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Petr Čoupek

Riemann zeta function

Department of Mathematical Analysis

Supervisor of the bachelor thesis: doc. RNDr. Rokyta Mirko, CSc.

Study programme: Mathematics

Specialization: General mathematics

Prague 2011



I would like to express my gratitude to my supervisor, doc. Mirko Rokyta, for
his advising and ongoing counsel without which I would not have been able to
finish my work on this thesis. I would also like to thank my brother, Pavel, for his
continuous broadening of my horizons not only in the field of mathematics and
for his helpful suggestions. Additionaly, special thanks goes to a friend of mine,
Pavel Reich, for his provision of the necessary distraction and proofreading and,
of course, to my parents for everything thay have done for me.



I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that
the Charles University in Prague has the right to conclude a license agreement
on the use of this work as a school work pursuant to Section 60 paragraph 1 of
the Copyright Act.

In ............ date ............ signature
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pásu, formulaci Riemannovy hypotézy a problematiku iracionality vybraných
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Title: Riemann zeta function

Author: Petr Čoupek
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List of Symbols

ln . . . natural logarithm

log . . . principal value of complex logarithm

R . . . set of real numbers

C . . . set of complex numbers

Z . . . set of integers

N . . . set of natural numbers 1, 2, 3, . . .

Q . . . set of rational numbers

N0 . . . set of natural numbers including zero

{cn}∞n=0 . . . sequence {c0, c1, c2, . . .} ⊂ C

Γ . . . gamma function

n! . . . n factorial
(
n

k

)
. . . binomial coefficient

ℜ(s) . . . real part of s

ℑ(s) . . . imaginary part of s

ζ . . . Riemann zeta function

ζe . . . Euler zeta function

[1, ..., n] . . . least common multiple of numbers 1, 2, ..., n

degp n . . . number of times that given prime p divides n

bn = O(an), n→ ∞ . . . there exists sufficiently large n that bn is at most
C ∈ R multiplied by an in absolute value

a 7→ b . . . transformation of a into b

a := b . . . a is defined as b

[a] . . . integer part of a

≡ . . . is equivalent
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Introduction

The Riemann zeta function is a complex function of one complex variable with
great importance in pure mathematics. Its properties deeply bind the Riemann
zeta function with many results and conjectures surrounding the prime numbers.
This thesis provides basic properties of the Riemann zeta function and focuses
on the proof of Apéry’s theorem.

The thesis is divided into chapters, each containing proved theorems, com-
ments, and references to further reading. The aim is to present the subject
matter in an illustrative manner.

In the first chapter the construction of the Riemann zeta function is intro-
duced. We start from the Euler zeta function and by the means of analytic
continuation we find an expression which holds in C \ {1}.

In the second chapter the number-theoretic properties of the Riemann zeta
function are discussed. In particular, the Euler product formula which represents
a connection to prime numbers is proved and an expression for the zeta values
at even positive integers is introduced which is further used to show that these
numbers are irrational. Finally, Apéry’s theorem that states the irrationality of
ζ(3) is proved.

The third chapter deals with basic results in the analysis of the distribution of
zeta zeros. Theorems concerning the trivial roots of the Riemann zeta function
are proved and the famous Riemann hypothesis along with other results in this
area are presented.

The fourth chapter contains additional supporting computations related to
the proof of Apéry’s theorem. These computations are presented in a separate
chapter for their complexity and in order to make the proof of Apéry’s theorem
more transparent.
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1. Definition

1.1 Euler zeta function

As a starting point let us consider the Euler zeta function. It is a generalization
of the sum

∑∞
n=1

1
n2 appearing in the famous Basel problem1 which was solved by

Euler in 1735.

Definition 1.1.1. For s ∈ C let

ζe(s) :=
∞∑

n=1

1

ns
, (1.1)

whenever the sum converges. (1.1) is called the Euler zeta function.

Lemma 1.1.2. The series (1.1) defines holomorphic function ζe(s) for s ∈ C,
ℜ(s) > 1.

Proof. Let s = σ + it, σ, t ∈ R. First we have

|ns| =
∣∣∣es log n

∣∣∣ =
∣∣∣eσ logn · eit logn

∣∣∣ = eσ logn = nσ.

Thus
∑∞

n=1
1
ns is absolutely convergent if and only if σ > 1. Let ǫ > 0. Then

there exists n0 ∈ N such that for all N,M ∈ N, N > M ≥ n0:

∣∣∣∣∣

N∑

n=1

1

ns
−

M∑

n=1

1

ns

∣∣∣∣∣ =

∣∣∣∣∣∣

N∑

n=M+1

1

ns

∣∣∣∣∣∣
≤

N∑

n=M+1

∣∣∣∣
1

ns

∣∣∣∣ =
N∑

n=M+1

1

nσ
< ǫ,

where σ ≥ 1 + ξ, for ξ > 0 since

N∑

n=M+1

1

nσ
≤

N∑

n=M+1

1

n1+ξ
≤
∫ N

M

1

x1+ξ
dx =

= −1

ξ

[
1

xξ

]N

M

=
1

ξ
· N

ξ −M ξ

M ξN ξ
≤ 1

ξ
· N ξ

M ξN ξ
=

1

ξ
· 1

M ξ
< ǫ,

forM > n0. Hence ζe(s) is uniformly convergent in any region in which σ ≥ 1+ξ,
ξ > 0. The sum

∑∞
n=1

1
ns therefore defines a holomorphic function ζe(s) for

σ > 1.

1.2 Analytic continuation

By definition 1.1.1, the function ζe(s) is defined only in the half-plane ℜ(s) > 1.
It is only natural to ask whether the holomorphic function ζe(s) can be continued
beyond this region. To answer this question it will be useful to prove the following.

1The Basel problem asks for finding the closed form and precise estimation of the value of
the sum

∑
∞

n=1
1
n2 . For further references see [7], [8].
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Lemma 1.2.1. For s ∈ C, ℜ(s) > 1 the following equation, where Γ(s) denotes
the gamma function, holds:

ζe(s) =
1

Γ(s)

∫ ∞

0

us−1

eu − 1
du. (1.2)

Proof. We shall start from the definition of the gamma function Γ:

Γ(s) =
∫ ∞

0
ts−1e−tdt, s ∈ C,ℜ(s) > 0.

By substitution t = nv we get

Γ(s) =
∫ ∞

0
ts−1e−tdt = ns

∫ ∞

0
vs−1e−nvdv

and therefore
1

ns
=

1

Γ(s)

∫ ∞

0
vs−1e−nvdv.

Further let N ∈ N and by summing both sides for 1 ≤ n ≤ N (finite sum) we
obtain

N∑

n=1

1

ns
=

1

Γ(s)

∫ ∞

0
vs−1

(
N∑

n=1

e−nv

)
dv =

1

Γ(s)

∫ ∞

0
vs−1

(
1− e−Nv

ev − 1

)
dv.

Since ev − 1 has a simple root at the point 0 this integral converges for ℜ(s) > 1.
Now we need to show that

ζe(s) =
∞∑

n=1

1

ns
:= lim

N→∞

N∑

n=1

1

ns
= lim

N→∞

(
1

Γ(s)

∫ ∞

0
vs−1

(
1− e−Nv

ev − 1

)
dv

)
=

=
1

Γ(s)

∫ ∞

0
vs−1 lim

N→∞

(
1− e−Nv

ev − 1

)
dv =

1

Γ(s)

∫ ∞

0

vs−1

ev − 1
dv.

The switching of limit and integral holds by the existence of integrable majorant
∣∣∣∣∣
1− e−Nv

ev − 1

∣∣∣∣∣ ≤
∣∣∣∣

1

ev − 1

∣∣∣∣ .

According to [26], let us define a notation which will simplify the following
lemma.

Definition 1.2.2. For a function f defined in C \ R and for every x ∈ R for
which the limit

lim
y→0+

f(x+ iy), lim
y→0−

f(x+ iy)

exists let us denote this limit by

(f(x))+ , (f(x))
−
.

