user’s experience while
reading articles in the Wikipedia.

We have demonstrated the ability to integrate a recommender system with an
existing wiki implementation, by storing recommendations in invisible comments
on the wiki pages. This type recommendation systems allow clients to implement
a subjective ranking algorithm, which prevents a (possibly artificially created)
majority of users from dominating the recommendations made by the system.
Moreover, the recommender system is designed such that it will not influence
the content of the system, and users that do not want to use this recommender
system, will not see the recommendations.

APPENDIX A

An Example

This appendix goes through a small simple example on how trust values are
updated based on feedback from users and an example where trust values are
aggregated.

A.1 Trust Updating

Consider two users, Alice and Bob, which have never had any interactions before.
They both reads and gives feedback to an articles Alpha. Alice however knows
the user Charlie.

A.1.1 Introduction to the RoR

First Bob reads the article Alpha, and because there is not recommendations on
the page he cannot get an recommendation. However he thinks that the article
is pretty average and gives it the recommendation 5. The same day Charlie
reads the article and gives the page a recommendation. Two days after Alice
reads the article Alpha, but as she does not know Bob, she does not benefit from

106 An Example

the recommendation that Bob put on the page. However, she knows Charlie and
based on the recommendation that Charlie put on the page Alice i presented
with the recommendation 5.0. Alice rates the article 4, and states that she is
happy about the recommendation provided. The fact that Alice and Bob rates
similar (Bob rated 5) makes Bob a potential reviewer and therefore Bob is now
introduced into Alice’s Ring of Reviewers. The actions taken are as following:

1. Bob is introduced as a neutral reviewer, with a trust value of 0, N value
of 0 and an X value of 0.

2. Because the interaction is positive (they both rated similar), the X value
is adjusted upwards by 0.1, from 0.0 to 0.1,

3. Because the experience is positive (Alice stated she was content) the N
value is adjusted 0.1 upwards to 1.1

4. Bob’s trust value is now calculated to (—|(0.1 — 1)1 + 1)1 = 0.134

A.1.2 Another Encounter

Now Alice comes across another article that Bob have reviewed, and rated 6.
Alice also rated the article 6 and states that she is content about the result.
N value and X value are adjusted accordantly to N = 1.2 and X = 0.2, and
the trust value can be updated again to (—|(0.2 — 1)22| 4+ 1)z = 0.299. And
so on Alice will keep on adjusting her trust value towards Bob every time she
interacts with Bobs ratings.

A.2 Calculating a Racommendation

Consider four users Alice, Bob, Charlic and Diana, that have had interactions
with each other and therefore they have different trust values towards each
other. Diana’s and Charlie’s trust values towards Alice and Bob can be seen in
table A.1 and A.2.

Now consider an article Alpha that have been rated by Alice and Bob. These
article ratings can be seen on table A.3.

Calculating Dianas personal recommendation for article Alpha is done like fol-
lowing with use of the 5% trimmed mean as described in section 2.6.

A.2 Calculating a Racommendation 107

First we have to create a set of recommendations that are used to adjusted to the
trust value. This is done by multiplying the trust value of each person in the RoR
by 100 and insert that amount of recommendations in to a set. In our example
there would be a set of 77 recommendations of 5 and 43 recommendations of
7. This set of recommendations are sorted and then trimmed 5% in each end.
This removed 6 5-recommendations and 6 7-recommendations. We calculate the
average from the rest:

71-3 = 81
37-7 = 259
108 = 340

This gives a 5% trimmed average of:

340
— =3.15
108

However if Charlie visits the page he will be presented with the trust value 5.93
based on the same calculations, but the trust values are totally different and
therefor their result will be different as well.

User | Trust value User | Trust value
Alice 0.77 Alice 0.29
Bob 0.43 Bob 0.71

Table A.1: Diana’s RoR, which Table A.2: Charlies’s RoR, which
showing the trust values towards showing the trust values towards
the other users the other users

User | Recommendation
Alice 3
Bob 7

Table A.3: Ratings on article Alpha

108 An Example

APPENDIX B

Installation Instructions

This appendix describes how Scone and the WRS should be installed. The
installation procedures for Scone are taken from the Scone website http://
scone.de/download.html#install.

A complete and ready to run installation is provided on the CD enclosed. Please
see appendix E.

B.1 Components needed

You need to download following:

Scone. Can be downloaded from http://scone.de/download.html

Java Platform, Standard Edition Version 1.5, which can be downloaded
from http://java.sun.com/javase/downloads/index. jsp.

The WBI framework. The framework can be downloaded from http://www.
alphaworks.ibm.com/tech/wbidk/. The framework is released under

http://scone.de/download.html#install
http://scone.de/download.html#install
http://scone.de/download.html
http://java.sun.com/javase/downloads/index.jsp
http://www.alphaworks.ibm.com/tech/wbidk/
http://www.alphaworks.ibm.com/tech/wbidk/

110 Installation Instructions

IBM ALPHAWORKS LICENSE AGREEMENT !, and is basically free
for non-commercial use.

MySQL database. Version 4 or later. Can be downloaded from http://
dev.mysql.com/downloads/index.html

B.2 Installation

If not already present on your System, install the Java Development Kit (JDK)
first. More information on the JDK and its installation is available from Sun.

Install Scone by unpacking the downloaded zip-archive to a directory of your
choice.

Install WBI by unpacking the WBI-archive in the run directory of Scone instal-
lation. The name of the target directory has to be wbij45. (an directory with
this name, a readme file and some essential configuration files can already be
found there.)

Install MySQL 4.0. MySQL is not mandatory, but several functions of Scone
are not available without database, like persistent objects and advanced queries.
You should set following MySQL variable:

max_allowed_packet=16M

The variable have to be set in the [mysqldl-section in the my.ini file. (See
setup directory of Scone.)

Now compile Scone and WRS. They can both be build with the ANT? tool. The
build file for Scone is present in the Scone installation directory and the build
file for the WRS can be found on the CD-rom or in appendix C.13.4.

Now copy all the WRS directories (adc, benchmark, rating, sconeplugin,
remote, static_textfiles, statictools, test and trust) into the run di-
rectory of Scone.

If not already running, start the MySQL daemon. Setup the Scone database
from the definitions that can be found in setup/sconedb.sql. This can easily
be done by calling the following commands from the command promt:

Ihttp://www.almaden.ibm.com/cs/wbi/License.html
2http://ant.apache.org/

http://dev.mysql.com/downloads/index.html
http://dev.mysql.com/downloads/index.html
http://www.almaden.ibm.com/cs/wbi/License.html

B.3 Register plugins 111

$ mysql scone -u root -p < sconedb.sql

and
$ mysql scone -u root -p < setUserRights.sql

Configure your browser: You have to set the proxy of your browser to port 8088
(if Scone runs on your local machine the address is http://localhost:8088).
It is also recommended to disable the hard disk cache of the browser and set it
to ”check page for update at every access”.

B.3 Register plugins

In order to use Scone and WRS, plugins are needed to be registered:

First, register Scone-Plugins in WBI. Use "runScone.bat -g” in the run direc-
tory, or in the WBI-GUI use "Plugins” — ”Register...” and select scone.reg
from the setup-directory.

Then register the WRS plugin by running the sconeConfig.bat in the run
directory. In the ”Configure Scone Properties” window, as shown on figure B.1,
do the following:

W SLUNE.PIUAY.IEYE] JIUE
® hyperscout.Plugin

® yperscout2.Plugin

® hyperscout3.Plugin

® lookoflink-Plugin

® onefcClient.Plugin

® evaluator.departureexperiment.Plugin 2
® evaluator.lyperscoutexperiment. Hyperscol
® wikitest WikiTestPlugin

@ ratingparser.RatingParserPlugin

[POV R TR , TP , VPR R j5, o /1 o T

(¥
i

F‘jkegister New Plugin x|
|Sc0nep|ugin.WRSF‘Iugin Register Cancel
| Database | | Access Tracking | | Robot / 4

| Register Plugin H gancel || Exit & Save ‘]

Figure B.1: Register the WRS plugin

http://localhost:8088

112 Installation Instructions

1. Click the "Register Plugin” button.

2. Type "sconeplugin. WRSPlugin” in the text box.
3. Click Register.

The plugin should now be registered as seen on figure B.2.

T RRLE I NN NN BTl N el LA T R RN % § el B

@ benchmark.P3BenchmarkPlugin
® sconepluginWirtuPlugin
¥ sconeplugin WRSPlugin

Database | ‘ Access Tracking ‘ | Robot

Figure B.2: WRS plugin successfully registered

Finally, make sure that the database is configured with the correct username
and password as shown on figure B.3:

xq

Use Datahase

Deactivate database on errars []

JOBC Driver ‘cum.mysql.jdbc.Dri\rer |

Database URI ‘idbc:mysq|:mucalhust:33nf315cnne?jdb§:c+
>

Username ‘ruot /q |
Passwerd - X/
| Cancel H Save ‘ |

| Database 1 Access Tracking ‘ | Robot ‘
1

‘ Register Plugin H Cancel . H Exit & Save |

Figure B.3: Setup the username and password for the database

1. Click ”Database”

2. Type in username and password for the Scone database. The username
should be the same as the user that is used in the command promt (with
-u switch) to insert the sql files to the database.

B.3 Register plugins 113

3. Click "Save”.

Click Exit & Save.

Now compile NanoHTTPD or use an other Webserver, and copy the remote
package into that directory.

$ javac nano/HanoHTTPD.java

Now run the start up scripts. zWebserver.bat starts the webserver, to starts
the rmiregistry run zRmiregistry.bat and zScone.bat starts Scone.

$zWebserver.bat
$zRmiregistry.bat
$zScone.bat

Point your browser to the Wikipedia and start surfing.

114 Installation Instructions

APPENDIX C

Code

The appendix contains all the code developed for the project.

C.1 Benchmark Package

C.1.1 P3Benchmark.java

package benchmark;

import java.io.IOException;
import java.util.Hashtable;
import java.util.Set;

import page.ExtractRatings;
import page.PageExtractor;
import scone.proxy.HtmlTokenEditor ;

import scone.util.
import scone.util.
import scone.util.
import scone.util.

import statictools.

tokenstream .
tokenstream .
tokenstream .
tokenstream .
Serializer ;

SconePipe;

Token ;
TokenInputStream ;
TokenOutputStream ;

import statictools.TokenInputStreamTools;

import trust.RoR;

/

*

@author s011564

/

*
*
*
*
*
*
*

public class P3Benchmark extends HtmlTokenEditor

P8Benchmark. java is used to
The benchmarkin

g test only

preform benchmarking

tests the parsing

of ratings
ratings

implements Cloneable {

116 Code

P3BenchmarkPlugin plugin = null;

Jxx

* @param plugin

*/

public P3Benchmark(P3BenchmarkPlugin plugin) {
this.plugin = plugin;

}

/3

* Handle request is inherieted from scone.HtmlTokenEditor and is wused to

* modify the output from the webpage wisited and pass it on th the webserver
*
* @see
scone.prozy. HtmlTokenEditor#handleRequest (scone. util.tokenstream . SconePipe)

*/
public void handleRequest(SconePipe pipe) {
try {

// Initiate a temp token

Token t = null;

// The two stream that tokens are read and written to

TokenInputStream original = pipe.getTokenInputStream () ;

TokenOutputStream out = pipe.getTokenOutputStream () ;

// Obtaining the URL of the page through the metainformation on the
// inputtokenstream

Hashtable ht = original.getMetalnfo () ;
Set s = ht.keySet () ;

Object [] sl = s.toArray ();

Object url = ht.get(s1[0]);

String page_url = url.toString();

// Exztract the different URLs
PageExtractor pex = new

PageExtractor (TokenInputStreamTools.CreateTokenIlnputStreamFromURL (page-url) ,

page-_url);
// Initiate a test RoR from disk

RoR ror = Serializer .readRoRFromDisk () ;
// Eztract the ratings
ExtractRatings exr = new ExtractRatings(pex.extractEditPage (), ror);

exr.getRawRatings () ;

System .out.println (pex.extractEditPage ());

// Write everything to the browser

while ((t = original.read()) != null) {
out.write (t);

¥

} catch (IOException e) {
e.printStackTrace () ;

C.1.2 P3BenchmarkPlugin.java

package benchmark;
import scone.Plugin;
public class P3BenchmarkPlugin extends Plugin {

// requirements inherited from plugin
public int getRequirements ()
return PARSEDOCUMENT | CONSIDERLINKS;

// init () implemented from Plugin interface
public void init ()
P3Benchmark p3BT = new P3Benchmark(this);
p3BT.setup (” ParseThreeRatingsBenchmarkTest” , HTDOCCONDITION, 60) ;
addMeg (p3BT) ;
}
}

C.1.3 PureProxyBenchmarkTest.java

package benchmark;

C.2 Page Package 117

import scone.Plugin;
public class P3BenchmarkPlugin extends Plugin {

// requirements inherited from plugin
public int getRequirements ()

return PARSEDOCUMENT | CONSIDERLINKS ;
}

// init () implemented from Plugin interface
public void init () {
P3Benchmark p3BT = new P3Benchmark(this);
p3BT.setup (?” ParseThreeRatingsBenchmarkTest” , HTDOCCONDITION, 60) ;
addMeg (p3BT) ;
}
}

C.1.4 PureProxyBenchmarkTestPlugin.java

package benchmark;
import scone.Plugin;
public class P3BenchmarkPlugin extends Plugin {

// requirements inherited from plugin
public int getRequirements ()
return PARSEDOCUMENT | CONSIDERLINKS;

// init () implemented from Plugin interface
public void init () {
P3Benchmark p3BT = new P3Benchmark(this);
p3BT.setup (” ParseThreeRatingsBenchmarkTest” , HTDOCCONDITION, 60) ;
addMeg (p3BT) ;
}
}

C.2 Page Package

C.2.1 ExtractRatings.java

package page;

import java.io.IOException;

import java.io.InputStream:;

import java.io.InputStreamReader;
import java.net.MalformedURLException ;
import java.net.URL;

import java.net.URLConnection;

import java.util.Vector;

import java.util.logging.Logger;

import rating.Rating;

import rating.SessionRatingDB;

import scone.util.tokenstream.HtmlTagToken;

import scone.util.tokenstream.HtmlTextToken;

import scone.util.tokenstream .Token;

import scone.util.tokenstream.TokenInputStream ;

import scone.util.tokenstream.TokenInputStreamTokenizerImpl;
import statictools.RatingCleanOut;

import trust .RoR;

// TODO: Denne fil kraver meget oprydning
public class ExtractRatings {
private static Logger log = Logger.getLogger(ExtractRatings.class.getName());

// wector to store the tokens
Vector<Token> tokens;

118

Code

// SessionRatingDB keeps a database of the active filtered ratings found
// the page
SessionRatingDB sessionRatingDB ;

// raw_ratingsVector keeps the ratings in raw string format.
Vector<String> raw-_ratingsVector = new Vector<String >();

// The RoR where user information is optained
RoR ror = null;

public ExtractRatings(String editUrl, RoR ror) {
this.ror

ror;

// cout out the title between the first = and the first &

// Eg http://en.wikipedia.org/w/index .php?title=Bass_Strait&action=edit
String pageTitle = (editUrl.split (”=")[1]).split (7&”)[0];

try {
// Set wup the token stream from the Edit url
URL url = new URL(editUrl);
URLConnection urlconnection = url.openConnection () ;
urlconnection .setUseCaches (false) ;
InputStream is = urlconnection.getInputStream () ;
InputStreamReader isr = new InputStreamReader (is);
TokenInputStream tis = new TokenInputStreamTokenizerImpl(isr);

// Put the tokens from the Edit url in to a Vector to process

tokens = new Vector<Token>();
Token t = null;
try {
while ((t = tis.read()) !'= null) {

tokens.add(t);

} catch (IOException e)
log.info (” Initialization of Token Vector failed”);
log.info (e.getStackTrace () .toString ());

}

// initiate two temporary tokens

Token tempToken = null;

HtmlTagToken tempHtmlTagToken = null;

// read all the elements from the tokenizer , and finish , whenever

// there is no more tokens to be read
while (!tokens.isEmpty()) {

tempToken = tokens.remove (0);
if (tempToken instanceof HtmlTagToken) {
tempHtmlTagToken = (HtmlTagToken) tempToken;
// if one of the tokens is a <textarea> tag and not the end
// tag
if (tempHtmlTagToken.getTagType () == HtmlTagToken. T_-TEXTAREA &&
ltempHtmlTagToken .isEndTag ()) {
HtmlTextToken signature = null;
String sig = null;
log.fine ("Found <textarea >. Looking for TrustComments”);
// read the next elemnt in the tokenstream , and keep on
7/ reading as long at it is of the type HtmiTeztToken
do {
tempToken = tokens.remove (0);

// If it is an instance og HtmlTextToken and it
// starts with TrustComment
if (tempToken instanceof HtmlTextToken) {
signature = (HtmlTextToken) tempToken ;
sig = signature.getText () ;
// if the length of the HtmlTeztTokens are
// longer that 12 chars and they starts with
7/ 7 TrustComment”
if (sig.length() >= 16) {

if (sig.substring (0, 16).equals(”WikiTrustComment”)) {
// wverify ratings
// Insert the werified ratings in to the
// SessionRatingDB
String raw.rating = ”7;
// Remove the 5 words: ikiTrustComment.
// Read more on:
// http://en.wikipedia.org/wiki/User:Korsgaard
for (int i 0; i < 5; i++)

on

raw-rating += ((HtmlTextToken) tokens.remove(0)).getText () +

no

raw_ratingsVector.add(raw-rating);

}
}

Y // ends do—while loop associated whit the do scope
while (tempToken instanceof HtmlTextToken) ;

i

C.2 Page Package

119

}
}

} catch (MalformedURLException e) {
// If the URL are not correct formed
e.printStackTrace () ;

} catch (IOException e) {
J/ If there is a general read write error.
e.printStackTrace () ;

}

// Cleaning out the ratings
// Remove Ratings that dont have the correct table

raw-ratingsVector = RatingCleanOut.RemoveRatingsTitleMismatch(pageTitle ,

raw-ratingsVector);
// Remove ratings that are unverifiable

raw_ratingsVector = RatingCleanOut.RemoveUnvalidableRatings (raw_-ratingsVector ,

ror);
// Remove Ratings that are above a certain threshold
// TODO: Make this a propor threashold. Make configuration .

raw_ratingsVector = RatingCleanOut.RemoveRatingsBelowThreshold (0.1,
raw_ratingsVector , pageTitle);
/) remove dublicate ratings. Take away the ratings that were added by

// the same person .

// Leave only the newest

// TODO: implement raw-ratingsVector (vector)

// raw_ratingsVector =

// RatingCleanOut. raw_ratingsVector (raw_ratingsVector);

// Setup the sessionRatingDB
sessionRatingDB = new SessionRatingDB () ;

Rating r = null;

String raw-ratingString [];

// Insert the rating in to the sessionRatingDB
while (!raw_ratingsVector.isEmpty()) {

raw_ratingString = raw_ratingsVector.firstElement ().split (”;”);

r = new Rating(raw_ratingString[1l], new Integer(raw_ratingString[2]) ,
raw-ratingString [3],
"http://en.wikipedia.org/wiki/” + raw._ratingString [4]) ;

sessionRatingDB . push (r);
raw_ratingsVector.remove (0) ;

}

¥

J**

* getRawRatings () returns the raw raings in string format

*

* TODO: Is this method wused outside the package

*

* @return Vector

*/

public Vector getRawRatings () {

return raw._ratingsVector;

/o

* getSessionRatingDB () gives the filtered ratings in for this session

*

* @return

*/

public SessionRatingDB getSessionRatingDB () {
return sessionRatingDB;

C.2.2 PageExtractor.java

package page;

import java.io.IlOException;
import java.util.Vector;

import java.util.logging.Level;

import java.util.logging.Logger:

import scone.util.tokenstream.HtmlTagToken;
import scone.util.tokenstream.Token;

import scone.util.tokenstream.TokenInputStream;

public class PageExtractor {

120 Code

private static Logger log = Logger.getLogger (PageExtractor.class.getName());
Vector<Token> vec-analyze;

String edit_-page;

String base_-page;

String history_page;

String version ;

String title;

Jxx

* PageExztractor looks through a HTML page and stores the edit wrl and the
* history wurl, extracted from the source HTML

*

x @param tokens

*

public PageExtractor (TokenInputStream in, String URL) {
base_page = URL;
log.setLevel (Level .FINE) ;
// Vector to store the tokens from the stream

vec-analyze = new Vector<Token>();
Token t = mnull;
try {

while ((t = in.read()) != null) {

vec-analyze.add(t);

}
} catch (IOException e) {
log.info(” Initialization of Token Vector failed”);
log.info (e.getStackTrace () .toString ());
HtmlTagToken tag = null;
String relative_url = 77;

// String wersion = 77;

// Working through the wvector of tokens looking for the edit link

for (int i = 0; i < vec-analyze.size (); i++) {
t = (Token) vec-analyze.elementAt(i);
if (t instanceof HtmlTagToken) {
tag = (HtmlTagToken) t;

// Find the <LI id=
if (tag.getTagType() HtmlTagToken. T_LI) {
if (tag.getParam (”id '= null)
if ((tag.getParam (”id”)).equals(”ca—edit”))
log.fine ("Found LI tag with id=\"" + tag.getParam (”id”) + ”\”
parameter”) ;
// Find the link from the nezt <a> tag

ce—edit”> tag

HtmlTagToken temp-Token = (HtmlTagToken) vec_analyze.elementAt(i + 1);
relative-url = temp_Token.getParam (” href”);
log.fine (" Relative URL: ” + relative_url);

if (((tag.getParam(”id”)).equals(”t—permalink”))) {

HtmlTagToken temp-Token = (HtmlTagToken) vec_-analyze.elementAt(i + 1);
version = (temp.-Token.getParam (” href”)).split (7=")[2];
// Store the title of the page
title = (temp_-Token.getParam (”href”)).split (’=")[1];
title = title.split ("&")[0];
}
}
}
}
}
// Putting together the edit and the history URL
String [] temp = base_page.split(”/”);
edit_page = "http://” -+ temp[2] + relative_url;
edit_page = edit_page.replace ("&”, "&”);
// wusing that edit an history called the sameway as a PHP parameter
history_.page = edit_page.replace(”edit”, ”history”);

}

// return the editURL
public String extractEditPage () {
return edit_page;

// Return the history URL
public String extractHistoryPage () {
return history_page;

C.2 Page Package 121

public String extractionVersion () {
return version;

public String extractTitle () {
return title;

C.2.3 PageModifier.java

package page;

import java.io.BufferedReader;

import java. .File;

import java.io.FilelnputStream;
import java.io.FileNotFoundException;
import java.io.IOException;

import java.io.InputStreamReader ;

import java.net.InetAddress;
import java.util.Vector;

import scone.util.tokenstream.HtmlTagToken;
import scone.util.tokenstream.HtmlTextToken;
import scone.util.tokenstream . Token;

/o

« Pagemodifier changes the the HTML document. It inserts the tokens that

%« represents the ratings and the html required for the user to to cast a rating
*

%« @author s011564

*

*/

public class PageModifier {

Vector<Token> htmlPage;

VEES
%« Default contstructor Uses the vector htmlPage for manipulation .
*
% @param htmlPage
*/
public PageModifier (Vector<Token> htmlPage) {
this. htmlPage = htmlPage;
}

[/ ok o o K K ok K K ok ok Kk oK K R K K oK S K K oK oK K oK oK R K K oK oK K oK oK K oK oK K K oK K K K oK oK K K oK oK K K K oK K K K oK oK K K oK oK K K K K K K K
* This constructor is only used for testing purposes!

