
Oracle® HTTP Server
mod_plsql User's Guide

10g Release 1 (10.1)

Part No. B12303-01

December 2003

Oracle HTTP Server mod_plsql User's Guide, 10g Release 1 (10.1)

Part No. B12303-01

Copyright © 1996, 2003 Oracle Corporation. All rights reserved.

Primary Author: Peter Lubbers

Contributing Author: Pravin Prabhakar

Contributors: Pushkar Kapasi, Eric Lee, and Thomas Van Raalte.

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle Store, PL/SQL, SQL*Net, and SQL*Plus are trademarks or
registered trademarks of Oracle Corporation. Other names may be trademarks of their respective
owners.

 iii

Contents

Send Us Your Comments .. vii

Preface.. ix

Related Documentation ... x
Documentation Accessibility .. x
Conventions.. xi
Oracle Services and Support .. xi

1 Understanding mod_plsql

1.1 Processing Client Requests .. 1-1
1.2 Database Access Descriptors (DADs)... 1-3
1.3 Invoking mod_plsql ... 1-3
1.4 Transaction Mode.. 1-6
1.5 Supported Data Types .. 1-6
1.6 Parameter Passing ... 1-6
1.6.1 Parameter Passing by Name (Overloaded Parameters) ... 1-8
1.6.2 Flexible Parameter Passing ... 1-9
1.6.2.1 Two Parameter Interface.. 1-9
1.6.2.2 Four Parameter Interface ... 1-10
1.6.3 Large Parameter Passing... 1-11
1.7 File Upload and Download.. 1-12
1.7.1 Document Table Definition .. 1-13
1.7.1.1 Semantics of the CONTENT Column .. 1-13
1.7.1.2 Semantics of the CONTENT_TYPE Column .. 1-14

iv

1.7.1.3 Semantics of the LAST_UPDATED Column .. 1-14
1.7.1.4 Semantics of the DAD_CHARSET Column .. 1-14
1.7.2 Old Style Document Table Definition ... 1-14
1.7.3 Configuration Parameters for Document Upload/Downloading 1-15
1.7.3.1 PlsqlDocumentTablename... 1-16
1.7.3.2 PlsqlDocumentPath (Document Access Path) .. 1-16
1.7.3.3 PlsqlDocumentProcedure (Document Access Procedure).............................. 1-16
1.7.3.4 PlsqlUploadAsLongRaw.. 1-17
1.7.4 File Upload .. 1-17
1.7.5 Specifying Attributes (Mime Types) of Uploaded Files ... 1-19
1.7.6 Uploading Multiple Files .. 1-20
1.7.7 File Download... 1-20
1.7.8 Direct BLOB Download... 1-21
1.8 Path Aliasing (Direct Access URLs).. 1-22
1.9 Common Gateway Interface (CGI) Environment Variables ... 1-23
1.9.1 Adding and Overriding CGI Environment Variables .. 1-24
1.9.2 PlsqlNLSLanguage... 1-25
1.9.2.1 REQUEST_CHARSET CGI Environment Variable.. 1-26
1.9.2.2 REQUEST_IANA_CHARSET CGI Environment Variable 1-26
1.10 Restrictions in mod_plsql ... 1-26

2 Configuring mod_plsql

2.1 Verifying Requirements.. 2-1
2.2 Installing Required Packages... 2-1
2.3 Creating a DAD for Your PL/SQL Application.. 2-4

3 Securing Application Database Access Through mod_plsql

3.1 Authenticating Users Through mod_plsql .. 3-1
3.1.1 Basic (Database Controlled Authentication) .. 3-2
3.1.2 Oracle HTTP Server mod_plsql Basic Authentication Mode 3-2
3.1.3 Global OWA, Custom OWA, and Per Package (Custom Authentication) 3-3
3.2 Deauthenticating Users... 3-4
3.3 Protecting the PL/SQL Procedures Granted to PUBLIC... 3-5
3.3.1 Using the PlsqlExclusionList Directive in mod_plsql... 3-5
3.3.2 Accessing the PlsqlExclusionList Directive .. 3-5

v

4 Optimizing PL/SQL Performance

4.1 PL/SQL Performance in Oracle HTTP Server - Overview ... 4-1
4.2 Process-Based and Thread-Based Operation in Oracle HTTP Server 4-3
4.3 Performance Tuning Issues for mod_plsql.. 4-3
4.3.1 Connection Pooling with mod_plsql... 4-4
4.3.2 Closing Pooled Database Sessions... 4-6
4.3.3 Restarting the mod_plsql Connection Pool.. 4-7
4.4 Performance Tuning Areas in mod_plsql.. 4-7
4.4.1 PL/SQL Based Web Application Development Considerations 4-7
4.4.2 Connection Pooling Tips and Oracle HTTP Server Configuration......................... 4-9
4.4.3 Tuning the Number of Database Sessions.. 4-11
4.4.4 Two-Listener Strategy ... 4-12
4.4.5 Overhead Problems ... 4-14
4.4.5.1 The Describe Overhead.. 4-14
4.4.5.2 Avoiding the Describe Overhead ... 4-14
4.4.6 The Flexible Parameter Passing (four-parameter) Overhead 4-15
4.5 Using Caching with PL/SQL Based Web Applications .. 4-16
4.5.1 Using the Validation Technique .. 4-17
4.5.1.1 Last-Modified .. 4-17
4.5.1.2 Entity Tag Method .. 4-17
4.5.1.3 Using the Validation Technique for mod_plsql ... 4-18
4.5.1.4 Second Request Using the Validation Technique .. 4-19
4.5.2 Using the Expires Technique.. 4-21
4.5.3 System- and User-level Caching with PL/SQL Based Web Applications........... 4-23
4.6 Tuning File System Cache to Improve Caching Performance...................................... 4-25
4.6.1 Introducing File System Cache Tuning... 4-25
4.6.2 Enabling File System Cache.. 4-27
4.6.3 Configuring File System Cache to Reside on a Faster File System 4-27
4.6.4 Resizing File System Cache .. 4-27
4.6.4.1 Setting the Total Cache Size with PlsqlCacheTotalSize 4-28
4.6.4.2 Setting the Days of Aging for Cache with PlsqlCacheMaxAge 4-29
4.6.4.3 Setting the Maximum File Size for a Cache File with PlsqlCacheMaxSize .. 4-29
4.6.5 Configuring Cache Cleanup ... 4-30
4.7 Oracle HTTP Server Directives ... 4-30

vi

A Frequently Asked Questions

Index

vii

Send Us Your Comments

Oracle HTTP Server mod_plsql User's Guide, 10g Release 1 (10.1)

Part No. B12303-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

■ Did you find any errors?
■ Is the information clearly presented?
■ Do you need more information? If so, where?
■ Are the examples correct? Do you need more examples?
■ What features did you like most?

If you find any errors in this document, or have suggestions for improvement, please send your com-
ments to appserverdocs_us@oracle.com. Please indicate the title and part number of the documenta-
tion and the chapter, section, and page number (if available). If you would like a reply, please give
your name, address, telephone number, and e-mail address.

If you have problems with the software, please contact your local Oracle Support Services.

viii

ix

Preface

This manual describes how to install, configure, and maintain mod_plsql. It
contains the following chapters:

■ Chapter 1, "Understanding mod_plsql" provides an overview of mod_plsql and
its features.

■ Chapter 2, "Configuring mod_plsql" explains how to use mod_plsql.

■ Chapter 3, "Securing Application Database Access Through mod_plsql"
describes how to secure the database access using mod_plsql.

■ Chapter 4, "Optimizing PL/SQL Performance" describes how to optimize
PL/SQL performance.

■ Appendix A, "Frequently Asked Questions" contains the answers to frequently
asked questions.

New Features
New features in this release of mod_plsql include:

■ Enhanced cache clean up algorithm allowing users to configure the time to
clean up the cache.

■ Enhanced OWA packages to allow better byte-packing of response data from
multibyte databases resulting in fewer round-trips to the database.

■ Reduced PL/SQL function call overheads in heavily called OWA package APIs
like htp.p.

■ Enhanced performance logging in mod_plsql. See "What kinds of logging
facilities are available in mod_plsql?" in Appendix A, "Frequently Asked
Questions" for more information.

x

■ Enhanced security by obscuring schema passwords in the DAD configuration.

■ Removed the requirement to have /pls in the virtual path for accessing mod_
plsql. It can still be used, but is no longer required. mod_plsql has been
integrated in the Oracle HTTP Server configuration and so a mod_plsql URL no
longer needs to start with a "/pls" prefix.

Related Documentation
You may also find the following manuals useful:

■ Oracle Database Application Developer’s Guide - Fundamentals

■ Oracle HTTP Server Administrator's Guide

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For additional information, visit the Oracle
Accessibility Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This
documentation may contain links to Web sites of other companies or organizations
that Oracle does not own or control. Oracle neither evaluates nor makes any
representations regarding the accessibility of these Web sites.

xi

Conventions
The following conventions are used in this manual:

Oracle Services and Support
Information about Oracle products and global services is available from:

http://www.oracle.com

The subsequent sections provide URLs for selected services.

Oracle Technology Network
Register with the Oracle Technology Network (OTN) at:

http://otn.oracle.com

OTN delivers technical papers, discussion forums, code samples, product
documentation, self-service developer support, and Oracle key developer products
to enable rapid development and deployment of application built on Oracle
technology.

Oracle Support Services
Technical Support contact information worldwide is listed at:

http://www.oracle.com/support

Convention Meaning

 .

 .

 .

Vertical ellipsis points in an example mean that information not
directly related to the example has been omitted.

. . . Horizontal ellipsis points in statements or commands mean that
parts of the statement or command not directly related to the
example have been omitted

boldface text Boldface type in text indicates a term defined in the text.

< > Angle brackets enclose user-supplied names.

[] Brackets enclose optional clauses from which you can choose one or
none.

xii

Templates are provided to help you prepare information about your problem
before you call. You will also need your CSI number (if applicable) or complete
contact details, including any special project information.

Product and Documentation
For U.S.A customers, Oracle Store is at:

http://store.oracle.com

Links to Stores in other countries are provided from this site.

Product documentation can be found at:

http://docs.oracle.com

Customer Service
Global Customer Service contacts are listed at:

http://www.oracle.com/support

Education and Training
Training information and worldwide schedules are available from:

http://education.oracle.com

Understanding mod_plsql 1-1

1
Understanding mod_plsql

mod_plsql provides support for building PL/SQL-based applications on the Web.
PL/SQL stored procedures retrieve data from a database and generate HTTP
responses containing data and code to display in a Web browser. mod_plsql also
supports other Oracle products such as OracleAS Portal.

This chapter discusses the following topics:

■ Processing Client Requests

■ Database Access Descriptors (DADs)

■ Invoking mod_plsql

■ Transaction Mode

■ Supported Data Types

■ Parameter Passing

■ File Upload and Download

■ Path Aliasing (Direct Access URLs)

■ Common Gateway Interface (CGI) Environment Variables

■ Restrictions in mod_plsql

1.1 Processing Client Requests
mod_plsql is an Oracle HTTP Server plug-in that communicates with the database.
It maps browser requests into database stored procedure calls over a SQL*Net
connection. It is often indicated by a /pls virtual path.

The following scenario provides an overview of what steps occur when a server
receives a client request:

Processing Client Requests

1-2 Oracle HTTP Server mod_plsql User's Guide

1. The Oracle HTTP Server receives a PL/SQL Server Page request from a client
browser.

2. The Oracle HTTP Server routes the request to mod_plsql.

3. The request is forwarded by mod_plsql to the Oracle Database. By using the
configuration information stored in your DAD, mod_plsql connects to the
database.

4. mod_plsql prepares the call parameters, and invokes the PL/SQL procedure in
the application.

5. The PL/SQL procedure generates an HTML page using data and the PL/SQL
Web Toolkit accessed from the database.

6. The response is returned to mod_plsql.

7. The Oracle HTTP Server sends the response to the client browser.

Invoking mod_plsql

Understanding mod_plsql 1-3

The procedure that mod_plsql invokes returns the HTTP response to the client. To
simplify this task, mod_plsql includes the PL/SQL Web Toolkit, which contains a
set of packages called the owa packages. Use these packages in your stored
procedure to get information about the request, construct HTML tags, and return
header information to the client. Install the toolkit in a common schema so that all
users can access it.

1.2 Database Access Descriptors (DADs)
Each mod_plsql request is associated with a Database Access Descriptor (DAD), a
set of configuration values used for database access. A DAD specifies information
such as:

■ the database alias (Net8 service name).

■ a connect string, if the database is remote.

■ a procedure for uploading and downloading documents.

You can also specify username and password information in a DAD. If they are not
specified, the user is prompted to enter a username and password when the URL is
invoked.

1.3 Invoking mod_plsql
To invoke mod_plsql in a Web browser, input the URL in the following format:

protocol://hostname[:port]/DAD_location/[[!][schema.][package.]proc_name[?query_string]]

See Also: Oracle HTTP Server Administrator's Guide for
descriptions of the DAD parameters and an overview of the mod_
plsql configuration files.

Table 1–1 Invoking mod_plsql Parameters

Parameter Description

protocol Either http or https. For SSL, use https.

hostname The machine where the Web server is running.

port

(optional)

The port at which the Web server is listening. If omitted, port
80 is assumed.

Invoking mod_plsql

1-4 Oracle HTTP Server mod_plsql User's Guide

Example 1–1 Invoking A Procedure That Does Not Take Arguments

http://www.acme.com:9000/pls/mydad/mypackage.myproc

The Web server running on www.acme.com and listening at port 9000 handles the
request. When the Web server receives the request, it passes the request to mod_
plsql. This is because the /pls/mydad indicates that the Web server is configured
to invoke mod_plsql. It then uses the DAD associated with /pls/mydad and runs
the myproc procedure stored in mypackage.

Example 1–2 Invoking A Procedure That Takes Arguments

http://www.acme.com:9000/pls/mydad/mypackage.myproc?a=v&b=1

DAD location A virtual path to handle PL/SQL requests that you have
configured in the Web server. The DAD location can contain
only ASCII characters.

! character

(optional)

Indicates to use the flexible parameter passing scheme. See
Section 1.6.2, "Flexible Parameter Passing" for more
information.

schema

(optional)

The database schema name. If omitted, name resolution for
package.proc_name occurs based on the database user that the
URL request is processed as.

package

(optional)

The package that contains the PL/SQL stored procedure. If
omitted, the procedure is standalone.

proc_name The PL/SQL stored procedure to run. This must be a
procedure and not a function. It can accept only IN arguments.

?query_string

(optional)

The parameters for the stored procedure. The string follows
the format of the GET method. For example:

■ Multiple parameters are separated with the & character.
Space characters in the values to be passed in are replaced
with the + character.

■ If you use HTML forms to generate the string (as opposed
to generating the string yourself), the formatting is done
automatically.

■ The HTTP request may also choose the HTTP POST
method to post data to mod_plsql. See "POST, GET and
HEAD Methods" on page 1-5 for more information.

Table 1–1 Invoking mod_plsql Parameters

Parameter Description

Invoking mod_plsql

Understanding mod_plsql 1-5

The Web server running on www.acme.com and listening at port 9000 handles the
request. When the Web server receives the request, it uses the DAD associated with
/pls/mydad and runs the myproc procedure stored in mypackage, and passes
two arguments, a and b, with the values v, and 1 to the procedure.

Example 1–3 Invoking the Default Procedure Stored in the DAD Configuration

http://www.acme.com:9000/pls/mydad

The Web server running on www.acme.com and listening at port 9000 handles the
request. When the Web server receives the request, it uses the DAD associated with
/pls/mydad and invokes the default procedure configured in the DAD. For
example, if the configuration parameter PlsqlDefaultPage in the DAD
/pls/mydad is set to myschema.mypackage.myproc, then the procedure
myschema.mypackage.myproc is invoked for the request.

In this example, the default home page for the mydad DAD (as specified in the
DAD Configuration) is displayed.

POST, GET and HEAD Methods
The POST, GET and HEAD methods in the HTTP protocol instruct browsers on
how to pass parameter data (usually in the form of name-value pairs) to
applications. The parameter data is generated by HTML forms.

mod_plsql applications can use any of the methods. Each method is as secure as the
underlying transport protocol (http or https).

■ When using the POST method, parameters are passed in the request body.
Generally, if you are passing large amounts of parameter data to the server, use
the POST method.

■ When using the GET method, parameters are passed using a query string. The
limitation of this method is that the length of the value in a name-value pair
cannot exceed the maximum length for the value of an environment variable, as
imposed by the underlying operating system. In addition, operating systems
have a limit on how many environment variables you can define.

■ When using the HEAD method, it has the same functionality as the GET
method. The only difference is that only the HTTP status line and the HTTP
headers are passed back. No content data is streamed back to the browser. This
is useful for monitoring tools in which you are only interested if the request is
processed correctly.