Furthermore if c, d ∈ R ∪ {±∞} then the integral
∫ d

c
(f(x))+,

∫ d

c
(f(x))

−

will be called the integral of the function f(z) ≡ f(x+ iy) along the segment [c, d]
on the upper (lower resp.) side of the real axis.
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Lemma 1.2.3. Let 0 < R < 2π and let L(R) denote the curve which consists
of the segment [−∞,−R] on the lower side of the real axis, the circumference
C(0, R) and the segment [−R,−∞] on the upper side of the real axis. Then for
s ∈ C \ Z,ℜ(s) > 0 the following equation holds:

∫ ∞

0

us

eu − 1
du =

1

2i sin πs

∫

L(R)

zs

1− e−z
dz. (1.3)

Proof. 2 Let us consider the function ψ(z) := z
1−e−z · zs−1. Let G := C \ (−∞, 0].

Then ψ(z) is a holomorphic function in G. Now, for every z ∈ R, z < 0 we have
(ψ(z))+ = ψ(z) and (ψ(z))

−
= e−2π(s−1)iψ(z). Therefore for s ∈ C,ℜ(s) > 0 and

every real N > 0 we get

∫ −N

0

(
z

1− e−z
· zs−1

)

+
dz +

∫ 0

−N

(
z

1− e−z
· zs−1

)

−

dz =

=
(
1− e−2π(s−1)i

) ∫ −N

0

(
z

1− e−z
· zs−1

)
dz.

The integrals are convergent and represent functions of s holomorphic in the
half-plane ℜ(s) > 0. By Cauchy’s theorem it follows that the left side is equal to

∫ −R

−N

(
z

1− e−z
· zs−1

)

−

dz+
∫ −N

−R

(
z

1− e−z
· zs−1

)

+
dz+

∫

CR

(
z

1− e−z
· zs−1

)
dz,

where CR denotes the circumference C(0, R) with radius R < 2π. Since these
integrals converge for all s ∈ C, this expression represents an entire function of s.
After passing to the limit N → ∞, the integrals above will represent an entire
function of s since the first two integrals tend to finite limits. However,

(
1− e−2π(s−1)i

) ∫ −∞

0

(
z

1− e−z
· zs−1

)
dz =

= 2i sin π(s− 1)
∫ −∞

0

(
z

1− e−z
· (−z)s−1

)
dz =

= 2i sin πs
∫ ∞

0

zs

ez − 1
dz

and therefore

2i sin πs
∫ ∞

0

zs

ez − 1
dz =

=
∫ −R

−∞

(
zs

1− e−z

)

−

dz +
∫ −∞

−R

(
zs

1− e−z

)

+
dz +

∫

CR

zs

1− e−z
dz =

=
∫

L(R)

zs

1− e−z
dz

holds for every s ∈ C,ℜ(s) > 0.

Being sufficiently prepared we shall start from lemma 1.2.3 and derive a for-
mula for the analytic continuation of ζe(s) to C \ {1}.

2For a general proof for integrals of the form
∫
∞

0
us−1ϕ(u)du see [26, p.418–420]. Here we

shall follow this reasoning with the function ϕ(z) = z
ez−1 .
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Theorem 1.2.4. Let 0 < R < 2π and L(R) the curve from lemma 1.2.3. Then

ζ(s) :=
Γ(1− s)

2πi

∫

L(R)

zs−1ez

1− ez
dz

is the analytic continuation of ζe(s) which holds for s ∈ C \ {1}, with a simple
pole at 1 with residue 1.

Proof. From lemma 1.2.3 we have

∫ ∞

0

zs

ez − 1
dz =

1

2i sin πs

∫

L(R)

zs

1− e−z
dz

for s ∈ C \ Z. Replacing s by s− 1 and using lemma 1.2.1 we get

ζe(s)Γ(s) =
1

2i sin π(s− 1)

∫

L(R)

zs−1

1− e−z
dz =

1

2i sin πs

∫

L(R)

zs−1ez

1− ez
dz

which holds for s ∈ C \ Z,ℜ(s) > 0. However, from the reflection formula [14,
p.58–59]

Γ(s)Γ(1− s) =
π

sin πs
, s ∈ C \ Z,

we obtain

ζ(s) =
Γ(1− s)

2πi

∫

L(R)

zs−1ez

1− ez
dz

for all s ∈ C \ Z. The integral is convergent for all s ∈ C and thus the only
possible singularities are at the poles of Γ(1− s): s = 1, 2, .... From lemma 1.1.2
we already know that ζe(s) is holomorphic in 2, 3, ... and from the uniqueness
of analytic continuation follows that ζ(s) is holomorphic at these points. Hence
s = 1 is a simple pole and

∫

L(R)

ez

1− ez
dz =

∫

L(R)

1

e−z − 1
dz =

∫

L̃(R)

1

ez − 1
dz = 2πi,

where L̃(R) is a curve which consists of the segment [+∞, R] on the upper side
of the real axis then C(0, R) and the segment [R,+∞] on the lower side of the
real axis. Further,

Γ(s− 1) = − 1

s− 1
+ ...

and therefore the residue at the pole s = 1 is 1.

1.3 Definition of the Riemann zeta function

Definition 1.3.1. The analytic continuation ζ of the Euler zeta function ζe to
C \ {1} from theorem 1.2.4 is called the Riemann zeta function.

The method we used to analytically continue ζe is one of Riemann’s original
methods [24]. Other methods can be found in [28, p.13–27].
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2. Number-theoretic analysis

2.1 Prime theory relations

In this section we shall provide basic results relating the Riemann zeta function
to the prime numbers. We shall start with the reminding of the Fundamental
theorem of arithmetic. For detailed proof and further references see [11].

Theorem 2.1.1 (Fundamental theorem of arithmetic). Every n ∈ N \ {1} can
be represented in exactly one way apart from rearrangement as a product of one
or more primes.

Now we shall prove the Euler product formula [9].

Theorem 2.1.2 (Euler product formula). For any given s ∈ C,ℜ(s) > 1 the
following formula

ζ(s) =
∞∏

n=1

1

1− p−s
n

(2.1)

where pn denotes the n-th prime number, holds.

Proof. Let us consider the series
∞∑

n=1

p−s
n , s ∈ C,ℜ(s) > 1.

This, being merely a selection of the series
∞∑

n=1

n−s, s ∈ C,ℜ(s) > 1,

is for any given ǫ ∈ R, ǫ > 0 absolutely and uniformly convergent in every half-
plane Gǫ := {s ∈ C;ℜ(s) ≥ 1 + ǫ} by lemma 1.1.2. We would like to show that
the product

∞∏

n=1

(1− p−s
n ), s ∈ C,ℜ(s) > 1 (2.2)

is absolutely and uniformely convergent in every Gǫ, ǫ ∈ R, ǫ > 0. The absolute
convergence follows from the uniform convergence of

∣∣∣p−s
1

∣∣∣+
∣∣∣p−s

2

∣∣∣+ . . .+
∣∣∣p−s

n

∣∣∣+ . . . (2.3)

in every Gǫ. Let us further denote by M the upper bound of the sum of series
(2.3) for s ∈ C,ℜ(s) ≥ 1 + ǫ. We take the partial sum of (2.3) to obtain

∣∣∣∣∣

N∑

n=1

(
1− p−s

n

)∣∣∣∣∣ ≤
N∏

n=1

(
1 +

∣∣∣p−s
n

∣∣∣
)
≤ e

∑N

n=1
|p−s

n | ≤ eM .

Consequently
∣∣∣∣∣

N∏

n=1

(
1− p−s

n

)∣∣∣∣∣ ≤
∣∣∣1− p−s

1

∣∣∣+
N∑

k=2

∣∣∣∣∣∣

k∏

j=1

(
1− p−s

j

)
−

k−1∏

j=1

(
1− p−s

j

)
∣∣∣∣∣∣

=
∣∣∣1− p−s

1

∣∣∣+
N∑

k=2

∣∣∣∣∣∣

k−1∏

j=1

(
1− p−s

j

)
∣∣∣∣∣∣

∣∣∣p−s
k

∣∣∣

≤
∣∣∣1− p−s

1

∣∣∣+ eM
N∑

k=2

∣∣∣p−s
k

∣∣∣ .
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Thus, the product (2.2) is uniformely convergent in every Gǫ, ǫ ∈ R, ǫ > 0 and
therefore represents a function holomorphic there. Let us take a finite number
N ∈ N of factors |p−s

n |. Then after multiplying a finite number of absolutely
convergent series, we obtain

∏

n≤N

(
1 +

1

psn
+

1

p2sn
+ . . .