*

*/

public PageModifier () {

}
e

ReplaceTag is wused to replace the ### tags with rating and links for
creating a rating

@param line
@param replacement

*
*

*

*

* @param tag
*

*

* @return

*

r

/
private static String replaceTag(String tag, String line, String replacement) {
int b = line.indexOf(tag);
int e = b + tag.length();
String begin = line.substring (0, b);
String end = line.substring (e);
return begin 4 replacement + end;
}
Sk
%« Insert the Yahoo UI Drag&Drop code and the rating
*
* @param rating
*/
public void insertYUlIandRating (double rating) {
try
// Setting up the TOKENS to go into the HEAD of the HTML file
File f = new File(”static_-textfiles/HeadHtml. txt”);

FileInputStream fis = new FilelnputStream (f);

122

Code

/

*
*
*
*
*

}

BufferedReader in = new BufferedReader (new InputStreamReader (fis));

String temp = 77 ;

String tolnsertInHead = ;

while ((temp = in.readLine()) != null) {
tolnsertInHead 4= temp;

RS

}
// Setting up the TOKENS to go into the Body of the HTML file

f = new File(”static_textfiles/BodyHtml.txt”);

fis = new FilelnputStream (f);

in new BufferedReader (new InputStreamReader (fis));
String tolnsertInBody = ””;

while ((temp = in.readLine()) != null) {

tolnsertInBody += temp;

}
/) replacing ###RATINGHAH

toInsertInBody = replaceTag ("##H#RATING##A" , tolnsertInBody ,
String.valueOf(rating));

// Replacing ###IP###

InetAddress addr = InetAddress.getLocalHost () ;
String IPadress = addr.getHostAddress () ;
tolnsertInBody = replaceTag ("###IP###" , tolnsertInBody , IPadress);
// Finding the Head and the Body tags , where the texzt from the files
// are inserted .
int i = 0;
while (i < htmlPage.size ()) {
Token tempToken = htmlPage.elementAt (i);
if (tempToken instanceof HtmlTagToken) {
HtmlTagToken tempHtmlTagToken = (HtmlTagToken) tempToken ;
// If the token is </HEAD>, then insert the HeadHtml tewxt
/) before this tag
if (tempHtmlTagToken.getTagType() == HtmlTagToken.T_-HEAD &&
tempHtmlTagToken .isEndTag ())
HtmlTextToken head = new HtmlTextToken(tolnsertInHead);
htmlPage.insertElementAt (head, i — 1);
i+
}
// If the token is </BODY> insert the BodyHtml text before
/) this.
if (tempHtmlTagToken.getTagType () == HtmlTagToken.T-BODY &&
tempHtmlTagToken . isEndTag ())
HtmlTextToken body = new HtmlTextToken(tolnsertInBody);
htmlPage.insertElementAt (body, i);
i4++;
}
}
P4+
}
catch (FileNotFoundException e) {
/) IF the files that are to be inserted are unavailable
e.printStackTrace () ;
catch (IOException e) {
// If a general Rea. or write error occurs
e.printStackTrace () ;
Returns the htmlPage vector when it is ready to be written to the output

stream

@return

*/
public Vector<Token> getHtmlPageVector () {
return htmlPage;

C.3 Rating Package

123

C.3 Rating Package

C.3.1 Rating.java

package rating;

import java.util.Date;

public class Rating {
private Date dl;
private int rating;
private int experience;

private int interaction;

private String username;

private String article_url;

version ;

private ;

Jx %
* @param hashValue
* @param dl1
* @param rating
* @param experience

String

*/
/o o ko o Kk o o kR ok o Kk o o Kk o o kR o ok Kk ko ok kR ok kKR ok o Kk o ok Kk o o Kk o o Kk ok o K KK
%« Use this conmstructor when initiating rations in to the SessionRatingDB. Use
% setExp () to set ezperience later on
*
* @return
*
public Rating(String username, int rating, String version, String article_url) {
this.username = username;
this.rating = rating;
this.version = version;
this.article_url = article_url;
this.experience = 2;
this.dl = new Date ()
this.interaction = 2;
}
/* =
* This constructor is only for testing purposen. Opens the possibillity to
* insert old ratings , with costimized dates! USE WITH CARE, and block commet
* this method in final release !!
*
% @param hashValue
* @param rating
* @param date
* @param exzperience
*/
public Rating(String username, int rating, String version, String article-url,
Date date, int experience) {
this.version = version;
this.dl = date;
this.rating = rating;
this.experience = experience;
this . username = username;
this.article_url = article_url;
}
/% =
* Default constructor! Do not wuse this constructor! Only used for test
* purposes!
*
* TODO: Can this constructor be deleted ??
*/
public Rating () {

article_url

version = ”7;

dl = new Date();
rating = 0;

experience = 1;
username = "testUSer”;

124 Code

// Returns the date where the rating is given
public long getDate () {
return dl.getTime () ;

// returns the wusername for the wuser that created this rating
public String getUserName () {

return username;

T TTTTTTTTTTTTTTTTTTTTTTTTTTTYTTYT

* getExzp returns the exzperience that was had when this rating was collected 2
* marks that the experience is not yet given 1 marks a positive experience 0
* marks a mnegative

*
*/

public int getExperience () {
return experience ;

// Change the ezpeirence with this rating

public void setExperience(int experience) {
this.experience = experience;

}

/% o K o ok oK sk kK K oK ok K K K oK KK K oK K K oK oK SRR K oK oK K K oK oK K K oK SR K K oK K K oK oK K K oK K K K oK oK K K oK K K K oK K K oK oK K K K K K
* getInteraction returns the if it was a positive or mnegative interaction had
%« 2 marks that the exzperience is mnot yet given 1 marks a positive experience
%« 0 marks a negative
*

*/

public int getlnteraction () {

return interaction;

// Change the interaction with this rating

public void setinteraction (int interaction) {
this.interaction = interaction ;

}

// returns the URL of the article
public String getURL() {
return article_url;

// Returns the rating that was given in this rating
public int getRating () {
return rating;

// Returns wversion of the article where the rating was given
public String getVersion () {
return version;

// Used to prettyPrint the rating
// Mainly wused for debugging
public String prettyPrint () {
String toReturn = null;
toReturn = ”Rating:\t” 4+ getRating () + ”\tUser:\t” + username + ”\t\tExp\t” +
experience + ”"\tDate:\t”
+ dl.toString () + ”\tversion:\t” + getVersion () + "\tURL\t” + getURL() +
"A\n”
return toReturn;
}
}

C.3.2 RatingCalculator.java

package rating;

import java.text.DecimalFormat ;
import java.util.ArrayList;
import java.util.Arrays;

import java.util.Vector:;
import trust.RoR;
/% o ok ok ok ok ok ok ok K K ok ok oK K oK oK S K oK ok ok K K ok ok oK K ok ok oK K oK ok K K oK oK R K oK ok oK R K oK ok K oK ok o K K oK oK R K oK oK K K oK oK K K ok K K K oK K K K K

* The ratingCalculator puts together a rating based on the active ratings in
* the sessionRatingDB and the trust wvalues in RoR.

C.3 Rating Package 125

The average is calculated on a 5% trimmed mean based on David Wagner s
Resilient Aggregation in Sensor Networks

@author s011564

/

P I

public class RatingCalculator {

// The ratings eztracted in this session
SessionRatingDB sessionRatingDB

// Arraylist to simulate the Sensor readings
ArrayList<Integer> ratings ;

// The asociated RoR
RoR ror ;

// Constructor
public RatingCalculator (SessionRatingDB sessionRatingDB , RoR ror) {

this .sessionRatingDB = sessionRatingDB ;
ratings = new ArrayList<Integer >();
this.ror = ror;

}

/o kK o o K o KR R o KR R o K R R o KR R o o KK o o KR R R o KR R o KK R o KK R o KK R o KK R o K KK o
% cleanSessionRatingDBForUsersWithNegative TrustValues () removes the

% sessionRatingDB for any ratings that have been gi
% a megative trust value

en from a user that have

private void cleanSessionRatingDBForUsersWithNegativeTrustValues () {
Vector<Rating> temp = new Vector<Rating >();

int sessionRatingDBSize = sessionRatingDB.size () ;
// Check the SessionRatingDB through for wusers with a negative trust
// walue
for (int i = 0; i < sessionRatingDBSize; i++) {
Rating r = sessionRatingDB .pop () ;

if (ror.getTrustValueFromUsername (r.getUserName()) > 0.0) {
// add Ratinge given from trusted users to a temporary wvector
temp.add (1) ;

// Insert the temp wvector int othe now empty vector

for (int i = 0; i < temp.size(); i++) {
sessionRatingDB .push (temp.elementAt (i));

}

}

/3 sk sk sk sk sk sk sk sk ok sk sk sk ok sk sk sk ok i sk sk ok sk ok sk ok sk sk sk ok sk sk sk R sk sk sk R ke sk ok ok sk sk R sk sk ok R sk sk ok SR Sk sk ok R sk sk ok R sk sk oK R Sk sk oK R sk ok ok Kk ok ok
« Computethe average
*
* @return
*/
public double computeAverage () {
// DecimalFormat wused to an integer
DecimalFormat df = new DecimalFormat ("##”) ;
// Cleanout
cleanSessionRatingDBForUsersWithNegativeTrustValues () ;
// set up the arraylist of ratings

int sessionRatingDBSize = sessionRatingDB .size () ;
for (int i = 0; i < sessionRatingDBSize; i++) {
Rating r = sessionRatingDB .pop();

// Multiply acording to trust values
double trustValue_for_user_-for_-Rating_-r =
ror.getTrustValueFromUsername (r.getUserName ()) ;

// String double_numbers_to_be_copied =
// df.format(trustValue_ for_user_for_Rating.r);

int numbers_of_copies_to_insert = (int) (double) new
Double (df.format (trustValue_for_user_for_Rating_r * 100));
int rating_to_be_inserted = r.getRating() ;
/) insert the sensors
for (int j = 0; j < numbers_of_copies_to_-insert; j++) {

ratings.add(rating-to_-be_inserted);
}

// Convert the Rating array to an int array

int [] ratings_-integer_array_-untrimmed = new int[ratings.size ()];
for (int i = 0; i < ratings_integer_array_untrimmed.length; i4+4) {
ratings_integer_array_untrimmed [i] = (int) ratings.get (i);

}
// sort the ArrayList

126 Code

Arrays.sort (ratings_integer_array_untrimmed) ;

// trim off 5 %

int size_of_arraylist = ratings.size ();
double threshold = (double) size_of_arraylist = 0.05;
int five_present_threshold = (int) (double) new Double(df.format (threshold));

// Create an integer array that if 10 % shorter of the original.
// to fit an array that is trimmed 5% at each end.
Integer [] rating_-integer_array_-trimmed = new

Integer [ratings_integer_array_untrimmed.length

— (2 % five_present_threshold)];

int sum = 0;

// Calculate the sum of the ratings

for (int i = 0; i < rating_-integer_array_-trimmed.length; i++4)
rating_integer_array_trimmed [i] = ratings_integer_array_untrimmed [i +

five_present_threshold |;
// Updating the sum
sum += rating_integer_array_trimmed[i];

}

double average = ((double) sum) / ((double)
rating_-integer_array-trimmed.length);

// compute average
return average;

C.3.3 RatingHistory.java

package rating;

import java.io.Serializable;

import java.util.ArrayList;

import java.util.Date;

public class RatingHistory implements Serializable {
private final long month_milis = new Long(”2592000000”); // 30%24{%60%x60%1000
private final long halfYear_milis = new Long(”15552000000”); // 6x380%x24%x60x60x1000
private final long year_-milis = new Long(”31104000000”); // 12%80%24%60%60x1000
private ArrayList<Rating> history;
private int positive_one_-month , negative_one.month, positive-half_year ,

negative_half_year , positive_one_year,

negative_one_year;

private double xValue;

public RatingHistory () {
history = new ArrayList<Rating>();
positive_-half_year = 0;
positive_one_month = 0;
positive_one_year 0;
negative_-half_year = 0;
negative_one_month = 0;
negative_one_year = 0;
xValue = 0.0;

}

public void insertRating (Rating r) {
history .add(r);
updateTrustDynamics () ;

}

public double getXValue() {
return xValue;

public int getHistorySize () {
return history .size () ;

private void updateTrustDynamics () {
Date now = new Date () ;
long thisTime = now.getTime () ;

C.3 Rating Package

127

resetCounterValues () ;
// Set month, halfYear and year limits

long month = thisTime — month_milis;
long halfYear = thisTime — halfYear_milis;
long year = thisTime — year_milis;

// System.out.printin (new Date(month).toString ());
// System.out.printin (new Date(halfYear).toString());
"/ System.out.printin (new Date(year).toString ()):

for (int i = 0; i < history.size (); i++) {
long ratingAge = history.get(i).getDate();// thisTime —
// history.get(i).getDate ()
/)

J/ If it is positive ezpirence
if (history.get(i).getIlnteraction () =
if (ratingAge > month)
positive_one_-month-+4+4;
if (ratingAge < month && ratingAge > halfYear)
positive_half_year++;
if (ratingAge < halfYear && ratingAge > year)
positive_one_year+-+;

1 A

}
// If it is a negative exzperience
if (history.get(i).getInteraction() == 0) {
if (ratingAge > month)
negative_one_month+4+;
if (ratingAge < month && ratingAge > halfYear)
negative_half_year+4+4;
if (ratingAge < halfYear && ratingAge > year)
negative_one_year-+-+;

}
}
xValue = 0.1 % positive_one_.month 4+ 0.05 = positive_half_year + 0.025 =
positive_one_-year — 0.1
% negative_one_month — 0.05 * negative_half_year — 0.025 =

negative_one_year ;

i

private void resetCounterValues () {
positive_-half_year =
positive_one_month
positive_one_year ;
negative_half_year 0;
negative_one_month = 0
negative_one_year = 0;

C.3.4 RecommendationSubmitter.java

package rating;

import java.io.IOException;
import java.security.PrivateKey;

import statictools.SecurityProvider;
import statictools.Wikij;

public class RecommendationSubmitter {
String username;
String wiki_password ;
String version;
int rating;
String name;

PrivateKey privateKey ;

public RecommendationSubmitter (String username, String wiki_password ,
version , String name,
PrivateKey privateKey) {
this.username = username;
this . wiki_password = wiki_password;
this.version = version;
this .name = nam

this . privateKey = privateKey;

String

128

Code

public void SubmitStringToForm(int rating) {

String rating-to_-insert = SecurityProvider.createRating (username, rating ,

version , name, privateKey);

try {

// Create an instance og the WIKIbot for the english Wikipedia as

// default
Wiki bot = new Wiki () ;

// Login to the wiki

bot.login (username, wiki-password.toCharArray());

// get the actual text of that article that have to be signed

String text = bot.getPageText (name);

// add the rating to that article

text += rating_-to_-insert;

// insert the new rating

bot.editPage (name, text, ”WikiTrustComment” , true) ;
} catch (IOException e) {

System .out.printin (e.getStackTrace ());

e.printStackTrace () ;

}

C.3.5 SessionRatingDB.java

package rating;

import java.util.ArrayList;

import java.util.logging.Logger;

e

% SessionRatingDB is a class for storing the signatures parsed from the

* wikipedia. It works like a FIFO stack , with push () and pop methods.
*

*

* @author Thomas Rune Korsgaard ,

*

*/

public class SessionRatingDB {

private static Logger log = Logger.getLogger (SessionRatingDB . class .

private ArrayList<Rating> ratings;

public SessionRatingDB () {
ratings = new ArrayList<Rating>();
}
/3 k
% push ()inserts a rating into the arraylist
*
% @param Rating
* r
*/

public synchronized void push(Rating r) {
boolean sucess;
sucess = ratings.add(r);
if (!sucess) {
log.severe (” Insertion of Rating Failed! Average may not be
}

}
e

« pop () removes a rating from the ArrayList
*
x @return

*/

public synchronized Rating pop () {
Rating r = ratings.remove (0);
return r;

correct !”);

getName ()) ;

/R KK R KR K R K K K K KR R K K K K K KR K K R K K K K K K K K K K

% size () returns the size of the SessionRatingDB
*
% @return

*
public int size ()
return ratings.size () ;

C.4 Remote Package

129

prettyPrintAllSignatures prettyprints all the signatures found in
wikipedia edit page.

IR

@param signatures
* @return a string that have to be printed to a log og terminal
*
/
public String prettyPrintAllSignatures () {
String toReturn = "\n”;
for (Rating i ratings) {
toReturn += i.prettyPrint();

return toReturn;

}

public Rating elementAt(int g) {
return ratings.get(g);

C.4 Remote Package

C.4.1 EmbeddedApplet.java

package remote;

import java.applet.Applet;
import java.awt.Component
import java.awt.Container;
import java.awt.Dimension;
import java.awt.
import java.awt.
import java.awt.Insets;

import java.awt.LayoutManager;

import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.awt.event.WindowAdapter;
import java.awt.event.WindowEvent;
import java.io.BufferedWriter;

import java.io.FileWriter;

import java.io.IOException;

import java.rmi.registry .LocateRegistry;
import java.rmi.registry .Registry;

import javax.swing.JButton;

import javax.swing.JLabel;

public class EmbeddedApplet extends Applet implements ActionListener {
JButton button_YES;

JButton button_NO;
JLabel label_-2;
JButton button_-rate9;
JButton button.rate2;
JButton button_rate3;
JButton button_rate4;
JButton button_-rate5;
JButton button_-rate6;
JButton button._-rate7;
JButton button_rate8 ;
JButton button_ratel ;
JLabel label_-3;
BufferedWriter out = null;

public void actionPerformed (ActionEvent ae) {

130

Code

if (ae.getSource() == button.YES) {
String host = null;
try {
Registry registry = LocateRegistry.getRegistry (host);
FeedbackInterface stub = (FeedbackInterface)
registry .lookup (” FeedbacklInterface”) ;
/) String response = stub.sayHello ();

stub.clickYes () ;
button_NO.setEnabled (false) ;

} catch (Exception e)
e.printStackTrace () ;
}
if (ae.getSource() == button_.NO) {
String host = null;
try {
Registry registry = LocateRegistry.getRegistry (host);
FeedbackInterface stub = (FeedbackInterface)
registry .lookup (” FeedbackInterface”) ;
// String response = stub.sayHello ();

}

stub.clickNo () ;
button_.YES.setEnabled (false) ;
catch (Exception e)
e.printStackTrace () ;

if (ae.getSource() == button_rate7) {
String host = null;
try {
Registry registry = LocateRegistry.getRegistry (host);
FeedbackInterface stub = (FeedbackInterface)
registry .lookup (” FeedbackInterface”) ;
// String response = stub.sayHello ();

}

stub.clickRating (7) ;
button_ratel .setEnabled (false);
button_rate2.setEnabled (false);
button_rate3.setEnabled (false);
button_rated.setEnabled (false);
button_rate5.setEnabled (false) ;
button._rate6.setEnabled (false) ;
button._rate8.setEnabled (false) ;
button._rate9.setEnabled (false) ;
catch (Exception e) {
e.printStackTrace () ;

if (ae.getSource() == button_rate8) {
String host = null;
try {
Registry registry = LocateRegistry.getRegistry (host);
FeedbackInterface stub = (FeedbackInterface)
registry .lookup (” FeedbackInterface”) ;
/) String response = stub.sayHello ();

}

stub.clickRating (8) ;
button_ratel .setEnabled (false);
button_rate2.setEnabled (false);
button_rate3.setEnabled (false);
button_rate4 .setEnabled (false);
button_rate5.setEnabled (false);
button_rate6.setEnabled (false);
button_rate7.setEnabled (false) ;
button._rate9.setEnabled (false) ;
catch (Exception e) {
e.printStackTrace () ;

if (ae.getSource() == button-ratel) {
String host = null;
try {
Registry registry = LocateRegistry.getRegistry (host);
FeedbackInterface stub = (FeedbackInterface)
registry .lookup (" FeedbackInterface”) ;
// String response = stub.sayHello ();

}

stub.clickRating (1) ;
button_rate7.setEnabled (false) ;
button_rate2.setEnabled (false);
button_-rate3.setEnabled (false);
button_rated4 .setEnabled (false);
button_rate5.setEnabled (false);
button_rate6.setEnabled (false);
button_rate8.setEnabled (false);
button_rate9.setEnabled (false) ;
catch (Exception e) {
e.printStackTrace () ;

if (ae.getSource() == button_rate9) {

C.4 Remote Package 131

String host = mnull;

try {
Registry registry = LocateRegistry.getRegistry (host);
FeedbackInterface stub = (FeedbackInterface)

registry .lookup (” FeedbackInterface”) ;

// String response = stub.sayHello () ;
stub.clickRating (9) ;
button_ratel .setEnabled (false) ;
button_rate2.setEnabled (false);
button_rate3.setEnabled (false);
button_rated4 .setEnabled (false) ;
button_rate5.setEnabled (false);
button_-rate6.setEnabled (false);
button_-rate8.setEnabled (false);
button_.rate7.setEnabled (false);

} catch (Exception e) {
e.printStackTrace () ;

}
if (ae.getSource() == button_rate2) {
String host = null;
try {
Registry registry = LocateRegistry.getRegistry (host);
FeedbackInterface stub = (FeedbackInterface)
registry .lookup (” FeedbackInterface”);
// String response = stub.sayHello () ;

stub.clickRating (2) ;
button_-ratel.setEnabled (false);
button_-rate7.setEnabled (false);
button_rate3.setEnabled (false);
button_rated .setBEnabled (false);
button_rateb5.setEnabled (false);
button_rate6.setEnabled (false);
button_-rate8.setEnabled (false);
button_-rate9 .setEnabled (false);
} catch (Exception e) {
e.printStackTrace () ;

}

if (ae.getSource() == button.rate3) {
String host = null;
try {
Registry registry = LocateRegistry.getRegistry (host);
FeedbackInterface stub = (FeedbackInterface)
registry .lookup (” FeedbackInterface”);
// String response = stub.sayHello ();

stub.clickRating (3) ;
button_ratel .setEnabled (false) ;
button_rate2.setEnabled (false) ;
button_-rate7.setEnabled (false);
button_rated .setEnabled (false);
button_rate5.setEnabled (false);
button_rate6.setEnabled (false);
button_rate8 .setEnabled (false) ;
button_rate9 .setEnabled (false);
} catch (Exception e) {
e.printStackTrace () ;

if (ae.getSource() == button_rated) {
String host = null;
try {
Registry registry = LocateRegistry.getRegistry (host);
FeedbackInterface stub = (FeedbackInterface)
registry .lookup (” FeedbackInterface”);
// String response = stub.sayHello ();

stub.clickRating (4) ;
button_.ratel .setEnabled (false);
button_.rate2.setEnabled (false);
button_rate3.setEnabled (false);
button_-rate7.setEnabled (false);
button_rate5.setEnabled (false)
button_rate6 .setEnabled (false);
button_rate8.setEnabled (false);
button_rate9.setEnabled (false) ;
} catch (Exception e) {
e.printStackTrace () ;

if (ae.getSource() == button.rate5) {
String host = null;
try {
Registry registry = LocateRegistry.getRegistry (host);
FeedbackInterface stub = (FeedbackInterface)
registry .lookup (” FeedbackInterface”) ;
// String response = stub.sayHello ();

stub.clickRating (5) ;

132 Code

button_ratel .setEnabled (false);
button_-rate2.setEnabled (false);
button_rate3.setEnabled (false);
button_rate4 .setEnabled (false);
button_rate7.setEnabled (false);
button_rate6.setEnabled (false);
button_rate8.setEnabled (false) ;
button._rate9.setEnabled (false) ;
} catch (Exception e) {
e.printStackTrace () ;

}
if (ae.getSource() == button-rate6) {
String host = null;
try {
Registry registry = LocateRegistry.getRegistry (host);
FeedbackInterface stub = (FeedbackInterface)
registry .lookup (" FeedbackInterface”) ;
// String response = stub.sayHello ();
stub.clickRating (6) ;
button_ratel .setBEnabled (false) ;
button_rate2.setEnabled (false) ;
button_rate3.setEnabled (false);
button_-rated4 .setEnabled (false);
button_rate5.setEnabled (false);
button_rate7.setEnabled (false);
button_rate8.setEnabled (false) ;
button_rate9.setEnabled (false);
} catch (Exception e) {
e.printStackTrace () ;

¥

public void init () {
/) try 1
// out = new BufferedWriter (new FileWriter (" error.log”));
// } catch (IOEzception e) {
// e.printStackTrace ();

//
AppletLayout customLayout = new AppletLayout () ;
setFont (new Font(” Helvetica”, Font.PLAIN, 12));

setLayout (customLayout) ;

button_.YES = new JButton(” Yes”);
add (button_.YES) ;
button_YES.addActionListener (this);

button.NO = new JButton (”No”);
add (button-NO) ;
button.NO.addActionListener (this) ;

label_2 = new JLabel(”Was This Information Usefull to You?”);
add(label_-2);

button_rate9 = new JButton(797);
add(button_rate9);
button_rate9.addActionListener (this);

button_rate2 = new JButton (”27);
add(button_rate2);
button_rate2.addActionListener (this) ;

button-rate3 = new JButton (”3”);
add(button_rate3);
button_rate3.addActionListener (this);

button-rate4 = new JButton (”4”);
add (button_rate4);
button-rate4.addActionListener (this);

button_rate5 = new JButton (”5”);
add (button_rate5) ;
button_rate5.addActionListener (this);

button_-rate6 = new JButton(767);
add(button_rate6);
button_rate6.addActionListener (this);

button-rate7 = new JButton (”7”);
add (button_rate7);
button._rate7.addActionListener (this);

button_rate8 = new JButton(”8”);
add (button_-rate8);

C.4 Remote Package

133

button_rate8.addActionListener (this);

button_-ratel = new JButton(”1”);
add (button_ratel);
button_-ratel.addActionListener (this);

label_3 = new JLabel(” Please rate this article”);
add(label-3);

setSize (getPreferredSize ());

i

public static void main(String args[]) {
EmbeddedApplet applet = new EmbeddedApplet () ;
Frame window = new Frame(” test”);

window . addWindowListener (new WindowAdapter () {
public void windowClosing (WindowEvent e) {
System . exit (0);

}
3
applet.init ();
window .add (” Center” , applet);

window . pack () ;
window . setVisible (true) ;
}
}

class AppletLayout implements LayoutManager {

public AppletLayout () {

public void addLayoutComponent(String name, Component comp) {

public void removeLayoutComponent(Component comp) {

public Dimension preferredLayoutSize (Container parent) {

Dimension dim = new Dimension (0, 0);
Insets insets = parent.getlnsets ();
dim.width = 250 4+ insets.left + insets.right;
dim . height = 182 + insets.top + insets.bottom;
return dim;

}

public Dimension minimumLayoutSize (Container parent) {
Dimension dim = new Dimension (0, 0);
return dim;

}

public void layoutContainer (Container parent) {

Insets insets = parent.getlnsets ();

Component c;
c = parent.getComponent (0) ;
if (c.isVisible ()) {
c.setBounds (insets.left + 8, insets.top -+ 48, 120, 24);
}
¢ = parent.getComponent (1) ;
if (c.isVisible()) {
c.setBounds(insets.left 4+ 128, insets.top + 48, 120, 24);
}

¢ = parent.getComponent (2) ;
if (c.isVisible ()) {
c.setBounds(insets.left 4+ 8, insets.top + 8, 240, 32);
}
¢ = parent.getComponent (3);
if (c.isVisible ())
c.setBounds(insets.left 4+ 200, insets.top + 112, 48, 32);
}
¢ = parent.getComponent (4) ;
if (c.isVisible ()) {
c.setBounds(insets.left 4+ 8, insets.top + 144, 48, 32);
}
¢ = parent.getComponent (5) ;
if (c.isVisible()) {
c.setBounds(insets.left + 56, insets.top + 112, 48, 32);
}
¢ = parent.getComponent (6) ;
if (c.isVisible ())
¢c.setBounds(insets.left + 56, insets.top + 144, 48, 32);

134

Code

-~

c =

f

c.

a -

if
}
c
if
}
c =
if
}

c =
if
}
c
if

}

c.

c

c.

c
c

}
}

C.4.2 FeedbackInterface.java

package

import
import

public
// St
void

void

void

parent . getComponent (7) ;
(c.isVisible ()) {

parent .getComponent (8) ;
(c.isVisible ()) {
setBounds(insets.left 4+ 104, insets

parent .getComponent (9) ;
(c.isVisible ())

.setBounds(insets.left + 152, insets.

parent .getComponent (10) ;
(c.isVisible ())

parent .getComponent (11) ;
(c.isVisible ()) {

.setBounds(insets.left + 8, insets.top +

parent .getComponent (12) ;
(c.isVisible ()) {

.setBounds (insets.left + 8, insets.top +

remote ;

java.rmi.Remote;
java.rmi.RemoteException ;

setBounds (insets.left 4+ 104, insets.

setBounds(insets.left + 152, insets.