Transaction Mode

1-6 Oracle HTTP Server mod_plsql User's Guide

■ Mixed Mode - In mod_plsql you can pass some of the parameters in a query
string and the remaining ones as POST data. For example, if you have a
procedure foo (a varchar2, b number), and want to pass values "v" and "1" to 'a'
and 'b' respectively, you could do so in three ways to create URLs:

■ All values are specified as part of the query string.

http://host:port/pls/DAD/foo?a=v&b=1

■ All values are specified as part of the POST data.

http://host:port/pls/DAD/foo, POST data="a=v&b=1"

■ Some of the parameters are specified in the URL and the rest in the POST
data.

http://host:port/pls/DAD/foo?a=v, POST data="b=1"

1.4 Transaction Mode
After processing a URL request for a procedure invocation, mod_plsql performs a
rollback if there were any errors. Otherwise, it performs a commit. This mechanism
does not allow a transaction to span across multiple HTTP requests. In this stateless
model, applications typically maintain state using HTTP cookies or database tables.

1.5 Supported Data Types
Because HTTP supports character streams only, mod_plsql supports the following
subset of PL/SQL data types:

■ NUMBER

■ VARCHAR2

■ TABLE OF NUMBER

■ TABLE OF VARCHAR2

Records are not supported.

1.6 Parameter Passing
mod_plsql supports:

■ Parameter passing by name

Parameter Passing

Understanding mod_plsql 1-7

Each parameter in a URL that invokes procedure or functions identified by a
unique name. Overloaded parameters are supported. See Section 1.6.1,
"Parameter Passing by Name (Overloaded Parameters)" for more information.

■ Flexible parameter passing

Procedures are prefixed by a ! character. See Section 1.6.2, "Flexible Parameter
Passing" for more information.

■ Large (up to 32K) parameters passing

See Section 1.6.3, "Large Parameter Passing" for more information.

Note: mod_plsql handles multi-value variables by storing the
values in a PL/SQL table. This enables you to be flexible about how
many values the user can pick, and it makes it easy for you to
process the user's selections as a unit. Each value is stored in a row
in the PL/SQL table, starting at index 1. The first value (in the order
that it appears in the query string) of a variable that has multiple
values is placed at index 1, the second value of the same variable is
placed at index 2, and so on. If the order of the values in the
PL/SQL table is significant in your procedure, you need to
determine the order in which the variables appear in the query
string, or modify your PL/SQL application to do the ordering
internally.

If you do not have variables with multiple values, the order in
which the variables appear does not matter, because their values
are passed to the procedure's parameters by name, and not by
position.

The PL/SQL tables used as parameters in the mod_plsql
environment must have a base type of VARCHAR2. Oracle can
convert VARCHAR2 to other data types such as NUMBER, DATE, or
LONG. The maximum length of a VARCHAR2 variable is 32K.

If you cannot guarantee that at least one value will be submitted to
the PL/SQL table (for example, the user can select no options), use
a hidden form element to provide the first value. Not providing a
value for the PL/SQL table produces an error, and you cannot
provide a default value for a PL/SQL table.

Parameter Passing

1-8 Oracle HTTP Server mod_plsql User's Guide

1.6.1 Parameter Passing by Name (Overloaded Parameters)
Overloading allows multiple subprograms (procedures or functions) to have the
same name, but differ in the number, order, or the datatype family of the
parameters. When you call an overloaded subprogram, the PL/SQL compiler
determines which subprogram to call based on the data types passed.

PL/SQL enables you to overload local or packaged subprograms. Standalone
subprograms cannot be overloaded.

You must give parameters different names for overloaded subprograms that have
the same number of parameters. Because HTML data is not associated with
datatypes, mod_plsql does not know which version of the subprogram to call.

For example, although PL/SQL enables you to define two procedures using the
same parameter names for the procedures, an error occurs if you use this with
mod_plsql.

-- legal PL/SQL, but not for mod_plsql
CREATE PACKAGE my_pkg AS
PROCEDURE my_proc (val IN VARCHAR2);
PROCEDURE my_proc (val IN NUMBER);

END my_pkg;

To avoid the error, name the parameters differently. For example:

-- legal PL/SQL and also works for mod_plsql
CREATE PACKAGE my_pkg AS
PROCEDURE my_proc (valvc2 IN VARCHAR2);
PROCEDURE my_proc (valnum IN NUMBER);

END my_pkg;

The URL to invoke the first version of the procedure looks similar to:

http://www.acme.com/pls/mydad/my_pkg.my_proc?valvc2=input

The URL to invoke the second version of the procedure looks similar to:

http://www.acme.com/pls/mydad/my_pkg.my_proc?valnum=34

Overloading and PL/SQL Arrays
If you have overloaded PL/SQL procedures where the parameter names are
identical, but the data type is owa_util.ident_arr (a table of varchar2) for one
procedure and a scalar type for another procedure, mod_plsql can still distinguish
between the two procedures. For example, if you have the following procedures:

CREATE PACKAGE my_pkg AS

Parameter Passing

Understanding mod_plsql 1-9

PROCEDURE my_proc (val IN VARCHAR2); -- scalar data type
PROCEDURE my_proc (val IN owa_util.ident_arr); -- array data type

END my_pkg;

Each of these procedures has a single parameter of the same name, val.

When mod_plsql gets a request that has only one value for the val parameter, it
invokes the procedure with the scalar data type.

Example 1–4 Send the following URL to execute the scalar version of the procedure:

http://www.acme.com/pls/mydad/my_proc?val=john

When mod_plsql gets a request with more than one value for the val parameter, it
then invokes the procedure with the array data type.

Example 1–5 Send the following URL to execute the array version of the procedure:

http://www.acme.com/pls/mydad/my_proc?val=john&val=sally

To ensure that the array version executes, use hidden form elements on your HTML
page to send dummy values that are checked and discarded in your procedure.

1.6.2 Flexible Parameter Passing
You can have HTML forms from which users can select any number of elements. If
these elements have different names, you would have to create overloaded
procedures to handle each possible combination. Alternatively, you could insert
hidden form elements to ensure that the names in the query string are consistent
each time, regardless of what elements the user chooses. mod_plsql makes this
operation easier by supporting flexible parameter passing to handle HTML forms
where users can select any number of elements.

To use flexible parameter passing for a URL-based procedure invocation, prefix the
procedure with an exclamation mark (!) in the URL. You can use two or four
parameters. The two parameter interface provides improved performance with
mod_plsql. The four parameter interface is supported for compatibility.

1.6.2.1 Two Parameter Interface
procedure [proc_name]
 (name_array IN [array_type],
 value_array IN [array_type]);

Parameter Passing

1-10 Oracle HTTP Server mod_plsql User's Guide

Example 1–6 If you send the following URL:

http://www.acme.com/pls/mydad/!scott.my_proc?x=john&y=10&z=doe

The exclamation mark prefix (!) instructs mod_plsql to use flexible parameter
passing. It invokes procedure scott.myproc and passes it the following two
arguments:

name_array ==> ('x', 'y', 'z')
value_array ==> ('john', '10', 'doe')

1.6.2.2 Four Parameter Interface
The four parameter interface is supported for compatibility.

procedure [proc_name]
 (num_entires IN NUMBER,
 name_array IN [array_type],
 value_array IN [array_type],
 reserved in [array_type]);

Table 1–2 Two Parameter Interface Parameters

Parameter Description

proc_name

(required)

The name of the PL/SQL procedure that you are invoking.

name_array The names from the query string (indexed from 1) in the order
submitted.

value_array The values from the query string (indexed from 1) in the order
submitted.

array_type

(required)

Any PL/SQL index-by table of varchar2 type (Example,
owa.vc_arr).

Note: When using this style of Flexible Parameter Passing, the
procedure must be defined with the parameters name_array and
value_array. The datatypes of these arguments should match the
datatypes shown in the example.

Parameter Passing

Understanding mod_plsql 1-11

Example 1–7 If you send the following URL, where the query_string has duplicate
occurrences of the name "x":

http://www.acme.com/pls/mydad/!scott.my_pkg.my_proc?x=a&y=b&x=c

The exclamation mark prefix (!) instructs mod_plsql to use flexible parameter
passing. It invokes procedure scott.my_pkg.myproc and passes it the following
arguments:

num_entries ==> 3
name_array ==> ('x', 'y', 'x');
value_array ==> ('a', 'b', 'c')
reserved ==> ()

1.6.3 Large Parameter Passing
The values passed as scalar arguments and the values passed as elements to the
index-by table of varchar2 arguments can be up to 32K in size.

Table 1–3 Four Parameter Interface Parameters

Parameter Description

proc_name

(required)

The name of the PL/SQL procedure that you are invoking.

num_entries The number of name_value pairs in the query string

name_array The names from the query string (indexed from 1) in the order
submitted.

value_array The values from the query string (indexed from 1) in the order
submitted.

reserved Not used. It is reserved for future use.

array_type

(required)

Any PL/SQL index-by table of varchar2 type (Example,
owa.vc_arr).

Note: When using this style of Flexible Parameter Passing, the
procedure must be defined with the parameters num_entries, name_
array, value_array, and reserved. The datatypes of these arguments
should match the datatypes shown in the example.

File Upload and Download

1-12 Oracle HTTP Server mod_plsql User's Guide

For example, when using flexible parameter passing (described in Section 1.6.2,
"Flexible Parameter Passing"), each name or value in the query_string portion of the
URL gets passed as an element of the name_array or value_array argument to
the procedure being invoked. These names or values can be up to 32KB in size.

1.7 File Upload and Download
mod_plsql enables you to:

■ Upload and download files as raw byte streams without any character set
conversions. The files are uploaded into the document table. A primary key is
passed to the PL/SQL upload handler routine so that it can retrieve the
appropriate table row.

■ Specify one or more tables for each application, for uploaded files so that files
from different applications are not mixed together.

■ Provide access to files in these tables through a URL format that doesn't use
query strings, for example:

http://www.acme.com:9000/pls/mydad/docs/cs250/lecture1.htm

This is required to support uploading a set of files that have relative URL
references to each other.

■ Upload multiple files for each form submission.

■ Upload files into LONG RAW and BLOB (Binary Large Object) types of
columns in the document table.

This section discusses the following:

■ Document Table Definition

■ Old Style Document Table Definition

■ Configuration Parameters for Document Upload/Downloading

■ File Upload

■ Specifying Attributes (Mime Types) of Uploaded Files

■ Uploading Multiple Files

■ File Download

■ Direct BLOB Download

File Upload and Download

Understanding mod_plsql 1-13

1.7.1 Document Table Definition
You can specify the document storage table for each DAD. The document storage
table must have the following definition:

CREATE TABLE [table_name] (
 NAME VARCHAR2(256) UNIQUE NOT NULL,
 MIME_TYPE VARCHAR2(128),
 DOC_SIZE NUMBER,
 DAD_CHARSET VARCHAR2(128),
 LAST_UPDATED DATE,
 CONTENT_TYPE VARCHAR2(128),
 [content_column_name] [content_column_type]
 [, [content_column_name] [content_column_type]]
);

Users can choose the table_name. The content_column_type type must be
either LONG RAW or BLOB.

The content_column_name depends on the corresponding content_column_
type:

■ If the content_column_type is LONG RAW, the content_column_name
must be CONTENT.

■ If the content_column_type is BLOB, the content_column_name must be
BLOB_CONTENT.

An example of legal document table definition is:

CREATE TABLE MYDOCTABLE (
 NAME VARCHAR(128) UNIQUE NOT NULL,
 MIME_TYPE VARCHAR(128),
 DOC_SIZE NUMBER,
 DAD_CHARSET VARCHAR(128),
 LAST_UPDATED DATE,
 CONTENT_TYPE VARCHAR(128),
 CONTENT LONG RAW,
 BLOB_CONTENT BLOB ;
);

1.7.1.1 Semantics of the CONTENT Column
The contents of the table are stored in a content column. There can be more than one
content column in a document table. However, for each row in the document table,
only one of the content columns is used. The other content columns are set to
NULL.

File Upload and Download

1-14 Oracle HTTP Server mod_plsql User's Guide

1.7.1.2 Semantics of the CONTENT_TYPE Column
The content_type column tracks in which content column the document is
stored. When a document is uploaded, mod_plsql sets the value of this column to
the type name.

For example, if a document was uploaded into the BLOB_CONTENT column, then
the CONTENT_TYPE column for the document is set to the string 'BLOB'.

1.7.1.3 Semantics of the LAST_UPDATED Column
The LAST_UPDATED column reflects a document's creation or last modified time.
When a document is uploaded, mod_plsql sets the LAST_UPDATED column for the
document to the database server time.

If an application then modifies the contents or attributes of the document, it must
also update the LAST_UPDATED time.

mod_plsql uses the LAST_UPDATED column to check and indicate to the HTTP
client (browser) if the browser can use a previously cached version of the document.
This reduces network traffic and improves server performance.

1.7.1.4 Semantics of the DAD_CHARSET Column
The DAD_CHARSET column keeps track of the character set setting at the time of the
file upload. This column is reserved for future use.

1.7.2 Old Style Document Table Definition
For backward capability with the document model used by older releases of
WebDB 2.x, mod_plsql also supports the following old definition of the document
storage table where the CONTENT_TYPE, DAD_CHARSET and LAST_UPDATED
columns are not present.

/* older style document table definition (DEPRECATED) */
CREATE TABLE [table_name]
(
 NAME VARCHAR2(128),
 MIME_TYPE VARCHAR2(128),
 DOC_SIZE NUMBER,
 CONTENT LONG RAW

);

File Upload and Download

Understanding mod_plsql 1-15

1.7.3 Configuration Parameters for Document Upload/Downloading
The following configuration parameters in the DAD affect a document
upload/download operation:

■ "PlsqlDocumentTablename"

■ "PlsqlDocumentPath (Document Access Path)"

■ "PlsqlDocumentProcedure (Document Access Procedure)"

■ "PlsqlUploadAsLongRaw"

Example 1–8 Parameters for Document Upload/Download

If the configuration for these parameters in a DAD is as follows:

PlsqlDocumentTablename scott.my_document_table
PlsqlUploadAsLongRaw html
PlsqlDocumentPath docs
PlsqlDocumentProcedure scott.my_doc_download_procedure

then:

■ mod_plsql will retrieve data from, or store to a database table called my_
document_table in the scott schema.

■ All file extensions except .html will be uploaded to the document table as
BLOBs. All files with .html extension will be uploaded as Long Raw.

■ All URLs which have the keyword docs immediately following the DAD
location will result in invocation of the procedure scott.my_doc_download_
procedure.

Typically, this procedure will call wpg_docload.download_file to initiate a file
download for a file whose name is based on the URL specification.

A simple example with the preceding configuration is:

http://www.acme.com/pls/dad/docs/index.html

This results in downloading of the file index.html from the Long Raw column of
the database table scott.my_document_table. Note that the application procedure
has full control on the file download to initiate, and has the flexibility to define a
more complex PlsqlDocumentProcedure that implements file-level access
controls and versioning.

File Upload and Download

1-16 Oracle HTTP Server mod_plsql User's Guide

1.7.3.1 PlsqlDocumentTablename
The PlsqlDocumentTablename parameter specifies the table for storing
documents when file uploads are performed through this DAD.

Syntax:

PlsqlDocumentTablename [document_table_name]

PlsqlDocumentTablename my_documents
or,

PlsqlDocumentTablename scott.my_document_table

1.7.3.2 PlsqlDocumentPath (Document Access Path)
The PlsqlDocumentPath parameter specifies the path element to access a
document. The PlsqlDocumentPath parameter follows the DAD name in the
URL. For example, if the document access path is docs, then the URL would look
similar to:

http://www.acme.com/pls/mydad/docs/myfile.htm

The mydad is the DAD name and myfile.htm is the file name.

Syntax:

PlsqlDocumentPath [document_access_path_name]

1.7.3.3 PlsqlDocumentProcedure (Document Access Procedure)
The PlsqlDocumentProcedure procedure is an application-specified procedure.
It has no parameters and processes a URL request with the document access path.
The document access procedure calls wpg_docload.download_
file(filename) to download a file. It knows the filename based on the URL
specification. For example, an application can use this to implement file-level access
controls and versioning. An example of this is in Section 1.7.7, "File Download".

Syntax:

PlsqlDocumentProcedure [document_access_procedure_name]

Note: The application defined procedure scott.my_doc_
download_procedure has to be defined without arguments, and
should rely on the CGI environment variables to process the
request.

File Upload and Download

Understanding mod_plsql 1-17

Example 1–9

PlsqlDocumentProcedure my_access_procedure
or,

PlsqlDocumentProcedure scott.my_pkg.my_access_procedure

1.7.3.4 PlsqlUploadAsLongRaw
The DAD parameter, PlsqlUploadAsLongRaw, configures file uploads based on
their file extensions. The value of a PlsqlUploadAsLongRaw DAD parameter is a
one-entry-for-each-line list of file extensions. Files with these extensions are uploaded
by mod_plsql into the content column of LONG RAW type in the document table.
Files with other extensions are uploaded into the BLOB content column.