)
= 1 +

1

ns
1

+
1

ns
2

+ . . . ,

where n1, n2, . . . are integers none of whose prime factors exceed N . Since both
sides of 2.1 are holomorphic in s ∈ C,ℜ(s) > 1 it is sufficient to prove this formula
for s ∈ R, s > 1. It therefore follows

0 ≤
∣∣∣∣∣∣
ζ(s)−

∏

pn≤N

1

1− p−s
n

∣∣∣∣∣∣
=

∣∣∣∣∣ζ(s)−
(
1 +

1

ns
1

+
1

ns
2

+ . . .

)∣∣∣∣∣ ≤
∞∑

j=N+1

1

js

by theorem 2.1.1. The last term tends to 0 as N → ∞.

Euler’s original proof employs the sieve of Eratosthenes and can be found in
[5, p.99–105]. This formula plays a major role in the prime number theory since it
relates all natural numbers and all primes. For further information and references
see [5] or [6].

2.2 Irrationality of the zeta values at even pos-

itive integers

We shall start with the definition of Bernoulli numbers.

Definition 2.2.1. Consider a series {Bk}∞k=0 ⊂ R defined by recursion:

B0 := 1

Bk := − 1

k + 1

k−1∑

j=0

(
k + 1

j

)
Bj, k = 1, 2, ....

We call Bk the Bernoulli numbers.

We shall now express the values of ζ at even positive integers in terms of the
Bernoulli numbers.

Theorem 2.2.2. For every k ∈ N the following Euler’s formula

ζ(2k) =
(−1)k−1 · 22k−1B2k

(2k)!
· π2k,

where Bk are the Bernoulli numbers from the definition 2.2.1, holds.

Proof. Let us start from the formula, which can be obtained by the use of Fourier
series,1

t

et − 1
+
t

2
− 1 =

∞∑

n=1

2t2

t2 + 4π2n2
, t ∈ R \ {0}. (2.4)

1For x ∈ [−π, π], α 6= 0 we have after using standard Fourier series

coshαx =
sinhαπ

απ

(
1 +

∞∑

n=1

(−1)n
2α2

α2 + n2
cosnx

)
now

9



For t = 0 the formula (2.4) is understood as the limit t → 0. Let us define the
function f : C\{2πki, k ∈ Z} → C by f(z) := z

ez−1
. Then there exists the Taylor

series of f around the point z = 0, which is a removable singularity, with a radius
of convergence 2π. Thus there exist ak ∈ R such that

t

et − 1
=

∞∑

k=0

ak
k!
tk, |t| < 2π, t ∈ R.

Apparently for every t ∈ R (instead of t = 0 we consider the limit t→ 0)

et − 1

t
=

1

t

(
∞∑

k=0

tk

k!
− 1

)
=

∞∑

k=0

tk

(k + 1)!

and therefore

1 =
et − 1

t
· t

et − 1
=

(
∞∑

k=0

ak
k!
tk
)
·
(

∞∑

k=0

tk

(k + 1)!

)
=

∞∑

n=0

n∑

k=0

ak
k!(n− k + 1)!

tn

holds for every |t| < 2π, t ∈ R. Thus, after comparing both sides, we obtain

B0 := 1

Bk := − 1

k + 1

k−1∑

j=0

(
k + 1

j

)
Bj, k = 1, 2, ....

Since (2.4) defines an even function for every t ∈ R and therefore its odd deriva-
tives at t = 0 are zero, we get B2k+1 = 0 for every k ∈ N. Hence

t

et − 1
= 1− t

2
+

∞∑

k=1

B2k

(2k)!
t2k, |t| < 2π, t ∈ R

and
∞∑

k=1

B2k

(2k)!
t2k =

∞∑

n=1

2t2

t2 + 4π2n2
, |t| < 2π, t ∈ R.

For fixed n ∈ N and |t| < 2π, t ∈ R we further have

2t2

t2 + 4π2n2
= 2

(
t

2πn

)2

1 +
(

t
2πn

)2 = 2
(

t

2πn

)2 ∞∑

k=0

(−1)k
(

t

2πn

)2k

= 2
∞∑

k=1

(−1)k−1
(

t

2πn

)2k

put x = π. Then we get

απ cothαπ − 1 =

∞∑

n=1

2α2

α2 + n2
, α 6= 0.

The left side goes to 0 as α → 0 and therefore in this sence the formula is valid for all α ∈ R.
Here we put απ = t

2 to obtain

coth
t

2
=

e
t

2 + e−
t

2

e
t

2 − e−
t

2

=
et + 1

et − 1
=

2

et − 1
+ 1, t ∈ R

and
t

et − 1
+

t

2
− 1 =

∞∑

n=1

2t2

t2 + 4π2n2
, t ∈ R

for t = 0 in the sence of limit.
See http://www.karlin.mff.cuni.cz/~rokyta/vyuka/general/tahaky/zeta_2n.pdf.
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and thus
∞∑

k=1

B2k

(2k)!
t2k = 2

∞∑

n=1

∞∑

k=1

(−1)k−1

(2πn)2k
t2k, |t| < 2π, t ∈ R. (2.5)

The infinite series on the right side of (2.5) converges absolutely for |t| < 2π, t ∈ R

since

2
∞∑

n=1

∞∑

k=1

(
|t|
2πn

)2k

=
∞∑

n=1

2t2

4π2n2 − t2
<∞, |t| < 2π, t ∈ R.

Therefore we can change the order of summing and get

∞∑

k=1

B2k

(2k)!
t2k =

∞∑

k=1

(
(−1)k−1

22k−1π2k

∞∑

n=1

1

n2k

)
t2k, |t| < 2π, t ∈ R

which yields the formula we were seeking2.

Corollary 2.2.3. The values of the Riemann zeta function at even positive in-
tegers are transcendental.

Proof. Clearly for n ∈ N is Bn ∈ Q. Taking into account the expression of ζ(2k)
for k ∈ N in the theorem 2.2.2 and the fact that π is transcendental [20] we can
see that for k ∈ N ζ(2k) is transcendental.

2.3 Apéry’s theorem

In this section we shall prove Apéry’s theorem [1]. We shall follow the reasoning
in [23]. Let us start with an easy observation.

Remark 2.3.1. Let x ∈ R \ {0} and for k ∈ N let a1, ..., ak ∈ R. Denoting

A0 :=
1

x

Ak :=
a1 . . . ak

x(x+ a1) . . . (x+ ak)

we obtain

1

x
− a1 . . . aK
x(x+ a1) . . . (x+ aK)

= A0−AK =
K∑

k=1

(Ak−1−Ak) =
K∑

k=1

a1 . . . ak−1

(x+ a1) . . . (x+ ak)

for K ∈ N.

Applying this observation, let us introduce a useful expression for ζ(3).

2 There is also a Ramanujan’s formula which presents an analogue to the Euler’s formula in
theorem 2.2.2 for ζ(2k + 1). For αβ = π2 and any positive integer n:

α−n

[
∞∑

k=1

1

k2n+1

(
1

e2kα − 1

)
+

1

2
ζ(2n+ 1)

]
−(−β)−n

[
∞∑

k=1

1

k2n−1

(
1

e2kβ − 1

)
+

1

2
ζ(2n− 1)

]
=

= 22n
n+1∑

j=0

(−1)j+1 B2j

(2j)!

B2n+2−2j

(2n+ 2− 2j)!
αjβn−1−j .

For detailed proof and further reference see [21] or [2].
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Lemma 2.3.2. 3

ζ(3) =
∞∑

n=1

1

n3
=

5

2

∞∑

n=1

(−1)n−1

n3
(
2n
n

) .

Proof. Putting x := n2, ak := −k2 in remark 2.3.1 and taking K = n − 1 we
obtain

n−1∑

k=1

(−1)k−1(k − 1)!2

(n2 − 12) . . . (n2 − k2)
=

=
1

n2
− (−1)n−1(n− 1)!2

n2(n2 − 12) . . . (n2 − (n− 1)2)

=
1

n2
− (−1)n−1(n− 1)!2

n2(n− 1)(n+ 1) . . . (n− (n− 1))(n+ (n− 1))

=
1

n2
− 2(−1)n−1

n2 (2n)!
(2n−n)!n!

=
1

n2
− 2(−1)n−1

n2
(
2n
n

) .

Let us consider the coefficient

en,k :=
1

2k3
· 1(

n+k

k

)(
n

k

) =
k!2(n− k)!