.top

interface FeedbackInterface extends Remote {
ring sayHello () throws RemoteEzception ;

clickYes () throws RemoteException;

clickNo () throws RemoteException ;

clickRating (int rating) throws RemoteException ;

C.5 Sconeplugin Package

C.5.1 WRS.java

package

import
import
import
import
import
import
import
import
import
import
import
import
import

import
import
import
import
import
import
import
import

sconeplugin ;

java.io.IOException;
java.rmi.AccessException;
java.rmi.AlreadyBoundException ;
java.rmi.RemoteException ;
java.rmi.registry.LocateRegistry ;
java.rmi.registry . Registry;
java.rmi.server.UnicastRemoteObject;
java.security . KeyPair;
java.security . KeyStore;
java.security . PrivateKey ;
java.util.Hashtable;
java.util.Set;

java.util.Vector;

page.ExtractRatings ;
page.PageExtractor ;

page . PageModifier;

rating . RatingCalculator;

rating . RecommendationSubmitter;
rating . SessionRatingDB ;

remote. FeedbackInterface;

scone .proxy . HtmlTokenEditor ;

C.5 Sconeplugin Package 135

import scone.util.tokenstream.SconePipe;

import scone.util.tokenstream.Token;

import scone.util.tokenstream.TokenInputStream;
import scone.util.tokenstream.TokenOutputStream;
import statictools.SecurityProvider;

import statictools. Serializer;

import statictools.TokenInputStreamTools;

import trust.RoR;

import trust.TrustUpdater;

/o o o o o K o o o ko o o R K K o o kR K K K K K
x« Wirtu is the Wikipedia with Ratings from Trusted Users This is the main
plugin for the SCONE browser

*
5
« @author s011564
*
*/
public class WRS extends HtmlTokenEditor implements FeedbackInterface {

WRSPlugin plugin = null;

TokenInputStream in;

TokenOutputStream out;

TrustUpdater tu;

RecommendationSubmitter rs;

// Default constructor

public WRS(WRSPlugin plugin) {
this.plugin = plugin;

}

public WRS() {

// Implemented methods from FeedbackInterface
public String sayHello () {
System .out.println (”sayHello () invoked”);
return ”Hello, world!”;

i

/) Implemented methods from FeedbackInterface
public void clickYes ()
System .out.println (” Clicked Yes”);
tu.ClickedYes () ;

}

// Implemented methods from FeedbackInterface

public void clickNo ()
System.out.println (” Clicked No”);
tu.ClickedNo () ;

i

public void clickRating (int rating) {
System.out.println (” Clicked ” -+ rating);
if (rating == 1) {
tu.ClickedR1 () ;
rs.SubmitStringToForm (1) ;

}

if (rating == 2) {
tu. ClickedR2 () ;
rs.SubmitStringToForm (2) ;

}

if (rating == 3) {
tu.ClickedR3 () ;
rs.SubmitStringToForm (3) ;

}

if (rating == 4)
tu.ClickedR4 () ;
rs.SubmitStringToForm (4) ;

if (rating == 5)
u.ClickedR5 () ;
rs.SubmitStringToForm (5) ;

if (rating == 6) {
tu.ClickedR6 () ;
rs.SubmitStringToForm (6) ;

}

if (rating == 7) {

tu.ClickedR7 () ;
rs.SubmitStringToForm (7) ;

136 Code

if (rating == 8) {
tu.ClickedR8 () ;
rs.SubmitStringToForm (8) ;

}

if (rating = 9) {
tu.ClickedR9 () ;
rs.SubmitStringToForm (9) ;

i
}

// handleRequest () is inherited from HtmlTokenEditor
public void handleRequest(SconePipe pipe) {

// Set wup a database to store the ratings captured
SessionRatingDB sessionRatingDB = new SessionRatingDB () ;
// Read a previously stored RoR from the disk

RoR ror = Serializer .readRoRFromDisk () ;

// The tokenstreams are initiated from the SconePipe
in = pipe.getTokenInputStream () ;

out = pipe.getTokenOutputStream () ;

// Page URL are obtained from the inputstreams’ meta information
Hashtable ht = in.getMetalnfo () ;

Set s = ht.keySet ();

Object [] sl = s.toArray ();

Object url = ht.get(s1[0]) ;

String page_url = url.toString () ;

// The history and Edit URL are exztracted from the page
PageExtractor pex = new

PageExtractor (TokenInputStreamTools.CreateTokenInputStreamFromURL (page_url) ,
page_url);
// Ratings are extracted from the Editpage and filtered with rhe RoR

ExtractRatings exr = new ExtractRatings (pex.extractEditPage (), ror);

// The eztracted ratings are stored inm the SessionRatingDB
sessionRatingDB = exr.getSessionRatingDB () ;

// An rating is calculated based on the trust wvalues from the RoR
RatingCalculator rc = new RatingCalculator (sessionRatingDB, ror);

// TOken Vector is initiated from the TokenlInputStream for modification
Vector<Token> htmlPage = initTokenVector () ;

// PageModifier is initiated

PageModifier pm = new PageModifier (htmlPage) ;

// Avareage is insertet allong with the HTML to cast own vote and
// feedback

double computedAverage = rc.computeAverage () ;
pm.insertYUlandRating (computedAverage) ;

// Stream is written

writeOutToken (pm. getHtmlPageVector ());

// Prepare the recommendation submitter

String wiki-username = (SecurityProvider.getWikiUserPassFromDisk ()) [0];
String wiki_-password = (SecurityProvider.getWikiUserPassFromDisk ()) [1];
String version = pex.extractionVersion () ;
String keyStorePass = SecurityProvider.getKeyStorePassFromDisk () ;
KeyStore ks = SecurityProvider.InitKeyStore (”.keys”, keyStorePass);
// System.out.printin (wiki_username+" "+wiki_password+” "+keyStorePass);
KeyPair keyPair = SecurityProvider.InitKeyPair(ks, wiki_username, keyStorePass);
PrivateKey privateKey = keyPair.getPrivate ();
String article.name = pex.extractTitle ();
rs = new RecommendationSubmitter(wiki_username , wiki_password, version ,
article_name , privateKey);

tu = new TrustUpdater(sessionRatingDB, computedAverage, ror);
// Setting up RMI conmections to wait for input from the user
// Wirtu obj = new Wirtu() ;
try {

FeedbackInterface stub = (FeedbackInterface)

UnicastRemoteObject.exportObject (this, 0);

// Bind the remote object’s stub in the registry
Registry registry = LocateRegistry.getRegistry (1099);
registry .bind (” FeedbackInterface” , stub);

System.err.println (” Waiting for Feedback”);

} catch (AccessException e) {

// TODO Auto—generated catch block
e.printStackTrace () ;

} catch (RemoteException e) {

// TODO Auto—generated catch block
e.printStackTrace () ;

} catch (AlreadyBoundException e) {
// TODO Auto—generated catch block
e.printStackTrace () ;

} catch (NullPointerException e) {
// TODO Auto—generated catch block
e.printStackTrace () ;

C.6 Statictools Package 137

// Write the newny calculated trust values to the disk!
Serializer . writeRoRToDisk (ror) ;

}
/o

« initTokenVector is used to read the tokenstream to a Vector
*
* @return
*/
private Vector<Token> initTokenVector () {
Vector<Token> htmlPage = new Vector<Token>();

Token t = null;
try {
while ((t = in.read()) != null) {

htmlPage.add(t);

} catch (IOException e)
System.out.println (” Initialization of Token Vector failed”);
e.getStackTrace () ;

}

return htmlPage;

/o
% WriteOutToken () is used to write tokens to a TokenOutPutStream
*

%« @param htmlPage

*
/
public void writeOutToken(Vector htmlPage) {
try {
Token t = null;
while (!htmlPage.isEmpty ())

{
t = (Token) htmlPage.firstElement () ;
out.write (t);
htmlPage.remove (0) ;

}
} catch (IOException e)
System.out.println (” Writing to TokenOutputStream failed!”);
e.printStackTrace () ;
}
}
}

C.5.2 WRSPlugin.java

package sconeplugin;

import scone.Plugin;

public class WRSPlugin extends Plugin {
// requirements

public int getRequirements ()
return PARSEDOCUMENT | CONSIDERLINKS ;

public void init () {
WRS wirtu = new WRS(this);
wirtu.setup (” WikipediaRecommenderSystem” , HTDOCCONDITION, 60) ;
addMeg (wirtu) ;
}
}

C.6 Statictools Package

C.6.1 RatingCleanOut.java

package statictools;
import trust.RoR;

import java.util.Vector;

138 Code

/*

*

*
*
*
*
*

ok ok o K K ok ok K oK ok R K K ok oK K K oK oK K oK oK R K K oK ok K K oK oK K oK ok oK K K ok oK K K oK oK K K oK oK K K oK ok oK K oK oK K K K oK oK K K K K R K K oK K K K K K
RatingsCleanOut is a set of static tools that is wused to clean out the
ratings that are on a page, and does mnot belong there for some reason .
@author s011564

/

public class RatingCleanOut {

e
« RemoveTitleMismatch removes the ratings where the title in the rating dont
* match to titel of the page that the rating is inserted into.
*
* @return
*/
public static Vector<String> RemoveRatingsTitleMismatch (String pageTitle ,
Vector<String> ratings) {
Vector<String> cleanedRatings = new Vector<String >();
while (!ratings.isEmpty ()) {
// If the pagetitie maches the title in the rating
String firstElement = ratings.firstElement () ;
if ((firstElement.split(”;7))[4].equals(pageTitle)) {
cleanedRatings .add (firstElement);

ratings.remove (0) ;

return cleanedRatings;

ok ok ok ok ok ok ok ok K K ok ok K K ok ok K ok ok Kk ok ok KK ok K K K ok ok Kk ok o K oK ok K R ok ok K R ok ok ok ok K R ok oK K K ok oK ok ok K K ok K K K oK K K K

N

RemoveRatingsBelowThreshold () removes the ratings where the Threshold is
below an accepted limit

@param acceptedThreshold
@param ratings

@param page-title

* @return

public static Vector<String> RemoveRatingsBelowThreshold (double acceptedThreshold ,
Vector<String> ratings ,
String page_title) {
Vector<String> cleanedRatings = new Vector<String >();
String [] temp.string_-array = null;
// Work through the raw ratings
while (!ratings.isEmpty()) {
temp._string_array = ratings.firstBlement ().split(”;”);
double calculatedThreshold = Threshold. ThresholdCalculator (page_-title ,
temp_string_array [3]) ;
// If the calculated threshold is lower that the ezcepted , then
// insert
// the rating into the cleaned ratings
if (calculatedThreshold < acceptedThreshold) {
cleanedRatings .add(ratings . firstElement ());

ratings.remove (0) ;
return cleanedRatings;

}

/R R R R K o o K o K o K K oK R R K K R R R R R K K Kk ok K o o ok K K K K
% RemoveUnvalidableRatings () removes the ratings where the signature cannot

* be werified
*
* @param ratings
* @param Tor
* @return
*/
public static Vector<String> RemoveUnvalidableRatings(Vector<String> ratings , RoR
ror
)
Vector<String> cleanedRatings = mew Vector<String >();

while (!ratings.isEmpty ()) {
if (SecurityProvider.validateRating (ratings.firstElement (), ror)) {
cleanedRatings .add(ratings . firstElement ());
}

ratings.remove (0) ;

return cleanedRatings;

C.6 Statictools Package

139

C.6.2 SecurityProvider.java

package statictools:
import java.io.BufferedReader
import java.io.ByteArrayIlnputStream;
import java.io.File;
import java.io.FilelnputStream;
import java.io.FileNotFoundException;
import java. .FileReader;
import java.io.IOException;
import java. .InputStream;
import java.io.InputStreamReader ;
import java.net.MalformedURLException ;
import java.net.URL;
import java.net.URLConnection;
import java.security.InvalidKeyException;
import java.security .Key;
import java.security .KeyPair;
import java.security.KeyStore;
import java.security.KeyStoreException;
import java.security.NoSuchAlgorithmException;
import java.security.PrivateKey;
import java.security.PublicKey ;
import java.security.Signature;
import java.security.SignatureException;
import java.security.UnrecoverableKeyException;
import java.security.cert.Certificate;
import java.security.cert.CertificateEncodingException;
import java.security.cert.CertificateException;
import java.security.cert.CertificateFactory;
import scone.util.tokenstream .HtmlTagToken ;
import scone.util.tokenstream .HtmlTextToken ;
import scone.util.tokenstream . Token
import scone.util.tokenstream.TokenInputStream ;
import scone.util.tokenstream . TokenInputStreamTokenizerImpl;
import sun.misc. BASE64Decoder;
import sun.misc. BASE64Encoder;
import trust.RoR;
public class SecurityProvider {
VEES
* Initiates a keystore from the disk. The Keystore is used to store the
« private and public key of the wuser. The keystore is created with keytool
* that 1s included in JDK
*
* InitKeyStore takes the filename of the keystore and the passeword that is
* wused to encrypt the keys
*
* @param filename
* @param password
* @return
*/
public static KeyStore InitKeyStore(String filename, String password) {
try {
// The keystore is an instance og Java KeyStore

KeyStore ks = KeyStore.
String fileName =

getInstance (7JKS”);
filename ;

// Convert the password to Chararray
char [] passPhrase = password.toCharArray () ;
// Load the file of the keystore

File keystoreFile = new File (fileName);

// Load from the file to the Keystore instance

k's.load (new FileIlnputStream (keystoreFile), passPhrase);

return ks;

} catch (KeyStoreException e) {
e.printStackTrace () ;
return null;

} catch (NoSuchAlgorithmException
e.printStackTrace () ;
return null;

} catch (CertificateException e) {
e.printStackTrace () ;
return null;

} catch (FileNotFoundException e) {
e.printStackTrace () ;
return null;

} catch (IOException e) {
e.printStackTrace () ;
return null;

e) {

140 Code

[/ R K R K R o o K o K o K K o K K R K K K R R R R K K K K K K K
% Iniates a certificate from a loaded keystore

@param ks
KeyStore
@param wuser
Username in keystore
* @return Certificate
*/
public static Certificate InitCertificate (KeyStore ks, String user) {
try {
Certificate cert = ks.getCertificate (user);
return cert;
} catch (KeyStoreException e) {
e.printStackTrace () ;
return null;

¥k X X %

N
¥R F X X X X % X ¥ ¥
*

~

InitKeyPair retirns a Keypair that is loaded from a keystore. the username
and the passphrase is required to accecs the keys from the keystore

The KeyPair returned consists of a private and a public key
@param ks
@param wuser

@param passPhrase
@return

public static KeyPair InitKeyPair(KeyStore ks, String user, String passPhrase) {

try
// Get the private key directly from the keystore
Key key = ks.getKey(user, passPhrase.toCharArray());
PrivateKey privateKey = (PrivateKey) key;
// Get the public key from a certificate generated from the keystore
PublicKey publicKey = ks.getCertificate (user).getPublicKey () ;

return new KeyPair(publicKey, privateKey);
catch (KeyStoreException e)
e.printStackTrace () ;

catch (NoSuchAlgorithmException e) {
e.printStackTrace () ;

catch (UnrecoverableKeyException e) {
e.printStackTrace () ;

M

eturn null;

N

ok o R K oK S Rk K K K oK S R K K K K K SR SR K K oK S R K oK K K K S S K K oK S R K oK Sk K K SR SR K K Sk S R K K SR K K oK K R K oK R K K oK K K oK

% createSignature Creates a signature with a private key on a given string

*

% @param whatToHash

* @param privateKey

* @return

*/

public static byte|[] createSignature(String whatToHash, PrivateKey privateKey) {

try {
// lools wup the algorithm that the privatekey is grenerated from
Signature sig = Signature.getlnstance(privateKey.getAlgorithm());

// Initiates the Signature object withe the private key
sig.initSign (privateKey);
// Inserts what needs to be signed into the Signature object
sig.update (whatToHash.getBytes (), 0, whatToHash.getBytes().length);
// Returns the signed bytes
return sig.sign();
} catch (InvalidKeyException e) {
// TODO Auto—generated catch block
e.printStackTrace () ;
} catch (NoSuchAlgorithmException e) {
/) TODO Auto—generated catch block
e.printStackTrace () ;
} catch (SignatureException e) {
// TODO Auto—generated catch block
e.printStackTrace () ;

return null;

createBase64/EncodingFromSignature creates a base64 representation of the
signature that is prinable for the web

@param signature
@return

public static String createBase64EncodingFromSignature (byte[] signature) {

C.6 Statictools Package

141

BASE64Encoder b64enc = new BASE64Encoder () ;
return b64enc.encode(signature);

[/ ok o o o K K ok K oK ok ok Kk oK oK K K K oK S K K oK oK K oK oK R K K ok Sk R K oK oK K oK oK R K K oK oK K K oK oK K oK oK K K K oK K K K oK oK K K oK oK K K K K K K K
* getSignatureFromBase6/Representation takes a base64 encodes string and
decodes it to a byte array

@return
/
public static byte[] getSignatureFromBase64Representation(String

encodedSignature) {

try {

return new BASE64Decoder().decodeBuffer (encodedSignature);

} catch (IOException e)

// TODO Auto—generated catch block

e.printStackTrace () ;

*
*
% @param encodedSignature
*
*

}

return null;

i

/R R R R Rk K K K K o K o K K o K o K K R R R R R kK
% werifySignature verifyes a signature on byte array form with a public key

*
* @param whatToVerify
* @param signature
* @param publicKey
* @return

*/

public static boolean verifySignature (String whatToVerify, byte[] signature,

PublicKey publicKey) {

try {
// lools up the algorithm that the privatekey is grenerated from
Signature sig = Signature.getlnstance (publicKey.getAlgorithm ());

// Initiates the Signature object withe the public key
sig.initVerify (publicKey) ;
// Inserts what mneeds to be werified into the Signature object
sig.update(whatToVerify.getBytes (), 0, whatToVerify.getBytes().length);
// Returns true or false on the verification
return sig.verify (signature);
} catch (InvalidKeyException e) {
e.printStackTrace () ;
} catch (NoSuchAlgorithmException e) {
e.printStackTrace () ;
} catch (SignatureException e) {
e.printStackTrace () ;
}

return false;

}

/o o o o o o o o o o o o R KKK KK KKK KK KRR R R R R R o o ok o ok ok o o o o o o o o o K K K K KKK K KKK KK R
* Generate certificate is used to generate a certificate for the user to
insert on the wiki user page. The certificate is base64 encoded

*
*
* @param cert
* @return
*/
public static String generateCertificate (Certificate cert) {
BASE64Encoder myB64 = new BASEG64Encoder () ;
try {

return (7—
»

—BEGIN CERTIFICATE—————\n” + myB64.encode (cert .getEncoded ()) +

\n— END CERTIFICATE— ")

} catch (CertificateEncodingException e) {
e.printStackTrace () ;

return null;

—

/o

x getUserCertificate () finds the usercertificate and downloads it from the
* Wikipedia. getUserCertificate finds the latest entry by the wuser to the
% Jcert page and obtains the certificate on this wersion of the page

*

* @param wuser

* @return

*/

public static Certificate getUserCertificate (String user) {
Certificate cert;
try {
String certificateUrl = »7;
// Look up usercertificate history site

142 Code

String historyUrl = ”http://en.wikipedia.org/w/index.php?title=User:” + user +
”/cert&action=history”;
// Create an URLConnection to the history page

URLConnection historyUrlConnection = new URL(historyUrl).openConnection () ;
historyUrlConnection.setUseCaches (false) ;
InputStream his = historyUrlConnection.getInputStream () ;
InputStreamReader hisr = new InputStreamReader (his) ;
// Create a token stream for parsing
TokenInputStream htis = new TokenInputStreamTokenizerImpl(hisr);
Token temp = null;
// Start finding the newest certificate
while ((temp = htis.read()) != null) {
if (temp instanceof HtmlTagToken) {
HtmlTagToken htmlTag = (HtmlTagToken) temp;
// If the token is HTML tag and of the type <A>
if (htmlTag.getTagType() == HtmlTagToken.T_A) {
String params = htmlTag.getParam (” href”) ;
// Match the first partof the link
String toMatch = ” /w/index .php?title=User:” + user + ”/cert&oldid=";
int matchSize = toMatch.length () ;

// If the link has some parameters and the length is
// correct
// Matching ezcact length in order to avoid to much
// computation
if (params != null && params.length () >= matchSize) {
String tempstring = params.substring (0, matchSize);
// If the link matches a link to the certificate
if (tempstring.equals(toMatch)) {
/) Move 8 token foreward to the <A> tah the
// holds the link to the walid certificate .
for (int i 0; i< 8; i++) {
temp = htis.read () ;

}

if ((temp.toString()).equals(user)) {
/) Set the certificateUrl to the latest wurl
// that the wser has edited
certificateUrl = ”http://en.wikipedia.org” +

params.replace ("∓” , "&”");

// Once the latest wversion of the
// certificate i found close the stream
while (htis.read() !'= null) {

}
}
}
}

// Once the URL are inplace , download the HTML page whare the
// certificate is stored and retrice the certificate .
cert = null;
// Create a certificatefactory that is generates z.509 certificates
CertificateFactory cf = CertificateFactory.getlnstance (?X.509”);
// Open an URL comnection to the certificate
URLConnection urlconnection = new URL(certificateUrl).openConnection () ;
urlconnection.setUseCaches (false);
InputStream is = urlconnection.getInputStream () ;
InputStreamReader isr = new InputStreamReader (is);
// Create a Tokenstream for the URL
TokenInputStream tis = new TokenInputStreamTokenizerImpl(isr);
temp = null;
// Start looking for "————— BEGIN” which initiates the certificate
while ((temp = tis.read()) != null) {
if (temp instanceof HtmlTextToken) {
HtmlTextToken text = (HtmlTextToken) temp;
if (text.getText().length () > 9) {
// If the Token is a tag, it is longer that 9 chars and