The file extensions can be text literals (jpeg, gif, and so on) or an asterisk (*) matches
any file whose extension has not been listed in the PlsqlUploadAsLongRaw
setting.

Syntax:

PlsqlUploadAsLongRaw [file_extension]
PlsqlUploadAsLongRaw *

[file_extension] is an extension for a file (with or without the '.' character, for
example, 'txt' or '.txt') or the wildcard character *.

Example 1–10

PlsqlUploadAsLongRaw html
PlsqlUploadAsLongRaw txt
PlsqlUploadAsLongRaw *

1.7.4 File Upload
To send files from a client machine to a database, create an HTML page that
contains:

■ A FORM tag whose enctype attribute is set to multipart/form-data and
whose action attribute is associated with a mod_plsql procedure call, referred to
as the "action procedure."

■ An INPUT element whose type and name attributes are set to file. The INPUT
type="file" element enables a user to browse and select files from the file
system.

When a user clicks Submit, the following events occur:

File Upload and Download

1-18 Oracle HTTP Server mod_plsql User's Guide

1. The browser uploads the file specified by the user as well as other form data to
the server.

2. mod_plsql stores the file contents in the database in the document storage table.
The table name is derived from the PlsqlDocumentTablename DAD setting.

3. The action procedure specified in the action attribute of the FORM is run
(similar to invoking a mod_plsql procedure without file upload).

The following example shows an HTML form that lets a user select a file from the
file system to upload. The form contains other fields to provide information about
the file.

<html>
 <head>
 <title>test upload</title>
 </head>
 <body>
 <FORM enctype="multipart/form-data"
 action="pls/mydad/write_info"
 method="POST">
 <p>Author's Name:<INPUT type="text" name="who">
 <p>Description:<INPUT type="text" name="description">

 <p>File to upload:<INPUT type="file" name="file">

 <p><INPUT type="submit">
 </FORM>
 </body>
</html>

When a user clicks Submit on the form:

1. The browser uploads the file listed in the INPUT type="file" element.

2. The write_info procedure then runs.

Note: The parsing of HTML documents is deprecated in mod_
plsql. mod_plsql used to parse the content of an HTML file when it
was uploaded, and identified other files that the HTML document
was referring to. This information was then stored into a table. The
table name was constructed by appending the name of the
document table with "part". This functionality was found to be not
of use to customers and has been deprecated, starting in version
9.0.4 of mod_plsql.

File Upload and Download

Understanding mod_plsql 1-19

3. The procedure writes information from the form fields to a table in the database
and returns a page to the user.

procedure write_info (
 who in varchar2,
 description in varchar2,
 file in varchar2) as
begin
 insert into myTable values (who, description, file);
 htp.htmlopen;
 htp.headopen;
 htp.title('File Uploaded');
 htp.headclose;
 htp.bodyopen;
 htp.header(1, 'Upload Status');
 htp.print('Uploaded ' || file || ' successfully');
 htp.bodyclose;
 htp.htmlclose;
end;

The filename obtained from the browser is prefixed with a generated directory
name to reduce the possibility of name conflicts. The "action procedure" specified in
the form renames this name. So, for example, when /private/minutes.txt is
uploaded, the name stored in the table by the mod_plsql is
F9080/private/minutes.txt. The application can rename this in the called
stored procedure. For example, the application can rename it to
scott/minutes.txt.

1.7.5 Specifying Attributes (Mime Types) of Uploaded Files
In addition to renaming the uploaded file, the stored procedure can alter other file
attributes. For example, the form in the example from Section 1.7.4, "File Upload"
could display a field for allowing the user to input the uploaded document's
Multipurpose Internet Mail Extension (MIME) type.

The MIME type can be received as a parameter in write_info. The document
table would then store the mime type for the document instead of the default mime
type that is parsed from the multipart form by mod_plsql when uploading the file.

Note: The action procedure does not have to return anything to
the user, but it is a good idea to let the user know whether the
Submit succeeded or failed, as shown subsequently.

File Upload and Download

1-20 Oracle HTTP Server mod_plsql User's Guide

1.7.6 Uploading Multiple Files
To send multiple files in a single submit, the upload form must include multiple
<INPUT type="file" name="file"> elements. If more than one file INPUT element
defines name to be of the same name, then the action procedure must declare that
parameter name to be of type owa.vc_arr. The names defined in the file INPUT
elements could also be unique, in which case, the action procedure must declare
each of them to be of varchar2. For example, if a form contained the following
elements:

<INPUT type="file" name="textfiles">
<INPUT type="file" name="textfiles">
<INPUT type="file" name="binaryfile">

As a result, the action procedure must contain the following parameters:

procedure handle_text_and_binary_files(textfiles IN owa.vc_arr, binaryfile
IN varchar2).

1.7.7 File Download
After you have sent files to the database, you can download them, delete them from
the database, and read and write their attributes.

To download a file, create a stored procedure without parameters that calls wpg_
docload.download_file (file_name) to initiate the download.

The HTML page presented to the user simply has a link to a URL, which includes
the Document Access Path and specifies the file to be downloaded.

For example, if the DAD specifies that the Document Access Path is docs and the
Document Access Procedure is mydad.process_download, then the
mydad.process_download procedure is called when the user clicks on the URL:

http://www.acme.com:9000/pls/mydad/docs/myfile.htm

An example implementation of process_download is:

procedure process_download is
v_filename varchar2(255);
begin
 -- getfilepath() uses the SCRIPT_NAME and PATH_INFO cgi
 -- environment variables to construct the full pathname of
 -- the file URL, and then returns the part of the pathname
 -- following '/docs/'
 v_filename := getfilepath;
 select name into v_filename from plsql_gateway_doc

File Upload and Download

Understanding mod_plsql 1-21

 where UPPER(name) = UPPER(v_filename);
 -- now we call docload.download_file to initiate
 -- the download.
 wpg_docload.download_file(v_filename);
exception
 when others then
v_filename := null;
end process_download;

Any time you call wpg_docload.download_file(filename) from a procedure
running in mod_plsql, a download of the file filename is initiated. However,
when a file download begins, no other HTML (produced through HTP interfaces)
generated by the procedure, is passed back to the browser.

mod_plsql looks for the filename in the document table. There must be a unique
row in the document table whose NAME column matches the filename. mod_plsql
generates the HTTP response headers based on the information in the MIME_TYPE
column of the document table. The content_type column's value determines
which content columns the document's content comes from. The contents of the
document are sent as the body of the HTTP response.

1.7.8 Direct BLOB Download
You can also download contents stored as Binary Large Object (BLOB) data type.

1. Create a stored procedure that calls wpg_docload.download_file(blob) where
blob is of data type BLOB. Since mod_plsql has no information about the
contents in the BLOB, you must supply them.

2. Setup the Content-Type and other headers.

Example: The following procedure uses the name from the argument to select a
BLOB from a table and initiates the Direct BLOB download:

procedure download_blob(varchar2 name) is
myblob blob;
begin

a. Select the BLOB out of mytable using the name argument

select blob_data into myblob from mytable where blob_name = name;

b. Setup headers which describes the content

owa_util.mime_header('text/html', FALSE);
htp.p('Content-Length: ' || dbms_lob.getlength(myblob));

Path Aliasing (Direct Access URLs)

1-22 Oracle HTTP Server mod_plsql User's Guide

owa_util.http_header_close;

c. Initiate Direct BLOB download

wpg_docload.download_file(myblob);
end;

The structure of the mytable table:

create table mytable
(
blob_name varchar2(128),
blob_data blob
);

3. The HTML page presented to the user has a link to a URL that calls this stored
procedure with the correct argument(s).

4. When a Direct BLOB download is initiated, no other HTML (produced through
the HTP interface) generated by the procedure is passed back to the browser.

1.8 Path Aliasing (Direct Access URLs)
Path Aliasing enables applications using mod_plsql to provide direct reference to
its objects using simple URLs. The Path Aliasing functionality is a generalization of
how the document download functionality is provided. The following
configuration parameters in the DAD are used for Path Aliasing:

■ PlsqlPathAlias

■ PlsqlPathAliasProcedure

For Example, if the configuration for these parameters in a DAD is as follows:

PlsqlPathAlias myalias
PlsqlPathAliasProcedure scott.my_path_alias_procedure

then, all URLs that have the keyword myalias immediately following the DAD
location will invoke the procedure scott.my_path_alias_procedure. Based on the
URL specification, this procedure can initiate an appropriate response.

Common Gateway Interface (CGI) Environment Variables

Understanding mod_plsql 1-23

1.9 Common Gateway Interface (CGI) Environment Variables
The OWA_UTIL package provides an API to get the values of CGI environment
variables. The variables provide context to the procedure being executed through
mod_plsql. Although mod_plsql is not operated through CGI, the PL/SQL
application invoked from mod_plsql can access these CGI environment variables.

The list of CGI environment variables is as follows:

■ HTTP_AUTHORIZATION

■ DAD_NAME

■ DOC_ACCESS_PATH

■ HTTP_ACCEPT

■ HTTP_ACCEPT_CHARSET

■ HTTP_ACCEPT_LANGUAGE

■ HTTP_COOKIE

■ HTTP_HOST

■ HTTP_PRAGMA

■ HTTP_REFERER

■ HTTP_USER_AGENT

■ PATH_ALIAS

■ PATH_INFO

■ HTTP_ORACLE_ECID

Note: The application defined procedure scott.my_path_alias_
procedure has to be defined to take one argument of type varchar2
called p_path. This argument will receive everything following the
keyword used in PlsqlPathAlias.

For example, in the preceding configuration, the URL:

http://www.acme.com/pls/dad/myalias/MyFolder/MyIte
m

will result in the procedure scott.my_path_alias_procedure
receiving the argument MyFolder/MyItem.

Common Gateway Interface (CGI) Environment Variables

1-24 Oracle HTTP Server mod_plsql User's Guide

■ DOCUMENT_TABLE

■ REMOTE_ADDR

■ REMOTE_HOST

■ REMOTE_USER

■ REQUEST_CHARSET (refer to Section 1.9.2.1, "REQUEST_CHARSET CGI
Environment Variable")

■ REQUEST_IANA_CHARSET (refer to Section 1.9.2.2, "REQUEST_IANA_
CHARSET CGI Environment Variable")

■ REQUEST_METHOD

■ REQUEST_PROTOCOL

■ SCRIPT_NAME

■ SCRIPT_PREFIX

■ SERVER_NAME

■ SERVER_PORT

■ SERVER_PROTOCOL

A PL/SQL application can get the value of a CGI environment variable using the
owa_util.get_cgi_env interface.

Syntax:

owa_util.get_cgi_env(param_name in varchar2) return varchar2;

param_name is the name of the CGI environment variable. param_name is
case-insensitive.

1.9.1 Adding and Overriding CGI Environment Variables
The PlsqlCGIEnvironmentList DAD parameter is a one-entry-for-each-line list of
name and value pairs that can override any environment variables or add new
ones. If the name is one of the original environment variables (as listed in
Section 1.9, "Common Gateway Interface (CGI) Environment Variables"), that
environment variable is overridden with the given value. If the name is not in the
original list, a new environment variable is added into the list with that same name
and value given in the parameter.

Common Gateway Interface (CGI) Environment Variables

Understanding mod_plsql 1-25

If no value is specified for the parameter, then the value is obtained from the Oracle
HTTP Server. With Oracle HTTP Server, you can pass the DOCUMENT_ROOT CGI
Environment variable by specifying:

PlsqlCGIEnvironmentList DOCUMENT_ROOT

New environment variables passed in through this configuration parameter are
available to the PL/SQL application through the owa_util.get_cgi_env interface.

Example 1–11

PlsqlCGIEnvironmentList SERVER_NAME=myhost.mycompany.com
PlsqlCGIEnvironmentList REMOTE_USER=testuser

This example overrides the SERVER_NAME and the REMOTE_USER CGI
environment variables with the given values since they are part of the original list.

Example 1–12

PlsqlCGIEnvironmentList MYENV_VAR=testing
PlsqlCGIEnvironmentList SERVER_NAME=
PlsqlCGIEnvironmentList REMOTE_USER=user2

This example overrides the SERVER_NAME and the REMOTE_USER variables.
The SERVER_NAME variable is deleted since there is no value given to it. A new
environment variable called MYENV_VAR is added since it is not part of the
original list. It is assigned the value of "testing".

1.9.2 PlsqlNLSLanguage
For mod_plsql, the National Language Support (NLS) variable (PlsqlNLSLanguage)
can be set either as an environment variable or at the DAD level, the
PlsqlNLSLanguage parameter of the database must match that of the Oracle HTTP
Server, or the PlsqlNLSLanguage parameter of the database and Oracle HTTP Server,
must be of fixed character width and both must be the same size.

Note: Refer to the Oracle HTTP Server Administrator's Guide for
information about the mod_plsql Configuration Files.

Restrictions in mod_plsql

1-26 Oracle HTTP Server mod_plsql User's Guide

If PlsqlNLSLanguage is not configured at the DAD level, the NLS setting is picked up
from the environment. If it does not exist, the default rules apply for NLS_LANG
settings for Oracle.

1.9.2.1 REQUEST_CHARSET CGI Environment Variable
Every request to mod_plsql is associated with a DAD. The CGI environment
variable REQUEST_CHARSET is set as follows:

■ The REQUEST_CHARSET is set to the default character set in use, derived from
the PlsqlNLSLanguage environment variable. However, if the DAD level
PlsqlNLSLanguage parameter is set, that derives the character set information
instead.

The PL/SQL application can access this information by a function call of the form:

owa_util.get_cgi_env('REQUEST_CHARSET');

1.9.2.2 REQUEST_IANA_CHARSET CGI Environment Variable
This is the IANA (Internet Assigned Number Authority) equivalent of the
REQUEST_CHARSET CGI environment variable. IANA is an authority that
globally coordinates the standards for charsets on the Internet.

1.10 Restrictions in mod_plsql
The following restrictions exist in mod_plsql:

■ The maximum length of the HTTP cookie header is 32000 bytes. Values higher
than this generate an error. This limit is due to the PL/SQL varchar2 limit.

■ The maximum length of any single cookie within the HTTP cookie is 3990.
Values higher than this generate an error. This limit is due to the OCI array
bind limit of strings in arrays.

■ There is a hard maximum cookie limit in mod_plsql that limits the number of
cookies being set at any given time. That limit is set to 20. Anything over 20 will
be dropped.

■ The PL/SQL Gateway does not support calling procedures with OUT
parameters to be called from a Web interface. Doing this may result in
ORA-6502 errors. The recommended approach is not to call any procedure that
has OUT variables in it. However, the current architecture will let you modify a
value as long as the modified value does not exceed the length that was passed

Restrictions in mod_plsql

Understanding mod_plsql 1-27

in. Existing applications that encounter this problem need to be modified in one
of the following ways:

■ Implement wrappers for procedures with OUT parameters so that such
procedures are not invoked directly through a browser URL.

■ Create a local variable that gets assigned the value of the parameter being
passed in, and is then used for all internal changes.

■ The total number of name value pairs that can be passed to a PL/SQL
procedure is 2000.

■ mod_plsql limits the total number of parameters that can be passed to a single
procedure to 2000.

■ mod_plsql limits the size of a single parameter that can be passed to a
procedure to 32000 bytes.

■ It is not possible to use identical DAD locations in different virtual hosts.

Restrictions in mod_plsql

1-28 Oracle HTTP Server mod_plsql User's Guide

Configuring mod_plsql 2-1

2
Configuring mod_plsql

This chapter describes how you can set up and use mod_plsql. It contains the
following sections:

■ Verifying Requirements

■ Installing Required Packages

■ Creating a DAD for Your PL/SQL Application

2.1 Verifying Requirements
Before you run mod_plsql, you must satisfy the following requirements:

■ You must have a SYS user password on the database where you plan to load
PL/SQL Web Toolkit packages required by mod_plsql.

■ The database to which you plan to connect mod_plsql must be up and running.

■ Oracle HTTP Server mod_plsql ships with OWA package version 9.0.4.0.1. It is
recommended that the OWA packages installed in the database are at least
version 9.0.4.0.1.

2.2 Installing Required Packages
After installation, if you need to use Oracle HTTP Server mod_plsql with a database
that is not shipped with the product, you must manually install additional required
packages using the owaload.sql script.

Installing Required Packages

2-2 Oracle HTTP Server mod_plsql User's Guide

1. Navigate to the directory where the owaload.sql file is located. This directory
is ORACLE_HOME/Apache/modpsql/owa.

2. Using SQL*Plus, login to the Oracle database as the SYS user.

3. You can check the version of the OWA packages currently installed by running
the following query:

select owa_util.get_version from dual;

■ If the query succeeds, but shows a version less than 9.0.4.0.1, it is
recommended that you install the newer OWA packages.