2k3(n+ k)!

and since

(−1)kn(en,k − en−1,k) =
(−1)knk!2

2k3
· (n− k − 1)!

(n+ k)!
(−2k)

=
(−1)k−1k!2n(n− k − 1)!

k2(n+ k)!

=
(−1)k−1n(k − 1)!2

n(n2 − 12) . . . (n2 − k2)

=
(−1)k−1(k − 1)!2

(n2 − 12) . . . (n2 − k2)

we obtain

n−1∑

k=1

(−1)kn(en,k − en−1,k) =
n−1∑

k=1

(−1)k−1(k − 1)!2

(n2 − 12) . . . (n2 − k2)
=

1

n2
− 2(−1)n−1

n2
(
2n
n

)

and by dividing both sides by n we get

n−1∑

k=1

(−1)k(en,k − en−1,k) =
1

n3
− 2(−1)n−1

n3
(
2n
n

) .

3Similarly it can be shown that ζ(2) = 3
∑

∞

n=1
1

n2(2n
n
)
. One may indeed assert that

ζ(k) = C ·
∞∑

n=1

(−1)k(n−1)

nk
(
2n
n

)

for k = 2, 3, . . . where C ∈ Q, however, whether it is so remains yet unknown [23].
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By summing both sides over 1 ≤ n ≤ N,N ∈ N we obtain

N∑

n=1

1

n3
− 2

N∑

n=1

(−1)n−1

n3
(
2n
n

) =
N∑

n=1

n−1∑

k=1

(−1)k(en,k − en−1,k)

=
N−1∑

k=1

(−1)k(eN,k − ek,k)

=
N−1∑

k=1

(−1)k

2k3
(
N+k

k

)(
N

k

) +
1

2

N−1∑

k=1

(−1)k−1

k3
(
2k
k

) .

It thus follows that

N∑

n=1

1

n3
=

5

2

N∑

n=1

(−1)n−1

n3
(
2n
n

) − 1

2

(−1)N−1

N3
(
2N
N

) +
N−1∑

k=1

(−1)k

2k3
(
N+k

k

)(
N

k

) . (2.6)

As we can see the limit N → ∞ of (2.6) yields the assertion, however, it only
remains to show that

lim
N→∞

N−1∑

k=1

(−1)k

2k3
(
N+k

k

)(
N

k

) = 0 (2.7)

and

lim
N→∞

(−1)N−1

2N3
(
2N
N

) = 0. (2.8)

First we shall prove (2.7). For fixed N ∈ N and k = 1, . . . , N − 1 let us denote

AN,k :=
k!2(N − k)!

2(N + k)!
=

1

2
(
N+k

k

)(
N

k

) .

It follows that

|AN,k| =
1

2
(
N+k

k

)(
N

k

) ≤ 1

2N

since (
N + k

k

)
≥ 1,

(
N

k

)
≥ N, N ∈ N, k = 1, . . . , N − 1.

Thus we obtain
∣∣∣∣∣

N−1∑

k=1

AN,k

(−1)k

k3

∣∣∣∣∣ ≤
N−1∑

k=1

1

k3
|AN,k| ≤

N−1∑

k=1

1

k3
· 1

2N
<

1

2N

∞∑

k=1

1

k3
︸ ︷︷ ︸

ζ(3)

which goes to 0 as N → ∞. (2.8) follows quite easily by
∣∣∣∣∣∣
(−1)N−1

2N3
(
2N
N

)

∣∣∣∣∣∣
=

1

2N3
(
2N
N

) ≤ 1

2N3
,

since
(
2N
N

)
≥ 1 for N ∈ N. This goes to 0 as N → ∞.

At this point let us introduce Dirichlet’s criterion for irrationality which we
would like to use to prove the irrationality of ζ(3).
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Theorem 2.3.3 (Criterion for irrationality). Let β ∈ R. Then β is irrational if

there exist δ ∈ R, δ > 0 and a sequence
{
pn
qn

}∞
n=1

of rational numbers such that

for all n ∈ N : pn
qn

6= β for which

∣∣∣∣∣β − pn
qn

∣∣∣∣∣ <
1

q1+δ
n

, n ∈ N.

The expression in lemma 2.3.2, however, does not imply the irrationality of
ζ(3). To see this we shall prove the following.

Lemma 2.3.4. For n ∈ N and 1 ≤ k ≤ n denote

cn,k :=
n∑

j=1

1

j3
+

k∑

j=1

(−1)j−1

2j3
(
n

j

)(
n+j

j

) .

Then

2cn,k[1, . . . , n]
3

(
n+ k

k

)
∈ Z, 1 ≤ k ≤ n,

where [1, . . . , n] denotes the least common multiple of numbers 1, 2, . . . , n.

Proof. Let p be a prime. Then for n ∈ N let us introduce the symbol degp n
which we shall use for the number of times that p divides n. Then we have

degp[1, . . . , n] =

[
lnn

ln p

]

since degp[1, . . . , n] =: c ∈ N0 is the greatest number such that

pc ≤ n.

By the properties of the deg function (see [23, p.6]) we have for m ∈ N0, m ≤ n

degp

(
n

m

)
≤
[
lnn

ln p

]
− degpm.

We want to show that

degp


m3

(
m+n

m

)(
n

m

)

(
n+k

k

)


 ≤ degp[1, . . . , n]

3

since

2[1, . . . , n]3
(
n+ k

k

)
cn,k = 2[1, . . . , n]3

∑n
m=1 am

[1, . . . , n]3
+ [1, . . . , n]3

k∑

m=1

(−1)m−1

m3(n

m)(
m+n

m )
(n+k

k )

,

where am ∈ Z for m = 1, . . . , n. Since

(
n+ k

k

)(
k

m

)
=

(
n+ k

k −m

)(
n+m

m

)
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we obtain

degp



m3
(
n

m

)(
m+n

m

)

(
n+k

k

)


 = degp



m3
(
n

m

)(
k

m

)

(
n+k

k−m

)




≤ 3 degpm+

[
lnn

ln p

]
+

[
ln k

ln p

]
− 2 degpm

= degpm+ degp[1, . . . , n] + degp[1, . . . , k]

≤ 3 degp[1, . . . , n]

since m ≤ k ≤ n.

More consise proof of lemma 2.3.4 can be found in [23, p.6]. Our aim is to
apply theorem 2.3.3. However, according to lemma 2.3.4, the convergence of the
quantities cn,k for k = n needs to be accelerated.

Definition 2.3.5. For k, n ∈ N0, k ≤ n let us consider two sequences

a
(0)
n,k :=

(
n+ k

k

)
cn,k,

b
(0)
n,k :=

(
n+ k

k

)
.

Apparently,

a
(0)
n,k

b
(0)
n,k

= cn,k → ζ(3), n→ ∞

uniformely in k. In order to accelerate the convergence of cn,k for k = n we shall
transform these sequences as follows:

a
(0)
n,k 7→

(
2n− k

n

)
cn,n−k

7→
(
n

k

)(
2n− k

n

)
cn,n−k

7→
k∑

k1=0

(
k

k1

)(
n

k1

)(
2n− k1

n

)
cn,n−k1

7→
(
n

k

)
k∑

k1=0

(
k

k1

)(
n

k1

)(
2n− k1

n

)
cn,n−k1

7→
k∑

k2=0

(
k

k2

)(
n

k2

)
k2∑

k1=0

(
k2
k1

)(
n

k1

)(
2n− k1

n

)
cn,n−k1 ,

denoting the last term a
(1)
n,k and in the very same manner we shall transform b

(0)
n,k.

b
(0)
n,k 7→

(
2n− k

n

)

7→
(
n

k

)(
2n− k

n

)
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7→
k∑

k1=0

(
k

k1

)(
n

k1

)(
2n− k1

n

)

7→
(
n

k

)
k∑

k1=0

(
k

k1

)(
n

k1

)(
2n− k1

n

)

7→
k∑

k2=0

(
k

k2

)(
n

k2

)
k2∑

k1=0

(
k2
k1

)(
n

k1

)(
2n− k1

n

)

Here we denote the last term b
(1)
n,k. Since we applied the transformations to both

sequences the ratio of corresponding elements retains the property that

a
(1)
n,k

b
(1)
n,k

−→ ζ(3), n→ ∞

uniformly in k. For k = n we shall denote the sequences {an}∞n=0 and {bn}∞n=0.