// it equals "————— BEGIN”
if (text.getText ().equals (7————— BEGIN”)) {
/) Found certificate
String string_cert = text.getText () 4+ ” 7 + ((HtmlTextToken)

tis.read ()).getText () ;
// read the certificate into string

do {

text = (HtmlTextToken) tis.read();

string_-cert 4= "\n” 4+ text.getText ();
} while (!text.getText().equals(”CERTIFICATE————"));
// Create an inputstream for the certificateFactory
// to wuse

ByteArrayInputStream bs = new
ByteArrayInputStream (string.-cert .getBytes ());

cert = cf.generateCertificate (bs);

return cert;

C.6

Statictools Package

143

}

/A R R R R K K K K K K K

*

PR I

o
[

}

/R K K R R R R K K K K R R R R R K K K K K K K R R

*

* Ok X ¥

*

}

catch (CertificateException e) {
e.printStackTrace () ;

catch (MalformedURLException e) {
e.printStackTrace () ;

catch (IOException e) {
e.printStackTrace () ;

e

return null;

Create rating puts together a rating to be inserted in to the Wikipedi

a

@param wiki_username
@param mark

@param version

@param page_title

@param privateKey

@Qreturn

/

blic static String createRating (String wiki_username, int mark, String version ,

String page-title ,
PrivateKey privateKey) {
// The string that needs to be signed
String toSign = ”;” 4 wiki_username + ”;” + mark + ”;” 4+ version + ”;”
page_title + 7;”;
// The byte array containing the signatiure

byte[] signature = createSignature (toSign, privateKey);
// Encode the signature on base64 form
String encodedSignature = createBase64EncodingFromSignature(signature) ;
// Return the WikiTrustComment
return (7<!—— WikiTrustComment. Read more on:
http://en.wikipedia.org/wiki/User: Korsgaard \n” + toSign
+ encodedSignature + 7 ——>7);

Validate rating takes a raw rating and validates

@param rating
@param ToT
@return

/

public static boolean validateRating(String rating, RoR ror) {

i

/A R R K K K R R K R K K K K K K K

*

*
*
*
*

// Split up the rating
String [] rating_parts = rating.split(”;”);
// Set the username

String userName = rating_-parts[1];

// The base64 signature

String string-signature = rating-parts[5];
// Decodec signature

byte[] signature = getSignatureFromBase64Representation(string_signature);

// Retrive the certificate from the cache

Certificate cert = getUserCertificateFromCache (userName, ror);

// Setting together what needs to be werified

String whatToVerify = ”;” + rating_parts[1] + ”;” + rating_parts (2] +
rating_parts [3] + ”;” + rating_parts [4]
+ 77

// Check if the signature is wvalidated

boolean validated = verifySignature(whatToVerify, signature ,
cert.getPublicKey ());

return validated;

Obtains the wuser certificate from the RoR

@param username
@param ror
@return

*/
public static Certificate getUserCertificateFromCache(String username, RoR ror) {

/A K R R K R K K K R R K K R K K K K K K

*
*

return ror.getCertificateFromUsername (username) ;

/

public static String getKeyStorePassFromDisk () {

try {
FileReader fr = new FileReader (" passwords.txt”);

+

144 Code

BufferedReader br = new BufferedReader (fr)

String line = null;

String [] lineArray;

while ((line = br.readLine()) null) {
lineArray = line.split (” 7);

if (lineArray [0].equals(”KeyStorePass”)) {
return lineArray [1];
}

}

} catch (FileNotFoundException e) {
// TODO Auto—generated catch block
e.printStackTrace () ;

} catch (IOException e) {

// TODO Auto—generated catch block
e.printStackTrace () ;

}

return 77 ;

}

/K KK R KRR K R K K R K K R R K R K K K KR K K R K K K K K R K K K K K K
*

*/
public static String|[] getWikiUserPassFromDisk () {

try {

FileReader fr = new FileReader (” passwords.txt”);
BufferedReader br = new BufferedReader (fr);
String line = null;
String [] lineArray;
while ((line = br.readLine()) != null) {

lineArray = line.split (” 7);

if (lineArray [0].equals (” WikiUserPass”)) {

String [] loginInfo = { lineArray[1], lineArray[2] };

return loginInfo;

}

} catch (FileNotFoundException e) {
// TODO Auto—generated catch block
e.printStackTrace () ;

} catch (IOException e)

// TODO Auto—generated catch block
e.printStackTrace () ;

}

return null;

}

C.6.3 Serializer.java

package statictools ;

import java.io.FileInputStream ;
import java.io.FileNotFoundException ;
import java.io.FileOutputStream;
import java.io.IOException;

import java.io.ObjectlnputStream;
import java.io.ObjectOutputStream ;

import trust.RoR;

/o o ko K o o ko o Kk o o kR ok oKk o ok ko ok o kR o ok ko ok ok kR o o kR R ok Kk o ok kR ok o K kK o o K
%« Serializer is used to read and write the RoR to and from the disk.

x

%« @author s011564

*
*/
public class Serializer {

public static RoR readRoRFromDisk () {

try {
FileInputStream f_in = new FilelnputStream (”static_textfiles/myRoR.dat”);
ObjectInputStream obj_in = new ObjectInputStream (f_in) ;
RoR ror = (RoR) obj_in.readObject () ;
return ror;

} catch (FileNotFoundException e) {
e.printStackTrace () ;

} catch (IOException e) {
e.printStackTrace () ;

} catch (ClassNotFoundException e) {

C.6 Statictools Package

145

}

e.printStackTrace () ;

return null;

i

public static void writeRoRToDisk (RoR r) {
try {

}
}

FileOutputStream f_out

ObjectOutputStream obj_out
t.writeObject (r);

catch (FileNotFoundException e
e.printStackTrace () ;
catch (IOException e)
e.printStackTrace () ;

obj_ou

{

C.6.4 Threshold.java

package
import java.
import java.
import java.
import java.
import java.
import java.
import scone.
import scone.
import scone.
import scone.
import scone.
public class

statictools;

awt . List ;
io . IOException;
util. ArrayList;
util. Arrays;
util.HashSet;

= new FileOutputStream (”static_textfiles/myRoR.dat”);

= new ObjectOutputStream (f_out);

) A

util.Set;
util.tokenstream .HtmlCommentToken ;
util.tokenstream .HtmlTagToken ;
util.tokenstream .HtmlTextToken ;
util.tokenstream . Token ;

util

.tokenstream

Threshold {

. TokenInputStream ;

public static double ThresholdCalculator (String page_title , String
old_version-number) {

St

ring string_url = ”"http://en.wikipedia

"&diff=current&oldid="
+ old_version_number;
TokenInputStream

TokenInputStreamTools

tis =

int total_-words.in_-textarea = 0;
int total-words_-changed = 0;

// Start scanning for changes
Token temp = null;

HtmlTagToken tag = null;
HtmlTextToken text = null;
HtmlCommentToken comment = null;
boolean current._marker = false;

ArrayList<ArrayList> diff_addedline

.org/w/index .php?title=" + page-title +

.CreateTokenInputStreamFromURL (string_url);

= new ArrayList<ArrayList >();

ArrayList<String> currentRevision = new ArrayList<String >();
int i = 0;

int number_of_words = 0;

double threshold = 0.0;

try {

while ((temp =

tis.re

ad ())

1=

null)

{

if (temp instanceof HtmlTagToken) {
tag = (HtmlTagToken) temp;
// Find the table where the cha

if (tag.hasParam(” class”))
if (tag.getTagType()

tag.getParam (” class”)

while

if (temp

((temp

= tis

nges

are

{
HtmlTagToken . T_-TABLE &&

.read ())

tag = (HtmlTagToken) temp;
s a TD with
class="diff —addedline”
(tag.getTagType () ==

//
//
if

If the

// System .

tag 1

Lequals (7 diff”) &&
1= null) {
instanceof HtmlTagToken) {

ltag.isEndTag()) {

HtmlTagToken.T-TD && !tag.isEndTag()) {

if (tag.hasParam(”class”))

if (tag.getParam(”class”)

//
//
//
//
//
//

Found

class="diff —addedline’

the

now work

</td>
Create
tokens

tag
an
at

<td

with

them

until

arrayList of

but

that

in

tags

the

to

the

out.printin (tag.toString ());

.equals (" diff —addedline”)) {

146

Code

// diff-Addedline
ArrayList<Token> changed_-lin
while (true) {

e = new ArrayList<Token>();

{

temp = tis.read();

// Checking if we reached

// the </td> that ends the

// diff added line marker

if (temp instanceof HtmlTagToken)
tag (HtmlTagToken) temp ;

if (tag.getTagType ()
tag.isEndTag()) {

HtmlTagToken.T.TD &&

break;
}

changed_line

}
diff_addedline .

.add (temp) ;

add(changed-_line);

}
}
}
// When the </table> is found, then break
// the loop
if (tag.getTagType() == HtmlTagToken.T_-TABLE && tag.isEndTag()) {
break;
}
}
}
//}
}
}
}
// Cound the words in the rest of the article
// Look for HtmlTextTokens from ”Current revision” to <!—— end
// content ——> marker
if (temp instanceof HtmlTextToken) {
currentRevision .add (((HtmlTextToken) temp).getText ());
}
if (temp instanceof HtmlCommentToken) {
comment = (HtmlCommentToken) temp ;
String test = comment.getComment () ;
/) If <!—— end content ——> is found, then break it all up.
/) We’re done
if (comment.getComment().trim().equals(”end content”)) {
break;
}
}
/7
}
// Count red letter words
int number_of_red_letter_words = 0;
for (ArrayList line diff _addedline) {
number_of-red-letter-words += numberOfRedLetterWords (line) ;
}
// System .out.printlin ("number of red words: "+
// mumber_of_-red_letter_words);
threshold = (double) number_of_red_letter_words / (double)
currentRevision.size () ;
} catch (IOException e)
// TODO Auto—generated catch block
e.printStackTrace () ;
}
// When we meet a diffmarker + then enable scanning , as it marks changes
// to current version (green block)
// when we meet a diffmarker the disable scannning. as we are scanning
// the old wersion (yellow block)
// when finding a diffchange determine if it is amplification , reversal
// or addition
// Add words to total change
// Calculate the precentage changed :
return threshold;
}
private static int numberOfRedLetterWords(ArrayList<Token> list) {
String (] stringoamp = { " [[7, "1]%, "({", "}}", "((", "7, "[", "], {r,),
LN G T I I I
won g,
String [] reversal-words = { ”"not”, ”"n’t”, ”dont”, "don’t”, “esn’t”, “doesnt”,
”doesn’t”, "no”, “without”, "wont”,

C.6

Statictools Package

147

Pwon’'t” , "un” };
Set list_of_amplications = new HashSet(Arrays.asList (string_-amp))
Set list_-.of_-reversals = new HashSet(Arrays.asList(reversal_-words)
boolean found_-reversal = false;
// look for red words:
int num-of_-red_-words =
int num_of_total_-words
Token word = null;
HtmlTagToken tag = null;
HtmlTextToken text = null;
while (!list .isEmpty()) {
word = list .remove (0);
if (word instanceof HtmlTagToken) {
tag = (HtmlTagToken) word;
if (tag.hasParam(” class”)) {
if (tag.getParam (”class”).equals(”diffchange”)) {
while (true) {
word = list .remove(0);
if (word instanceof HtmlTextToken) {
num-of_total_words-++;

03
= 0;

text = (HtmlTextToken) word;

String s_-test = text.getText ();

// Analyse the test

// Ingnore small changes — amplications

if (!list_.of_amplications.contains(s-test)) {
/) count single word changes — additions
num-of_red_words—++;
// System .out.print(s_-test+ 7 7);

if (list_of_-reversals.contains(s_-test.toLowerCase()))
found_reversal = true;

/) find revesal word — reversal — husk smd

/) bogstaver

// If we find a tag, then it must be an ending tag
if (word instanceof HtmlTagToken) {
if (((HtmlTagToken) word).isEndTag())
break;

if (found-reversal) {
num._of_red_words = num_of_total_words;
}

return num_of_red_words;

C.6.5 TokenInputStreamTools.java

package statictools;

import java.io.IlOException;
import java.io.InputStream ;

import java.io.InputStreamReader;

import java.net.MalformedURLException ;
import java.net.URL;
import java.net.URLConnection;

import scone.util.tokenstream.TokenInputStream;
import scone.util.tokenstream.TokenInputStreamTokenizerImpl;

public class TokenInputStreamTools {

)

{

/R R K R K K K K K K KK R R o K R K K K K K K K K K o K K o K K o

*
*
*
*
*

CreateTokenInputStreamFromURL creates a TokenInputStream from an
@param string_url

@return

/

public static TokenInputStream CreateTokenInputStreamFromURL(String

try
// Set the URL
URL url = new URL(string_url);

URL .

string-url) {

148

Code

URLConnection
urlconnection .
// Open wup the
InputStream is

urlconnection
setUseCaches (false) ;

Stream
urlconnection.getInputStream () ;

url.openConnection () ;

InputStreamReader isr = new InputStreamReader (is);
// Create the input stream
TokenInputStream tis = new TokenInputStreamTokenizerImpl(isr);
return tis;
} catch (MalformedURLException e) {
e.printStackTrace () ;
} catch (IOException e) {
e.printStackTrace () ;
return null;
}
}
ey s o
C.6.6 Wiki.java
package statictools;
ok
x @(#) Wiki.java 0.038 10/06/2007
« Copyright (C) 2007 MER—C
*
* This program is free software; you can redistribute it and/or
* modify it wunder the terms of the GNU General Public License
* as published by the Free Software Foundation; either wversion 2
* of the License , or (at your option) any later wersion .
*
« This program is distributed in the hope that it will be wuseful ,
%« but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation , Inc., 51 Franklin Street , Fifth Floor , Boston, MA 02110—1301,
*/
import java.io.x;
import java.util.s;
import java.net.s;
e
* This is somewhat of a sketchy bot framework for editing MediaWiki wikis .
*
* @author MER-C
* @uersion 0.03
*/
public class Wiki {
VAE]
« Denotes the namespace of images and media, such that there is no
x description page. Uses the ”Media:” prefiz.
*
* @see IMAGE_NAMESPACE
* @since 0.03
*/
public static final int MEDIANAMESPACE = —2;
VAR
#* Denotes the mnamespace of pages with the ”Special:” prefiz. Note that many
x methods dealing with special pages may spew due to raw content not being
* available .
*
* @since 0.03
*/
public static final int SPECIAL.NAMESPACE = —1;
Jxx
* Denotes the main namespace , with no prefiz.
*
* @since 0.03
*/
public static final int MAIN.NAMESPACE = 0;
e
* Denotes the namespace for talk pages relating to the main namespace,
* denoted by the prefiz 7 Talk:”.
*
* @since 0.083

*/

USA .

C.6 Statictools Package

149

public static final int TALKNAMESPACE = 1;

Jx %
* Denotes the namespace for wuser pages , given the prefiz "User:”.
*
* @since 0.03
*/
public static final int USER.NAMESPACE = 2;
e
%« Denotes the mnamespace for wuser talk pages, given the prefiz ”User talk :”.
*
* @since 0.03
*/
public static final int USER-TALK.NAMESPACE = 3;
VEES
* Denotes the namespace for pages relating to the project , with prefiz
% "Project:”. It also goes by the name of whatever the project mname was.
*
* @since 0.03
*/
public static final int PROJECTNAMESPACE = 4;
Jx %
* Denotes the namespace for talk pages relating to project pages , with prefiz
* "Project talk:”. It also goes by the mname of whatever the project name was,
* Ttalk 7.
*
* @since 0.03
*/
public static final int PROJECT.TALK.NAMESPACE = 5;
Jx %
* Denotes the mnamespace for image description pages. Has the prefiz 7Image:”
* Do not create these directly , use wupload () instead.
*
* @see MEDIA_NAMESPACE
* @since 0.03
*/
public static final int IMAGENAMESPACE = 6;
Jx*
* Denotes talk pages for image description pages. Has the prefiz 7"Image
* talk :7.
*
* @since 0.03
*/
public static final int IMAGE.TALK.NAMESPACE = 7;
Jx
* Denotes the mnamespace for (wiki) system messages , given the prefiz
* " MediaWiki : 7.
*
* @since 0.03
*/
public static final int MEDIAWIKI.NAMESPACE = 8;
/
Denotes the mnamespace for talk pages relating to system messages , given the

*
*
* prefiz "MediaWiki talk :7.
*
*

@since 0.08

*/

public static final int MEDIAWIKI.TALK NAMESPACE = 9;

Jx %

* Denotes the namespace for templates , given the prefiz " Template :”
*

* @since 0.03

*/

public static final int TEMPLATENAMESPACE = 10;

/

Denotes the mamespace for talk pages regarding templates , given the prefiz
,

-
s
%« "Template talk :
*
*

@since 0.03
*/
public static final int TEMPLATE.TALK.NAMESPACE = 11;

Jxox
%« Denotes the namespace for help pages, given the prefiz "Help:”.
*

% @since 0.03

*/

public static final int HELP.NAMESPACE = 12;

+

150

Code

/*
* Denotes the namespace for talk pages regarding help pages, given the prefiz
* "Help talk :”.
*
* @since 0.083
*
public static final int HELP.TALK.NAMESPACE = 13;
Jx
x Denotes the mamespace for category description pages. Has the prefiz
* 7 Category :”.
*
* @since 0.03
*/
public static final int CATEGORYNAMESPACE = 14;
VAR
%« Denotes the for talk pages regarding categories. Has the prefiz
%« "Category talk :
*
* @since 0.03
*/
public static final int CATEGORY-TALK.NAMESPACE = 15;
Jxx
* Denotes all mnamespaces .
*
* @since 0.03
*
public static final int ALLNAMESPACES = 0x09f91102;
// the domain of the wiki
private String domain;
private String query;
// something to handle cookies
private Map cookies = new HashMap (10) ;
// internal data storage
private Map namespaces = null;
/o
* Creates a mew connection to the English Wikipedia .
*
* @since 0.02
*/
public Wiki() {
this (77);
/3
* Creates a mew connection to a wiki.
*
* @param domain
* the wiki domain mname e.g. en.wikipedia.org (defaults to
* en. wikipedia.org)
*/
public Wiki(String domain) {
if (domain == null || domain == "7)
domain = "en.wikipedia.org” ;
this.domain = "http://” + domain + ”/w/index.php”;
query = "http://” + domain + ”/w/query.php”;
}
Jxx
* Logs in to the wiki
*
* @param wusername
* a username
* @param password
* o password (as a char[] due to JPasswordField)
* @return whether the login succeeded
%« @throws IOEzception
* if something goes wrong
*/
public boolean login(String username, char[] password) throws IOException {

// sanitize
String ps
username

ps URLEncoder .

// 7enable” cookies

String URL = domain +
URLConnection connection
grabCookies (connection) ;

new String (password) ;
URLEncoder . encode (username ,

encode (ps, "UTF—8");

new URL(URL)

»UTF-8") ;

"?title=Special: Userlogin”;

.openConnection () ;

C.6 Statictools Package

151

/) find the
URL = domain +
connection new URL(URL) .openConnection () ;
setCookies (connection);
connection.setDoOutput (true) ;

target

PrintWriter out = new PrintWriter (connection .

// mow we send the data

out.print (”wpName=") ;

out.print (username) ;

out.print ("&wpPassword=") ;

out.print (ps);

out.print ("&wpRemember=1&wpLoginattempt=Log+in”) ;
out.close () ;

// make it stick by grabbing the cookie

grabCookies(connection) ;
BufferedReader in null;
try {
in
} catch (IOException e)
if (!(connection instanceof HttpURLConnection))
throw e;
InputStream err
if (err == null)
throw e;
new BufferedReader (new

((HttpURLConnection)

in =

InputStreamReader (err));

in.readLine () ;
/) test for success
String line
while ((line = in.readLine()) != null)
if (line.indexOf(”Login successful”) != —1)
return true;
return false;
}
Ve
* Logs out of the wiki.
*/
public void logout () {
cookies.clear () ;
¥
J**
* Gets the raw wikicode for a page. WARNING: does mnot support special pages.
*
* @param title
* the title of the page.
% @throws IOEzception
* if something stuffs up the comnmection between here and wiki
% @return the raw wikicode of a page
% @throws IllegalArgumentEzception
* if you try to retrieve the tezt of a Special: page or a Media:
* page
*/
public String getPageText(String title) throws IOException {
// pitfall check
if (namespace(title) < 0)
throw new IllegalArgumentException (”Cannot retrieve Special: or Media:
pages!”);
// sanitise the title
title = URLEncoder.encode(title , "UTF—-8");
// go for it
String URL = domain 4+ 7??7title=" 4+ title + "&action=raw”;
URLConnection connection = new URL(URL).openConnection () ;
connection.connect () ;
BufferedReader in = new BufferedReader (new

InputStreamReader (connection .

getInputStream ()));

// get the temxt
String line
StringBuffer text = new StringBuffer ();
while ((line = in.readLine()) != null)
text .append(line);
return text.toString () ;
}
/o
* Edits a page by setting its text to the s
*
% @param text
* the texzt of the page

upplied value .

getOutputStream ()) ;

"?7title=Special: Userlogin&action=submitlogin&type=login”;

connection) .getInputStream () ;

new BufferedReader (new InputStreamReader(connection.getInputStream ()));

152 Code

* @param title
* the title of the page
* @param summary
* the edit summary
* @param minor
* whether the edit should be marked as minor
* @throws IOEzception
* if something stuffs up the commection between here and wiki
x @throws IllegalArgumentEzception
* if you try to edit a Special: page or a Media: page
*
/

public void editPage(String title, String text, String summary, boolean minor)
throws IOException {

// pitfall check
if (namespace(title) < 0)
throw new IllegalArgumentException (”Cannot edit Special: or Media: pages!”);

// sanitise

title = URLEncoder.encode(title , "UTF-8") ;
summary = URLEncoder.encode (summary, "UTF—-87);
text = URLEncoder.encode (text , "UTF-8");

// what we need to do is get the edit page and fish out the wpEditToken ,

// wpAutoSummary

// wpStartTime and wpEditTime wvalues

String URL = domain + 77title=" 4+ title 4+ "&action=edit”;

URLConnection connection = new URL(URL).openConnection () ;

setCookies (connection) ;

connection.connect () ;

grabCookies (connection) ;

BufferedReader in = new BufferedReader (new
InputStreamReader (connection .getInputStream ()));

// more specifically , we’'re looking for "name="wpEditToken””,

// 7mame="wpAutoSummary””

String line , wpEditToken = ””, wpAutoSummary = ””, wpStarttime = ””, wpEdittime
» .
boolean editRetrieved = false, summaryRetrieved = false, startRetrieved = false,
timeRetrieved = false, watchRetrieved = false;
boolean watched = false;
while ((line = in.readLine()) != null) {
if (line.indexOf(”name=\"wpAutoSummary\””) != —1) {
int x = line.indexOf(” value=\"") + 7;
wpAutoSummary = line.substring (x, line.indexOf(’\” ', x));
summaryRetrieved = true;
} else if (line.indexOf(”name=\"wpEditToken\”") != —1) {
int x = line.indexOf(” value=\"") + 7;
wpEditToken = line.substring(x, line.indexOf(’\”’, x));
editRetrieved = true;
} else if (line.indexOf(”name=\"wpEdittime\””) != —1) {
int x = line.indexOf(” value=\"") + 7;
wpEdittime = line.substring (x, line.indexOf(’'\”’, x));
timeRetrieved = true;
} else if (line.indexOf(”name=\"wpStarttime\””) != —1) {
int x = line.indexOf(”value=\"") + 7;
wpStarttime = line.substring(x, line.indexOf(’'\”’, x));
startRetrieved = true;
} else if (line.indexOf(”name=\"wpWatchthis\””) != —1) {
watched = (line.indexOf(”checked=\"") != —1);
watchRetrieved = true;

} else if (editRetrieved && summaryRetrieved && startRetrieved &&
timeRetrieved && watchRetrieved)
break; // bandwidth hack

}

// this is what accepts the tewt

URL = domain 4+ "7title=" 4 title 4+ “&action=submit”;
connection = new URL(URL).openConnection () ;

setCookies (connection) ;
connection.setDoOutput (true);
PrintWriter out = new PrintWriter (connection.getOutputStream ());

// mow we send the data

out.print ("wpTextboxl="); // ok
out.print (text);
out.print ("&wpSummary="); // ok
out.print (summary) ;
if (minor)

out.print (?"&wpMinoredit=1"); // ok
if (watched)

out.print ("&wpWatchthis=1"); // ok
out.print ("&wpEdittime="); // ok
out.print (wpEdittime) ;
out.print ("&wpBEditToken i // OK
out.print (wpEditToken) ;
out.print ("&wpStarttime="); // ok

C.6 Statictools Package

153

out.print (wpStarttime)
out.print (?&wpAutoSummary=") ;
out.print (wpAutoSummary) ;

// additions by thomas
out.print ("&wpSection=");
out.print (”7);

out.print ("&wpScrolltop=") ;
out.print (77);

// OK

// done, give the servers a rest
out.close () ;
try {

Thread.sleep (2000) ;

// it ’s somewhat strange that the edit only sticks when you
// reading the

// response ...

in = new BufferedReader (new InputStreamReader(connection .