■ If the query fails, you either do not have the OWA packages installed, or are
running a very old version of OWA packages, and it is recommended that
you install, or upgrade to the new OWA packages.

4. At a SQL prompt, run the following command:

@owaload.sql log_file

Note: Even if a full database export is made with the Export
utility you still must reinstall mod_plsql in the new target instance
by running the OWALOAD.SQL script as SYS. Objects in SYS are not
imported with the Import/Export mechanism, and the PL/SQL
toolkit has to be installed in SYS.

Note: To detect older OWA packages, see "How do I detect and
clean up duplicate OWA packages installed in the database?" in
Appendix A, "Frequently Asked Questions".

Table 2–1 Installing Required Packages Parameters

Elements Description

owaload.sql Installs the PL/SQL Web Toolkit packages into the SYS
schema. It also creates public synonyms and makes the
packages public so that all users in the database have access to
them. Therefore, only one installation for each database is
needed.

log_file The installation log file. Make sure that you have write
permissions to create the log file

Installing Required Packages

Configuring mod_plsql 2-3

5. Scan the log file for any errors.

6. Do a manual recompile.

After the install, check the version of the OWA packages by running "Select
owa_util.get_version from dual;". Confirm that the version shown is
9.0.4.0.1 or later.

7. Note that public access is now granted to:

■ OWA_CUSTOM

■ OWA

■ HTF

■ HTP

■ OWA_COOKIE

■ OWA_IMAGE

■ OWA_OPT_LOCK

■ OWA_PATTERN

■ OWA_SEC

■ OWA_TEXT

■ OWA_UTIL

■ OWA_CACHE

Note: The owaload script checks the existing version of the OWA
packages in the database and installs a new version only if:

■ No OWA package exists or,

■ Older OWA packages were detected. If your database already
has the latest OWA packages or has a newer version installed,
the owaload script does nothing and reports this in the log file.

Note: Installing the OWA packages invalidates all dependent
objects. These packages automatically recompile on first access, but
a manual recompile is recommended after the reinstallation.

Creating a DAD for Your PL/SQL Application

2-4 Oracle HTTP Server mod_plsql User's Guide

■ WPG_DOCLOAD

8. Note also that the following public synonyms are created:

■ OWA_CUSTOM for OWA_CUSTOM

■ OWA_GLOBAL for OWA_CUSTOM

■ OWA for OWA

■ HTF for HTF

■ HTP for HTP

■ OWA_COOKIE for OWA_COOKIE

■ OWA_IMAGE for OWA_IMAGE

■ OWA_OPT_LOCK for OWA_OPT_LOCK

■ OWA_PATTERN for OWA_PATTERN

■ OWA_SEC for OWA_SEC

■ OWA_TEXT for OWA_TEXT

■ OWA_UTIL for OWA_UTIL

■ OWA_INIT for OWA_CUSTOM

■ OWA_CACHE for OWA_CACHE

■ WPG_DOCLOAD for WPG_DOCLOAD

2.3 Creating a DAD for Your PL/SQL Application
To access a Web-enabled PL/SQL application, you must first configure a PL/SQL
Database Access Descriptor (DAD) for mod_plsql. A DAD is a set of values that
specifies how mod_plsql connects to a database server to fulfill an HTTP request.
Besides the connection details, a DAD contains important configuration parameters
for various operations in the database, and for mod_plsql in general. For detailed
instructions, refer to the mod_plsql section in the Oracle HTTP Server Administrator's
Guide.

Securing Application Database Access Through mod_plsql 3-1

3
Securing Application Database Access

Through mod_plsql

This chapter describes how to set up the database and PL/SQL to avoid known
security problems. It covers the following topics:

■ Authenticating Users Through mod_plsql

■ Deauthenticating Users

■ Protecting the PL/SQL Procedures Granted to PUBLIC

3.1 Authenticating Users Through mod_plsql
mod_plsql provides different levels of authentication in addition to those provided
by the Oracle HTTP Server. The Oracle HTTP Server protects documents, virtual
paths and so forth, while mod_plsql protects users logging into the database or
running a PL/SQL Web application.

You can enable different authentication modes, as described in Table 3–1.

See Also: For more information about mod_plsql configuration
parameters, refer to the Oracle HTTP Server Administrator's Guide.

Table 3–1 Authentication Modes Used with mod_plsql

Authentication Mode Approach

Basic Authentication is performed using basic HTTP authentication.
Most applications use basic authentication.

Global OWA Authentication is performed using the owa_custom.authorize
procedure in the schema containing the PL/SQL Web Toolkit
packages.

Authenticating Users Through mod_plsql

3-2 Oracle HTTP Server mod_plsql User's Guide

3.1.1 Basic (Database Controlled Authentication)
The module, mod_plsql, supports authentication at the database level. It uses HTTP
basic authentication but authenticates credentials by using them to attempt to log
on to the database. Authentication is verified against a user database account, using
user names and passwords that are either:

■ stored in the DAD. The end user is not required to log in. This method is useful
for Web pages that provide public information.

■ provided by the users by means of the browser's Basic HTTP Authentication
dialog box. The user must provide a user name and password in the dialog box.

3.1.2 Oracle HTTP Server mod_plsql Basic Authentication Mode
Oracle HTTP Server has a different mechanism for the basic authentication mode.
The user name and password must be stored in the DAD. Oracle HTTP Server uses
HTTP basic authentication where the credentials are stored in a password file on the
file system. Authentication is verified against the users listed in that file.

Basic Authentication Mode
mod_plsql supports basic authentication. Oracle HTTP Server authenticates users'
credentials against a password file on the file system. This functionality is provided
by a module called mod_auth.

Custom OWA Authentication is performed using packages and procedures
in the user's schema (owa_customize.authorize), or if not
found, in the schema containing the PL/SQL Web Toolkit
packages.

PerPackage Authentication is performed using packages and procedures
in the user's schema (packageName.authorize).

Single Sign-on Authentication is performed using Oracle Application Server
Single Sign-On. Use this mode only if your application works
with OracleAS Single Sign-On.

Table 3–1 Authentication Modes Used with mod_plsql

Authentication Mode Approach

Authenticating Users Through mod_plsql

Securing Application Database Access Through mod_plsql 3-3

3.1.3 Global OWA, Custom OWA, and Per Package (Custom Authentication)
Custom authentication enables applications to authenticate users within the
application itself, not at the database level. Authorization is performed by invoking
a user-written authorization function.

Custom authentication is done using OWA_CUSTOM and cannot be combined with
dynamic username/password authentication. Custom authentication needs to have
a static username/password stored in the DAD configuration file. mod_plsql uses
this DAD username/password to login to the database. Once mod_plsql is logged
in, authentication control is passed back to the application, by calling an
application-level PL/SQL hook. This callback function is implemented by the
application developers. The value returned by the callback function determines the
success or failure of authentication. The value TRUE means success and FALSE
means failure.

Depending on the kind of custom authentication needed, you can place the
authentication function in different locations:

■ Global OWA enables you to invoke the same authentication function for all
users and procedures.

■ Custom OWA enables you to invoke a different authentication function for each
user and for all procedures.

■ Per Package authentication enables you to invoke the authentication function
for all users, but only for procedures in a specific package or for anonymous
procedures.

For example, when using Custom OWA, an authorization function might verify that
a user has logged in as user guest with password welcome, or it might check the
user's IP address to determine access.

Table 3–2 summarizes the parameter values.

Table 3–2 Custom Authentication Modes and Callback Functions

Mode Access Control Scope Callback Function

Global OWA All packages owa_custom.authorize in the OWA
package schema.

Custom OWA All packages owa_custom.authorize in the user's
schema, or, if not found, in the OWA
package schema.

Deauthenticating Users

3-4 Oracle HTTP Server mod_plsql User's Guide

3.2 Deauthenticating Users
For DADs using dynamic authentication (no username/password in the DAD),
mod_plsql allows users to log off (clear HTTP authentication information)
programmatically through a PL/SQL procedure without having to exit all browser
instances. This feature is supported on Netscape 3.0 or higher and on Microsoft
Internet Explorer. On other browsers, the user may have to exit the browser to
deauthenticate.

Deauthentication can be done programatically by creating your own logout
procedure, which simulates a logout and redirects the user to a sign-off page.

Create or replace procedure MyLogOffProc as follows:

BEGIN
 -- Open the HTTP header
 owa_util.mime_header('text/html', FALSE, NULL);

 -- Send a cookie to logout
 owa_cookie.send('WDB_GATEWAY_LOGOUT', 'YES', path=>'/');

 -- Close the HTTP header
 owa_util.http_header_close;

 -- Generate the page
 htp.p('You have been logged off from the WEBSITE');
 htp.anchor('http://www.abc.com', 'click here');
 htp.p('
bye');
END;

Another method of deauthentication is to add /logmeoff after the DAD in the
URL. For example:

http://www.abc.com:2000/pls/myDAD/logmeoff

Per package Specified package packageName.authorize in the user's
schema, or anonymous.authorize is
called.

Table 3–2 Custom Authentication Modes and Callback Functions

Mode Access Control Scope Callback Function

Protecting the PL/SQL Procedures Granted to PUBLIC

Securing Application Database Access Through mod_plsql 3-5

3.3 Protecting the PL/SQL Procedures Granted to PUBLIC
Every database package granted to public can be directly executed using the
following URL:

http://hostname:port/pls/dad/schema.package.procedure

With the different levels of authentication, you must protect the execution of the
PL/SQL procedures granted to PUBLIC in the database. These procedures (in the
dbms_% packages, utl_% packages, and all packages under the SYS schema) pose a
security vulnerability when they are executed through a Web browser. Such
packages are intended only for the PL/SQL application developer.

3.3.1 Using the PlsqlExclusionList Directive in mod_plsql
mod_plsql provides a DAD parameter directive called PlsqlExclusionList to protect
the execution of these PL/SQL packages and other packages that are specific to
applications. The PlsqlExclusionList directive specifies a pattern for procedure,
package, and schema names that are forbidden from being directly executed from a
browser. This is a multiline directive in which each pattern is specified on one line.
The pattern is not case sensitive and it accepts simple wildcards such as *, ?, and
[a-z]. The default patterns that are not accessible from a direct URL are sys.*,
dbms_*, utl_*, and owa_util.*.

If the PlsqlExclusionList directive is overridden, the default settings do not apply. In
this case, you must add the default list to the list of excluded patterns.

3.3.2 Accessing the PlsqlExclusionList Directive
You can set the PlsqlExclusionList directive in the mod_plsql configuration file called
dads.conf. This configuration file is located in the following directories:

■ (UNIX) ORACLE_HOME/Apache/modplsql/conf/

■ (Windows) ORACLE_HOME\Apache\modplsql\conf

Where ORACLE_HOME is the location of your Oracle HTTP Server installation.

Caution: Setting the PlsqlExclusionList directive to #NONE# will
disable all protection. It is not recommended for an active Web site.
Only use this setting for debugging purposes.

Protecting the PL/SQL Procedures Granted to PUBLIC

3-6 Oracle HTTP Server mod_plsql User's Guide

To ensure the best security for PL/SQL procedures that are granted to PUBLIC,
specify the system default settings with the PlsqlExclusionList directive in the
dads.conf file as shown in Example 3–1.

Example 3–1 System Default Settings Specified with the PlsqlExclusionList Directive

PlsqlExclusionList sys.*
PlsqlExclusionList dbms_*
PlsqlExclusionList utl_*
PlsqlExclusionList owa_util.*
PlsqlExclusionList owa.*
PlsqlExclusionList htp.*
PlsqlExclusionList htf.*
PlsqlExclusionList myschema.mypackage*

In addition to the patterns that are specified with this directive, mod_plsql also
disallows any URLs that contain special characters such as tabs, newlines, carriage
returns, single quotation marks ('), or reverse slashes (\). You cannot change this.

Optimizing PL/SQL Performance 4-1

4
Optimizing PL/SQL Performance

This chapter discusses the techniques for improving PL/SQL performance in Oracle
HTTP Server.

This chapter contains the following sections:

■ PL/SQL Performance in Oracle HTTP Server - Overview

■ Process-Based and Thread-Based Operation in Oracle HTTP Server

■ Performance Tuning Issues for mod_plsql

■ Performance Tuning Areas in mod_plsql

■ Using Caching with PL/SQL Based Web Applications

■ Tuning File System Cache to Improve Caching Performance

■ Oracle HTTP Server Directives

4.1 PL/SQL Performance in Oracle HTTP Server - Overview
This chapter describes several techniques to improve the performance of PL/SQL
based Web applications in Oracle HTTP Server.

Table 4–1 lists recommendations for Database Access Descriptor (DAD) parameters
and settings. By default, these DAD parameters are specified in the file dads.conf.
On UNIX systems, this is in the ORACLE_HOME/Apache/modplsql/conf
directory. On Windows systems, by default, this file is in the directory ORACLE_
HOME\Apache\Apache\modplsql\conf directory. The file dads.README in this
directory describes the DAD parameters in detail.

PL/SQL Performance in Oracle HTTP Server - Overview

4-2 Oracle HTTP Server mod_plsql User's Guide

Table 4–2 lists mod_plsql caching options and the sections that describe these
caching options.

Table 4–1 Database Access Descriptor (DAD) Parameters Recommended Setting Summary

Parameter Recommended Setting

PlsqlAlwaysDescribeProcedure Set this to off for best performance.

Default Value: off

PlsqlDatabaseConnectString For newer DADs, use the ServiceNameFormat. Use the
SIDFormat only for backward compatibility.

Note: for HA configurations of the database, it is recommended
that the connect string parameter gets resolved through an LDAP
lookup.

PlsqlFetchBufferSize For multibyte character sets like Japanese or Chinese, setting this
to 256 should provide better performance

Default Value: 128

PlsqlIdleSessionCleanupInterval Increasing this parameter allows pooled database connections to
remain available, in the pool, for the specified time

Default Value: 15 (minutes)

See Also: Section 4.3.3, "Restarting the mod_plsql Connection
Pool"

PlsqlLogEnable This parameter should be set to Off unless recommended by
Oracle support for debugging purposes

Default Value: off

PlsqlMaxRequestsPerSession If the PL/SQL based Web application does not leak resources or
memory, this parameter can be set to a higher value (for example,
5000).

Default Value: 1000

See Also: Section 4.3.2, "Closing Pooled Database Sessions" and
Section 4.4.2, "Connection Pooling Tips and Oracle HTTP Server
Configuration".

PlsqlNLSLanguage Set this parameter to match the database Globalization Support
parameters to eliminate overheads in character set conversions in
Oracle Net Services

PlsqlSessionStateManagement Set this parameter to
StatelessWithFastResetPackageState if the database is
8.1.7.2 or later.

Performance Tuning Issues for mod_plsql

Optimizing PL/SQL Performance 4-3

4.2 Process-Based and Thread-Based Operation in Oracle HTTP Server
This chapter describes PL/SQL performance issues that apply on platforms where
the Oracle HTTP Server is process-based and thread-based. On a process-based
Oracle HTTP Server, such as those running on UNIX-based platforms, each process
servers all types of HTTP requests, including servlets and PL/SQL, static files. On a
thread-based Oracle HTTP Server, such as Windows-based platforms, there is just
one Oracle HTTP Server process with multiple threads within the process;
individual threads can be used serve all types of HTTP requests.

4.3 Performance Tuning Issues for mod_plsql
When tuning mod_plsql to improve the performance of PL/SQL based Web
applications, it is important to be familiar with some mod_plsql internals. This
section presents a basic overview of some mod_plsql functionality.

This section covers the following topics:

Table 4–2 Caching Options

Option Description

Expires Technique Best performance - for content that changes predictably.

See Also: Section 4.5.2, "Using the Expires Technique"

Validation technique Good performance - for content that changes unpredictably.

See Also: Section 4.5.1, "Using the Validation Technique"

System-level caching Improves performance by caching one copy for everyone on
system.

See Also: Section 4.5.3, "System- and User-level Caching with
PL/SQL Based Web Applications"

See Also: Chapter 6 "Oracle HTTP Server Modules" in the Oracle
HTTP Server Administrator's Guide for details on the DAD
Parameters shown in Table 4–1.

Note: In some cases in this chapter we make references to
performance optimizations that apply for PL/SQL based Web
applications where the distinction between platforms, either
process-based or thread based is significant.

Performance Tuning Issues for mod_plsql

4-4 Oracle HTTP Server mod_plsql User's Guide

■ Connection Pooling with mod_plsql

■ Closing Pooled Database Sessions

■ Restarting the mod_plsql Connection Pool

4.3.1 Connection Pooling with mod_plsql
The Database Server connection pooling logic supplied with mod_plsql can be best
explained with an example.