Lemma 2.3.6. Let {an}∞n=0 and {bn}∞n=0 be the sequences from definition 2.3.5.
Consider the recursion

n3un + (n− 1)3un−2 = (34n3 − 51n3 + 27n− 5)un−1, n ≥ 2. (2.9)

Then a0 = 0, a1 = 6, an = un, n ≥ 2 and b0 = 1, b1 = 5, bn = un, n ≥ 2.
Moreover, for all n ∈ N0 : bn ∈ Z and for all n ∈ N0 are an rational numbers
with denominator dividing 2[1, . . . , n]3.

Proof. Notice that for n ∈ N we have

n∑

k=0

k∑

j=0

(
n

k

)2(
n

j

)(
k

j

)(
2n− j

n

)
=

=
n∑

k=0

n∑

j=0

(
n

k

)2(
n

j

)(
k

j

)(
2n− j

n

)

=
n∑

j=0

n∑

k=0

(
n

k

)2(
n

j

)(
k

j

)(
2n− j

n

)

=
n∑

j=0

(
n

j

)(
2n− j

n

)
n∑

k=0

(
n

k

)2(
k

j

)

=
n∑

j=0

(
n

j

)(
2n− j

n

)


j−1∑

k=0

(
n

k

)2(
k

l

)
+

n∑

k=j

(
n

k

)2(
k

j

)


since j ≤ n we have

n∑

k=j

(
n

k

)2(
k

j

)
=

n∑

k=j

(
n

j

)(
n− j

k − j

)(
n

k

)
=

(
n

j

)
n∑

k−j

(
n− j

n− k

)(
n

k

)

and
j−1∑

k=0

(
n

k

)2(
k

j

)
= 0 =

(
n

j

)
j−1∑

k=0

(
n− j

n− k

)(
n

k

)
. (2.10)
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The left side of (2.10) is 0 since k < j and by the convetion
(
k

j

)
= 0 and the right

side is 0 since k < j and thus
(
n−j

n−k

)
= 0. Therefore we get

n∑

j=0

(
n

j

)(
2n− j

n

)


j−1∑

k=0

(
n

k

)2(
k

l

)
+

n∑

k=j

(
n

k

)2(
k

j

)
 =

=
n∑

j=0

(
n

j

)(
2n− j

n

)

(
n

j

)
j−1∑

k=0

(
n− j

n− k

)(
n

k

)
+

(
n

l

)
n∑

k=j

(
n− j

n− k

)(
n

k

)


=
n∑

j=0

(
n

j

)2(
2n− j

n

)
n∑

k=0

(
n− j

n− k

)(
n

k

)

=
n∑

j=0

(
n

j

)2(
2n− j

n

)2

due to the identity (
n− j

k − j

)(
n

j

)
=

(
n

k

)(
k

j

)

and Vandermonde’s convolution

n∑

k=0

(
n

k

)(
n− j

k − j

)
=

(
2n− j

n

)
.

Let us consider n−k instead of k. This relates a
(1)
n,k and b

(1)
n,k to the following. Let

us further denote

b
(2)
n,k :=

(
n

k

)2(
n+ k

k

)2

,

a
(2)
n,k := b

(2)
n,kcn,k.

For k > n or k < 0 are b
(2)
n,k and a

(2)
n,k defined by 0. Noting that

an =
n∑

k=0

b
(2)
n,kcn,k, bn =

n∑

k=0

b
(2)
n,k

we want to show
n∑

k=0

[
(n+ 1)3b

(2)
n+1,k − (34n3 + 51n2 + 27n+ 5)b

(2)
n,k + n3b

(2)
n−1,k

]
= 0, n ≥ 1

which is equation (2.9) written for (n+ 1) instead of n. We shall further denote

Bn,k :=





4(2n+ 1) (k(2k + 1)− (2n+ 1)2)
(
n

k

)2(n+k

k

)2
, 0 ≤ k ≤ n,

0, otherwise.

For such Bn,k we have4

Bn,k −Bn,k−1 = (n+ 1)3
(
n+ 1

k

)2(
n+ 1 + k

k

)2

4For detailed proof see lemma 4.0.8.

17



− (34n3 + 51n2 + 27n+ 5)

(
n

k

)2(
n+ k

k

)2

+ n3

(
n− 1

k

)2(
n− 1 + k

k

)2

which can be written as

Bn,k −Bn,k−1 = (n+ 1)3b
(2)
n+1,k − (34n3 + 51n2 + 27n+ 5)b

(2)
n,k + n3b

(2)
n−1,k. (2.11)

Denoting
P (n) = 34n3 + 51n2 + 27n+ 5

and by summing both sides of (2.11) for 0 ≤ k ≤ n we obtain

Bn,n = (n+ 1)3bn+1 − P (n)bn + n3bn−1 − (n+ 1)3b
(2)
n+1,n+1 + n3b

(2)
n−1,n. (2.12)

From the definition of Bn,k we have

Bn,n = −4(2n+ 1)2(n+ 1)

(
2n

n

)2

and from the definition of b
(2)
n,k we have

−(n+ 1)3b
(2)
n+1,n+1 + n3b

(2)
n−1,n = −4(2n+ 1)2(n+ 1)

(
2n

n

)2

.

Thus from (2.12) it follows that

(n+ 1)3bn+1 − P (n)bn + n3bn−1 = 0, n ≥ 1.

Therefore the sequence {bn}∞n=0 satisfies recurrence (2.9). To prove that the se-
quence {an}∞n=0 satisfies (2.9) we notice that

(n+ 1)3b
(2)
n+1,kcn+1,k − P (n)b

(2)
n,kcn,k + n3b

(2)
n−1,kcn−1,k

= (Bn,k − Bn,k−1)cn,k + (n+ 1)3b
(2)
n+1,k(cn+1,k − cn,k)

− n3b
(2)
n−1,k(cn,k − cn−1,k). (2.13)

Denoting

An,k :=





Bn,kcn,k +
5(2n+1)(−1)k−1k

n(n+1)

(
n

k

)(
n+k

k

)
, 0 ≤ k ≤ n,

0, otherwise

we deduce that (2.13) becomes An,k − An,k−1
5, precisely

(n+ 1)3b
(2)
n+1,kcn+1,k − P (n)b

(2)
n,kcn,k + n3b

(2)
n−1,kcn−1,k = An,k − An,k−1. (2.14)

By summing both sides of (2.14) for 0 ≤ k ≤ n we obtain

(n+ 1)3
(
an+1 − b

(2)
n+1,n+1cn+1,n+1

)
− P (n)an + n3

(
an−1 + b

(2)
n−1,ncn−1,n

)
= An,n.

5For detailed proof see lemma 4.0.10.
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Since6

An,n = Bn,ncn,n +
5(2n+ 1)(−1)n−1

n+ 1

(
2n

n

)
= −(n+ 1)3b

(2)
n+1,n+1cn+1,n+1 (2.15)

we obtain
(n+ 1)3an+1 − P (n)an + n3an−1 = 0, n ≥ 1

and thus both the sequences {an}∞n=0 and {bn}∞n=0 satisfy recurrence (2.9). More-
over, considering the construction of {an}∞n=0 and {bn}∞n=0 and taking into account
lemma 2.3.4 we obtain that for all n ∈ N : bn ∈ Z and for all n ∈ N are an rational
numbers with denominator dividing 2[1, . . . , n]3.

Theorem 2.3.7 (Apéry’s theorem). ζ(3) is irrational.

Proof. First we have

P (n− 1) = 34n3 − 51n2 + 27n− 5, n ∈ N.

From lemma 2.3.6 it follows that

n3an − P (n− 1)an−1 + (n− 1)3an−2 = 0, n ≥ 2,

n3bn − P (n− 1)bn−1 + (n− 1)3bn−2 = 0, n ≥ 2.

After multiplying the first equation by bn−1 and the second by an−1 and subtract-
ing them, we obtain

n3(anbn−1 − an−1bn) = (n− 1)3(an−1bn−2 − an−2bn−1), n ≥ 2. (2.16)

Since a0 = 0, a1 = 6, b0 = 1, b1 = 5 we get

a1b0 − a0b1 = 6

and from equation (2.16) it follows by induction that

anbn−1 − an−1bn =
6

n3
, n ∈ N.

Let us write
ζ(3)− an

bn
=: xn, n ∈ N.