} catch (IOException e)
if (!(connection instanceof HttpURLConnection))

throw e;

start

InputStream err = ((HttpURLConnection) connection).getInputStream () ;

if (err == null)
throw e;

in = new BufferedReader (new InputStreamReader(err));

} catch (InterruptedException e)
// mobody cares

in.readLine () ;

// for debugging and/or todo purposes
// String lin
// while ((line = in.readLine()) != null)
/7 A
// System .out.printin (line);
//
}
/%
* Prepends something to the given page. A convenience
* maintainance templates , rather than
% BEdit summary is automatic , being "+whatever .
*
% @param title
* the title of the page
* @param stuff
® what to prepend to the page
* @param minor
* whether the edit is minor (a prod compared
* @throws IOEzception
* if something goes wrong
*/

public void prepend(String title , String stuff ,
{

StringBuffer text — mew StringBuffer () ;

text .append(stuff);

text .append (getPageText (title));

editPage (title , text.toString (), 747 4+ stuff, minor);
+
/%
%« Gets the members of a category.
*
« @param name
* the name of the category (e.g. Candidates
* Category: Candidates for speedy deletion)
x« @return a String [] containing page titles of members
* @throws IOEzception
* if something goes wrong
* @since 0.02
*/

public String []
return getCategoryMembers (name, ALL.NAMESPACES) ;

}

/o

*« Gets the members of a category.

*

* @param mname

* the name of the category (e.g. Candidates
* Category: Candidates for speedy deletion)
* @param mnamespace

* filters by mamespace, returns

%« @return a String [] containing page titles of members
% @throws IOEzception

* if something goes wrong

* @since 0.03

*/

for

method for

getting and setting the page

to a simple

for speedy

of the

empty if mnamespace does

of the

adding

tag)

deletion ,

category

getCategoryMembers (String name) throws IOException {

speedy deletion ,

not exist
category

yourself.

getInputStream ()));

boolean minor) throws IOException

154

Code

public String|[] getCategoryMembers(String name, int namespace) throws IOException

N

IR

*
*

String url;

if (namespace == ALL.NAMESPACES)
url = query 4+ ”?what=category&format=xml&cptitle=" + URLEncoder.encode (name,
"UTF-8") ;
else
url = query 4 ”?what=category&format=xml&cptitle=" + URLEncoder.encode (name,

"UTF—8”) + ”"&cpnamespace="

+ namespace;
URLConnection connection = new URL(url).openConnection () ;
connection.connect () ;

// read the first line , as it is the only thing worth paying

attention

BufferedReader in = new BufferedReader (new
InputStreamReader (connection.getIlnputStream ()));

String line = in.readLine();
// parse
ArrayList<String> members = new ArrayList<String >(10000); // enough
// for most
// cats
while (line.indexOf("<title>") != —1) {

int x = line.indexOf("<title>");

int y = line.indexOf("</title”);

members.add (line .substring(x + 7, y));

line = line.substring (y 4+ 8, line.length());
return members.toArray (new String [0]) ;
*

Returns the namespace the page is in. Uses /w/query.php?what=namespaces to

fetch list of mamespaces.

@since 0.083
@return one of mnamespace types above, or a number for custom
ALL.NAMESPACES if we can’'t make sense of it
@throws IOEzception
if something goes wrong
/

public int namespace(String title) throws IOException {

// sanitise
title = title.replace(’'~", ' ’');

if (title.indexOf(’:’) == —1)
return MAIN.NAMESPACE;
String namespace = title.substring (0, title.indexOf(’:’));

// all wiki namespace test

if (namespace.equals(” Project talk”))
return PROJECT_TALK.NAMESPACE;

if (namespace.equals(” Project”))
return PROJECT_NAMESPACE;

if (namespaces == null) {
URLConnection connection = new URL(query +
”?what=namespaces&format=xml”).openConnection () ;
connection.connect () ;

namespaces or

// read the first line , as it is the only thing worth paying

// attention to

BufferedReader in = new BufferedReader (new
InputStreamReader (connection . getInputStream ())) ;
String line = in.readLine();
namespaces = new HashMap (20) ;
while (line.indexOf(”’<ns”) != —1) {
int x = line.indexOf(”"<ns id=");
if (line.charAt(x + 8) == '0°)
line = line.substring (13, line.length());
continue;
}
int y = line.indexOf(”</ns>");
String working = line.substring(x + 8, y);
int ns = Integer.parselnt(working.substring (0, working.indexOf(’”’)));
String name = working.substring (working.indexOf(”>”) 4+ 1, working.length ());
namespaces.put(name, new Integer(ns));
line = line.substring(y + 5, line.length());
}

}

if (!namespaces.containsKey (namespace))

return MAIN.NAMESPACE; // For titles like UN:NRV
Iterator i = namespaces.entrySet().iterator ();
while (i.hasNext()) {

Map. Entry entry = (Map.Entry) i.next();

C.7 Trust Package

155

}
return ALL.NAMESPACES;

if (entry.getKey ()
return ((Integer)

.equals (namespace))

entry .getValue()).intValue () ;

// unintelligble title
e
* Grabs cookies from the URL connection provided .
*

% @param u

*/

private void grabCookies (URLConnection

// reset the cookie store

cookies.clear () ;

String headerName = null;

for (int i = 1; (headerName = u.getHeaderFieldKey (i))

if (headerName.equals(”Set—Cookie”)) {

String cookie = u.getHeaderField (i) ;
cookie = cookie.substring (0, cookie.indexOf(”;”));
String name cookie.substring (0, cookie.indexOf(”="
String value = cookie.substring (cookie.indexOf(”=")

/o
]

*

an wunconnec

cookies .put(name,

ets cookies to an

« @param u

*

*/

private void
Iterator i
StringBuffer

an unconnected

cookies .
cookie

while (i.hasNext()) {

setCookies (URLConnection

ted URLConnection

value) ;

URLConnection

u)

new StringBuffer ();

Map. Entry entry = (Map.Entry) i.next();
cookie.append (entry .getKey ());
cookie.append ("=");
cookie .append (entry.getValue ());
cookie .append (”;) ;

}

u.setRequestProperty (” Cookie” , cookie .

C.7

Trust Package

C.7.1 Reviewer.java

package trust;

import
import
import
import
import

public

.Certificate ;

java.security .cert
java.io. Serializable;
rating . Rating ;

rating . RatingHistory ;
statictools.SecurityProvider ;

class Reviewer

implements

Serializable

private static final long serialVersionUID
// The two states that the Curve can be in.
public enum Curve

OPT, CAU
}
// The two states a reviewer can be in: Tru

public enum State {
TRUST, DISTRUST

// Measuring
private

private

the number
int noOfPoslInter

int noOfNeglnter

of positive
actions ;

and

actions ;

st

negative

u) {

unconnected URLConnection .

entrySet () .iterator ();

toString ());

{

Optimistic or

and Distrust

=

null;

"))

+ 1, cookie

—6356205467037013515L;

Cautious

interactions

i++) {

Jlength ());

156

Code

// Measuring the number of posetime and negative ecxzperiences

// Variables
private String username;

private double xValue;
private double nValue;
private double trustValue;
private Curve curve;
private State state;

// Previous ratings
private RatingHistory rh;

// Cachec certificate
private Certificate cachedCertificate ;

e

* Constructor to generate an initial Reviewer with no prior history

*
* @param wvalue

* @param value?2

*/

public Reviewer () {
noOfPosInteractions = 0;
noOfNeglnteractions =
curve = Curve.OPT;
state = State.TRUST;
xValue 0.0;
nValue = 1.0;
trustValue = 0.0;
rh = new RatingHistory () ;

username = 77 ;

o

}

/o R R o o o o ok ok ok o o o o o K o K K K R R R R o o o o o o K K o K

%« Reviewer constructor ONLY for testing purposes!

*
*/
public Reviewer (double trustValue, String username) {
this.trustValue = trustValue;
this.username = username;
rh = new RatingHistory () ;
noOfPosInteractions = 2;
noOfNeglnteractions = 1;
curve = Curve.OPT;
state = State.TRUST;
xValue 0.0;
nValue 0.0;

}
/e

* Inserts a rating into the history
*
* @param T
*/
public void insertRating (Rating r) {
rh.insertRating (r);
xValue rh.getXValue () ;

// update State wvalue
if (xValue >= 0.0)

state = State.TRUST;
if (xValue < 0.0)

state = State.DISTRUST;
// If it is a positive exp
if (r.getExperience() == 1) {

positiveExp () ;

// If it is a negative exp
if (r.getExperience() == 0) {
negativeExp () ;

// Update the trust wvalue
calcTrustValue () ;

}

// represents the consequences of a positive experience — positive
private Object positiveExp () {

noOfPosInteractions++;

// User in trust and an optimistic curve

if (curve == Curve.OPT && state == State.TRUST) {

feedback

C.7 Trust Package 157

nValue = nValue + 0.1;
return null;

// wser in trust and a cautious curve

if (curve == Curve.CAU && state == State.TRUST) {
nValue = nValue — 0.1;
// If the curve changes from Cautious to mneutral
if (nValue == 1.0 && noOfPosInteractions == noOfNeglInteractions) {
curve = Curve.OPT;
return null;
}
// wuser in distrust and a optimistic curve
if (curve == Curve.OPT && state == State.DISTRUST) {
nValue = nValue + 0.1;
return null;
}
// wuser in distrust and a cautious curve
if (curve == Curve.CAU && state == State.DISTRUST) {
nValue = nValue — 0.1;
// If the curve changes from cautoius to neutral.
if (nValue == 1.0 && noOfPosInteractions == noOfNeglnteractions) {
curve = Curve.OPT;

return null;

return null;

}

private void negativeExp () {
noOfNeglnteractions-++;
// user in trust and a cautious curve

if (curve == Curve.CAU && state == State.TRUST) {
nValue nValue + 0.1;
}
// wser in distrust and a cautious curve
if (curve == Curve.CAU && state == State.DISTRUST) {
nValue = nValue + 0.1:
}
// uwser in distrust and a optimistic curve
if (curve == Curve.OPT && state == State.DISTRUST) {
nValue nValue — 0.1;
if (nValue == 1.0 && noOfPosInteractions == noOfNeglnteractions) {
// nValue = nValue +0.1;
curve = Curve.CAU;
}
// User in trust and an optimistic curve
if (curve == Curve.OPT && state == State.TRUST) {
nValue = nValue — 0.1;
if (nValue == 1.0 && noOfPosInteractions == noOfNeglnteractions) {
// nValue nValue +0.1;

curve = Curve.CAU;

i

// Calculates the actual trust value
private void calcTrustValue () {
// trust + opt. F4
if (curve == Curve.OPT && state == State.TRUST) {
trustValue = Math.pow((—1.0 % Math.abs(Math.pow(Math.abs(xValue — 1.0),
nValue)) 4+ 1.0), (1.0 / nValue));

}
// trust + cau. F2

if (curve == Curve.CAU && state == State.TRUST) {
trustValue = —1.0 * Math.pow(—1.0 % Math.abs(Math.pow(xValue, nValue)) + 1.0,
(1.0 / nValue)) + 1.0;
}
// distrust + opt. F1
if (curve == Curve.OPT && state == State.DISTRUST) {
trustValue = Math.pow(—1.0 % Math.abs(Math.pow(Math.abs(xValue), nValue)) +
1.0, (1.0 / nValue)) — 1.0;
}
// distrust + cau. F3
if (curve == Curve.CAU && state == State.DISTRUST) {
trustValue = —1.0 %= Math.pow((—1.0 % Math.abs(Math.pow(Math.abs(xValue + 1.0) ,

nValue)) + 1.0), (1.0 / nValue));

}

// Returns the trustValue
public double getTrustValue () {
return trustValue;

158

Code

}

// returns the username
public String getUsername () {
return username;

// Sets the wusername

public void setUsername(String username) {
this.username = username ;

}

// Downloads the certificate from the web
public void getUpdatedCertificate () {

}

// Returns the cached certificate
public Certificate getCertificate () {
return cachedCertificate ;

this.cachedCertificate = SecurityProvider.getUserCertificate (username);

C.7.2 RoR.java

package trust;

import java.io.Serializable;
import java.security.cert.Certificate;
import java.util.HashMap;

import java.util.Iterator ;

import rating.Rating;

public class RoR implements Serializable {

private static final long serialVersionUID = —7149681994584389094L;

// ArrayList<Reviewer> ror;
HashMap<String , Reviewer> ror;

/o
« Constructor to initialization of Ring of Reviewers
*

*/
public RoR()
ror = new HashMap<String , Reviewer >();

// Inserts a new reviewer in to the RoR
public void insertReviewer (Reviewer rv) {
ror.put(rv.getUsername (), rv);

public void insertRatingToExistingUser (Rating r) {
for (Iterator i = ror.keySet().iterator (); i.hasNext();) {
// Finding the username in the ror that matches the rating
if (((String) i.next()).equals(r.getUserName())) {
// Insert the rating
ror.get(r.getUserName()).insertRating(r);

}
}

// Return the trustvalue for a given wuser

public double getTrustValueFromUsername (String username) {
double trustValue = ror.get(username).getTrustValue();
return trustValue;

// Update certificates from theweb .
public void updateCertificates () {
for (Iterator i = ror.values().iterator(); i.hasNext();) {
((Reviewer) i.next()).getUpdatedCertificate () ;

}

// get a certificate from the cache
public Certificate getCertificateFromUsername (String username)
return ror.get (username).getCertificate () ;

C.7 Trust Package

159

boolean hasUser(String username) {
return ror.containsKey (username) ;

C.7.3 TrustUpdater.java

package trust ;
import java.util.ArrayList;

import rating.Rating;
import rating.SessionRatingDB;

public class TrustUpdater {
public enum Exp {
YES, NO
}i
public enum Vote {
R1, R2, R3, R4, R5, R6, R7, R8, RO
}i
private Exp exp;
private Vote vote;
SessionRatingDB srDB;
RoR ror;
double ratingServed;
ArrayList<Rating> ratingsToBelnserted;

boolean clickedExp ;

boolean clickedInteraction ;

public TrustUpdater (SessionRatingDB sessionRatingDB , double ratingServed , RoR

ror)
stDB = sessionRatingDB ;
this.ratingServed = ratingServed;
this.ror = ror;
ratingsToBelnserted = new ArrayList<Rating >();
clickedExp = false;
clickedInteraction = false;
}
public void ClickedYes () {
/%
%« //Look through sessionRatingDB and se which ratings +1 to —1 of the
%« rating. //These should have their nValue adjusted Rating temp; for (int
* =0;i<srDB.size ();i++){ temp = srDB.elementAt(i); int floored_.rating
« =(int) Math. floor (ratingServed); // If the given rating is with in the
* +—1 threshold if (floored-rating —1 == temp.getRating () || floored-rating
* temp.getRating () || floored-rating+1 == temp.getRating ()) {
* temp.setExperience (1); //Insert the rating into the temp rating Array for
% further refinement ratingsToBelnserted.add(temp); } }
*
/
exp = Exp.YES;
clickedExp = true;
if (clickedExp && clickedInteraction) {
updateAndInsertRatingsToROR () ;
}
¥

public void ClickedNo () {
exp = Exp.NO;
clickedExp = true;
if (clickedExp && clickedInteraction) {
updateAndInsertRatingsToROR () ;

}

}

public void ClickedR1 () {
vote = Vote.Rl;
clickedInteraction = true;

if (clickedExp && clickedInteraction) {
updateAndInsertRatingsToROR () ;

160

Code

¥

public void ClickedR2 () {

}

vote = Vote.R2;
clickedInteraction = true;
if (clickedExp && clickedInteraction) {

updateAndInsertRatingsToROR () ;

public void ClickedR3 () {

}

vote = Vote.R3;
clickedInteraction = true;
if (clickedExp && clickedInteraction) {

updateAndInsertRatingsToROR () ;

public void ClickedR4 () {

}

vote = Vote.R4;
clickedInteraction = true;
if (clickedExp && clickedInteraction) {

updateAndInsertRatingsToROR () ;

public void ClickedR5() {

}

vote = Vote.R5;
clickedInteraction = true:
if (clickedExp && clickedInteraction) {

updateAndInsertRatingsToROR () ;

public void ClickedR6 () {

}

vote = Vote.R6;
clickedInteraction = true;
if (clickedExp && clickedInteraction) {

updateAndInsertRatingsToROR () ;

public void ClickedR7 () {

}

vote = Vote.RT7;
clickedInteraction = true;
if (clickedExp && clickedInteraction) {

updateAndInsertRatingsToROR () ;

public void ClickedR8 () {

}

vote = Vote.R8;
clickedInteraction = true;
if (clickedExp && clickedInteraction) {

updateAndInsertRatingsToROR () ;

public void ClickedR9 () {

¥

vote = Vote.R9;
clickedInteraction = true:
if (clickedExp && clickedInteraction)

updateAndInsertRatingsToROR () ;

private void updateAndInsertRatingsToROR () {

Rating temp;

// Dealing with the eazpirence

if (floored_rating — 1 == temp.getRating ()

temp. getRating ()

|| floored-rating + 1
if (exp == BExp.YES) {

srDB.elementAt(i).setExperience (1) ;

}
if (exp == Exp.NO) {
srDB . elementAt (i) .setExperience (0);
}
}

// Dealing with the interactions RI
if (vote == Vote.Rl && (temp.getRating ()

1

int floored-rating = (int) Math. floor (ratingServed);
for (imt i = 0; i < srDB.size(); i++) {
temp = srDB.elementAt (i) ;

floored_rating ==

temp . getRating ()) {

temp . getRating ()

= 2)) {

C.7 Trust Package

161

stDB. elementAt(i).setinteraction (1);

}
if (vote == Vote.Rl && (temp.getRating ()
stDB.elementAt(i).setinteraction (2);

if (vote == Vote.Rl && (temp.getRating ()
srDB.elementAt(i).setinteraction (0);
}

// Dealing

with the interactions R2
if (vote Vote.R2 && (temp.getRating ()
temp. getRating () 3)) |
stDB.elementAt(i).setinteraction (1);

}
if (vote == Vote.R2 && (temp.getRating ()
stDB.elementAt(i).setinteraction (2);

if (vote Vote.R2 && (temp.getRating ()
stDB.elementAt (i).setinteraction (0);
}

// Dealing with the interactions R3
if (vote == Vote.R3 && (temp.getRating ()
temp . getRating () == 4))

stDB.elementAt(i).setinteraction (1);

if (vote Vote.R3 && (temp.getRating ()
temp . getRating () 6))
stDB.elementAt (i).setinteraction (2);

if (vote == Vote.R3 && (temp.getRating ()
stDB.elementAt (i).setinteraction (0);

}

// Dealing with the interactions R4

if (vote == Vote.R4 && (temp.getRating ()

temp.getRating () == 5)) {
stDB.elementAt (i).setinteraction (1);
if (vote == Vote.R4
&& (temp.getRating () == 1 ||
6 || temp.getRating () 7))
srtDB . elementAt (i) .setinteraction (2);

if (vote == Vote.R4 && (temp.getRating ()
stDB.elementAt (i).setinteraction (0);
}

// Dealing with the interactions RS
if (vote Vote.R5 && (temp.getRating ()
temp.getRating () == 6))
srDB . elementAt (i).setinteraction (1);

if (vote Vote.R5
&& (temp.getRating ()

= 2 ||

7 || temp.getRating () == 8)) {

stDB.elementAt(i).setinteraction (2);

}

if (vote == Vote.R5 && (temp.getRating ()
stDB.elementAt(i).setinteraction (0);

}

// Dealing with the interactions R6

if (vote Vote.R6 && (temp.getRating ()

temp.getRating () == 7))

stDB.elementAt(i).setinteraction (1);

if (vote == Vote.R6

&& (temp.getRating () == 4 ||
9 || temp.getRating () 8))
stDB.elementAt (i).setinteraction (2);

if (vote Vote.R6 && (temp.getRating ()
stDB. elementAt(i).setinteraction (0);

}
// Dealing with the interactions R7
if (vote == Vote.R7 && (temp.getRating ()
temp . getRating () == 8))
stDB.elementAt (i).setinteraction (1);
}
if (vote == Vote.R7 && (temp.getRating ()
temp.getRating () == 9))
srDB . elementAt (i).setinteraction (2);
if (vote == Vote.R7 && (temp.getRating ()

stDB. elementAt(i).setinteraction (0);

temp . getRating ()

temp . getRating ()

temp.getRating ()

> 2 && temp.getRating () < 5)) {

>= 5)) {

== 1 || temp.getRating() == 2 ||

> 3 && temp.getRating () < 6)) {

>= 6)) {
== 2 || temp.getRating() == 3 ||
== 1 || temp.getRating() == 5 ||
>= 7)) {
== 3 || temp.getRating() == 4 ||

== 2 || temp.getRating ()

>= 8)) {

== 4 || temp.getRating() == 5 ||

== 3 || temp.getRating () ==

== 1 || temp.getRating() == 9)) {

5 || temp.getRating ()

== 3 || temp.getRating () ==

== 2 || temp.getRating() == 1)) {
== 6 || temp.getRating() == 7 ||
== 4 || temp.getRating() == 5 ||
<= 3)) {

162 Code

}

// Dealing with the interactions RS

if (vote == Vote.R8 && (temp.getRating () 7 || temp.getRating() 8 ||

temp . getRating () == 9)) {

srDB.elementAt(i).setinteraction (1);

if (vote == Vote.R8 && (temp.getRating() == 5 || temp.getRating() == 6)) {
srDB . elementAt (i).setinteraction (2) ;

}

if (vote == Vote.R8 && (temp.getRating() <= 4)) {
srDB.elementAt(i).setinteraction (0) ;

}

// Dealing with the interactions R9

if (vote == Vote.R9 && (temp.getRating() == 8 || temp.getRating() == 9)) {
srDB.elementAt(i).setinteraction (1) ;

}

if (vote == Vote.R9 && (temp.getRating () 7 || temp.getRating () 6)) {

srDB.elementAt(i).setinteraction (2);

if (vote == Vote.R9 && (temp.getRating () <= 5)) {
srDB.elementAt(i).setinteraction (0) ;
}

}
// Insert the wupdated ratings into the ror

for (int j = 0; j < srDB.size(); j++) {
// if the wuser already ewxista in the RoR
if (ror.hasUser(srDB.eclementAt(j).getUserName()))
ror.insertRatingToExistingUser (stDB.elementAt (j

H

{
))
}

// If the person is a new entity to the RoR

else {
Reviewer newReviewer = new Reviewer () ;
newReviewer .setUsername (srDB.elementAt(j).getUserName());
ror.insertReviewer (newReviewer) ;
ror.insertRatingToExistingUser (stDB.elementAt (j));

C.8 Test Package

C.8.1 MasterAllTests.java

package test;

import junit.framework. Test;

import junit.framework. TestSuite;

import test.page.ExtractRatingsTest ;

import test.page.PageExtractorTest ;

import test.page.PageModifierTest;

import test.rating.RatingCalculatorTest ;
import test.rating.RatingHistoryTest ;
import test.rating.RatingTest;

import test.rating.SessionRatingDBTest;
import test.statictools.RatingCleanOutTest;
import test.statictools.SecurityProviderTest;
import test.statictools.SerializerTest ;
import test.statictools.ThresholdTest;
import test.trust.ReviewerTest ;

import test.trust.RoRTest;

import test.trust.TrustUpdaterTest ;

public class MasterAllTests {

public static Test suite () {
TestSuite suite = new TestSuite(” Test for test”);
suite.addTestSuite (PageModifierTest.class);
suite.addTestSuite (PageExtractorTest.class);
suite.addTestSuite(ExtractRatingsTest.class);

C.9 Test.Page package 163

suite.addTestSuite (RatingTest.class);
suite.addTestSuite (RatingHistoryTest.class);
suite.addTestSuite (SessionRatingDBTest.class);
suite.addTestSuite (RatingCalculatorTest.class);

suite.addTestSuite (SerializerTest .class) ;
suite.addTestSuite (RatingCleanOutTest.class) ;
suite.addTestSuite (SecurityProviderTest .class) ;
suite.addTestSuite (ThresholdTest.class) ;

suite.addTestSuite (ReviewerTest.class) ;
suite.addTestSuite (RoRTest.class) ;
suite.addTestSuite (TrustUpdaterTest.class);
return suite;