For example, consider the following typical scenario:

1. The Oracle HTTP Server listener is started. There are no database connections in
the connection pool maintained by mod_plsql.

2. A browser makes a mod_plsql request (R1) for Database Access Descriptor
(DAD) D1.

3. One of the Oracle HTTP Server processes (httpd process P1) starts servicing
the request R1.

4. mod_plsql in process P1 checks its connection pool and finds that there are no
database connections in its pool for that user request.

5. Based on the information in DAD D1, mod_plsql in process P1 opens a new
database connection, services the PL/SQL request, and adds the database
connection to its pool.

6. From this point on, all subsequent requests to process P1 for DAD D1 can now
make use of the database connection pooled by mod_plsql.

7. If a request for DAD D1 gets picked up by another process (process P2), then
mod_plsql in process P2 opens its own database connection, services the
request, and adds the database connection to its pool.

8. From this point on, all subsequent requests to process P2 for DAD D1 can now
make use of the database connection pooled by mod_plsql.

9. Now, assume that a request R2 is made for DAD D2 and this request gets
routed to process P1.

10. mod_plsql in process P1 does not have any database connections pooled for
DAD D2, and a new database session is created for DAD D2 and pooled after
servicing the request. Process P1 now has two database connections pooled, one
for DAD D1 and another for DAD D2.

The important details in the example shown in steps 1-10 are:

Performance Tuning Issues for mod_plsql

Optimizing PL/SQL Performance 4-5

a. Each Oracle HTTP Server process serves all types of requests, such as static
files requests, servlet requests, and mod_plsql requests. There is no control
on which Oracle HTTP Server process services the next request.

b. One Oracle HTTP Server process cannot use or share the connection pool
created by another process.

c. Each Oracle HTTP Server process pools at most one database connection for
each DAD.

d. User sessions are switched within a pooled database connection for a DAD.
For DADs based on Oracle Application Server Single Sign-On (SSO), proxy
authentication is used to switch the user session. For non-SSO users, using
HTTP basic authentication with the username and password not in the
DAD, users are re-authenticated on the same connection.

e. Multiple DADs may point to the same database instance, but database
connections are not shared across DADs even within the same process.

f. Unused DADs do not result in any database connections.

In the worst-case scenario, the total number of database connections pooled by
mod_plsql is a factor of the total number of active DADs multiplied by the number
of Oracle HTTP Server (httpd) processes running at any given time for a single
Oracle HTTP Server instance. If you have configured the Oracle HTTP Server
processes to a high number, you need to configure the back-end database to handle
a corresponding number of database sessions, and remember that this configuration
value needs to be multiplied times the number of Oracle HTTP Server instances that
use the back-end database.

For example, if there are three Oracle HTTP Server instances configured to spawn a
maximum of 50 httpd processes each, plus two active DADs, you need to set up
the database to allow 300 (3*50*2) sessions. This number does not include any
sessions that are needed to allow other Web applications to connect.

On UNIX systems, database connections cannot be shared across httpd processes,
and process-based platforms have more of a Connection Reuse feature than
Connection Pooling. Note that this is an artifact of the process-model in Oracle HTTP
Server.

Note: On Windows systems, the Oracle HTTP Server is just one
process. Therefore, the connection pool is shared and can be used
across threads.

Performance Tuning Issues for mod_plsql

4-6 Oracle HTTP Server mod_plsql User's Guide

4.3.2 Closing Pooled Database Sessions
Pooled database sessions are closed under the following circumstances:

1. When a pooled connection has been used to serve a configured number of
requests.

By default each connection pooled by mod_plsql is used to service a maximum
of 1000 requests and then the database connection is shut down and
reestablished. This is done to make sure that any resource leaks in the PL/SQL
based Web application, or in the Oracle client server side, do not adversely
affect the system. To change the default value of 1000 by tuning the DAD
configuration parameter PlsqlMaxRequestsPerSession.

2. When a pooled connection has been idle for an extended period of time.

By default, each pooled connection gets automatically cleaned up after 15
minutes of idle time. This operation is performed by the cleanup thread in
mod_plsql. For heavily loaded sites, each connection could be used at least once
every 15 minutes and the connection cleanup might not happen for a long
period of time. In such a case, the connection would be cleaned up based on the
configuration value of PlsqlMaxRequestsPerSession. Change the default
value of 15 minutes by tuning the mod_plsql configuration parameter
PlsqlIdleSessionCleanupInterval. Consider increasing the default for
better performance in cases where the site is not heavily loaded.

3. On UNIX systems, when the Oracle HTTP Server process goes down.

On UNIX systems, the Oracle HTTP Server configuration parameter
MaxRequestsPerChild governs when an Oracle HTTP Server process will be
shut down. For example, if this parameter is set to 5000, each Oracle HTTP
Server process would serve exactly 5000 requests before it is shut down. Oracle
HTTP Server processes could also start up and shut down as part of Oracle
HTTP Server maintenance based on the configuration parameters
MinSpareServers, MaxSpareServers, and MaxClients. For mod_plsql
connection pooling to be effective, it is extremely important that Oracle HTTP

Note: Refer to Section 4.4.4, "Two-Listener Strategy" if the number
of database sessions is a concern for details on how to address this
problem.

On Windows systems, the Oracle HTTP Server runs as a single
process, and the connection pool is shared. Therefore, Section 4.4.4,
"Two-Listener Strategy" does not apply to Windows systems.

Performance Tuning Areas in mod_plsql

Optimizing PL/SQL Performance 4-7

Server is configured so that each Oracle HTTP Server process remains active for
some period of time. An incorrect configuration of Oracle HTTP Server could
result in a setup where Oracle HTTP Server processes are heavily started up
and shut down. Such a configuration would require that each new Oracle HTTP
Server process replenish the connection pool before subsequent requests gain
any benefit of pooling.

4.3.3 Restarting the mod_plsql Connection Pool
This depends primarily on the amount of time the database is shut down. If the
database is restarted after more than 15 minutes from being shut down, the users do
not experience any problems when trying to use the Oracle HTTP Server listener.
This is because the cleanup thread in mod_plsql cleans up database sessions that are
unused for more than 15 minutes. The time specified for cleaning up idle sessions is
tunable using the PlsqlIdleSessionCleanupInterval, configuration
parameter (the default value is 15 minutes).

If the database is restarted in less than 15 minutes, then a few initial requests return
with errors, but the system quickly becomes usable again. The number of requests
that experience failure is equal to the number of connections that were pooled by
mod_plsql.

4.4 Performance Tuning Areas in mod_plsql
While using mod_plsql, there are three areas that affect performance and scalability:

■ PL/SQL Based Web Application Development Considerations

■ Connection Pooling Tips and Oracle HTTP Server Configuration

■ Tuning the Number of Database Sessions

4.4.1 PL/SQL Based Web Application Development Considerations
PL/SQL Gateway users should consider the following topics when developing
PL/SQL based Web applications:

1. Manage the use of Database Access Descriptors (DADs)

See Also: Chapter 6 "Oracle HTTP Server Modules" in the Oracle
HTTP Server Administrator's Guide.

See Also: Table 4–1, "Database Access Descriptor (DAD)
Parameters Recommended Setting Summary"

Performance Tuning Areas in mod_plsql

4-8 Oracle HTTP Server mod_plsql User's Guide

Try to restrict the number of DADs that each Oracle HTTP Server node uses.

2. Use of Nested Tables

PL/SQL provides the ability to create tables. To build PL/SQL tables, you build
a table that gives the datatype of the table, as well as the index of the table. The
index of the table is the binary integer ranging from -2147483647 to
+2147483647. This table index option is known as sparsity, and allows
meaningful index numbers such as customer numbers, employee number, or
other useful index keys. Use PL/SQL tables to process large amounts of data.

PL/SQL provides TABLE and VARRAY (variable size array) collection types. The
TABLE collection type is called a nested table. Nested tables are unlimited in
size and can be sparse, which means that elements within the nested table can
be deleted using the DELETE procedure. Variable size arrays have a maximum
size and maintain their order and subscript when stored in the database. Nested
table data is stored in a system table that is associated with the nested table.
Variable size arrays are suited for batch operations in which the application
processes the data in batch array style. Nested tables make for efficient queries
by storing the nested table in a storage table, where each element maps to a row
in the storage table.

3. Use procedure naming overloading with caution

PL/SQL based Web applications should use the procedure name overloading
feature with caution. It is best if procedure name overloading is avoided by
having multiple procedures with different names.

4. Consider rewriting applications where there is significant overhead in
determining the type parameters

PL/SQL based Web applications should be aware of the overhead in trying to
execute procedures where the URL does not provide enough details to know
about the type of the parameter, such as scalar or array. In such cases, the first
attempt to execute a procedure fails and the procedure signature needs to be
described before it can be executed by mod_plsql.

5. Use procedures with 2-parameter style flexible parameter passing

Procedures should make use of the more performant 2-parameter style flexible
parameter passing rather than the 4-parameter style parameter passing

Note: Performance is not affected if there are DADs that are not
being used.

Performance Tuning Areas in mod_plsql

Optimizing PL/SQL Performance 4-9

4.4.2 Connection Pooling Tips and Oracle HTTP Server Configuration
Consider the following topics when configuring connection pooling with Oracle
HTTP Server:

1. Using the default connections pooling and setting values for
PlsqlMaxRequestsPerSession

Creating new database connections is an expensive operation and it is best if
every request does not have to open and close it own database connections. The
optimal technique is to make sure that database connections opened in one
request are reused in subsequent requests. In some rare situations, where a
database is accessed very infrequently and performance is not a major concern,
connection pooling can be disabled. For example, if the administrator accesses a
site infrequently to perform some administration tasks, then the DAD used to
access the administrator applications can choose to disable connection pooling.
To disable connection pooling, set the DAD parameter
PlsqlMaxRequestsPerSession to the value 1.

2. On UNIX systems, Oracle HTTP Server configuration should be properly tuned
so that once processes are started up, the processes remain up for a while.
Otherwise, the connection pooling in mod_plsql is rendered useless. The Oracle
HTTP Server listener should not have to continually start up and shut down
processes. A proper load analysis should be performed of the site to determine
what the average load on the Web site. The Oracle HTTP Server configuration
should be tuned such that the number of httpd processes can handle the
average load on the system. In addition, the configuration parameter
MaxClients in the httpd.conf file should be able to handle random load
spikes as well.

3. On UNIX systems, Oracle HTTP Server processes should be configured so that
processes are eventually killed and restarted. This is required to manage any
possible memory leaks in various components accessed through the Oracle
HTTP Server. This is specifically required in mod_plsql to ensure that any

See Also: Oracle Database Application Developer’s Guide -
Fundamentals

Note: Setting PlsqlMaxRequestsPerSession to the value 1
reduces the number of available database sessions and may impact
performance.

Performance Tuning Areas in mod_plsql

4-10 Oracle HTTP Server mod_plsql User's Guide

database session resource leaks do not cause a problem. Make sure that
MaxRequestsPerChild configuration parameter is set to a high number. For
PL/SQL based Web applications, this should not be set to 0.

4. For heavily loaded sites, the Oracle HTTP Server configuration parameter
KeepAlive should be disabled. This ensures that each process is available to
service requests from other clients as soon as a process is done with servicing
the current request. For sites which are not heavily loaded, and where it is
guaranteed that the number of Oracle HTTP Server processes are always
greater than the number of simultaneous requests to the Oracle HTTP Server
listener, enabling the KeepAlive parameter results in performance
improvements. In such cases, make sure to tune the KeepAliveTimeout
parameter appropriately.

5. You may want to lower the value of Timeout in the Oracle HTTP Server
configuration. This ensures that Oracle HTTP Server processes are freed up
earlier if a client is not responding in a timely manner. Do not set this value too
low, otherwise slower responding clients could time out.

6. Most Web sites have many static image files, which are displayed in each screen
for a consistent user interface. Such files rarely change and you can reduce a
considerable load on the system by tagging each image served by the Oracle
HTTP Server listener with mod_expires. You should also consider
front-ending your Web site with Oracle Application Server Web Cache.

■ How do I know if the Web site can benefit from the use of mod_expires?

– Use Netscape, or any browser that enables you to view page caching
information, and visit several heavily accessed Web pages on the site.
On each page, right click the mouse and select View Info from the
pop up menu (or the equivalent command for your browser). If the top
panel in the page information window lists many different images and
static content, then the site could benefit from the use of mod_expires.

– You can also check the Oracle HTTP Server access logs to see what
percentage of requests result in HTTP 304 (Not Modified) status. Use
the grep utility to search for 304 in the access_log and divide this
resulting number of lines by the total number of lines in the access_

Note: On Windows systems, to assure that database session
resource leaks do not cause problems, the Oracle HTTP Server
needs to be periodically restarted.

Performance Tuning Areas in mod_plsql

Optimizing PL/SQL Performance 4-11

log. If this percentage is high, then the site could benefit from the use
of mod_expires.

■ How do I tag static files with the Expires header?

– Locate the Location directive used to serve your static image files.
Add the ExpiresActive and ExpiresDefault directives to it.

Alias /images/ "/u01/app/oracle/myimages/"
<Directory "/u01/app/oracle/myimages/">
 AllowOverride None
 Order allow, deny
 Allow from all
 ExpiresActive On
 ExpiresDefault A2592000
</Directory>

The browser caches all static files served off the /images path for 30
days from now. Refer to the Oracle HTTP Server Administrator's Guide
for more details.

■ How do I know if the static files are being tagged with the Expires
header?

– Using Netscape, or the browser of your choice, clean up all the cached
files in the browser.

– Visit a Web page that should have images tagged with the Expires
header. Right click the mouse on the page and select View Info, from
the pop up menu. or use the equivalent command for your browser.

– In the top panel of the page information, select an image that should be
tagged with the Expires header.

– Review the information displayed in the bottom panel. The Expires
header should be set to a valid date. If this entry is No date given,
then the file is not being tagged with the Expires header.

4.4.3 Tuning the Number of Database Sessions
Consider the following topics when tuning the number of database sessions:

1. The processes and sessions parameters in the Oracle init$SID.ora
configuration file should be set so that Oracle is able to handle the maximum
number of database sessions. This number should be proportional to the

Performance Tuning Areas in mod_plsql

4-12 Oracle HTTP Server mod_plsql User's Guide

number of DADs times the maximum number of Oracle HTTP Server
processes, times the number of Oracle HTTP Server instances.

2. Using a two-listener strategy or using a shared server reduces the number of
database sessions. See Section 4.4.4, "Two-Listener Strategy".

3. On UNIX platforms, the connection pool is not shared across Oracle HTTP
Server processes. For this reason, it is recommended that the application use as
few DADs as possible.

4.4.4 Two-Listener Strategy
On platforms where the Oracle HTTP Server is process-based, such as all
UNIX-based platforms, each process serves all types of HTTP requests, including
servlets, PLSQL, static files, and CGI. In a single Oracle HTTP Server listener setup,
each httpd process maintains its own connection pool to the database. The
maximum number of database sessions is governed by the setting in httpd.conf
configuration file for StartServers, MinSpareServers, and
MaxSpareServers, plus the load on the system. This architecture does not allow
for tuning the number of database sessions based on the number of mod_plsql
requests. To tune the number of database sessions based on the number of mod_
plsql requests, install a separate HTTP listener for mod_plsql requests only. This
approach greatly reduces the number of database sessions that are needed to serve
mod_plsql requests.

For example, assume a main Oracle HTTP Server listener is running on port 7777 of
mylsnr1.mycompany.com. First, you can install another Oracle HTTP Server
listener on port 8888 on mylsnr2.mycompany.com. Next, redirect all mod_plsql
requests made to mylsnr1.mycompany.com:7777 to the second listener on
mylsnr2.mycompany.com:8888. Review the following steps:

1. To redirect all PL/SQL requests for mylsnr1.mycompany.com:7777 to
mylsnr2.mycompany.com:8888, make the following configuration changes:

a. For the Oracle HTTP Server listener running on Port 7777, edit ORACLE_
HOME/Apache/modplsql/conf/plsql.conf file. Comment out the
following line by putting a # in front of the line:

#LoadModule plsql_module...

b. Copy the DAD location used to service PL/SQL requests in
mylsnr1.mycompany.com to the configuration file ORACLE_
HOME/Apache/modplsql/conf/dads.conf in
mylsnr2.mycompany.com.

Performance Tuning Areas in mod_plsql

Optimizing PL/SQL Performance 4-13

Comment out the DAD location configuration parameters on
mylsnr1.mycompany.com by prefixing the line with a "#" character.

#<Location /pls/dad>
#...
#</Location>

c. Configure this listener to forward all mod_plsql requests for this DAD
location to the second listener by adding the following line in dads.conf:

ProxyPass /pls/dad http://mylsnr2.mycompany.com:8888/pls/dad

Repeat the configuration procedures for all DAD Locations.