Then

xn − xn−1 =
an−1

bn−1

− an
bn

=
an−1bn − anbn−1

bnbn−1

=
−6

n3bnbn−1

with x∞ := limn→∞ xn = 0. Therefore we get

∣∣∣∣ζ(3)−
an
bn

∣∣∣∣ = |xn| =
∣∣∣∣∣∣

∞∑

j=n+1

(xj − xj−1)

∣∣∣∣∣∣
=

∞∑

j=n+1

6

j3bjbj−1

to obtain
ζ(3)− an

bn
= O

(
b−2
n

)
, n→ ∞. (2.17)

6For detailed proof see lemma 4.0.11.
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Using formula (2.9) for {un}∞n=0 we can estimate the asymptotic behaviour of
{bn}∞n=0. Apparently, we have

bn −
(
34− 51

n
+

27

n2
− 5

n3

)
bn−1 +

(
1− 3

n
+

3

n2
− 1

n3

)
bn−2 = 0, n ≥ 2.

Thus it is sufficient to consider the recursion

bn − 34bn−1 + bn−2 = 0, n ≥ 2.

Since the characteristic polynom λ2 − 34λ+ 1 has zeros

λ1,2 = 17± 12
√
2 = (1±

√
2)4

we obtain
bn = c1(1 +

√
2)4n + c2(1−

√
2)4n, c1, c2 ∈ R

and thus
bn = O(αn), n→ ∞,

where α = (1+
√
2)4. From lemma 2.3.4 it follows that an are not integers but if

we take

pn := 2[1, . . . , n]3an,

qn := 2[1, . . . , n]3bn, n ∈ N0

we obtain pn, qn ∈ Z. Since, by the Prime number theorem [4], [10],

[1, . . . , n] =
∏

p≤n

p
lnn
ln p ≤

∏

p≤n

n ≈ n
n

lnn = en, n ∈ N

where p is a prime, we have qn = O (αne3n) , n→ ∞. Thus

ζ(3)− pn
qn

= O
(
α−2n

)
= O

(
q−(1+δ)
n

)
, n→ ∞

where

δ =
lnα− 3

lnα + 3
> 0,

follows from

α−2n

q
−(1+δ)
n

=
α−2n

(αne3n)−(1+δ)
=
(
α−1+δe3(1+δ)

)n
, n ∈ N

and
α−1+δe3(1+δ) = 1.

Therefore we have found δ ∈ R, δ > 0 and a sequence of rational numbers{
pn
qn

}∞
n=0

: pn
qn

6= ζ(3) for all n ∈ N0 such that

∣∣∣∣∣ζ(3)−
pn
qn

∣∣∣∣∣ <
1

q1+δ
n

.

This yields the assertion by theorem 2.3.3.

Remark 2.3.8. Alternative proofs of Apéry’s theorem are not as transparent as
Apéry’s original proof. In 1979 Beukers proved 2.3.7 introducing integrals in-
volving the shifted Legendre polynomials. This proof can be found in [19] or [3].
Other proofs can be found in [30] and [22].
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2.4 Recent results

Although the problem of the irrationality of values of the Riemann zeta function
at positive integers is yet to be fully solved, there are significant results in the
area. In this section we shall briefly summarize these results.7 First we shall
present the Rivoal’s theorem [25], [31].

Theorem 2.4.1 (Rivoal’s theorem). The sequence ζ(3), ζ(5), ζ(7), . . . contains
infinitely many irrational numbers. More precisely, the following estimate holds
for the dimension δ(a) of the spaces generated over Q by 1, ζ(3), ζ(5), . . . , ζ(a−2),
ζ(a) with an odd integer a:

δ(a) ≥ ln a

1 + ln 2
(1 + o(1)) , n→ ∞.

In [31] the following results are proved.

Theorem 2.4.2. For every odd integer b ≥ 1 at least one of the numbers

ζ(b+ 2), ζ(b+ 4), . . . , ζ(8b− 3), ζ(8b− 1)

is irrational.

Theorem 2.4.3. There are odd integers a1 ≤ 145 and a2 ≤ 1971 such that
1, ζ(3), ζ(a1), ζ(a2) are lineary independent over Q.

In [29] W. Zudilin strenghtens the results from [31] and proves the following
theorem.

Theorem 2.4.4. At least one of the numbers ζ(5), ζ(7), ζ(9), ζ(11) is irrational.

7For further reading see http://wain.mi.ras.ru/zw/ where is a list of references and links
to be found.
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3. Analysis of roots

In this section we shall summarize the results and analyze the roots of the Rie-
mann zeta function in C\{1}. This will lead us to the formulation of the famous
Riemann hypothesis.

Theorem 3.0.5. ζ(s) 6= 0 for all s ∈ C,ℜ(s) > 1.

Proof. For s ∈ C,ℜ(s) =: σ > 1 it follows from theorem 2.1.2 that

(
1− 1

2s

)(
1− 1

3s

)
. . .
(
1− 1

N s

)
ζ(s) = 1 +

1

m1

+
1

m2

+ . . .

wherem1,m2, . . . are the integers of whose prime factors exceed N,N ∈ N. Hence
∣∣∣∣
(
1− 1

2s

)(
1− 1

3s

)
. . .
(
1− 1

N s

)
ζ(s)

∣∣∣∣ ≥ 1− 1

(N + 1)σ
− 1

(N + 2)σ
− . . . > 0

for sufficiently large N. Thus

|ζ(s)| > 0, s ∈ C,ℜ(s) > 1.

3.1 Trivial roots

At this point we shall investigate the roots outside1 the so-called critical strip
which is the area {s ∈ C; 0 ≤ ℜ(s) ≤ 1}. For this purpose let us introduce
an important tool in the theory of the Riemann zeta function which was first
introduced by Riemann [24].

Theorem 3.1.1 (Functional equation). The function ζ(s), s ∈ C \ {1} satisfies
the functional equation

ζ(1− s) = 21−sπ−s cos
πs

2
Γ(s)ζ(s). (3.1)

Theorem 3.1.1 can be proved in many various ways. These proofs can be
found in [28, p.13–44]. The importance of the functional equation (3.1) lies in
the connection of the half-plane ℜ(s) > 1

2
and the half-plane ℜ(s) < 1

2
and

hence it allows one to deduce the behaviour of the function ζ(s) in the half-plane
ℜ(s) > 1

2
from its behaviour in the half-plane ℜ(s) < 1

2
and vice versa. We shall

use 3.1 for finding the roots in the half-plane ℜ(s) < 0.

Theorem 3.1.2. In the half-plane ℜ(s) < 0 the only roots of the function ζ(s)
are the points −2,−4,−6, . . . . These are simple roots.

Proof. Taking into account the functional equation (3.1) it follows that the func-
tion ζ(s) has only those roots which are poles of the product

Γ(s) cos
πs

2
.

1We already know that ζ(s) 6= 0 for all s ∈ C,ℜ(s) > 1 from theorem 3.0.5
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Similary, in (3.1) by substituing s to 1− s we obtain

ζ(s) = 2sπs−1 cos
π(1− s)

2
Γ(1− s)ζ(1− s) = 2sπs−1 sin

πs

2
Γ(1− s)ζ(1− s)

and then the roots are those of

sin
πs

2
Γ(1− s).

Since Γ(1− s) has no zeros in the half-plane ℜ(s) < 0 and sin πs
2
has simple roots

at s = −2,−4,−6, . . . the theorem holds.

The proof of theorem 3.1.2 is given in [26] or in [28]. The points−2,−4,−6, . . .
are called trivial roots.

3.2 Non-trivial roots

From theorems 3.1.2 and 3.0.5 it follows clearly that if there are other roots, all
have to lie in the critical strip. We shall prove that there are infinitely many
roots in the strip {s ∈ C; 0 ≤ ℜ(s) ≤ 1}.

Theorem 3.2.1. There are infinitely many zeros of the function ζ(s) in the
critical strip {s ∈ C; 0 ≤ ℜ(s) ≤ 1}.

Proof. First we have
ζ(s) = ζ(s̄), s ∈ C \ {1}

where s̄ denotes the complex conjugate of s. This follows from theorem 1.2.4 and
from the properties of complex conjugation. Hence it is sufficient to study the
roots in {s ∈ C;ℑ(s) ≥ 0, 0 ≤ ℜ(s) ≤ 1}. For T ∈ R, T > 0 let us denote by
N(T ) the number of zeros of ζ(s) of the form σ + it where 0 < t ≤ T . In [24]
Riemann states that

N(T ) =
T

2π

(
ln
T

2π
− 1

)
+O(lnT ), T → ∞. (3.2)

(3.2) was proved by von Mangoldt in 1905 [28, p.214]. The assertion follows from
(3.2).