C.9 Test.Page package

C.9.1 ExtractRatingsTest.java

package test.page;

import java.io.IOException
import java.io.InputStream ;
import java.io.InputStreamReader ;
import java.net.MalformedURLException;
import java.net.URL;

import java.net.URLConnection;

import java.util.Vector;

import junit.framework. TestCase;
import org.junit.Test;

import page.ExtractRatings
import scone.util.tokenstream.HtmlTokenizer;

import scone.util.tokenstream.TokenInputStream;

import scone.util.tokenstream.TokenInputStreamTokenizerImpl;
import statictools. Serializer;

import trust.RoR;

public class ExtractRatingsTest extends TestCase {

@Test
public void testExtractRatings () {

try {
String editUrl =
"http://en.wikipedia.org/w/index.php?title=Bass_Strait&action=edit”;

URL url = new

URL(” http://en.wikipedia.org/w/index .php? title=KGYM&action=edit”) ;
URLConnection urlconnection = url.openConnection () ;
urlconnection.setUseCaches (false) ;
InputStream is = urlconnection.getInputStream () ;
InputStreamReader isr = new InputStreamReader (is);
HtmlTokenizer htmlTokenizer = new HtmlTokenizer () ;
htmlTokenizer.assign (isr);
TokenInputStream tis = new TokenInputStreamTokenizerImpl(isr);

RoR ror = Serializer .readRoRFromDisk () ;
ExtractRatings exr = nmew ExtractRatings(editUrl, ror);
Vector test = exr.getRawRatings();

exr.getRawRatings () ;
assertTrue (true) ;
// Token test = htmlTokenizer.neztToken ();
) System .out.printin ();

} catch (MalformedURLException e) {
// TODO Auto—generated catch block
e.printStackTrace () ;

} catch (IOException e)
// TODO Auto—generated catch block
e.printStackTrace () ;

164 Code

C.9.2 PageExtractorTest.java

package test.page;
import static org.junit.Assert. fail;

import java.io.IOException;

import java.io.InputStream;

import java.io.InputStreamReader;
import java.net.MalformedURLException;
import java.net.URL;

import java.net.URLConnection;

import junit.framework. TestCase;

import org.junit.Test;

import page.PageExtractor;

import scone.util.tokenstream.TokenInputStream ;

import scone.util.tokenstream.TokenInputStreamTokenizerImpl;

public class PageExtractorTest extends TestCase {

@Test
public void testPageBExtractor () {
try {

URL url = new URL(” http://en.wikipedia.org/wiki/Great_Ocean_Road”);
URLConnection urlconnection = url.openConnection () ;
urlconnection.setUseCaches (false) ;
InputStream is = urlconnection.getInputStream () ;
InputStreamReader isr = new InputStreamReader (is);
// HtmlTokenizer htmlTokenizer = new HtmlTokenizer ();
// htmlTokenizer . assign (isr);
TokenInputStream tis = new TokenInputStreamTokenizerImpl(isr);
PageExtractor pex = new PageBExtractor(tis, url.toString());

assertEquals (pex.extractEditPage (),
"http://en.wikipedia.org/w/index .php?title=Great_Ocean_Road&action=cdit”);
assertEquals (pex.extractHistoryPage () ,
"http://en.wikipedia.org/w/index.php?title=Great-Ocean_-Road&action=history”);
// Token test = htmlTokenizer.nextToken () ;
// System .out.printin (test.toString ());
} catch (MalformedURLException e) {
// TODO Auto—generated catch block
e.printStackTrace () ;
} catch (IOException e) {
// TODO Auto—generated catch block
e.printStackTrace () ;

}

C.9.3 PageModifierTest.java

package test.page;

import java.io.IOException;
import java.util.Vector;

import junit.framework.TestCase;

import org.junit.Test;

import page.PageModifier ;

import scone.util.tokenstream . Token;

import scone.util.tokenstream . TokenInputStream ;
import statictools.TokenInputStreamTools;

public class PageModifierTest extends TestCase {

@Test
public void testInsertYUlandRating () {

C.10 Test.Rating package

165

Tok

Vector<Token>

enlnputStream tis =

TokenInputStreamTools.CreateTokenInputStreamFromURL (” http://example.com/”);

htmlPage = new Vector<Token>();

Token t = null;
try {
while ((t = tis.read()) != null) {

htmlPage.add(t);

} catch (IOException e)

System.out.println (” Initialization of Token Vector failed”);
e.getStackTrace () ;
}
PageModifier pm = new PageModifier (htmlPage) ;
assertEquals (htmlPage.size (), 54);
pm.insertYUlandRating (3.0) ;
htmlPage = pm.getHtmlPageVector () ;
assertEquals (htmlPage.size (), 56);
}
}
i k
C.10 Test.Rating package
. .
C.10.1 RatingCalculatorTest.java
package test.rating;
import junit.framework. TestCase;
import org.junit.Test;
import rating.Rating;
import rating.RatingCalculator;
import rating.SessionRatingDB;
import trust.Reviewer;
import trust.RoR;
public class RatingCalculatorTest extends TestCase {
@Test
public void testComputeAverage () {
Reviewer reviewerl = new Reviewer (0.765338, "userl”);
Reviewer reviewer2 = new Reviewer (0.35338, "user2”);
Reviewer reviewer3 = new Reviewer (0.165338, ”user3”);
Reviewer reviewer4 = new Reviewer(—0.165338, ”userd”);

RoR

ror .

ror

ror .

ror
Se

ror = new RoR() ;

insertReviewer (reviewerl);
.insertReviewer (reviewer2);
insertReviewer (reviewer3) ;
_insertReviewer (reviewerd) :

ionRatingDB sessionRatingDB = new SessionRatingDB () ;

Rating r0 new Rating(”userl”, 5, 712347,
"http://en.wikipedia.org/wiki/Bass_Strait”);
Rating rl = new Rating(”user2”, 3, ”1234",
"http://en.wikipedia.org/wiki/Bass_Strait”);
Rating r2 = new Rating(”user3”, 7, 1234,
"http://en.wikipedia.org/wiki/Bass_Strait”);
Rating r3 = new Rating(”user4”, 2, 712347,

"http://en.

sessionRatingDB .
sessionRatingDB .
sessionRatingDB .
sessionRatingDB .

RatingCalculator
assertEquals (rc.

wikipedia.org/wiki/Bass-Strait”);

push (r0);
push(rl);
push (r2);

push (r3);

rc = new RatingCalculator (sessionRatingDB , ror);
computeAverage () ,4.6923076923076925) ;

166 Code

C.10.2 RatingHistoryTest.java

package test.rating;

import static org.junit.Assert.assertTrue;
import junit.framework. TestCase;

import org.junit.Test;

import rating.Rating;
import rating.RatingHistory;

//TODO: H@J Prioritet: Denne test skal laves , sdi den er ordelig!

public class RatingHistoryTest extends TestCase {

@Test

public void testRatingHistory () {
RatingHistory rh = new RatingHistory () ;
assertTrue (rh.getHistorySize () == 0);
assertTrue (rh.getXValue() == 0.0);

@Test

public void testInsertRating () {
RatingHistory rh = new RatingHistory () ;

String hashValueTemp = 70123456789 abcdef”;

int rating = 5;

int experience = 0;

Rating r3 = new Rating () ;

Rating r = new Rating(” Korsgaard”, 5, ”123123421" ,
"http://en.wikipedia.org/wiki/Bass_-Strait”);

Rating r2 = new Rating(” Korsgaard” , 5, ”123123421”,

"http://en.wikipedia.org/wiki/Bass_Strait”);
rh.insertRating (r);

assertTrue (rh.getHistorySize () == 1);
rh.insertRating (r2);
assertTrue (rh.getHistorySize () == 2);

}

@Test

public void testGetXValue () {
RatingHistory rh = new RatingHistory () ;
String hashValueTemp = 70123456789 abcdef”;
int rating = 5;
int interaction = 0;
Rating r = new Rating(” Korsgaard”, 5, ”123123421”,

"http://en.wikipedia.org/wiki/Bass_Strait”);
Rating r2 = new Rating(” Korsgaard”, 5, ”123123421” ,
"http://en.wikipedia.org/wiki/Bass_Strait”);

r.setinteraction (interaction) ;
r2.setinteraction (interaction) ;
rh.insertRating (r);
assertTrue (rh.getXValue() == —0.1);
rh.insertRating (r2);
assertTrue (rh.getXValue() == —0.2);

}

C.10.3 RatingTest.java

package test.rating;

import static org.junit.Assert.assertTrue;

import java.util.Date;

import junit.framework. TestCase;

import org.junit.Test;

import rating.Rating;

public class RatingTest extends TestCase {
@QTest

public void testRating () {
Rating r = new Rating () ;

C.10 Test.Rating package

167

// assert that the default ezperience is positive

*

assertTrue(r.getExperience () == 1);
// assert date is not older than one minute
Date temp = new Date () ;
assertTrue ((temp.getTime () — r.getDate()) < 1000
// Assert that rating is correct
assertTrue (r.getRating () == 0);
}
@Test
public void testRating2() {
String hashValueTemp = »0123456789abcdef” ;
int rating = 5;
int experience = 0;
Rating r = new Rating(” Korsgaard”, 5, 71231234217,

}

“http://en.wikipedia.org/wiki/Bass_Strait”);
// assert that the eazperience is correct
assertTrue (r.getExperience () == 2);
// Assert that the username i correct
assertTrue (r.getUserName () .equals (” Korsgaard”));
// Assert that teh wversiom is correct
assertTrue (r.getVersion ().equals (”1231234217));
// assert that rating is correct
assertTrue (r.getRating () == 5);
// assert that the the URL are correct

assertTrue (r.getURL() .equals ("http://en.wikipedia.org/wiki/Bass-Strait”));

// assert date is mnot older than one minute
Date temp = new Date () ;
assertTrue ((temp.getTime () — r.getDate()) < 1000

public void testSetExp () {

i

Rating r = new Rating(” Korsgaard”, 5, 71231234217,

"http://en.wikipedia.org/wiki/Bass_Strait”);
r.setExperience (1) ;
assertTrue(r.getExperience () == 1);

public void testSetInteraction () {

}
}

Rating r = new Rating(” Korsgaard”, 5, ”123123421”,

"http://en.wikipedia.org/wiki/Bass_Strait”);
r.setinteraction (1);
assertTrue (r.getlnteraction () == 1);

C.10.4 SessionRatingDBTest.java

package test.rating;

import junit.framework. TestCase;

import org.junit.Test;

import rating.Rating;
import rating.SessionRatingDB;

public class SessionRatingDBTest extends TestCase {

@Test
public void testSessionRatingDB () {
try {
SessionRatingDB sr = new SessionRatingDB () ;
Rating r = sr.pop();

}

} catch (RuntimeException e) {

assertTrue (e instanceof java.lang.IndexOutOfBoundsException);

System .out.println () ;

}

@Test
public void testPush () {

SessionRatingDB sr = new SessionRatingDB () ;

Rating r = new Rating () ;
sr.push(r);
assertEquals (sr.size (), 1);
}
@QTest

public void testPop () {

SessionRatingDB sr = new SessionRatingDB () ;
Rating r = new Rating () ;

¢

(1)

60) ;

60);

168 Code

sr.push(r);
Rating r2 = sr.pop();
assertEquals (r, r2);

}
@Test
public void testSize () {
SessionRatingDB sr = new SessionRatingDB () ;
Rating r = new Rating();
sr.push(r);
assertEquals (sr.size (), 1);
}

C.11 Test.Statictools Package

C.11.1 RatingCleanOutTest.java

package test.statictools;

import java.util.Vector;

import junit.framework. TestCase;
import org.junit.Test;

import statictools.RatingCleanOut ;
import statictools.Serializer;
import trust.RoR;

public class RatingCleanOutTest extends TestCase {

@Test
public void testRemoveRatingsTitleMismatch () {
String rl1 = "<!—— WikiTrustComment. Read more on: 74

"http://en.wikipedia.org/wiki/User:Korsgaard\n ;Korsgaard;”+

”?7;134276108; Bass-Strait ;MCOCFFY5w/j3iZveBiBJx9GXObVOMo7RA” 4

»hUAIwIDWMFNjqrKDp4k TYwVqrilK8w= ——>" ;

String r4 = "<!—— WikiTrustComment. Read more on: 7+

"http://en.wikipedia.org/wiki/User: Korsgaard\n ;Korsgaard;”+

”7;134276108; Great-Ocean-Road ; MCOCFFY5w/j3iZveBiBJx9GXObV0”+

?”Mo7RAhUAIWIDWMFENjqrKDp4kTYwVqrilK8w= ——>7 ;

String r7 = "<!—— WikiTrustComment. Read more on:
+”http://en.wikipedia.org/wiki/User: Korsgaard\n; Korsgaard ;” 4
77;134276108; Bass_Strait ;MCOCFFY5w/j3iZvgfiBIx9GXObVOMo7RA” 4
"hUAIwIDWMFNjqrKDp4kTYwVqrilK8w= ——>" ;

Vector<String> rawRatings = new Vector<String >();

rawRatings.add(rl);

rawRatings.add(rd) ;

rawRatings.add (r7) ;

»

rawRatings = RatingCleanOut.RemoveRatingsTitleMismatch(” Bass_Strait” ,
rawRatings) ;
assertTrue (rawRatings.size () == 2);
}
@Test
public void testRemoveRatingsBelowThreshold () {

String r2 = 7"<!—— WikiTrustComment. Read more on: 7+

"http://en.wikipedia.org/wiki/User: Korsgaard\n; Korsgaard ; "+

”7;134276108; Bass_Strait ;MCOCFFY5w/j3iZveBiBJx9GXObVOMo7”+

»RAhUAIwIDWMFNjqrKDpdkTYwVqrilK8w= ——>" ;

String r5 = "<!—— WikiTrustComment. Read more on: 7+

"http://en.wikipedia.org/wiki/User: Korsgaard\n; Korsgaard ;”+

”7;134276108; Fort_-Knox ; MCOCFFY5w/j3iZveBiBJx9GXObVOMo7TRAh” 4

"UAIWIDWMFNjqrKDp4kTYwVqrilK8w= ——>" ;

String r8 = 7"<!—— WikiTrustComment. Read more on: 74

"http://en.wikipedia.org/wiki/User:Korsgaard\n; Korsgaard ;”+

77;134276108; Bass_Strait ;MCOCFFY5w/j3iZveBiBJx9GgfbVOMo7RA” 4

" hUAIwIDWMFNjqrKDpdkTYwVqrilK8w= ——>" ;

Vector<String> rawRatings = new Vector<String >();

rawRatings.add (r2);

rawRatings.add(r5);

rawRatings.add(r8);

rawRatings = RatingCleanOut.RemoveRatingsBelowThreshold (0.1, rawRatings,
”Bass_-Strait”);

assertTrue (rawRatings.size () == 3);

C.11 Test.Statictools Package

169

i

QTest
public void testRemoveUnvalidableRatings () {
String r3 = "<!—— WikiTrustComment. Read more on: 7+

"http://en.wikipedia.org/wiki/User: Korsgaard\n; Korsgaard ;”+
”7;134276108; Bass_-Strait ; MCwCFGYeyYSOlqOrQBDnKA3fFo3gmfds” +

” AhQ+MIL183hnf/LrpEaR56U7YsPUMg== —>" ;
String r6 = "<!—— WikiTrustComment. Read more on: "+
"http://en.wikipedia.org/wiki/User: Korsgaard\n; Korsgaard

”7;134276108; War; MCwCFGYeyYSOlqOrQBDnKA3fFo3gmfds AhQ+MIL1” 4

»83hnf/LrpEaR56UTYsPUMg== —>" ;
String r9 = "<!—— WikiTrustComment. Read more on: "4

"http://en.wikipedia.org/wiki/User: Korsgaard\n; Korsgaard ;”"+
”7;134276108; Bass_-Strait ; MCwCFGYeyYSOlqOrQBDnKA3fFo3gmfds”+

”AhQ+MI1L183hnf/LrpEaR56U7YsPUMg== —>" ;
Vector<String> rawRatings = new Vector<String >();
rawRatings.add(r3) ;

rawRatings.add (r6);

rawRatings.add (r9);

RoR ror = Serializer.readRoRFromDisk () ;

rawRatings = RatingCleanOut.RemoveUnvalidableRatings (rawRatings ,

assertTrue (rawRatings.size () == 2);

C.11.2 SecurityProviderTest.java

package test.statictools;

import java.io.BufferedReader;

import java.io.File;

import java.io.FilelnputStream;

import java.io.FileNotFoundException;

import java.io.FileOutputStream;

import java.io.IOException;

import java.io.InputStreamReader;

import java.security.KeyPair;

import java.security.KeyStore;

import java.security.KeyStoreException;
import java.security.PrivateKey ;

import java.security.PublicKey ;

import java.security.cert.Certificate

import java.security.cert.CertificateException;
import java.security.cert.CertificateFactory;

import junit.framework.TestCase;
import org.junit.Test;

import statictools.SecurityProvider;
import statictools.Serializer ;
import sun.misc.BASE64Encoder;
import trust.RoR;

public class SecurityProviderTest extends TestCase {

@Test
public void testInitKeyStore () {
try {

ror);

KeyStore ks = SecurityProvider.InitKeyStore (”.keys”, "12345678");

assertTrue (ks.containsAlias (” wiki”));
assertEquals (ks.size (), 1);
} catch (KeyStoreException e)
// TODO Auto—generated catch block
e.printStackTrace () ;
}
}

@Test
public void testInitCertificate () {
try {

KeyStore ks = SecurityProvider.InitKeyStore (”.keys”, ”12345678");

Certificate cert = ks.getCertificate (" wiki”);
FileInputStream is = new FileInputStream ("THOMAS. cer”) ;

CertificateFactory cf = CertificateFactory.getInstance ("X.509”);

Certificate certExpected = cf.generateCertificate (is);

assertTrue (cert.toString ().equals(certExpected.toString ()));

} catch (KeyStoreException e)
// TODO Auto—generated catch block
e.printStackTrace () ;

170 Code

}

} catch (FileNotFoundException e) {
// TODO Auto—generated catch block
e.printStackTrace () ;

} catch (CertificateException e) {
// TODO Auto—generated catch block
e.printStackTrace () ;

}

@Test
public void testInitKeyPair ()

BASE64Encoder b64 = new BASE64Encoder () ;

KeyStore ks = SecurityProvider.InitKeyStore (”.keys”, "12345678”);
KeyPair keyPair = SecurityProvider.InitKeyPair(ks, ”wiki”, ”12345678");
PrivateKey privatekey = keyPair.getPrivate ();

PublicKey publicKey = keyPair.getPublic();

String encodedPublicKey = b64.cencode(publicKey.getEncoded());

String encodedPrivateKey
String expectedPublicKey
”MIIBtzCCASwGByqGSM44BAEwggEfAocGBAP1/U4EddRIpUt9KnC77 +

?s50f2EbdSPO9EAMMeP4C2USZpRV1AIIHTWT2NWPq/xfW6MPbLm1Vs14E7gB00b/JmYLdrmVClpJ+” 4
”f6ARTECLCT7upl/63xhv401fnxqimFQ8E+4P208UewwI1VBNaFpEy9nXzrithlyrv8iIDGZ3RSAH” 4
»HAhUAI2BQjxUjC8yykrmCouuEC /BYHPUCgYEA94+GghdabPd7LvKtcNrhXuXmUr7v60uqC+VdMCz0” 4+
”HgmdRWVeOutRZTH+ZxBxCBgLRJFnEj6 EwoFhO3zwkyjMim4TwWeotUfl004KOuHiuzpnWRbgqN /C/0” 4
?hNWLx+2J6ASQ7zKTxvqhRkImog9 /hWuWfBpKLZI6AelUIZAFMO / 7PSSoDgYQAA0GAX+qZML6+80Z” +
”aJ80CUo8qyRrFapcfsByVdshI3MaGFPVR1xqhm1QSU+XSjudwkBWVpmXWH6bHBA /XCAYzWe5j+gM” 4
”? G1pfKXopNZaH /c8xG4bQ8mOzTx8uUV7etyaao/tF5dgeelyzGjPAWNYO+ /fePhLIYWEIYQ66tA6R” 4
? x4+vGCmds=" ;

String expectedPricateKey

”MIIBSWIBADCCASwGByqGSM44BAEwggEfAocGBAP1/U4EddRIpUt” +

”? 9KnC7s50f2EbdSPO9EAMMeP4C2USZpRV1AIIHTWT2NWPq/xfW6MPbLm1Vs14E7gB00b/JmYLdrmVCl” +

? pJ+H6AR7TECLCT7upl /63xhv401fnxqimFQ8E+4P208UewwI1lVBNaFpEy9nXzrithlyrv8iIDGZ3RSA”+

»HHAhUAI2BQjxUjC8yykrmCouuEC /BYHPUCgYEA94+GghdabPd7LvKtcNrhXuXmUr7v60uqC+VdMCz0H” 4+

” gmdRWVeOutRZTH+ZxBxCBgLRIJFnEj6 EwoFhO3zwkyjMim4TwWeotUfI004KOuHiuzpnWRbgN /C/ohNW” +

”Lx+4+2J6ASQ7zKTxvqhRkImog9 /hWuWfBpKLZ16AelUIZAFMO /7PSSoEFgIUM4IMLmRuc39RKoEcs9Ds” +

”? A18Uj8Y=";

assertEquals (encodedPublicKey .substring (0, 20), expectedPublicKey.substring (0,

b64.encode (privatekey . getEncoded ()) ;

20));
assertEquals (encodedPrivateKey .substring (0, 20), encodedPrivateKey.substring (0,
20));
}
Q@Test
public void testCreateSignatureAndVerify () {
KeyStore ks = SecurityProvider.InitKeyStore (”.keys” , ”12345678");
KeyPair keyPair = SecurityProvider.InitKeyPair(ks, "wiki”, 712345678");
String testSignatureString = ”This is a test string”;
byte[] testSignature = SecurityProvider.createSignature(testSignatureString ,

keyPair.getPrivate ());

boolean testSignatureVerified =
SecurityProvider . verifySignature (testSignatureString , testSignature ,
keyPair
.getPublic ());

assertTrue (testSignatureVerified);

}
@Test
public void testSignatureEncodingAndDecoding () {
KeyStore ks = SecurityProvider.InitKeyStore(”.keys” , ”712345678”);
KeyPair keyPair = SecurityProvider.InitKeyPair (ks, ”wiki”, ”12345678");
String testSignatureString = ” This is a test string?”;
byte[] testSignature = SecurityProvider.createSignature (testSignatureString ,

keyPair.getPrivate ());
String encodedSignature =
SecurityProvider.createBase64EncodingFromSignature (testSignature) ;
byte[] decodedSignature =
SecurityProvider . getSignatureFromBase64Representation(encodedSignature) ;
boolean testSignatureVerified =
SecurityProvider . verifySignature (testSignatureString , decodedSignature,
keyPair
.getPublic ());
assertTrue (testSignatureVerified);

}

Q@Test

public void testGenerateCertificate () {

try {

KeyStore ks = SecurityProvider.InitKeyStore(”.keys” , ”12345678");
Certificate cert = ks.getCertificate ("wiki”);
String certB64 = SecurityProvider.generateCertificate (cert);
File f = new File ("THOMAS. cer”) ;
FileInputStream fis = new FilelnputStream (f);
BufferedReader in = new BufferedReader (new InputStreamReader (fis));

String temp = H
String [] brokenCert = certB64.split (”\n”);

C.11 Test.Statictools Package

int i = 1;
in.readLine () ;
while ((temp = in.readLine()) != null) {

if (brokenCert[i].length () > 20)
assertEquals (brokenCert[i].substring (0, 20), temp.substring (0, 20));

it
/%
x File f2 = new File(”THOMAS — new certificate.cer”); FileOutputStream
* fos = mew FileOutputStream (f2); fos.write(certB6j.getBytes ());
* fos.close(); assertTrue(f.equals(f2));
*/

} catch (KeyStoreException e)

// TODO Auto—generated catch block
e.printStackTrace () ;

} catch (FileNotFoundException e) {
// TODO Auto—generated catch block
e.printStackTrace () ;

} catch (IOException e)

// TODO Auto—generated catch block
e.printStackTrace () ;