2. Because the PL/SQL procedures generate URLs that are displayed in the
browser, it is important that all URLs are constructed without any references to
the internal mod_plsql listener on mylsnr2.mycompany.com:8888.
Depending on how the URLs are being generated in the PL/SQL based Web
application, there are three options:

■ If the URLs are hard-coded into the application, make sure that they are
always generated using the hard-coded values as
HOST=mylsnr1.mycompany.com and PORT=7777. No change would be
required for this scenario.

■ If the PL/SQL based Web applications always use the CGI environment
variables SERVER_NAME and SERVER_PORT, then it is easy to change the
configuration of the listener on mylsnr2.mycompany.com. Edit the file
and change the lines ServerName and Port in the ORACLE_
HOME/Apache/Apache/conf/httpd.conf file for the second listener as
follows:

ServerName mylsnr1.mycompany.com (was mylsnr2.mycompany.com)
Port 7777 (was 8888)

■ If the URLs are being generated using the CGI environment variable HTTP_
HOST, you need to override the CGI environment variables for the Oracle
HTTP Server listener running on Port 8888. Add the following lines to the
ORACLE_HOME/Apache/modplsql/conf/dads.conf file for each DAD
to override the default CGI environment variables HOST, SERVER_NAME,
and SERVER_PORT:

PlsqlCGIEnvironmentList SERVER_NAME mylsnr1.mycompany.com
PlsqlCGIEnvironmentList SERVER_PORT 7777
PlsqlCGIEnvironmentList HOST mylsnr1.us.oracle.com:7777

Performance Tuning Areas in mod_plsql

4-14 Oracle HTTP Server mod_plsql User's Guide

In all cases, the intent is to fool the application to generate URLs as if there
never was a second listener.

3. Test the setup and make sure that you can access all the DADs without any
problems.

4. In this setup, the main listener mylsnr1.mycompany.com can be configured
based on the total load on the Oracle HTTP Server listener. The second listener
on mylsnr2.mycompany.com can be fine-tuned based on just the mod_plsql
requests being made.

4.4.5 Overhead Problems
While executing some of the stored procedures, mod_plsql may incur a Describe
overhead, which would result in two extra round trips to the database for a
successful execution. This has performance implications.

4.4.5.1 The Describe Overhead
In order to execute stored procedures, mod_plsql needs to know about the datatype
of the parameters being passed in. Based on this information, mod_plsql binds each
parameter either as an array or as a scalar. One way to know the procedure
signature is to describe the procedure before executing it. However, this approach is
not efficient because every procedure has to be described before execution. To avoid
the describe overhead, mod_plsql looks at the number of parameters passed for
each parameter name. It uses this information to assume the datatype of each
variable. The logic is simply that if there is a single value being passed, then the
parameter is a scalar, otherwise it is an array. This works for most cases but fails if
there is an attempt to pass a single value for an array parameter or pass multiple
values for a scalar. In such cases, the first attempt to execute the PL/SQL procedure
fails. mod_plsql issues a Describe call to get the signature of the PL/SQL
procedure and binds each parameter based on the information retrieved from the
Describe operation. The procedure is re-executed and results are sent back.

This Describe call occurs transparently to the procedure, but internally mod_plsql
has encountered two extra round trips, one for the failed execute call and the other
for the describe call.

4.4.5.2 Avoiding the Describe Overhead
You can avoid performance problems with the following:

■ Use flexible parameter passing.

Performance Tuning Areas in mod_plsql

Optimizing PL/SQL Performance 4-15

■ Always ensure that you pass multiple values for arrays. For single values, you
can pass dummy values that are ignored by the procedure.

■ Use the following workaround, which defines a two-parameter style procedure
which defaults the unused variables.

1. Define a scalar equivalent of your procedure, which internally calls the
original procedure. For example, the original package could be similar to
the following example:

CREATE OR REPLACE PACKAGE testpkg AS
 TYPE myArrayType is TABLE of VARCHAR2(32767) INDEX BY binary_ integer;
 PROCEDURE arrayproc (arr myArrayType);
END testpkg;
/

2. If you are making URL calls like /pls/.../testpkg.arrayproc?
arr= 1, change the specification to be similar to the following:

CREATE OR REPLACE PACKAGE testpkg AS
 TYPE myArrayType is TABLE of VARCHAR2(32767) INDEX BY binary_integer;
 PROCEDURE arrayproc (arr varchar2);
 PROCEDURE arrayproc (arr myArrayType);
END testpkg;
/

3. The procedure arrayproc should be similar to:

CREATE OR REPLACE PACKAGE BODY testpkg AS
PROCEDURE arrayproc (arr varchar2) IS
 localArr myArrayType;
BEGIN
 localArr(1) := arr;
 arrayproc (localArr);
END arrayproc;

4.4.6 The Flexible Parameter Passing (four-parameter) Overhead
Round-trip overhead exists if a PL/SQL procedure is using the older style
four-parameter interface. The PL/SQL Gateway first tries to execute the procedure
by using the two-parameter interface. If this fails, the PL/SQL Gateway tries the
four-parameter interface. This implies that all four-parameter interface procedures
experience one extra round-trip for execution.

Using Caching with PL/SQL Based Web Applications

4-16 Oracle HTTP Server mod_plsql User's Guide

■ Avoiding the flexible parameter passing overhead

To avoid this overhead, it is recommended that you write corresponding
wrappers that use the two-parameter interface and internally call the
four-parameter interface procedures. Another option is to change the
specification of the original procedure to default to the parameters that are not
passed in the two-parameter interface. The four-parameter interface has been
provided only for backward compatibility and will be deprecated in the future.

■ Using flexible parameters and the exclamation mark

The flexible parameter passing mode in Oracle HTTP Server expects the
PL/SQL procedure to have the exclamation mark before the procedure name.
Due to performance implications of the auto-detect method used in Oracle
HTTP Server, the exclamation mark is now required for flexible parameter
passing in Oracle HTTP Server. In Oracle HTTP Server, each procedure is
described completely before being executed. The procedure Describe call
determines the signature of the procedure and requires around-trip to the
database. The PL/SQL Gateway in Oracle HTTP Server avoids this round trip
by having end-users explicitly indicate the flexible parameter passing
convention by adding the exclamation mark before the procedure.

4.5 Using Caching with PL/SQL Based Web Applications
Caching can improve the performance of PL/SQL based Web applications. To
improve performance, you can cache Web content generated by PL/SQL
procedures in the middle-tier and decrease the database workload.

This section covers the techniques used in caching, including the following:

■ Using the Validation Technique - An application asks the server if the page has
been modified since it was last presented.

■ Using the Expires Technique - Based upon a specific time period, the PL/SQL
based Web application determines the page will be cached, or should be
generated again.

■ System- and User-level Caching with PL/SQL Based Web Applications - This is
valid whether you are using the Validation Technique or the Expires Technique.
The level of caching is determined by whether a page is cached for a particular
user or for every user in the system.

These techniques and levels are implemented using owa_cache packages located
inside the PL/SQL Web Toolkit.

Using Caching with PL/SQL Based Web Applications

Optimizing PL/SQL Performance 4-17

4.5.1 Using the Validation Technique
In general, the validation technique basically asks the server if the page has been
modified since it was last presented. If it has not been modified, the cached page
will be presented to the user. If the page has been modified, a new copy will be
retrieved, presented to the user and then cached.

There are two methods which use the Validation Technique: Last-Modified method,
and the Entity Tag method. The next two sections show how these techniques are
used in the HTTP protocol. Although the PL/SQL Gateway does not use the HTTP
protocol, many of the same principles are used.

4.5.1.1 Last-Modified
When a Web page is generated using the HTTP protocol, it contains a
Last-Modified Response Header. This header indicates the date, relative to the
server, of the content that was requested. Browsers save this date information along
with the content. When subsequent requests are made for the URL of the Web page,
the browser then:

1. Determines if it has a cached version.

2. Extracts the date information.

3. Generates the Request Header If-Modified-Since.

4. Sends the request the server.

Cache-enabled servers look for the If-Modified-Since header and compare it to the
date of their content. If the two match, an HTTP Response status header such as
"HTTP/1.1 304 Not Modified" is generated, and no content is streamed. After
receiving this status code, the browser can reuse its cache entry because it has been
validated.

If the two do not match, an HTTP Response header such as "HTTP/1.1 200 OK" is
generated and the new content is streamed, along with a new Last-Modified
Response header. Upon receipt of this status code, the browser must replace its
cache entry with the new content and new date information.

4.5.1.2 Entity Tag Method
Another validation method provided by the HTTP protocol is the ETag (Entity Tag)
Response and Request header. The value of this header is a string that is opaque to

See Also: Oracle Database Application Developer’s Guide -
Fundamentals

Using Caching with PL/SQL Based Web Applications

4-18 Oracle HTTP Server mod_plsql User's Guide

the browser. Servers generate this string based on their type of application. This is a
more generic validation method than the If-Modified-Since header, which can only
contain a date value.

The ETag method works very similar to the Last Modified method. Servers generate
the ETag as part of the Response Header. The browser stores this opaque header
value along with the content that is steamed back. When the next request for this
content arrives, the browser passes the If-Match header with the opaque value that
it stored to the server. Because the server generated this opaque value, it is able to
determine what to send back to the browser. The rest is exactly like the
Last-Modified validation method as described earlier.

4.5.1.3 Using the Validation Technique for mod_plsql
Using HTTP validation caching as a framework, the following is the Validation
Model for mod_plsql.

PL/SQL based Web applications that want to control the content being served
should use this type of caching. This technique offers some moderate performance
gains. One example of this would be a Web application that serves dynamic content
that could change at any given time. In this case, the Web application needs full
control over what is being served. Validation caching always asks the Web
application whether the cached content is stale or not before serving it back to the
browser.

Figure 4–1 shows the use of the validation technique for mod_plsql.

1. The Oracle HTTP Server receives a PL/SQL procedure request from a client
server. The Oracle HTTP Server routes the request to mod_plsql.

2. mod_plsql prepares the request.

3. mod_plsql invokes the PL/SQL procedure in the Web application. mod_plsql
passes the usual Common Gateway Interface (CGI) environment variables to
the Web application.

4. The PL/SQL procedure generates content to pass back. If the PL/SQL
procedure decides that the generated content is cacheable, it calls the owa_
cache procedure from the PL/SQL Web Toolkit to set the tag and cache level:

owa_cache.set_cache(p_etag, p_level);

Using Caching with PL/SQL Based Web Applications

Optimizing PL/SQL Performance 4-19

5. The HTML is returned to mod_plsql.

6. mod_plsql stores the cacheable content in its file system for the next request.

7. The Oracle HTTP Server sends the response to the client browser.

Figure 4–1 Validation Technique

4.5.1.4 Second Request Using the Validation Technique
Using the Validation Technique for mod_plsql, a second request is made by the
client browser for the same PL/SQL procedure.

Figure 4–2 shows the second request using the Validation Technique.

1. mod_plsql detects that it has a cached content for the request.

Table 4–3 Validation Model Parameters

Parameter Description

set_cache procedure Sets up the headers to notify mod_plsql that the content being
streamed back can be cached. Then, the mod_plsql caches the
content on the local file system along with the tag and caching
level information as it is streamed back to the browser.

p_etag The string that the procedure generates to tag the content.

p_level The caching level: SYSTEM for system level or USER for user level.

Using Caching with PL/SQL Based Web Applications

4-20 Oracle HTTP Server mod_plsql User's Guide

2. mod_plsql forwards the same tag and caching level information (from the first
request) to the PL/SQL procedure as part of the CGI environment variables.

3. The PL/SQL procedure uses these caching CGI environment variables to check
if the content has changed. It does so by calling the following owa_cache
functions from the PL/SQL Web Toolkit:

owa_cache.get_etag;
owa_cache.get_level;

These owa functions get the tag and caching level.

4. The Web application sends the caching information to mod_plsql.

5. Based on that information determines whether the content needs to be
regenerated or can be served from the cache.

a. If the content is still the same, the procedure calls the owa_cache.set_
not_modified procedure and generates no content. This causes mod_
plsql to use its cached content. The cached content is directly streamed back
to the browser.

b. If the content has changed, it generates the new content along with a new
tag and caching level. mod_plsql replaces its stale cached copy with a new
one and updates the tag and caching level information. The newly
generated content is streamed back to the browser.

Figure 4–2 Validation Technique-Second Request

Using Caching with PL/SQL Based Web Applications

Optimizing PL/SQL Performance 4-21

4.5.2 Using the Expires Technique
In the validation model, mod_plsql always asks the PL/SQL procedure if it can
serve the content from the cache. In the expires model, the procedure
pre-establishes the content validity period. Therefore, mod_plsql can serve the
content from its cache without asking the procedure. This further improves
performance because no interaction with the database is required.

This caching technique offers the best performance. Use if your PL/SQL based Web
application is not sensitive to serving stale content. One example of this is an
application that generates news daily. The news can be set to be valid for 24 hours.
Within the 24 hours, the cached content is served back without contacting the
application. This is essentially the same as serving a file. After 24 hours, mod_plsql
will again fetch new content from the application.

Assume the same scenario described for the Validation model, except the procedure
uses the Expires model for caching.

Figure 4–3 shows the use of the expires technique for mod_plsql.

1. The Oracle HTTP Server receives a PL/SQL Server Page request from a client
server. The Oracle HTTP Server routes the request to mod_plsql.

2. The request is forwarded by mod_plsql to the Oracle Database.

3. mod_plsql invokes the PL/SQL procedure in the application and passes the
usual Common Gateway Interface (CGI) environment variables to the
application.

4. The PL/SQL procedure generates content to pass back. If the PL/SQL
procedure decides that the generated content is cacheable, it calls the owa_
cache procedure from the PL/SQL Web Toolkit to set the validity period and
cache level:

owa_cache.set_expires(p_expires, p_level);

Table 4–4 Expires Model Parameters

Parameter Description

set_expires procedure Sets up the headers to notify mod_plsql that Expires caching is
being used. mod_plsql then caches the content to the file
system along with the validity period and caching level
information.

p_expires Number of minutes that the content is valid.

p_level Caching level.

Using Caching with PL/SQL Based Web Applications

4-22 Oracle HTTP Server mod_plsql User's Guide

5. The HTML is returned to mod_plsql.

6. mod_plsql stores the cacheable content in its file system for the next request.

7. The Oracle HTTP Server sends the response to the client browser.

Figure 4–3 The Expires Technique

Second Request Using the Expires Technique
Using the same expires model explained earlier, a second request is made by the
client browser for the same PL/SQL procedure.

Figure 4–4 shows the second request using the Expires Technique.

1. mod_plsql detects that it has a cached copy of the content that is expires-based.

2. mod_plsql checks the content's validity by taking the difference between the
current time and the time this cache file was created.

a. If this difference is within the validity period, the cached copy is still fresh
and will be used without any database interaction. The cached content is
directly streamed back to the browser.

b. If the difference is not within the validity period, the cached copy is stale.
mod_plsql invokes the PL/SQL procedure and generates new content. The
procedure then decides whether to use expires-based caching again. If so, it
also determines the validating period for this new content. The newly
generated content is streamed back to the browser.

Using Caching with PL/SQL Based Web Applications

Optimizing PL/SQL Performance 4-23

Figure 4–4 The Expires Technique-Second Request

4.5.3 System- and User-level Caching with PL/SQL Based Web Applications
A PL/SQL procedure determines whether generated content is system-level content
or user-level. This helps the PL/SQL Gateway cache to store less redundant files if
more than one user is looking at the same content. It decides this by:

■ For system-level content, the procedure passes the string SYSTEM as the
caching level parameter to the owa_cache functions (set_cache for
validation model or set_expires for expires model). This is for every user
that shares the cache.

By using system-level caching, you can save both space in your file system and
time for all users in the system. One example of this would be a Web
application that generates content that is intended for everybody using the Web
application. By caching the content with the system-level setting, only one copy
of the content is cached in the file system. Furthermore, every user on that
system benefits since the content is served directory from the cache.

■ For user-level content, it passes the string USER as the parameter for the
caching level. This is for a specific user that is logged in. The stored cache is
unique for that user. Only that user can use the cache. The type of user is
determined by the authentication mode. Refer to the following table for the
different types of users.

Using Caching with PL/SQL Based Web Applications

4-24 Oracle HTTP Server mod_plsql User's Guide

For example, if no user customizes a PL/SQL based Web application, then the
output can be stored in a system-level cache. There will be only one cache copy for
every user on the system. User information is not used since the cache can be used
by multiple users.

However, if a user customizes the application, a user-level cache is stored for that
user only. All other users still use the system level cache. For a user-level cache hit,
the user information is a criteria. A user-level cache always overrides a system-level
cache.

PL/SQL Web Toolkit Functions (owa_cache package)
Your decision whether to use the Validation technique or the Expires technique
determines which owa_cache functions to call.