Remark 3.2.2. Another approach to the proof of theorem 3.2.1 can be found in
[26, p.430–431]. It involves the so-called ξ-function

ξ(s) =
1

2
s(s− 1)π− s

2Γ
(
s

2

)
ζ(s).

The zeros of the ξ-function are precisely the non-trivial zeros of the ζ function
since the trivial ones are removed by poles −2,−4,−6, . . . of Γ

(
s
2

)
. It is inter-

esting to notice that
ξ(s) = ξ(1− s).

Remark 3.2.3. In 1896 de la Vallée Poussin and Hadamard indepently proved the
Prime number theorem which is equivalent to the statement that there are no
zeros of ζ(s) with real part equal to 1 [10], [4] .
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Previous results lead us to the formulation of the famous Riemann hypothesis.
The consequences of the Riemann hypothesis are in detail discussed in [28, p.336–
387].

Conjecture 3.2.4 (Riemann hypothesis). All the non-trivial zeros of the Rie-
mann zeta function ζ lie on the critical line {s ∈ C;ℜ(s) = 1

2
}.

Stated by Riemann in [24], the Riemann hypothesis has been neither proved
nor disproved so far. There are, however, significant results in the area. First we
shall introduce Hardy’s theorem.

Theorem 3.2.5 (Hardy’s theorem). The function ζ(s) has infinitely many zeros
on the critical line {s ∈ C;ℜ(s) = 1

2
}.

Hardy’s theorem was first proved by Hardy in 1914 [12]. Several different
proofs can be found in [28, p.256–264].

Theorem 3.2.6. For T ∈ R, T > 0 let us denote by N0(T ) the number of zeta
zeros of the form 1

2
+ it, 0 < t ≤ T . Then there are T0 ∈ R, T0 > 0 and A ∈ R,

A > 0 such that for all T ≥ T0:

N0(T ) > AT.

This theorem was proved by Hardy and Littlewood in 1921 [13]. Theorem
3.2.5 simply states that N0(T ) → ∞ as T → ∞. This result is strenghtened by
theorem 3.2.6. However, this is further strenghtened by Selberg [27].

Theorem 3.2.7 (Selberg’s theorem). There are T0 ∈ R, T0 > 0 and A ∈ R,
A > 0 such that for all T ≥ T0:

N0(T ) > AT lnT.

For more recent results and further reference see [16], [15], [17], [18].
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4. Additional computations

In this section we present additional computations necessary for the proof of
Apéry’s theorem in the section Number-theoretic analysis. We shall also adapt
the notation from this section.

Lemma 4.0.8. For 0 ≤ k ≤ n, n ∈ N we have

∆B := Bn,k − Bn,k−1 = (n+ 1)3
(
n+ 1

k

)2(
n+ 1 + k

k

)2

−(34n3 + 51n2 + 27n+ 5)

(
n

k

)2(
n+ k

k

)2

+n3

(
n− 1

k

)2(
n− 1 + k

k

)2

.

Proof. For 0 ≤ k ≤ n we have

∆B = 4(2n+ 1)
(
k(2k + 1)− (2n+ 1)2

)(n
k

)2(
n+ k

k

)2

−4(2n+ 1)
(
(k − 1)(2k − 1)− (2n+ 1)2

)( n

k − 1

)2(
n+ k − 1

k − 1

)2

=

(
n

k

)2(
n+ k

k

)2 (
−4 + 4k + 8k2 − 24n+ 8kn+ 16k2n− 48n2 − 32n3

)

−
(

n

k − 1

)2(
n+ k − 1

k − 1

)2

(−12k + 8k2 − 16n− 24kn+ 16k2n

−48n2 − 32n3)

Denoting

p1a := −4 + 4k + 8k2 − 24n+ 8kn+ 16k2n− 48n2 − 32n3

p1b := −12k + 8k2 − 16n− 24kn+ 16k2n− 48n2 − 32n3, n ∈ N

we have

∆B =

(
n

k

)2(
n+ k

k

)2

p1a −
(

k

n− k + 1

)2 (
k

n+ k

)2 (
n

k

)2(
n+ k

k

)2

p1b

=

(
n

k

)2(
n+ k

k

)2

[− 34n3 + 2n3 − 51n2 + 3n2 − 27n+ 3n− 5 + 1 + 16k2n

+8kn+ 8k2 + 4k − 4k4(−3k + 2k2 − 4n− 6kn+ 4k2n− 12n2 − 8n3)

(k + n)2(n− k + 1)2
]

= (−34n3 − 51n2 − 27n− 5)

(
n

k

)2(
n+ k

k

)2
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+

(
n

k

)2(
n+ k

k

)2

[2n3 + 3n2 + 3n+ 1 + 16k2n+ 8kn+ 8k2 + 4k

−4k4(−3k + 2k2 − 4n− 6kn+ 4k2n− 12n2 − 8n3)

(k + n)2(n− k + 1)2
].

Let us denote

p2 := [2n3 + 3n2 + 3n+ 1 + 16k2n+ 8kn+ 8k2 + 4k

−4k4(−3k + 2k2 − 4n− 6kn+ 4k2n− 12n2 − 8n3)

(k + n)2(n− k + 1)2
]

and

R1 := (−34n3 − 51n2 − 27n− 5)

(
n

k

)2(
n+ k

k

)2

.

Hence we obtain

∆B = R1 +

(
n− k + 1

n+ 1

)2 (
n+ 1

n+ k + 1

)2
(
n+ 1

k

)2(
n+ 1 + k

k

)2

p2

= R1 +

(
n− k + 1

n+ k + 1

)2 (
n+ 1

k

)2(
n+ k + 1

k

)2

p2

= R1 + (n+ 1)3
(
n+ 1

k

)2(
n+ k + 1

k

)2 (
p2 − (n+ 1)3

)

and, after denoting

R2 := (n+ 1)3
(
n+ 1

k

)2(
n+ k + 1

k

)2

,

we get

∆B = R1 +R2 +

(
n+ 1

k

)2(
n+ k + 1

k

)2

· n
3(−k + k2 + n− 2kn+ n2)2

(k + n)2(1 + k + n)2
.

Since

(
n+ 1

k

)2(
n+ k + 1

k

)2

=

=

(
(n+ 1 + k)(n+ k)

(n+ 1)n

)2 (
n(n+ 1)

(n+ 1− k)(n− k)

)2 (
n− 1

k

)2(
n− 1− k

k

)2

we have

∆B = R1 +R2 + n3 · (−k + k2 + n− 2kn+ n2)
2

(n+ 1− k)2(n− k)2︸ ︷︷ ︸
=1

(
n− 1

k

)2(
n− 1− k

k

)2

which yields the assertion.
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Lemma 4.0.9. For 1 ≤ k ≤ n, n ∈ N we have

cn,k − cn−1,k =
(−1)kk!2(n− k − 1)!

n2(n+ k)!
.

Proof. First we have

cn,k − cn−1,k =
n∑

j=1

1

j3
+

k∑

j=1

(−1)j−1

2j3
(
n

j

)(
n+j

j

) −
n−1∑

j=1

1

j3
−

k∑

j=1

(−1)j−1

2j3
(
n−1
j

)(
n+j−1

j

)

=
1

n3
+

k∑

j=1

(−1)j−1

2j3


 1(

n

j

)(
n+j

j

) − 1(
n−1
j

)(
n+j−1

j

)




=
1

n3
+

k∑

j=1

(−1)j−1

2j3
·
1− n+j

n−1(
n

j

)(
n+j

j

)

=
1

n3
+

k∑

j=1

(−1)j(n− j − 1)!(j − 1)!2

(n+ j)!
.

Further

(−1)j(n− j − 1)!(j − 1)!2

(n+ j)!
=

=
(−1)j(j − 1)!2(n− j − 1)! (j2 + (n+ j)(n− j))

n2(n+ j)!

=
(−1)jj!2(n− j − 1)!− (−1)j−1(j − 1)!2(n− j)!(n+ j)

n2(n+ j)!