}
@Test

/o
%« public void testCreateRating () { KeyStore ks =

x SecurityProvider. InitKeyStore (” "12845678”7); PrivateKey privateKey =
%« SecurityProvider . InitKeyPair (ks, ” i”, 712845678”).getPrivate (); String
%« createdRating = SecurityProvider.createRating (” Korsgaard”, 7, 794723853”,
* "Great_Ocean_Road”, privateKey); Siring czpecicdRating = "<I——
% WikiTrustComment. Read more on: http://en.wikipedia.org/wiki/User:Korsgaard
* \nikorsgaard;7:94723853; Great-Occan-Road ; MCwCFDXX/OhLyK TihaspGUiMHfmQd1RpAh
* RSlMSAueyLudbLﬂnl/Y+o7+DSEumu —
* asse7LEquals(ezpecledRamng,crealedRaltng), }
*
/
public void testCreateRatingAndVerification () {
RoR ror = Serializer.readRoRFromDisk () ;
KeyStore ks = SecurityProvider.InitKeyStore (”.keys”, ”12345678");
PrivateKey privateKey = SecurityProvider.InitKeyPair (ks, ”wiki”,
7123456787) . getPrivate () ;
String createdRating = SecurityProvider.createRating (” Korsgaard” , 7, ”94723853”
” Great-Ocean-Road” , privateKey);
assertTrue (SecurityProvider.validateRating (createdRating , ror));
}
public void testGetUserCertificate () {
Certificate cert = SecurityProvider.getUserCertificate (” Susansolovan”);
KeyStore susan = SecurityProvider.InitKeyStore(”.testperson3”, 712345678)
Certificate cert_expected = SecurityProvider.InitCertificate (susan,
"testperson3”);
assertEquals (cert , cert_expected);
3
public void testGenerateRatings () {
KeyStore ks = SecurityProvider.InitKeyStore(”.keys”, 712345678”);
PrivateKey privateKey = SecurityProvider.InitKeyPair (ks, ”wiki”,
712345678”) . getPrivate () ;
String createdRating = SecurityProvider.createRating (” Korsgaard” , 7,
¥134276108” , " Bass_Strait”, privateKey);

// Uncomment this to create ratings
7/ System.out.printin (createdRating);
assertTrue (true);

}

public void testGetWikiUserPassFromDisk () {
String [] sl = SecurityProvider.getWikiUserPassFromDisk () ;
assertEquals (s1[0], ”Susansolovan”);
assertEquals (s1[1], ”12345678");

public void testGetKeyStorePassFromDisk () {
String sl = SecurityProvider.getKeyStorePassFromDisk () ;
assertEquals (sl1, "12345678”);
}
}

C.11.3 SerializerTest.java

172 Code

package test.statictools;

import static org.junit.Assert.assertEquals;
import junit.framework.TestCase;

import org.junit.Test;

import statictools.Serializer;
import trust.Reviewer;
import trust.RoR;

public class SerializerTest extends TestCase {

@Test
public void testWriteAndReadRoRToDisk () {
RoR ror = new RoR() ;
// Insert Korsgaard
Reviewer korsgaard = new Reviewer (0.45677, ”Korsgaard”);
ror.insertReviewer (korsgaard) ;
// Insert MarkusWennerberg
Reviewer markus = new Reviewer (0.3122, ”Markuswennerberg”) ;
ror.insertReviewer (markus) ;
// Insert Mikael Martin
Reviewer mikael = new Reviewer (0.86346, ”Mikaelmartin”);
ror .insertReviewer (mikael) ;
// Insert Susan Solovan
Reviewer susan = new Reviewer (0.11223, ”Susansolovan?”);
ror .insertReviewer (susan)
ror.updateCertificates () ;
statictools . Serializer .writeRoRToDisk(ror) ;
RoR newRoR = Serializer .readRoRFromDisk () ;

assertEquals (newRoR. getTrustValueFromUsername (” Korsgaard”), 0.45677);
assertEquals (newRoR. getTrustValueFromUsername (” Markuswennerberg”), 0.3122);

assertEquals (newRoR. getTrustValueFromUsername (” Mikaelmartin”), 0.86346) ;
assertEquals (newRoR. getTrustValueFromUsername (” Susansolovan”), 0.11223);

C.11.4 ThresholdTest.java

package test.statictools;

import static org.junit.Assert.assertEquals;
import junit.framework.TestCase;

import org.junit.Test;
import statictools.Threshold;

public class ThresholdTest extends TestCase{

@Test
public void testThresholdCalculator () {
String oldid = 7102133497 ;
String title = ”Bass_-Strait”;
double threshold = Threshold. ThresholdCalculator (title , oldid);
//System . out.printin (” Threshold: ” + threshold);

assertEquals (threshold, 0.15531062124248496) ;

C.12 Test.Trust Package

C.12.1 ReviewerTest.java

package test.trust;

import java.security.cert. Certificate;
import java.util.Date;

C.12 Test.Trust Package

173

import junit.framework.TestCase;
import org.junit.Test;

import rating.Rating;
import trust.Reviewer;

public class ReviewerTest extends TestCase {

@Test
public void testReviewer () {
Reviewer reviewer = new Reviewer () ;
assertTrue(reviewer.getTrustValue() == 0.0);
@Test

public void testInsertRating () {
// Start test of optimistic curve in trust

Reviewer reviewer = new Reviewer ()

String hashValueTemp = 70123456789 abcdef” ;

int rating = 5;

int experience = 1;

Rating r = new Rating(” Korsgaard” , rating , 712347,
"http://en.wikipedia.org/wiki/Bass_Strait”, new Date(), 1);

Rating r2 = new Rating(” Korsgaard”, rating, 712347,

"http://en.wikipedia.org/wiki/Bass_Strait” ,
r.setinteraction (1) ;
r2.setinteraction (1) ;
reviewer .insertRating (r);
reviewer .insertRating (r2);

assertEquals (reviewer . getTrustValue (), 0.2990636154095728) ;

// test of cautious curve in trust
// Create 2 ratings that are 8 months old
long now = (new Date()).getTime();
long three_months_old

Date date-3-months_old = new Date(three-months_old);
System.out.printin (date-3_-months_old.toString());
Rating r3 = new Rating(” Korsgaard”, rating, ”12347,
"http://en.wikipedia.org/wiki/Bass_Strait”,
1);
Rating r4 = new Rating(” Korsgaard”, rating, ”12347,

"http://en.wikipedia.org/wiki/Bass_Strait”,
r3.setinteraction (1);
r4.setinteraction (1);
reviewer.insertRating (r3);
reviewer.insertRating (rd);

assertEquals (reviewer . getTrustValue (), 0.5132596571802928) ;
long nine_months_old = now — new Long(”233280000007);// (9%80%24*60%x60%1000) ;

Date date.9_months_old = new Date(nine.months_old);
Rating r5 new Rating(” Korsgaard” , rating , ”12347,
"http://en.wikipedia.org/wiki/Bass_Strait”,

0);

Rating r6 = new Rating(” Korsgaard” , rating , 712347,
"http://en.wikipedia.org/wiki/Bass_Strait”,
0);

Rating r7 = new Rating(” Korsgaard”, rating, ”12347,
“http://en.wikipedia.org/wiki/Bass_Strait”,
0);

Rating r8 = new Rating(” Korsgaard” , rating, ”12347,
"http://en.wikipedia.org/wiki/Bass_Strait” ,
0);

Rating r9 = new Rating(” Korsgaard” , rating, ”12347,

"http://en.wikipedia.org/wiki/Bass_Strait”,
0);

reviewer.insertRating (r5);
reviewer.insertRating (r6);
reviewer.insertRating (r7);
reviewer .insertRating (r8);
reviewer .insertRating (r9);

assertEquals (reviewer.getTrustValue (), 0.13458872206570338)

// test of cautious curve in distrust

Rating r10 = new Rating(” Korsgaard” , rating , 712347,

"http://en.wikipedia.org/wiki/Bass_-Strait”,

Rating rl1l = new Rating(” Korsgaard” , rating , 712347,

"http://en.wikipedia.org/wiki/Bass_-Strait”,

Rating rl12 = new Rating(” Korsgaard”, rating, ”1234”,

"http://en.wikipedia.org/wiki/Bass_Strait”,

Rating rl3 = new Rating(” Korsgaard”, rating, ”1234”,

"http://en.wikipedia.org/wiki/Bass_Strait”,
r10.setinteraction (0) ;
rll.setinteraction (0);

Date ()
Date ()
Date ()

Date ()

new Date (),

5

s

1)

date_-3_months_old

date-9_-months_old

date_-9_months_old

0);
0);
0);

0);

date_3-months_old ,

date_9_months_old ,

date_-9_months_old ,

s

date-9_-months_old ,

now — new Long(” 7776000000”);// (3%x30%24%60%x60%1000) ;

174

Code

ri2.setinteraction (0);

r13.setinteraction (0) ;

reviewer .insertRating (r10) ;

reviewer .insertRating (r11);

reviewer .insertRating (r12);

reviewer.insertRating (r13);

assertEquals (reviewer . getTrustValue (), —0.4656334193014535) ;

// test of move from cautious curve
Rating rl4 = new Rating(” Korsgaard” , rating, 12347,

1) 5
Rating r15 = new Rating(” Korsgaard” , rating, 712347,

1)
Rating r16 = new Rating(”Korsgaard”, rating, 12347,

"http://en.wikipedia.org/wiki/Bass_Strait”, date-9-months_old

1)
Rating rl7 = new Rating(” Korsgaard”, rating, 12347,

"http://en.wikipedia.org/wiki/Bass_Strait”, date_-9_months_old

1)
Rating rl18 = new Rating(” Korsgaard”, rating, 12347,

1)
Rating r19 = new Rating(” Korsgaard” , rating, 712347,

"http://en.wikipedia.org/wiki/Bass_Strait”, date-9-months-old

1)

rld.setinteraction (1)
rl5.setinteraction (1) ;
r16.setinteraction (1) ;
rl7.setinteraction (1) ;
r18.setinteraction (1) ;
rl9.setinteraction (1) ;
reviewer .insertRating (r14);
reviewer .insertRating (r15);
reviewer.insertRating (r16);
reviewer .insertRating (r17);
reviewer.insertRating (r18);
reviewer.insertRating (r19);

"http://en.wikipedia.org/wiki/Bass_Strait”, date_9_months_old

"http://en.wikipedia.org/wiki/Bass_Strait”, date-9_-months_old

"http://en.wikipedia.org/wiki/Bass_Strait”, date-9_-months_old

0);

0);

assertEquals (reviewer.getTrustValue (), —0.052764355442757704) ;
// test move from optimistic to cautoius curve in distrust
Rating r20 = new Rating(” Korsgaard” , rating, ”12347,
"http://en.wikipedia.org/wiki/Bass_Strait”, new Date(),
Rating r21 = new Rating(” Korsgaard” , rating, 712347,
“http://en.wikipedia.org/wiki/Bass_Strait”, new Date (),
Rating r22 = new Rating(” Korsgaard”, rating, ”12347,
"http://en.wikipedia.org/wiki/Bass_Strait”, new Date (),

r20.setinteraction (0) ;
r21.setinteraction (0);
r22.setinteraction (0) ;
reviewer .insertRating (r20);
reviewer .insertRating (r21);
reviewer .insertRating (r22);

assertEquals (reviewer .getTrustValue (), —0.4959747813973638);
// test move from distrust to trust
Rating r23 = new Rating(” Korsgaard” , rating, ”12347,
"http://en.wikipedia.org/wiki/Bass_Strait”, new Date (),
Rating r24 = new Rating(” Korsgaard” , rating, ”12347,
"http://en.wikipedia.org/wiki/Bass_Strait”, new Date (),
Rating r25 = new Rating(” Korsgaard” , rating, ”12347,
"http://en.wikipedia.org/wiki/Bass_Strait”, new Date() ,
Rating r26 = new Rating(” Korsgaard” , rating, 712347,
"http://en.wikipedia.org/wiki/Bass_Strait”, new Date() ,
Rating r27 = new Rating(” Korsgaard” , rating, 712347,
"http://en.wikipedia.org/wiki/Bass_Strait”, new Date(),
Rating r28 = new Rating(” Korsgaard” , rating, ”12347,
"http://en.wikipedia.org/wiki/Bass_Strait”, new Date (),
Rating r29 = new Rating(” Korsgaard”, rating, 12347,
"http://en.wikipedia.org/wiki/Bass_Strait”, new Date (),

r23.setinteraction (1) ;
r24.setinteraction (1) ;
r25.setinteraction (1) ;
r26.setinteraction (1) ;
r27.setinteraction (1);
r28.setinteraction (1);
r29.setinteraction (1);
reviewer.insertRating (r23);
reviewer.insertRating (r24);
reviewer.insertRating (r25);
reviewer.insertRating (r26);
reviewer.insertRating (r27);
reviewer.insertRating (r28);

0);

1)
1)

1);

1)

1)

C.12 Test.Trust Package

175

reviewer.insertRating (r29);
Rating r30 = new Rating(” Korsgaard”, rating, 1234”7,

"http://en.wikipedia.org/wiki/Bass_Strait”, date-9-months_old ,

0);
Rating r31 = new Rating(” Korsgaard” , rating , 712347,

"http://en.wikipedia.org/wiki/Bass_Strait”, date_-9_months_old

0);
Rating r32 = new Rating(” Korsgaard” , rating, ”12347,

"http://en.wikipedia.org/wiki/Bass_Strait”, date_9.months_old

0);
Rating r33 = new Rating(” Korsgaard”, rating, ”1234”,

"http://en.wikipedia.org/wiki/Bass_Strait”, date_9_months_old ,

0);
Rating r34 = new Rating(” Korsgaard” , rating , 712347,

"http://en.wikipedia.org/wiki/Bass_Strait”, date_-9_-months_old ,

0);
Rating r35 = new Rating(” Korsgaard” , rating, »12347

"http://en.wikipedia.org/wiki/Bass-Strait”, date-9-months_old

0);

r30.setinteraction (0);
r31.setinteraction (0)
r32.setinteraction (0);
r33.setinteraction (0)
r34.setinteraction (0);
r35.setinteraction (0);
reviewer .insertRating (r30);
reviewer.insertRating (r31);
reviewer.insertRating (r32);
reviewer .insertRating (r33);
reviewer .insertRating (r34);
reviewer .insertRating (r35) ;
Rating r36 = new Rating(” Korsgaard” , rating, ”1234”,
"http://en.wikipedia.org/wiki/Bass_Strait”, new Date(), 1);
r36.setinteraction (1);
reviewer .insertRating (r36);

assertEquals (reviewer.getTrustValue (), 0.2749999999999999);
// test move from cautoius curve to optimistic curve in trust

}

@Test
public void testGetTrustValue () {
// Start test of optimistic curve in trust

Reviewer reviewer = new Reviewer () ;

String hashValueTemp = 70123456789 abcdef” ;

int rating = 5;

int experience = 1;

Rating r = new Rating(” Korsgaard”, rating, 712347,
"http://en.wikipedia.org/wiki/Bass_Strait”, new Date(), 1);

Rating r2 = new Rating(” Korsgaard rating , 712347,
"http://en.wikipedia.org/wiki/Bass_Strait”, new Date(), 1);

r.setinteraction (1) ;

r2.setinteraction (1);

reviewer .insertRating (r);

reviewer .insertRating (r2);

assertEquals (reviewer.getTrustValue (), 0.2990636154095728) ;

C.12.2 RoRTest.java

package test.trust;

import java.security.cert.Certificate;
import junit.framework.TestCase;
import org.junit.Test;

import statictools.Serializer ;

import trust.Reviewer;

import trust.RoR;

// TODO: Lav en ordenlig test af ROR
public class RoRTest extends TestCase {

@QTest
public void testRoR () {

176 Code

RoR ror = new RoR() ;
Reviewer rv = new Reviewer (0.5 ,” Susan”);
ror.insertReviewer (rv);
double trustvalue = ror.getTrustValueFromUsername (” Susan”) ;
assertEquals (trustvalue, 0.5);
}
@Test
public void testReadRoRFromDisk () {
RoR ror = Serializer .readRoRFromDisk () ;
ror.updateCertificates () ;
Certificate cert = ror.getCertificateFromUsername (” Susansolovan”);
double trustvalue = ror.getTrustValueFromUsername (” Susansolovan”);
assertTrue(cert != null);
assertTrue (new Double(trustvalue) != null);
}

C.12.3 TrustUpdaterTest.java

package test.trust;
import junit.framework.TestCase;
import org.junit. Test;

import rating.Rating;

import rating.SessionRatingDB ;
import trust.RoR;

import trust.TrustUpdater;

public class TrustUpdaterTest extends TestCase {

Q@Test
public void testTrustUpdater () {

Rating rl = new Rating(” Susansolovan”, 1, 712347,
"http://en.wikipedia.org/wiki/Bass_-Strait”);
Rating r2 = new Rating(” Markuswennerberg”, 2, 712347,
"http://en.wikipedia.org/wiki/Bass_Strait”);
Rating r3 = new Rating(” MikaelMartin” , 3, ”1234”,

"http://en.wikipedia.org/wiki/Bass_Strait”);
Rating r9 = new Rating(” Korsgaard”, 9, ”1234”,

"http://en.wikipedia.org/wiki/Bass_Strait”);
SessionRatingDB srDB = new SessionRatingDB () ;
srDB.push(rl);
srDB.push (r2);
srDB.push(r3);
srDB.push(r9);
RoR ror = new RoR() ;
double ratingServed = 1.5;
TrustUpdater tu = new TrustUpdater (srDB, ratingServed , ror);
tu.ClickedYes () ;
tu.ClickedR1 () ;
assertEquals (ror.getTrustValueFromUsername (” Markuswennerberg”) ,0.1338126772902034) ;
assertEquals (ror.getTrustValueFromUsername (” Korsgaard”), —0.09999999999999998) ;
assertEquals (ror.getTrustValueFromUsername (” Susansolovan”), 0.1338126772902034) ;
assertEquals (ror.getTrustValueFromUsername (” MikaelMartin”), 0.0) ;

C.13 Static Text Files

C.13.1 BodyHtml.txt

<div id="dragDivl” class="testSquare” > Drag Here To Move
<div id="textdivl”> <center><h3> #HHRATINGH# </h3> </center>

<applet codebase="http://##H#IPHH##/"

code="remote. EmbeddedApplet”

width=250 height=182>

C.13 Static Text Files 177

</applet>
</div> </div>

C.13.2 HeadHtml.txt

<l—— Dependencies ——>
<script type="text/javascript”
src="http://yui.yahooapis.com/2.2.2/build/yahoo—dom—event/yahoo—dom—event . js”
></script >
<!—— Drag and Drop source file ——>
<script type="text/javascript”
src="http://yui.yahooapis.com/2.2.2/build/dragdrop/dragdrop—min.js” ></script>
<script type="text/javascript”>
YAHOO. example .DDApp = function () {
var dd;
return {
init: function () {
= new YAHOO. util .DD(”dragDivl”);
}
}
YO

YAHOO. util . Event.onDOMReady (YAHOO. example .DDApp. init) ;
</script >

<!—— Style for the boxes—>
<style type="text/css”>
#dragDivl {
background: #ESESES8 ;
background—color:#6D739A;top:240px; left:105px;
width:150px;
position:absolute;
top:50px;
left :600px;
z—index: 10;
}

#textdivl{

background—color: #ES8ESES8

height :182px;
width:250px;

</style>

C.13.3 Passwords.txt

12345678
Susansolovan

KeyStorePass

WikiUserPass 12345678

C.13.4 Dbuild.xml

<?xml version="1.0" encoding="UTF-8” standalone="no” 7>
<!—— WARNING: Eclipse auto—generated file .
Any modifications will be overwritten .
To include a user specific buildfile here, simply create one in the
same
directory with the processing instruction <?eclipse.ant.import?>
as the first entry and ezport the buildfile again. ——>
<project basedir=".” default="build” name="OwnPlugin”>
<property environment="env” />
<property name="ECLIPSE.HOME” value="../../../Program Files/eclipse” />

<property name="junit.output.dir” value="junit”/>

<property nam
<property

<property

name="

name="

debuglevel” value="source,lines ,vars” />
target” value="1.5"/>

source” value="1.5"/>

<path id=”"OwnPlugin.classpath”>
<pathelement location=".” />
<pathelement location="scone.jar” />
<pathelement location="wbij45.jar” />
<pathelement location="junit —4.3.1.jar” />
<pathelement location="log4j —1.2.14.jar” />

</path>

178 Code

<target name="init”>
<copy includeemptydirs=" false” todir=".">
Zfileset dir=".” excludes="##/%.launch, *%/*.java” />
</copy>
</target>
<target name="clean”>
<delete>
<fileset dir=".”" includes="%x%/x%.class” />

</delete>
</target>
<target depends= cleanall” />
<target depends="build—subprojects ,build—project” name="build?” />
<target name="build—subprojects” />
<target depends=”init” name="build—project”>
<echo message="${ant.project .name}: ${ant.file}” />
<javac debug="true” debuglevel="${debuglevel}” destdir=".”"
source="8${source}” target="${target }”>
<src path=".7/>
<exclude name="benchmarking/PureProxyBenchmarkTest.java” />
<classpath refid="OwnPlugin.classpath?” />
</javac>
</target>
<target description="Build all projects which reference this project. Useful to
propagate changes.” name="build—refprojects” />
<target description="copy Eclipse compiler jars to ant lib directory?”
name="init —eclipse —compiler”>
<copy todir="8%${ant.library.dir}”>
<fileset dir="${ECLIPSE_LHOME}/plugins”
includes="org.eclipse.jdt.core_*.jar” />

clean” name

</copy>
<unzip dest="${ant.library.dir}”>
<patternset includes="jdtCompilerAdapter.jar” />
<fileset dir="${ECLIPSE.HOME}/plugins”
includes="org.eclipse.jdt.core_x.jar” />
</unzip>
</target>
<target description="compile project with Eclipse compiler”
name=" build —eclipse —compiler”>
<property name="build.compiler”
value="org.eclipse.jdt.core.JDTCompilerAdapter” />
<antcall target="build” />
</target>
<target name=" AllTests (1)">
<mkdir dir="$%${junit.output.dir}” />
<junit fork="yes” printsummary="withOutAndErr”>
<formatter type="xml” />
<test name="test.page.AllTests” todir="${junit.output.dir}” />
<classpath refid="OwnPlugin.classpath” />
</junit>
</target>
<target name=" AllTests”>
<mkdir dir="8${junit.output.dir}” />
<junit fork="yes” printsummary="withOutAndErr”>
<formatter type="xml” />
<test name="test.rating.AllTests” todir=
<classpath refid="OwnPlugin.classpath” />
</junit>
</target>
<target name=”" CreateTestRoR”>
<java classname="test.sconeplugin.CreateTestRoR” failonerror="true”
fork="yes”>
<classpath refid="OwnPlugin.classpath” />
</java>
</target>
<target name="ExtractRatingsTest”>
<mkdir dir="${junit.output.dir}” />
<junit fork="yes” printsummary="withOutAndErr”>
<formatter type="xml” />
<test name="test.page.ExtractRatingsTest” todir="${junit.output.dir}” />
<classpath refid="OwnPlugin.classpath” />
</junit>
</target>
<target name=" GenerateCertTest”>
<mkdir dir="${junit.output.dir}” />
<junit fork="yes” printsummary="withOutAndErr”>
<formatter type="xml” />

>${junit.output.dir}” />

<test name=" _security .GenerateCertTest” todir="${junit.output.dir}” />
<classpath refid="OwnPlugin.classpath” />
</junit>

</target>
<target name=" Mainfile”>

<java classname="sconeplugin.MainFile” failonerror="true” fork="yes”>
<classpath refid="OwnPlugin.classpath” />
</java>

</target>
<target name="MasterAllTests (2)7>
<mkdir dir="${junit.output.dir}” />

C.13 Static Text Files

179

<junit fork="yes” printsummary="withOutAndErr’>
<formatter type="xml” />
<test name="test.MasterAllTests” todir="%${junit.output.dir}” />
<classpath refid="OwnPlugin.classpath” />
</junit>
</target>
<target name=" New_configuration (1)7>

<java classname=" _wikitest.WikiTestMain” failonerror="true” fork="yes”>
<classpath refid=”"OwnPlugin.classpath” />
</java>
</target>
<target name="New_configuration (3)”>

<java classname="" failonerror="true” fork="yes”>

<classpath refid="OwnPlugin.classpath?” />
</java>
</target>
<target name="PageExtractorTest”>
<mkdir dir="${junit.output.dir}” />
<junit fork="yes” printsummary="withOutAndErr”>
<formatter type="xml” />

<test name="test.page.PageExtractorTest” todir="${junit.output.dir}” />

<classpath refid="OwnPlugin.classpath?” />
</junit>
</target>
<target name="PageModifierTest”>
<mkdir dir="${junit.output.dir}” />
<junit fork="yes” printsummary="withOutAndErr”>
<formatter type="xml” />