The owa_cache package contains procedures to set and get special caching headers
and environment variables. These allow developers to use the PL/SQL Gateway
cache more easily. This package should already be installed in your database.

Table 4–6 lists the primary functions to call.

Table 4–5 Type of User Determined by Authentication Mode

Authentication Mode Type of User

Single Sign On (SSO) Lightweight user

Basic Database user

Custom Remote user

See Also: Section 3.1, "Authenticating Users Through mod_plsql"
for more information on authentication modes.

Table 4–6 Primary owa_cache Functions

owa Functions Purpose

owa_cache.set_cache (p_etag
IN varchar2, p_level IN
varchar2)

Validation Model - Sets up the headers.

■ p_etag parameter tags the generated content.

■ p_level parameter is the caching level to use.

owa_cache.set_not_modified Validation Model - Sets up the headers to notify
mod_plsql to use the cached content. Only used
when a validation -based cache hit occurs.

Tuning File System Cache to Improve Caching Performance

Optimizing PL/SQL Performance 4-25

4.6 Tuning File System Cache to Improve Caching Performance
You can configure and use a File System Cache to improve the performance of
PL/SQL based Web applications.

This section covers the following topics:

■ Introducing File System Cache Tuning

■ Enabling File System Cache

■ Configuring File System Cache to Reside on a Faster File System

■ Resizing File System Cache

■ Configuring Cache Cleanup

4.6.1 Introducing File System Cache Tuning
This section covers mod_plsql related File System Cache tuning options. Cache
contents are cached using Operating System supplied file system calls; the cached
contents are not stored in the mod_plsql memory space. Using the mod_plsql File
System Cache, the contents of the cache may be in memory when the Operating
System supports, and the system is configured to use features such as memory disk
(some UNIX platforms support memory disk based fast storage).

The information in this section can improve the performance of PL/SQL based Web
applications when mod_plsql is configured to use the File System Cache.

Table 4–7 lists the cache related parameters that you can set for mod_plsql. Set these
parameters in the cache.conf file that is available on UNIX in the directory,

owa_cache.get_level Validation Model - Gets the caching level, USER or
SYSTEM. Returns null if the cache is not hit.

owa_cache.get_etag Validation Model - Gets the tag associated with the
cached content. Returns null if the cache is not hit.

owa_cache.set_expires(p_
expires IN number, p_level IN
varchar2)

Expires Model - Sets up the headers.

■ p_expires parameter is the number of
minutes the content is valid.

■ p_level parameter is the caching level to use.

Table 4–6 Primary owa_cache Functions

owa Functions Purpose

Tuning File System Cache to Improve Caching Performance

4-26 Oracle HTTP Server mod_plsql User's Guide

ORACLE_HOME/Apache/modplsql/conf, and on Windows, this is found in the
directory, ORACLE_HOME\Apache\modplsql\conf.

Note: The file cache.README in the conf directory includes a
full description of each parameter, and provides examples showing
how to set parameter values.

Table 4–7 mod_plsql cache.conf Configuration Parameter Summary

Parameter Description

PlsqlCacheCleanupTime Sets the interval for running cache cleanup routines.

Default: Everyday 23:00 (run cleanup routine daily at 11PM local time)

See Also: Section 4.6.5, "Configuring Cache Cleanup"

PlsqlCacheDirectory Defines the directory that holds the mod_plsql cache.

Default:

On UNIX systems, the default directory for the error log is: ORACLE_
HOME/Apache/modplsql/cache

On Windows systems, the default directory is: ORACLE_
HOME\Apache\modplsql\cache

See Also: Section 4.6.3, "Configuring File System Cache to Reside on a Faster
File System"

PlsqlCacheEnable Enables the file system cache.

Default: On

See Also: Section 4.6.2, "Enabling File System Cache"

PlsqlCacheMaxAge Controls the aging, in days for the cache contents.

Default: 30 (days)

See Also: Section 4.6.4.2, "Setting the Days of Aging for Cache with
PlsqlCacheMaxAge"

PlsqlCacheMaxSize Sets the maximum size, in bytes, for an individual file stored in the cache.

Default: 1048576 (1 Megabyte)

See Also: Section 4.6.4.3, "Setting the Maximum File Size for a Cache File with
PlsqlCacheMaxSize"

PlsqlCacheTotalSize Limits the total size of the cache. The value is specified in bytes.

Default: 20971520 (20 Megabytes)

See Also: Section 4.6.4, "Resizing File System Cache"

Tuning File System Cache to Improve Caching Performance

Optimizing PL/SQL Performance 4-27

4.6.2 Enabling File System Cache
The cache.conf parameter PlsqlCacheEnable enables mod_plsql caching. For
maximum performance, enable PlsqlCacheEnable by setting the value of this
parameter to On.

4.6.3 Configuring File System Cache to Reside on a Faster File System
This section describes how to configure a File System Cache to reside on a separate
disk. When you use File System Cache and store the cache on a faster separate disk,
performance should improve for all types of Web applications using File System
Cache, including OracleAS Portal and generic PL/SQL based Web applications.

When you configure File System Cache, the cache can reside either on a separate
physical disk or in a memory disk.

To set up a File System Cache on a separate disk:

1. Assume that the file system for the cache resides at the location:

On UNIX: /u01/cache

On Windows: E:\cache

2. Update the file:

On UNIX: ORACLE_HOME/Apache/modplsql/conf/cache.conf

On Windows: ORACLE_HOME\Apache\modplsql\conf\cache.conf

3. Change the cache parameter PlsqlCacheDirectory:

On UNIX: PlsqlCacheDirectory /u01/cache

On Windows: PlsqlCacheDirectory E:\cache

4.6.4 Resizing File System Cache
This section covers the following topics:

■ Setting the Total Cache Size with PlsqlCacheTotalSize

■ Setting the Days of Aging for Cache with PlsqlCacheMaxAge

■ Setting the Maximum File Size for a Cache File with PlsqlCacheMaxSize

Tuning File System Cache to Improve Caching Performance

4-28 Oracle HTTP Server mod_plsql User's Guide

4.6.4.1 Setting the Total Cache Size with PlsqlCacheTotalSize
The default installation sets the mod_plsql file system cache size to 2097152 bytes
(20 Megabytes). If your PL/SQL application does not make use of the OWA_
CACHE packages, or uses them to cache small amounts of content, then the default
setting should be sufficient. If your PL/SQL application caches a lot of content in
the mod_plsql file system cache, you should consider specifying a higher value.

To control the cache size, set the PlsqlCacheTotalSize parameter in the file
cache.conf. On UNIX systems, this file is located under ORACLE_
HOME/Apache/modplsql/conf directory. On Windows systems, this file is
located under ORACLE_HOME\Apache\modplsql\conf.

You need to set the cache size high enough to achieve a high cache hit ratio. Try to
set the cache size large enough so that frequently accessed content stays cached. It is
also important to limit the amount of disk space, so that the cache size does not
grow too large. Correct tuning for the cache size provides enough cache to hold all
frequently accessed content while preventing the cache size from growing too large,
since a very large cache is inefficient to search.

The value for PlsqlCacheTotalSize is specified as a number of bytes. 1MB
equals 1048576 bytes. This setting is a soft limit on the amount of cache allocated. In
some cases, the cache size may grow beyond this limit until the next cleanup
operation. Therefore, the hard limit on the cache size is the underlying physical
hard disk size. When this limit is reached, no cache content can be written out to
disk until space is available.

To determine a reasonable cache size, do the following:

1. Turn on mod_plsql performance logging by setting the LogLevel in
httpd.conf to the info level to enable mod_plsql logging.

2. Monitor the error_log on a daily basis. On UNIX systems, the default
directory for the error log is: ORACLE_HOME/Apache/Apache/log. On
Windows systems, the default directory is: ORACLE_
HOME\Apache\Apache\log.

The mod_plsql error_log entries have the form:

[info] mod_plsql: cachecleanup deleted=2571 max_age=96,2178852b
kept=1042,25585368b time=128s limit=25600000b

where:

deleted is the number of cache files that got deleted during the cleanup process.

Tuning File System Cache to Improve Caching Performance

Optimizing PL/SQL Performance 4-29

max_age is the number of cache files and total size that got deleted because they
haven't been used for some time.

kept is the number of cache files and total size that was kept after the cleanup
process.

time is the amount of time to perform the cleanup.

limit is the total cache size. This is the value of the PlsqlCacheTotalSize
setting.

Interpret the entries in the error log as follows:

■ If a high number of files are being deleted when compared to the number of
files that were kept, this is a clear indication that your cache size is too small.
You probably need to increase the size of the cache.

■ If a low number of files being deleted when compared to the number of files
that were kept is observed, this is an indication that your cache size is probably
too big. If you have enough disk space, you can chose to leave it as it or you can
decrease the size of the cache to reclaim some disk space.

4.6.4.2 Setting the Days of Aging for Cache with PlsqlCacheMaxAge
Using the PlsqlCacheMaxAge parameter, you can control the "staleness" of cache
content. The value for parameter is specified in units of days. The default value for
this parameter is 30 (days). This means cache content is kept in the cache if it is less
than 30 days old. After 30 days, the content is considered for deletion during the
cleanup process.

The max_age information in mod_plsql error_log shows cache file aging
information. If your site is a highly dynamic site, it would make sense to configure
this setting to a lower value, since the older cache content will usually not be used
again and, therefore, the lower value does not affect the cache hit ratio. If the site
contains many static pages, it would make sense to increase the value of
PlsqlCacheMaxAge so that the cleanup process does not deliberately delete the
cache content.

4.6.4.3 Setting the Maximum File Size for a Cache File with PlsqlCacheMaxSize
Using the PlsqlCacheMaxSize parameter, you can specify the maximum size for
individual files in the cache. Using this parameter prevents the case in which one
cache file fills up the entire cache.

The default value for this parameter is 1048576 (bytes). In general, set this
parameter to a value that represents about 1-3% of the total cache size.

Oracle HTTP Server Directives

4-30 Oracle HTTP Server mod_plsql User's Guide

4.6.5 Configuring Cache Cleanup
The cache cleanup parameter determines the frequency in which the File System
Cache is examined and, if necessary, cleaned up. The cache cleanup parameter,
PlsqlCacheCleanupTime is specified in the cache.conf file. The frequency can
be set to daily, weekly, or monthly. When specifying weekly cleanup, it is possible to
specify the day of the week and the time of the day.

The default mod_plsql setting of PlsqlCacheCleanupTime is daily at 11PM local
time. Therefore, by default, every night at 11PM, the cleanup routine runs. When
you select the monthly frequency, the cleanup occurs on the first Saturday of each
month.

Configuring this parameter correctly is important since cleaning up too often can
result in a lower cache hit ratio and when cleaning does not occur often enough, the
cache's disk usage may be excessive.

Monitor the cleanup activities using the entries in the mod_plsql error_log; then
tune the cleanup parameter, PlsqlCacheCleanupTime by analyzing the entries.

[info] mod_plsql: cachecleanup deleted=2571 max_age=96,2178852b
kept=1042,25585368b time=128s limit=25600000b

Note the following:

■ Seeing a large number for the cleanup time can be an indication that the
cleanup frequency is set too low. When the log indicates that the cleanup
operation is busy examining or deleting many cache files, increasing the
cleanup frequency should decrease the time spent in the cleanup operation.

■ If a high number files are being deleted during the cleanup operation because of
"staleness", this is an indication that the cleanup frequency is too low. In this
case, increase the frequency so that the cleanup can actively delete "stale" cache
content more frequently.

4.7 Oracle HTTP Server Directives
To improve PL/SQL performance in Oracle HTTP Server, you need to tune the
Oracle HTTP Server directives appropriately for your configuration.

See Also: Oracle HTTP Server Administrator's Guide

Frequently Asked Questions A-1

A
Frequently Asked Questions

■ What is mod_plsql?

■ What is the PL/SQL Web Toolkit?

■ How do I find the version of mod_plsql?

■ How do I find the version of the OWA packages?

■ How do I install the OWA packages?

■ How do I uninstall the OWA packages?

■ How do I detect and clean up duplicate OWA packages installed in the
database?

■ I am getting HTTP error codes while accessing PL/SQL procedures through
mod_plsql.

■ All my PL/SQL procedures return a "Document contains no data" error in
Netscape, or a blank page in Internet Explorer.

■ I have a performant PL/SQL procedure, but some of my HTTP requests
through mod_plsql take more than 15 seconds.

■ Can I use mod_plsql to run applications on my own database?

■ How do I create a DAD for mod_plsql?

■ What authentication modes are available in mod_plsql?

■ What is the mod_plsql Cleanup Thread?

■ What kind of database connection pooling is present in mod_plsql?

■ How does mod_plsql clean up database sessions?

A-2 Oracle HTTP Server mod_plsql User's Guide

■ What happens when pooled database connections exist in mod_plsql and the
database is restarted?

■ How does mod_plsql clean up cached content in the file system?

■ Can I invoke mod_plsql without a "/pls" prefix in the URL?

■ How can I improve PL/SQL and mod_plsql performance?

■ What kinds of logging facilities are available in mod_plsql?

■ What considerations should I have in mod_plsql for High Availability?

■ What considerations should I have in mod_plsql when the database is
separated by a firewall?

■ How do I assert a different hostname, port, or request_protocol to the PL/SQL
application?

■ How do I disable access to procedure names that have a specific pattern?

■ I see the error "HTTP-503 ORA-12154" in the file ORACLE_
HOME/Apache/Apache/conf/error_log. What does this mean?

What is mod_plsql?
mod_plsql is an Oracle HTTP Server plug-in that communicates with the database
by mapping browser requests into database stored procedure calls over a SQL*Net
connection. It is generally indicated by a /pls virtual path. The mod_plsql gateway
provides support for building and deploying PL/SQL-based applications on the
Web. PL/SQL stored procedures can retrieve data from database tables and
generate HTTP responses containing formatted data and HTML code to display in a
Web browser. See the Oracle Database Application Developer’s Guide - Fundamentals for
more information.

What is the PL/SQL Web Toolkit?
The PL/SQL Web Toolkit enables you to develop Web applications as PL/SQL
procedures stored in an Oracle database server. Packages in the toolkit define
procedures, functions, and data types that you can use in your stored procedures.
See the Oracle Database Application Developer’s Guide - Fundamentals for more
information.

How do I find the version of mod_plsql?
You can determine the version of mod_plsql by executing the oversioncheck
script on the mod_plsql binary.

Frequently Asked Questions A-3

On UNIX platforms, issue the following command:

ORACLE_HOME/Apache/Apache/bin/oversioncheck ORACLE_HOME/Apache/modplsql/bin/modplsql.so

On Windows platforms, issue the following command:

ORACLE_HOME\Apache\Apache\bin\oversioncheck ORACLE_HOME\bin\modplsql.dll

How do I find the version of the OWA packages?
1. Use SQL*Plus and connect as any user to the database.

2. Execute the following command:

select owa_util.get_version from dual;

This should show the version of the OWA packages. For example, 9.0.4.0.1.

If this query fails, you are having a very old version of OWA packages that does not
have versioning. It is recommended that you upgrade to a newer version.

How do I install the OWA packages?
See Section 2.2, "Installing Required Packages" for more information.

How do I uninstall the OWA packages?
OWA packages can be uninstalled by performing the following tasks:

1. Navigate to the directory from where the OWA packages were installed. For
example:

cd ORACLE_HOME/Apache/modplsql

2. Use SQL*Plus to connect as the owner the OWA packages. This user should be
the SYS user, unless you have an old version of the OWA packages.

3. Invoke the script owadins.sql to uninstall the OWA packages.

How do I detect and clean up duplicate OWA packages installed in the
database?
The following SQL query can be used to determine the location of the OWA
packages:

SELECT OWNER, OBJECT_TYPE
FROM DBA_OBJECTS
WHERE OBJECT_NAME = 'OWA'

A-4 Oracle HTTP Server mod_plsql User's Guide

You will see the following results:

SQL>

1 SELECT OWNER, OBJECT_TYPE
2 FROM DBA_OBJECTS
3* WHERE OBJECT_NAME = 'OWA'

OWNER OBJECT_TYPE
----- -----------
SYS PACKAGE
SYS PACKAGE BODY
PUBLIC SYNONYM

If you see more lines than shown in the preceding SQL query, it means that older
OWA packages exist in other schemas, which may cause issues for mod_plsql users.
In such situations, uninstall all versions of the OWA packages from the database,
and reinstall the OWA packages that ship with the product.

I am getting HTTP error codes while accessing PL/SQL procedures
through mod_plsql.
mod_plsql logs detailed error messages to the OHS file ORACLE_
HOME/Apache/Apache/logs/error_log. Scan this file to understand the
problem. For more information on mod_plsql logging, see "What kinds of logging
facilities are available in mod_plsql?".