=
(−1)jj!2(n− j − 1)!

n2(n+ j)!
− (−1)j−1(j − 1)!2(n− j)!

n2(n+ j − 1)!

and therefore

1

n3
+

k∑

j=1

(−1)j(n− j − 1)!(j − 1)!2

(n+ j)!
=

=
1

n3
+

k∑

j=1

(
(−1)jj!2(n− j − 1)!

n2(n+ j)!
− (−1)j−1(j − 1)!2(n− j)!

n2(n+ j − 1)!

)

=
1

n3
− (n− 1)!

n2n!
+

(−1)kk!2(n− k − 1)!

n2(n+ k)!

=
(−1)kk!2(n− k − 1)!

n2(n+ k)!
.

Lemma 4.0.10. For 1 ≤ k ≤ n, n ∈ N we have

(n+ 1)3b
(2)
n+1,kcn+1,k − P (n)b

(2)
n,kcn,k + n3b

(2)
n−1,kcn−1,k = An,k − An,k−1.
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Proof. We shall start with

An,k − An,k−1 = Bn,kcn,k +
5(2n+ 1)(−1)k−1k

n(n+ 1)

(
n

k

)(
n+ k

k

)

− Bn,k−1cn,k−1 −
5(2n+ 1)(−1)k(k − 1)

n(n+ 1)

(
n

k − 1

)(
n+ k − 1

k − 1

)
.

Clearly

R := (n+ 1)3b
(2)
n+1,kcn+1,k − P (n)b

(2)
n,kcn,k + n3b

(2)
n−1,kcn−1,k

= (Bn,k − Bn,k−1)cn,k + (n+ 1)3b
(2)
n+1,k(cn+1,k − cn,k)

−n3b
(2)
n−1,k(cn,k − cn−1,k).

From

cn,k = cn,k−1 +
(−1)k−1

2k3
(
n

k

)(
n+k

k

)

and lemma 4.0.9 it follows, after denoting

R1 :=n,k cn,k −Bn,k−1cn,k−1,

that

R = R1 −Bn,k−1
(−1)k−1

2k3
(
n

k

)(
n+k

k

)

+(n+ 1)3b
(2)
n+1,k

(−1)kk!2(n− k)!

(n+ 1)2(n+ k + 1)!
− n3b

(2)
n−1,k

(−1)kk!2(n− k − 1)!

n2(n+ k)!

= R1 − 4(2n+ 1)
(
2k2 − 3k − 4n2 − 4n

)( n

k − 1

)2(
n+ k − 1

k − 1

)2
(−1)k−1

2k3
(
n

k

)(
n+k

k

)

+(n+ 1)

(
n+ 1

k

)2(
n+ k + 1

k

)2
(−1)kk!2(n− k)!

(n+ k + 1)!

−n
(
n− 1

k

)2(
n+ k − 1

k

)2
(−1)kk!2(n− k − 1)!

(n+ k)!

= R1 +
2(2n+ 1)(−1)kk(2k2 − 3k − 4n2 − 4n)

(n− k + 1)2(n+ k)2

(
n

k

)(
n+ k

k

)

+(n+ 1)
(n+ k + 1)2

(n− k + 1)2
(−1)kk!2(n− k)!

(n+ k + 1)!

(
n

k

)2(
n+ k

k

)2

−n(n− k)2

(n+ k)2
(−1)kk!2(n− k − 1)!

(n+ k)!

(
n

k

)2(
n+ k

k

)2

= R1 +
2(2n+ 1)(−1)k(2k2 − 3k − 4n2 − 4n)

(n− k + 1)2(n+ k)2

(
n

k

)(
n+ k

k

)

+
(n+ 1)(n+ k + 1)(−1)k

(n− k + 1)2

(
n

k

)(
n+ k

k

)
− n(n− k)(−1)k

(n+ k)2

(
n

k

)(
n+ k

k

)
.

Hence we obtain

R = R1+

(
n

k

)(
n+ k

k

)
5(2n+ 1)(−1)k−1k

n(n+ 1)
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+

(
n

k

)(
n+ k

k

)
[2(2n+ 1)(−1)kk(2k2 − 3k − 4n2 − 4n)

(n− k + 1)2(n+ k)2

+
(n+ 1)(n+ k + 1)(−1)k

(n− k + 1)2
− n(n− k)(−1)k

(n+ k)2
− 5(2n+ 1)(−1)k−1k

n(n+ 1)
]

and thus, after denoting

R2 :=

(
n

k

)(
n+ k

k

)
5(2n+ 1)(−1)k−1k

n(n+ 1)
,

R = R1 +R2 +

(
n

k

)(
n+ k

k

)(
5(−1)k(2n+ 1)

k2 − k − n(n+ 1)
− 5(2n+ 1)(−1)k−1k

n(n+ 1)

)

= R1 +R2 +

(
n

k

)(
n+ k

k

)
5(−1)k−1(k − 1)k2(2n+ 1)

n(n+ 1)(k − k2 + n+ n2)

= R1 +R2

+

(
n

k − 1

)(
n+ k − 1

k − 1

)
(n− k + 1)(n+ k)

k2
· 5(−1)k−1(k − 1)k2(2n+ 1)

n(n+ 1)(k − k2 + n+ n2)

= R1 +R2 +

(
n

k − 1

)(
n+ k − 1

k − 1

)
5(−1)k(k − 1)(2n+ 1)

n(n+ 1)
.

Lemma 4.0.11. For n ∈ N we have

An,n = Bn,ncn,n +
5(2n+ 1)(−1)n−1

n+ 1

(
2n

n

)
= −(n+ 1)3b

(2)
n+1,n+1cn+1,n+1.

Proof. From the definition of An,n we have

An,n = Bn,ncn,n +
5(2n+ 1)(−1)n−1

n+ 1

(
2n

n

)
.

Further

−(n+ 1)3b
(2)
n+1,n+1cn+1,n+1 =

= Bn,n


cn,n + cn+1,n − cn,n +

(−1)n

2(n+ 1)3
(
2n+2
n+1

)




= Bn,n


cn,n +

(−1)nn!2

(n+ 1)2(2n+ 1)!
+

(−1)n

2(n+ 1)3
(
2n+2
n+1

)




from lemma 4.0.9 and therefore

−(n+ 1)3b
(2)
n+1,n+1cn+1,n+1 = Bn,n

(
cn,n +

5(−1)nn!2

4(n+ 1)2(2n+ 1)!

)

= Bn,ncn,n +
5(−1)n−1(n+ 1)n!2

4(2n+ 1)!

(
2n+ 2

n+ 1

)2

= Bn,ncn,n +
5(−1)n−1(2n+ 1)

n+ 1

(
2n

n

)
.
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Conclusion

The properties of the Riemann zeta function have been widely investigated since
1859 when Bernhard Riemann published his famous article Ueber die Anzahl
der Primzahlen unter einer gegebenen Grösse. Riemann proposed a conjecture
which is considered to be one of the most important problems in contemporary
mathematics - the Riemann hypothesis. This hypothesis could have far-reaching
impact once proven true or false.

Generally, the problem of irrationality, let alone transcendence of special con-
stants is indeed demanding and requires a deep theoretical insight. The approach
to the proof of Apéry’s theorem we chose is a complex but illustrative one and
does not require advanced techniques as does the proof based on shifted Legen-
dre polynomials. Thus, the reasoning we followed could be considered elementary
yet not easy. Proving the irrationality of the zeta values at odd positive integers
remains an outstanding problem of the theory since there is no obvious way how
to generalize these proofs.
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bres premiers. Ann. Soc. scient. Bruxelles 20 (1896), 183–256.

[5] Derbyshire, J. Prime Obsession: Bernhard Riemann and the Greatest
Unsolved Problem in Mathematics. Penguin, New York, 2004.

[6] Edwards, H. Riemann’s Zeta Function. Dover, New York, 2001.

[7] Euler, L. De summis serierum reciprocarum. Opera Omnia I.14 (1925),
73–86.

[8] Euler, L. Demonstration de la somme de cette suite 1 + 1
4
+ 1

9
+ 1

16
+ 1

25
+

1
36
+etc. Opera Omnia I.14 (1925), 177–186.

[9] Euler, L. Variae observationes circa series infinitas. Opera Omnia I.14
(1925), 216–244.

[10] Hadamard, J. Sur la distribution des zéros de la fonction ζ(s) et ses
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