<test name="test.page.PageModifierTest” todir="${junit.output.dir}”/>

<classpath refid="OwnPlugin.classpath?” />
</junit>
</target>
<target name="RatingCalculatorTest”>
<mkdir dir="${junit.output.dir}” />
<junit fork="yes” printsummary="withOutAndErr”>
<formatter type="xml” />
<test nam test .rating . RatingCalculatorTest”
todir="8{junit .output.dir}” />
<classpath refid="OwnPlugin.classpath?” />
</junit>
</target>
<target name="RatingCleanOutTest (1)”>
<mkdir dir="${junit.output.dir}”/>
<junit fork="yes” printsummary="withOutAndErr”>
<formatter type="xml” />
<test name="test.statictools.RatingCleanOutTest”
todir="%${junit.output.dir}” />
<classpath refid="OwnPlugin.classpath” />
</junit>
</target>
<target name="RatingCleanOutTest”>
<mkdir dir="${junit.output.dir}” />
<junit fork="yes” printsummary="withOutAndErr”>
<formatter type="xml” />
<test name="test.statictools.RatingCleanOutTest”
todir="${junit.output.dir}” />
<classpath refid="OwnPlugin.classpath?” />
</junit>
</target>
<target name="RatingHistoryTest”>
<mkdir dir="${junit.output.dir}”/>
<junit fork="yes” printsummary="withOutAndErr”>
<formatter type="xml” />

<test name="test.rating.RatingHistoryTest” todir="${junit.output.dir}”/>

<classpath refid="OwnPlugin.classpath” />
</junit>
</target>
<target name=" RatingTest”>
<mkdir dir="${junit.output.dir}” />
<junit fork="yes” printsummary="withOutAndErr”>
<formatter type="xml” />
<test name="test.rating.RatingTest” todir="${junit.output.dir}” />
<classpath refid="OwnPlugin.classpath?” />
</junit>
</target>
<target name=" RecommendationSubmitterTest”>
<mkdir dir="${junit.output.dir}” />
<junit fork="yes” printsummary="withOutAndErr”>
<formatter type="xml” />
<test rating . RecommendationSubmitterTest”
${junit .output.dir}” />
<classpath refid="OwnPlugin.classpath?” />
</junit>
</target>
<target name=”" ReviewerTest”>
<mkdir dir="${junit.output.dir}” />
<junit fork="yes” printsummary="withOutAndErr”>

180 Code

<formatter type="xml” />
<test name="test.trust.ReviewerTest” todir="${junit.output.dir}” />
<classpath refid="OwnPlugin.classpath” />
</junit>
</target>
<target name=" ReviewerTest.updatelOOCertificates”>
<mkdir dir="${junit.output.dir}” />
<junit fork="yes” printsummary="withOutAndErr”>
<formatter type="xml” />
<test name="test.trust.ReviewerTest” todir="${junit.output.dir}” />
<classpath refid="OwnPlugin.classpath?” />
</junit>
</target>
<target name="RoRTest”>
<mkdir dir="${junit.output.dir}” />
<junit fork="yes” printsummary="withOutAndErr”>
<formatter type="xml” />
<test name="test.trust.RoRTest” todir="${junit.output.dir}” />
<classpath refid="OwnPlugin.classpath” />
</junit>
</target>
<target name="SecurityProviderTest”>
<mkdir dir="${junit.output.dir}” />
<junit fork="yes” printsummary="withOutAndErr">
<formatter type="xml” />
<test "test.statictools.SecurityProviderTest”
"${junit.output.dir}” />
<classpath refid="OwnPlugin.classpath?” />
</junit>
</target>
<target name="SecurityProviderTest.testCreateRating”>
<mkdir dir="${junit.output.dir}” />
<junit fork="yes” printsummary="withOutAndErr”>
<formatter type="xml” />
<test name="statictools.SecurityProviderTest”
todir="%${junit.output.dir}” />
<classpath refid="OwnPlugin.classpath” />
</junit>
</target>
<target name=" SecurityProviderTest.testGenerateRatings”>
<mkdir dir="${junit.output.dir}” />
<junit fork="yes” printsummary="withOutAndErr”>
<formatter type="xml” />
<test name="test.statictools.SecurityProviderTest”
todir="%{junit.output.dir}” />
<classpath refid="OwnPlugin.classpath?” />
</junit>
</target>
<target name=” SerializerTest”>
<mkdir dir="${junit.output.dir}” />
<junit fork="yes” printsummary="withOutAndErr”>
<formatter type="xml” />
<test name="test.statictools.SerializerTest”
todir="%{junit.output.dir}” />
<classpath refid=”"OwnPlugin.classpath” />
</junit>
</target>
<target name=" SessionRatingDBTest”>
<mkdir dir="${junit.output.dir}” />
<junit fork="yes” printsummary="withOutAndErr”>
<formatter type="xml” />
<test name="test.rating.SessionRatingDBTest”
todir="%{junit.output.dir}” />
<classpath refid="OwnPlugin.classpath?” />
</junit>
</target>
<target name=" TestBuild”>
<java classname="" failonerror="true” fork="yes”>
<classpath refid="OwnPlugin.classpath” />
</java>
</target>
<target name=”" ThresholdTest”>
<mkdir dir="${junit.output.dir}” />
<junit fork="yes” printsummary="withOutAndErr”>
<formatter type="xml” />
<test name="test.statictools.ThresholdTest”
todir="%{junit.output.dir}” />
<classpath refid="OwnPlugin.classpath” />
</junit>
</target>
<target name=" TrustUpdaterTest”>
<mkdir dir="${junit.output.dir}” />
<junit fork="yes” printsummary="withOutAndErr”>
<formatter type="xml” />
<test name="test.trust.TrustUpdaterTest” todir="${junit.output.dir}” />
<classpath refid="OwnPlugin.classpath?” />
</junit>

C.13 Static Text Files

181

</target>
<target name="WikiTestMain”>

<java classname=" _wikitest . WikiTestMain” failonerror="true”
<classpath refid="OwnPlugin.classpath” />
</java>

</target>
<target name=" junitreport”>
<junitreport todir="8${junit.output.dir}”>
<fileset dir="${junit.output.dir}”>
<include name="TEST—*.xml” />
</fileset>
<report format="frames” todir="8${junit.output.dir}” />
</junitreport>
</target>
</project>

fork="yes"”>

182 Code

APPENDIX D

Test Material

D.1 Serving a Recommendation

The recommendation provided is seen on figure D.1 and the ratings that is used
for calculating is shown below:

<!-- WikiTrustComment. Read more on:

http://en.wikipedia.org/wiki/User:Korsgaard

;Korsgaard;7;94723853;Bass_Strait ;MCwCFBRZ3bjvzQk5qygSa0d8k1FNnzTeAhROuFSrcRA1ZuRCDktVV033/4xRLA==

-=-> <!-- WikiTrustComment. Read more on:

http://en.wikipedia.org/wiki/User:Korsgaard
;Markuswennerberg;2;135767351;Bass_Strait;MCOCFQCAsVVaRk7rUg3JRpr5YDisWQQFmwIULnkONYOrvsDsf1Xrnnr9KME1LVO=
--> <!-- WikiTrustComment. Read more on:

http://en.wikipedia.org/wiki/User:Korsgaard
;Mikaelmartin;3;135767351;Bass_Strait;MCwCFBnk15F+J+q3hcyEFzV+IX6+I1JyQAhQLGZY7yE/OyWnQBvO9tINIx1x14A==
--> <!-- WikiTrustComment. Read more on:

http://en.wikipedia.org/wiki/User:Korsgaard
;Susansolovan;8;135767351;Bass_Strait;MCwCFFg2Xq0gC9RcgobBsotmNIbTT3IiAhQZcxGgOhAZ1wkB3+onaJOBmmOPHQ==
-=>

D.2 Giving Feedback

A screenshot of the the WRS after feedback have been given is shown on figure
D.2

Test Material

i
WIKIPEDIA
The Free Encyclopedia

nawigation

w Main page

w Contents

w Featured content

w Current events

w Random aricle

interaction
= About Wikipedia

= Community portal
= Recent changes

= File upload wizard
= Contactus

= Make 3 donstion

= Help

search

Go | | Search

toolbox
= iWhat links here
= Related changes

|\ http:)fen.wikipedia.orgfwikifBass _Strait

article | | discussion =ditthis page | | histery

Bass Strait

From Wikipesia, the fres encyclopedia

Bass Strait (IPA: [nes]) iz 3 sea sirait separating Tasmania fram the gouth of the Australian mainland (victoria in particular). The first Europesn to
discover it was Matthew Flinders in 1798, Flinders named it after his ship's doctor George Bass.

Approsimately 240 ki wide atits narrowest point and generally around 50 metres DEGHEEMEMEVENINN 1 117 |25t v Aie, I containg mary

iglands, with King Izland and Flinders Island home to substantial human settieme 3.0

Like the rest of the waters surrounding Tasmania, and particularly because of its li ships lostthere
during the 15th century. Alighthouse was erected on Deal Island in 1848 10 assist yyeq This Information Usefull to You?. reswere no guides to
the western entrance until the Wilzons Promontory Lighthouse was completed in 7 the northern end of
King 1sland in 1861 Yes No ‘

Strong currents between the Antaretic-driven Southern Ocean and Tasman Sea pr)) illustrate its wild
strength, Bass Straitis hoth twice as wide and twice as rough as the English Char Please rate this article ‘ictorian coastines
numhber in the hundreds, although stronger metal ships and modern marine navig sessels, some guite
large, have disappeared withaut trace, or lef scant evidence oftheir passing. Desp | 1 3 5 & 9 ‘\ supermatural
phenomensa ain ta those ofthe Bermuda Triangle, such disappearances can be | [~ o = = 15 of wind and sea
conditions, and the numerous semi-submerged rocks and reefs within the Straits.

Contents [hide]
1 Islands
2 Natural resaurces
Finfrastructure

34 Transport

32Energy

Figure D.1: A recommendation is inserted into the browser

=)
i

WIKIPEDIA

The Free Encyclopedia

navigation

= Main page

m Contents

w Featured content

m Cunent ewents

w Random article

interaction
u Aboutikipedia
= Community portal
= Resent shanges
u File upload mizard
= Contactus

“r 7 W hitp:/fen.wikipedia orgfwikifBass_Strait

aticle || discussion edit this page | | history

Bass Strait 30

From ikipedia, the free encyclopedis

Was This Information Usefull fo You?
Bass Strait (°4: [h@s]) 15 a sea strait separating Tasmania from the sauth ofthe o on S elEe You

discover itwas Matthew Flinders in 1788, Flinders named it after his ship's doctol Yes

Approximately 240 km wide at its narrowest point and generally around 50 metres
islands, with King Island and Flinders Island home to substantial human setlem Please rate this article

Like the rest of the waters surrounding Tasmania, and particularly because of its

during the 19th century. 4 lighthouse was erected on Deal Island in 1848 to assis

the western entrance until the Wilsons Promontory Lighthouse was completed in III
King Island in 1861.

Map o1
blue

1e first

e ltee

¥ ship
318 WE
itthe

Strong currents between the Antarctic-driven Southern Ocean and Tasman Sea provide a strait of powerful, wild storm waves. Toillus
strength, Bass Straitis both twice as wide and twice as rough as the English Channel. The shipwrecks on the Tasmanian and Wictor
nurnbet in the hundreds, although stronger metal ships and moderm marine navigation have dropped the danger sharply. Mary vegse
large, have disappeared without trace, or left scant evidence of their passing. Despite myths and legends of piracy, wrecking and sup

Figure D.2: Feedback given

D.3 Output from Scone

A screenshot from Scone after feedback have been given can be seen on figure

D.3

D.3 Output from Scone 185

This iz Scone 1.1.38
Wed Jul 11 13:16:57 CEST 2887: java.lang.ClassMotFoundException
Call "runscone —help" for options
—» Scone: Using database jdbc:mysgl://localhost:3306-Scone?jdbcCd
WBI: Initiali=zation is beginning.
Scone reguirements : 1000000ABEHAAEEHE01BE1
Links true
Inclusions false
Parse true
Keywords false
BodyText false
SourceCode false
FingerPrint: falze
Post Data : false
Scone: PostDataExtractor and ParsingMeg installed.
Scone: plugin sconeplugin.WRSPlugin...installed.
—» Scone initialization completed.
WBI: Initialization iz conmplete; ready to process requests.
Uerzion: IBM WBI 4.5
Conzole> Susansolovan 12345678 12345678
Waiting for Feedhack
Clicked 4
Clicked Yes

Figure D.3: Scone output after feedback given

186 Test Material

APPENDIX E

Content of the CD-ROM

The CD-ROM inclosed contains the following directories:

Code The complete source code for the WRS.

Bin Contains the binaries for the WRS, and scripts for executing the WRS.
Please make sure that the system is correctly configured as explained in
appendix B.

Report Contains a pdf of this report.

188 Content of the CD-ROM

APPENDIX F

Foldout diagrams

On the next two pages two full scale ULM diagrams is found. The sequence
diagram is broken up and presented in chapter 5 and the class diagram is broken
up in chapter 6

190 Foldout diagrams

191

KioisiHBuney

] Jsnip

1omainey

Figure F.1: Package and class diagram

1 v 1
! uBnidsam - 1
m : |
e 05 |
1 ! 0
' Y
!]
H [
e T TN e 1 A T T o
O O N U I
ozenas | | i
j
'
1
I L D 20l SN SR LSRR PRSI)
u : ;
joysaus S
™ louseauL |
|
1
'
1
;
sjoopnels _
! :
o
T (.
" llllllll
- @

abed sjoway

Foldout diagrams

192

senjen 15 pajepdn

sbunes payuap

sanje isna Bunsix3 4 7

sanjea isr Bunsixe 199

sbunespayuan 109

Joeqpasy

L
[

joeqpaay
]

1UBWN0Q TNLH PaYIPO

obed JNLH leuibuo

Buney pejejnojed
i

sanje IsniL

San[eA sni 1sanba;

IWLH [euibuo jsenbay

sbuney payuep

sBuney payusn :

sBuney payuap

sbuney mey _ _
abed 1p3
m
REIRE]
m 1sanbas 4N
1 abed TWLH
|
m 1sanbay dL1H
! |
Ta1epdn JsniL J3UIpOjy abeg _ SIBIMBIAGY JO buT, Jojenoje) buney _ §q buney Uoisses JeRjus/\ buney _ Jopenxg buney _ Jopenxg abegq 7 ‘peaiqL urepy _ J3|pueH 159nbay _

inserted into the browser

ion is

: A recommendat

Figure F.2

Bibliography

[10]

[11]

Amazon.com. http://www.amazon.com.

Internet movie database. http://www.imdb. com.

Java wiki bot framework. http://sourceforge.net/projects/jubf/.
mywot - web of trust. http://www.mywot.com.

Princeton university - wordnet. http://wordnet.princeton.edu.

Sun microsystems - keytool. http://java.sun.com/j2se/1.5.0/docs/
tooldocs/windows/keytool.html.

Wiki philosophy. http://www.wiki.org/wiki.cgi?WhatIsWiki.

Wikipedia foundation - mediawiki. http://www.mediawiki.org/wiki/
MediaWiki.

Akamai and JupiterResearch. Akamai and jupiterresearch identify ’4
seconds’ as the new threshold of acceptability for retail web page re-
sponse times. http://www.akamai.com/html/about/press/releases/
2006/press_110606.html, 2007 (accessed July 12, 2007).

Paulo Pinheiro da Silva, Deborah L. McGuinness, and Richard Fikes. A
proof markup language for semantic web services. Inf. Syst., 31(4):381-395,
2006.

Author Do. Adc parser. http://www-cs-students.stanford.edu/~do/.

http://www.amazon.com
http://www.imdb.com
http://sourceforge.net/projects/jwbf/
http://www.mywot.com
http://wordnet.princeton.edu
http://java.sun.com/j2se/1.5.0/docs/tooldocs/windows/keytool.html
http://java.sun.com/j2se/1.5.0/docs/tooldocs/windows/keytool.html
http://www.wiki.org/wiki.cgi?WhatIsWiki
http://www.mediawiki.org/wiki/MediaWiki
http://www.mediawiki.org/wiki/MediaWiki
http://www.akamai.com/html/about/press/releases/2006/press_110606.html
http://www.akamai.com/html/about/press/releases/2006/press_110606.html
http://www-cs-students.stanford.edu/~do/

194 BIBLIOGRAPHY

[12] Pierpaolo Dondio, Stephen Barrett, Stefan Weber, and Jean-Marc Seigneur.
Extracting trust from domain analysis: A case study on the wikipedia
project. In ATC, pages 362—-373, 2006.

[13] John Douceur. The Sybil Attack. In Proceedings of the 1st International
Peer To Peer Systems Workshop (IPTPS 2002), March 2002.

[14] eBlogger. Eblogger: On vandalism. http://eblogger.blogsome.com/
2005/10/24/on-vandalism/, 2007 (accessed May 15, 2007).

[15] Richard P. Honeck. Semantic similarity between sentences. In Journal of
Psycholinguistic Research, 1973.

[16] MER-C (http://en.wikipedia.org/wiki/User:MER C). Wikibot. http://
en.wikipedia.org/wiki/User:MER-C/Wiki. java.

[17] IBM. Web intermediaries (wbi). http://www.almaden.ibm.com/cs/wbi/.

[18] Catholijn M. Jonker, Joost J. P. Schalken, Jan Theeuwes, and Jan Treur.
Human experiments in trust dynamics. In iTrust, pages 206-220, 2004.

[19] Catholijn M. Jonker and Jan Treur. Formal analysis of models for the dy-
namics of trust based on experiences. In Francisco J. Garijo and Magnus
Boman, editors, Proceedings of the 9th European Workshop on Modelling
Autonomous Agents in a Multi-Agent World : Multi-Agent System Engi-
neering (MAAMAW-99), volume 1647, pages 221-231, Berlin, 30— 2 1999.
Springer-Verlag: Heidelberg, Germany.

[20] Audun Jgsang, Roslan Ismail, and Colin Boyd. A survey of trust and repu-
tation systems for online service provision. Decis. Support Syst., 43(2):618—
644, 2007.

[21] Audun Jgsang, Claudia Keser, and Theodosis Dimitrakos. Can we manage
trust? In iTrust, pages 93-107, 2005.

[22] Arnd Kohrs. Collaborative filtering on the Internet. PhD thesis, University
of Nice, Jul 2001.

[23] Paul Stephen Marsh. Formalising Trust as a Computational Concept. PhD
thesis, University of Stirling, 1994.

[24] Sean M. McNee, Shyong K. Lam, Catherine Guetzlaff, Joseph A. Konstan,
and John Riedl. Confidence displays and training in recommender systems.
Proceedings of the 9th IFIP TC13 International Conference on Human-
Computer Interaction (INTERACT 2003).

[25] Muffin. World wide web filtering system. http://muffin.doit.org/.

http://eblogger.blogsome.com/2005/10/24/on-vandalism/
http://eblogger.blogsome.com/2005/10/24/on-vandalism/
http://en.wikipedia.org/wiki/User:MER-C/Wiki.java
http://en.wikipedia.org/wiki/User:MER-C/Wiki.java
http://www.almaden.ibm.com/cs/wbi/
http://muffin.doit.org/

BIBLIOGRAPHY 195

[26]

31]

[32]

Podcasting News. Wikipedia caught in podfather turf war. http://www.
podcastingnews.com/archives/2005/12/wikipedia_caugh_1.html,
2007 (accessed May 23, 2007).

Andrew Oram. Peer-to-Peer: Harnessing the Power of Disruptive Tech-
nologies. O’Reilly & Associates, Inc., Sebastopol, CA, USA, 2001.

PAW. pro-active webfilter. http://paw-project.sourceforge.net/.

phpBB. phpbb forum. http://www.phpbb.com/, 2007 (accessed July 19,
2007).

The Register. Avoid wikipedia, warns wikipedia chief: It can seri-
ously damage your grades. http://www.theregister.co.uk/2006/06/
15/wikipedia_can_damage_your_grades/, 2007 (accessed July 3, 2007).

Jean-Marc Seigneur, Stephen Farrell, Christian D. Jensen, Elizabeth Gray,
and Yong Chen. FEnd-to-End Trust Starts with Recognition, volume 2802.
January 2004.

SFGate.com. The online credibility gap: Wikipedia article’s false claim
on jtk killing stirs debate. http://sfgate.com/cgi-bin/article.cgi?
file=/c/a/2005/12/06/WIKI.TMP, 2007 (accessed June 22, 2007).

Howard the Shopping Assistant. Furopean consumer center den-
mark. http://www.forbrugereuropa.dk/english/facts-and-advice/
ecommerce/assistant/, 2007 (accessed May 24, 2007).

David A. Utter. Wikipedia bans congress. http://www.webpronews.com/
topnews/2006/01/30/wikipedia-bans-congress, 2007 (accessed May
18, 2007).

David Wagner. Resilient aggregation in sensor networks. In SASN ’04:
Proceedings of the 2nd ACM workshop on Security of ad hoc and sensor
networks, pages 78-87, New York, NY, USA, 2004. ACM Press.

Harald Weinreich. Scone proxy. http://scone.de/.

Wikimedia Foundation. enwiki dump progress on 20070402. http:
//download.wikimedia.org/enwiki/20070402/, 2007 (accessed May 29,
2007).

Wikipedia. Wikipedia:size of wikipedia. http://en.wikipedia.org/
wiki/Wikipedia:Size_of_Wikipedia, 2007 (accessed May 18, 2007).

Ilya Zaihrayeu, Paulo Pinheiro da Silva, and Deborah L. McGuinness.
Iwtrust: Improving user trust in answers from the web. In iTrust, pages
384-392, 2005.

http://www.podcastingnews.com/archives/2005/12/wikipedia_caugh_1.html
http://www.podcastingnews.com/archives/2005/12/wikipedia_caugh_1.html
http://paw-project.sourceforge.net/
http://www.phpbb.com/
http://www.theregister.co.uk/2006/06/15/wikipedia_can_damage_your_grades/
http://www.theregister.co.uk/2006/06/15/wikipedia_can_damage_your_grades/
http://sfgate.com/cgi-bin/article.cgi?file=/c/a/2005/12/06/WIKI.TMP
http://sfgate.com/cgi-bin/article.cgi?file=/c/a/2005/12/06/WIKI.TMP
http://www.forbrugereuropa.dk/english/facts-and-advice/ecommerce/assistant/
http://www.forbrugereuropa.dk/english/facts-and-advice/ecommerce/assistant/
http://www.webpronews.com/topnews/2006/01/30/wikipedia-bans-congress
http://www.webpronews.com/topnews/2006/01/30/wikipedia-bans-congress
http://scone.de/
http://download.wikimedia.org/enwiki/20070402/
http://download.wikimedia.org/enwiki/20070402/
http://en.wikipedia.org/wiki/Wikipedia:Size_of_Wikipedia
http://en.wikipedia.org/wiki/Wikipedia:Size_of_Wikipedia

	Abstract
	Resumé
	Preface
	Acknowledgements
	1 Introduction
	1.1 Introduction
	1.2 Definition of terms
	1.3 Structure of this thesis

	2 State of the Art
	2.1 Theory and Research on Trust and Trust Management
	2.2 General Research on Recommender Systems
	2.3 Security
	2.4 Programmable Proxies
	2.5 MediaWiki
	2.6 Resilient Aggregation
	2.7 Semantic Similarity between Sentences
	2.8 Summary

	3 Analysis
	3.1 The Scenario
	3.2 Specification of Requirements
	3.3 Wikipedia Architecture
	3.4 Key Challenges
	3.5 Summary

	4 Trust Model
	4.1 Model Background
	4.2 General Architecture
	4.3 Structure of the Trust Model
	4.4 Formalizing the Model
	4.5 Conclusion on the Trust Model
	4.6 Summary

	5 Design
	5.1 Internal Architecture of the Proxy
	5.2 The HTTP Module
	5.3 The Page Module
	5.4 The Rating Module
	5.5 The Trust Module
	5.6 Security design
	5.7 Summary

	6 Implementation
	6.1 Technologies Used
	6.2 Scone
	6.3 Implementation of WRS
	6.4 Implementation Overview
	6.5 WRS Setup
	6.6 Summary

	7 Evaluation
	7.1 White box testing
	7.2 Black Box Testing
	7.3 Benchmarking
	7.4 Requirements
	7.5 Long Term Usability Testing
	7.6 Summary

	8 Future Work and Research
	8.1 Areas in Need of Research
	8.2 Future Work

	9 Conclusion
	A An Example
	A.1 Trust Updating
	A.2 Calculating a Racommendation

	B Installation Instructions
	B.1 Components needed
	B.2 Installation
	B.3 Register plugins

	C Code
	C.1 Benchmark Package
	C.2 Page Package
	C.3 Rating Package
	C.4 Remote Package
	C.5 Sconeplugin Package
	C.6 Statictools Package
	C.7 Trust Package
	C.8 Test Package
	C.9 Test.Page package
	C.10 Test.Rating package
	C.11 Test.Statictools Package
	C.12 Test.Trust Package
	C.13 Static Text Files

	D Test Material
	D.1 Serving a Recommendation
	D.2 Giving Feedback
	D.3 Output from Scone

	E Content of the CD-ROM
	F Foldout diagrams