All my PL/SQL procedures return a "Document contains no data" error
in Netscape, or a blank page in Internet Explorer.
This problem could occur if you have duplicate OWA Packages installed in the
database. See "How do I detect and clean up duplicate OWA packages installed in
the database?" for more information.

I have a performant PL/SQL procedure, but some of my HTTP requests
through mod_plsql take more than 15 seconds.
The most common reason for this problem is that the middle-tier character set does
not match that of the back-end database, and HTTP KeepAlive is enabled in Oracle
HTTP Server. This kind of misconfiguration causes an invalid Content-Length to be
sent back to the browser, causing the browser to detect the end of the response
stream only when the KeepAliveTimeout interval causes the stream to be closed. To

Frequently Asked Questions A-5

solve the problem, ensure that the PlsqlNLSLanguage parameter in the DAD matches
that of the database.

Can I use mod_plsql to run applications on my own database?
Yes. But before you can run your applications, you need to install the OWA
packages into your database. See Section 2.2, "Installing Required Packages".

How do I create a DAD for mod_plsql?
Refer to the mod_plsql section in the Oracle HTTP Server Administrator's Guide.

What authentication modes are available in mod_plsql?
See Chapter 3, "Securing Application Database Access Through mod_plsql".

What is the mod_plsql Cleanup Thread?
mod_plsql starts a thread in each httpd process. The job of this thread is to clean up
idle database sessions and the file system cache. This thread is called the Cleanup
Thread.

What kind of database connection pooling is present in mod_plsql?
Refer to Chapter 4, "Optimizing PL/SQL Performance".

How does mod_plsql clean up database sessions?
mod_plsql cleans up unused database sessions based on the configuration setting of
PlsqlIdleSessionCleanupInterval. Besides this, the configuration directive
PlsqlMaxRequestsPerSession governs how many requests will be serviced from a
pooled database session. Finally, database sessions are closed when httpd processes
are shut down.

What happens when pooled database connections exist in mod_plsql
and the database is restarted?
When the database connection is severed, the first request that attempts to execute a
PL/SQL procedure using the severed connection will fail. Subsequent requests will
reestablish a database session and start functioning normally. The number of
failures will be directly proportional to the number of pooled database sessions.
Future versions of mod_plsql will detect dead connections automatically.

A-6 Oracle HTTP Server mod_plsql User's Guide

How does mod_plsql clean up cached content in the file system?
The cleanup thread scans the file system cache based on the configuration of
PlsqlCacheCleanupTime. The default cleanup time is everyday at 11 P.M. local time.

Can I invoke mod_plsql without a "/pls" prefix in the URL?
Yes. Since mod_plsql uses the OHS' Location directive, you can configure any virtual
path to be serviced by mod_plsql.

How can I improve PL/SQL and mod_plsql performance?
Refer to Chapter 4, "Optimizing PL/SQL Performance".

What kinds of logging facilities are available in mod_plsql?
■ By default, mod_plsql logs alerts/warnings/errors to the OHS error_log file

ORACLE_HOME/Apache/Apache/logs/error_log. The amount of
information logged by mod_plsql is controlled by the setting of OHS' LogLevel
parameter in httpd.conf. By default, this is configured to warn.

■ You can also enable performance logging for mod_plsql on a per-request basis
as follows:

1. Edit ORACLE_HOME/Apache/Apache/conf/httpd.conf and set
LogLevel to info (default is warn).

2. Restart OHS using the following command:

ORACLE_HOME/opmn/bin/opmnctl restartproc type=ohs

3. Issue some URLs to mod_plsql and verify that the file ORACLE_
HOME/Apache/Apache/logs/error_log starts showing entries as
follows:

[Tue Apr 01 14:54:49 2003] [info] mod_plsql: [perf] 130.35.92.145
/pls/app/htp.p status=200 user=scott reqTime=21ms connSU=(null),0ms
connRO=(null),0ms connNSSO=HIT,1ms procTime=17ms sessionTidyTime=0ms
cache=(null) cookie=(null),0ms pageCalls=0,0ms bytes=5 describe=No,0ms
streamTime=0ms pid=175 sessFile=(null) userFile=834\0855
sysFile=470\5949 cacheLevel=(null) cacheTime=0ms dbProcTime=15ms

Note: If the database is not restarted within the time interval of
PlsqlIdleSessionCleanupInterval, then the cleanup thread will clean
up the severed sessions, and no errors will be seen by end-users.

Frequently Asked Questions A-7

id=1049237685:130.35.92.145:373:1 spid=(null) qs=(null)
requestTrace=(null) cookieLen=0 cookieValue=(null) reqUserTime=16ms
assertUser=(null) subid=(null) authLevel=(null) oraError=0

■ Finally, you can enable debug logging in mod_plsql. This is the highest level of
logging and is not recommended for active sites.

In this mode, debug messages are logged to Oracle HTTP Server's error_log
file and additional mod_plsql specific logs are created under ORACLE_
HOME/Apache/modplsql/logs. Log location is configurable using the
PlsqlLogDirectory directive in ORACLE_
HOME/Apache/modplsql/conf/plsql.conf. To enable debug level
logging:

1. Edit ORACLE_HOME/Apache/modplsql/conf/plsql.conf and set
PlsqlLogEnable to On (default is Off).

2. Restart OHS using the following command:

ORACLE_HOME/opmn/bin/opmnctl restartproc type=ohs

What considerations should I have in mod_plsql for High Availability?
For high availability, mod_plsql based applications should be aware of the
following things:

■ The mod_plsql configuration parameter PlsqlDatabaseConnectString should use a
connect string format of NetServiceNameFormat so that name resolution happens
through an LDAP lookup of Oracle Internet Directory. This enables you to
configure the database host:port:service_name information in a central repository,
which makes it easier to add or remove RAC nodes when required.

■ mod_plsql does not automatically detect dead database connections. In case a
back end database goes down, the initial few requests fail. See "What happens
when pooled database connections exist in mod_plsql and the database is
restarted?" for more information.

Caution: This mode of logging should be enabled only at the
request of Oracle Support.

A-8 Oracle HTTP Server mod_plsql User's Guide

What considerations should I have in mod_plsql when the database is
separated by a firewall?
If a firewall exists between the middle-tier running mod_plsql, and the back end
database, the idle session cleanup interval in mod_plsql should be configured lower
than the idle session cleanup interval of the firewall. This ensures that the firewall
never closes a connection established by mod_plsql.

How do I assert a different hostname, port, or request_protocol to the
PL/SQL application?
■ In situations where your OHS instance is front-ended by Web Cache or a Load

Balancing Router, there is a need to assert the hostname and port for the site to
be that of the Web Cache or the LBR. In such situations, it is recommended that
you use the OHS configuration directives ServerName and Port to do the
assertion. If for some reason, you do not wish to assert the hostname and port at
the OHS level, you can use the mod_plsql configuration directive
PlsqlCGIEnvironmentList to assert a different hostname and port to only the
PL/SQL applications running under mod_plsql. For example:

■ PlsqlCGIEnvironmentList SERVER_NAME=lbr.us.oracle.com

Consider using OHS' ServerName directive in httpd.conf instead.

■ PlsqlCGIEnvironmentList SERVER_PORT=9999

Consider using OHS' Port directive in httpd.conf instead.

■ PlsqlCGIEnvironmentList HTTP_
HOST=myservername.us.oracle.com:9999

Combination of SERVER_NAME:SERVER_PORT.

■ Similarly, in cases where your site is accessed externally as an SSL, but is
internally running in non-SSL mode (with an SSL accelerator in between), you
might want to assert the REQUEST_PROTOCOL as HTTPS so that the PL/SQL
application generates SSL links instead of non-SSL links. For example:

PlsqlCGIEnvironmentList REQUEST_PROTOCOL=https

Note: mod_plsql idle session cleanup interval can be configured
using the parameter PlsqlIdleSessionCleanupInterval in ORACLE_
HOME/Apache/modplsql/conf/plsql.conf. The default value
is 15 minutes.

Frequently Asked Questions A-9

How do I disable access to procedure names that have a specific
pattern?
Please refer to the description of PlsqlExclusionList in Section 3.3.1, "Using the
PlsqlExclusionList Directive in mod_plsql".

I see the error "HTTP-503 ORA-12154" in the file ORACLE_
HOME/Apache/Apache/conf/error_log. What does this mean?
This error means that mod_plsql is unable to connect to the database.

Ensure that:

1. The database is up and running.

2. The username and password information in the DAD is correct.

3. The middle-tier is able to connect to the database using the
PlsqlDatabaseConnectString parameter in the DAD.

In most situations, the problem occurs because SQL*Net is not able to resolve the
connect string parameter using the configuration information under ORACLE_
HOME/network/admin.

■ For entries configured with TNSFormat or NetServiceNameFormat, validate the
connect string information by using tnsping dad_connect_string. For
example:

tnsping "cn=iasdb,cn=oraclecontext"

or

tnsping iasdb.us.oracle.com

■ For entries configured with SIDFormat and ServiceNameFormat, ensure that the
hostname, port, and SID/service_name information match for the database
listener. After verifying this, confirm that SQL*Plus can connect to the database
using the DAD username, password, and connect string.

If this does not work, refer to the Oracle SQL*Net documentation on how to
troubleshoot this further.

A-10 Oracle HTTP Server mod_plsql User's Guide

Index-1

Index
Symbols
! character

definition, 1-4
flexible parameter passing, 1-9

Numerics
2 parameter

flexible parameter passing, 1-9
4 parameter

flexible parameter passing, 1-10

A
arrays, 1-8

B
BLOB

direct download, 1-21
document table definition, 1-13

C
caching

expires technique, 4-21
owa_cache packages, 4-24
system-level, 4-23
user-level, 4-23
validation technique, 4-17

CGI
environment variables, 1-24

client request, 1-1

content column, 1-13
content_type column, 1-14
cookie restrictions, 1-26
creating

DAD, 2-4

D
DAD

creating a, 2-4
definition, 1-3

DAD_charset column, 1-14
direct access URLs, 1-22
document access path, 1-16
document table definition, 1-13

old style, 1-14
document_path, 1-16
document_proc, 1-16
download, 1-12
downloading files, 1-20
DTD, 1-13

old style, 1-14

E
entity tag caching method, 4-17
environment variables

CGI, 1-23
expires caching technique, 4-21

F
file upload, 1-12, 1-17

attributes, 1-19

Index-2

multiple files, 1-20
four parameter

flexible parameter passing, 1-10

G
GET method, 1-5

H
head method, 1-5
HTTP HEAD requests, 1-5
HTTP server

httpd process, 4-4
httpd

HTTP server process, 4-4
httpd.conf

directives
MaxSpareServers, 4-12
MinSpareServers, 4-12
StartServers, 4-12

K
KeepAlive httpd.conf directive, 4-30

L
language parameter (nls_lang), 1-25
LAST_UPDATED column, 1-14
LONGRAW

document table definition, 1-13

M
mime type, 1-19
mod_expires, 4-30
mod_plsql

invoking, 1-3

N
nls_lang

definition, 1-25

O
overloading, 1-8
owa_cache package, 4-24
owa_util PL/SQL web toolkit package, 1-23
owaload.sql, 2-1

P
parameters

flexible, 1-9
large, 1-11
MaxClients, 4-6
MaxRequestsPerChild, 4-6
MaxSpareServers, 4-6
MinSpareServers, 4-6
overloaded, 1-8
passing, 1-6, 1-9
PlsqlIdleSessionCleanupInterval, 4-6
PlsqlMaxRequestsPerSession, 4-6

performance
tuning

expires caching, 4-21
mod_expires, 4-30
system-level caching, 4-23
validation caching, 4-18

PL/SQL application
creating a DAD for, 2-4

PL/SQL web toolkit functions, 4-24
POST method, 1-5

R
request_charset, 1-26
REQUEST_IANA_CHARSET, 1-26
restrictions, 1-26

S
system-level caching, 4-23

T
transaction model, 1-6
tuning

expires caching technique, 4-21

Index-3

system-level caching, 4-23
validation caching, 4-18

two parameter
flexible parameter passing, 1-9

U
upload, 1-12
user-level caching, 4-23

V
validation caching

for mod_plsql, 4-18
technique, 4-17

W
web toolkit, 4-24

Index-4

	Contents
	Send Us Your Comments
	Preface
	Related Documentation
	Documentation Accessibility
	Conventions
	Oracle Services and Support

	1 Understanding mod_plsql
	1.1� Processing Client Requests
	1.2� Database Access Descriptors (DADs)
	1.3� Invoking mod_plsql
	1.4� Transaction Mode
	1.5� Supported Data Types
	1.6� Parameter Passing
	1.6.1� Parameter Passing by Name (Overloaded Parameters)
	1.6.2� Flexible Parameter Passing
	1.6.2.1� Two Parameter Interface
	1.6.2.2� Four Parameter Interface

	1.6.3� Large Parameter Passing

	1.7� File Upload and Download
	1.7.1� Document Table Definition
	1.7.1.1� Semantics of the CONTENT Column
	1.7.1.2� Semantics of the CONTENT_TYPE Column
	1.7.1.3� Semantics of the LAST_UPDATED Column
	1.7.1.4� Semantics of the DAD_CHARSET Column

	1.7.2� Old Style Document Table Definition
	1.7.3� Configuration Parameters for Document Upload/Downloading
	1.7.3.1� PlsqlDocumentTablename
	1.7.3.2� PlsqlDocumentPath (Document Access Path)
	1.7.3.3� PlsqlDocumentProcedure (Document Access Procedure)
	1.7.3.4� PlsqlUploadAsLongRaw

	1.7.4� File Upload
	1.7.5� Specifying Attributes (Mime Types) of Uploaded Files
	1.7.6� Uploading Multiple Files
	1.7.7� File Download
	1.7.8� Direct BLOB Download

	1.8� Path Aliasing (Direct Access URLs)
	1.9� Common Gateway Interface (CGI) Environment Variables
	1.9.1� Adding and Overriding CGI Environment Variables
	1.9.2� PlsqlNLSLanguage
	1.9.2.1� REQUEST_CHARSET CGI Environment Variable
	1.9.2.2� REQUEST_IANA_CHARSET CGI Environment Variable

	1.10� Restrictions in mod_plsql

	2 Configuring mod_plsql
	2.1� Verifying Requirements
	2.2� Installing Required Packages
	2.3� Creating a DAD for Your PL/SQL Application

	3 Securing Application Database Access Through mod_plsql
	3.1� Authenticating Users Through mod_plsql
	3.1.1� Basic (Database Controlled Authentication)
	3.1.2� Oracle HTTP Server mod_plsql Basic Authentication Mode
	3.1.3� Global OWA, Custom OWA, and Per Package (Custom Authentication)

	3.2� Deauthenticating Users
	3.3� Protecting the PL/SQL Procedures Granted to PUBLIC
	3.3.1� Using the PlsqlExclusionList Directive in mod_plsql
	3.3.2� Accessing the PlsqlExclusionList Directive

	4 Optimizing PL/SQL Performance
	4.1� PL/SQL Performance in Oracle HTTP Server - Overview
	4.2� Process-Based and Thread-Based Operation in Oracle HTTP Server
	4.3� Performance Tuning Issues for mod_plsql
	4.3.1� Connection Pooling with mod_plsql
	4.3.2� Closing Pooled Database Sessions
	4.3.3� Restarting the mod_plsql Connection Pool

	4.4� Performance Tuning Areas in mod_plsql
	4.4.1� PL/SQL Based Web Application Development Considerations
	4.4.2� Connection Pooling Tips and Oracle HTTP Server Configuration
	4.4.3� Tuning the Number of Database Sessions
	4.4.4� Two-Listener Strategy
	4.4.5� Overhead Problems
	4.4.5.1� The Describe Overhead
	4.4.5.2� Avoiding the Describe Overhead

	4.4.6� The Flexible Parameter Passing (four-parameter) Overhead

	4.5� Using Caching with PL/SQL Based Web Applications
	4.5.1� Using the Validation Technique
	4.5.1.1� Last-Modified
	4.5.1.2� Entity Tag Method
	4.5.1.3� Using the Validation Technique for mod_plsql
	4.5.1.4� Second Request Using the Validation Technique

	4.5.2� Using the Expires Technique
	4.5.3� System- and User-level Caching with PL/SQL Based Web Applications

	4.6� Tuning File System Cache to Improve Caching Performance
	4.6.1� Introducing File System Cache Tuning
	4.6.2� Enabling File System Cache
	4.6.3� Configuring File System Cache to Reside on a Faster File System
	4.6.4� Resizing File System Cache
	4.6.4.1� Setting the Total Cache Size with PlsqlCacheTotalSize
	4.6.4.2� Setting the Days of Aging for Cache with PlsqlCacheMaxAge
	4.6.4.3� Setting the Maximum File Size for a Cache File with PlsqlCacheMaxSize

	4.6.5� Configuring Cache Cleanup

	4.7� Oracle HTTP Server Directives

	A Frequently Asked Questions
	Index

