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Abstract

Hüseyin Yilmaz proposed the form of a theory of gravitation (Yilmaz 1958,
1971) that has later been shown to present only minor conceptual change for
Einstein’s General Relativity. The primary effect of the change is to modify
terms of second order in the gravitational potential or its derivatives. Since
most of the weak field tests that have been taken as confirmation of General
Relativity are of first order, the Yilmaz theory continues to pass all of these
tests, but there are some interesting effects of the higher order terms that arise
in the Yilmaz theory. These corrections move the metric singularity back to
the location of a point particle source. This eliminates the black hole event
horizon and permits the existence of intrinsic magnetic moments for stellar
mass black hole candidates and supermassive AGN. It is shown here that the
same second order corrections also eliminate the need for cosmological “dark
energy”. Additional considerations dicussed here show that the Yilmaz theory
correctly encompasses all of the major observational tests that must be satisfied
by an acceptable relativistic gravity theory.
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1. Introduction

Although the Yilmaz gravity theory is well established in the literature (Yil-
maz 1958 ... 1997), it is not widely known. Many of its major points of contact
with astrophysics will be presented here. In addition to previously unpublished
results, some older points will be placed in appendixes and footnotes, but made
available here for the sake of completeness. Though the aim is to provide a
synopsis of the contacts between the Yilmaz gravity theory and observational
results, there is a wider context of physics that is at stake here. One aspect of
this consists of the philosophical question of how we should regard a theory that
agrees with observational constraints, but is not yet part of mainstream theoret-
ical physics. Another is the question of how much consideration we should give
to some of the problems that arise from features that are part of the accepted
gravity theory, Einstein’s General Relativity.
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The question of how quantum mechanics and general relativity might be
reconciled has recently been sharpened by considering what happens to a freely
falling particle of matter approaching an event horizon. The possibility that
it might meet a radiative “firewall” has recently become a very active research
topic (e.g., Almheiri, Marolf, Polchinski & Sully 2013, Chowdhury & Puhm
2013, Abramowicz, Kluzniak & Lasota 2013, Anastopoulos & Savvidou, 2014,
Hawking 2014, Polchinski, 2016, Conklin, Holdom & Ren 2018). Apparently
there are both theoretical and observational concerns with the concept of an
event horizon, however, the necessity for event horizons seems not to have been
questioned. They have so far been accepted without proof. Although there are
many astronomical objects that are known to be compact and massive enough
to be black holes, if event horizons exist, none have been shown to possess this
essential attribute of a black hole. As shown below, event horizons do not exist
in the Yilmaz theory.

Einstein developed general relativity with the aim of explaining gravitational
phenomena as manifestations of spacetime geometry alone. In his field equa-
tions he included all forms of energy as sources of gravitation and curvature but
expressly rejected a separate gravitational field as a source of energy. Instead of
having separate gravitational potentials, the metric coefficients of general rela-
tivity take the dual roles of potentials and descriptors of spacetime geometry.
One of the problems that this presents for quantum theory is that the covari-
ant derivatives of the metric tensor are identically zero. Potentials that exist
separately from the metric may provide a path to a quantum theory of gravity.

Since the field energy densities are of second order in the derivatives of the
potentials, they can be introduced as source terms in the field equations of gen-
eral relativity without affecting the foundational weak-field tests of the theory,
but they might decisively influence outcomes in tests in strong gravitational
fields. Although others (Wald 1984; Yu 1992) had demonstrated that Einstein’s
quadrupole gravitational radiation formula could not be consistently and gen-
erally derived from conventional general relativity, Lo (1995) showed that con-
sistency could be achieved by the inclusion of a gravitational field stress-energy
tensor as a source term in Einstein’s field equations.

One of the aims of this article is to show that the inclusion of a second
order field stress-energy tensor can also eliminate event horizons and the need
for “dark energy”. The Yilmaz corrections for general relativity (Yilmaz 1958,
1971, 1977, 1980, 1982, 1992) provide definite forms for the stress-energy tensor
of the gravitational field (see Appendix B). The theory provides for gravitational
radiation and is known to pass all of the observational tests so far required of
gravity theories.

The intent here is to first focus on the places where gravity theory most
profoundly affects current astrophysics: in event horizons, dark energy, com-
pact objects and gravitational waves. The readers who have further interest in
the details of the theory can find many of them in Appendix B. Informative
discussions of various aspects of the theory have also been provided by Alley
(1995), Menzel (1976), Mizobuchi (1985) and Yilmaz (1975).
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2. Weak-field Tests of Gravity Theories

The weak-field tests that must be passed by a viable gravity theory can be
encompassed by spherical coordinates (ct, r, θ,Φ) and a diagonal metric of the
isotropic form

ds2 = eνc2dt2 − eλ(dr2 + r2dθ2 + (r sin θ dΦ)2) (1)

where ν and λ are functions of spatial coordinates and (sometimes) time. c is the
free-space speed of light, the metric coefficients are g00 = eν , g11 = −eλ, g22 =
−r2eλ, g33 = −eλ(r sin θ)2. In the Yilmaz theory, the isotropic form with all
spatial dimensions affected by gravity in the same way is considered to be nec-
essary for consistency with the Hughes-Drever experiments (Hughes, Robinson
& Beltran-Lopez 1960 and Drever 1961) that demonstrated the isotropy of in-
ertia.

The geodesics of particles and photons in this metric can be described by
the generalized energy-momentum equations

gijpipj = gijp
ipj = m2

oc
2 (2)

where m0 is particle rest mass (zero for photons). For particles in an equatorial
plane, θ = 0, sin θ = 1, p0 = E/c, where E is the particle energy, and pΦ is the
angular momentum, this first form of Eq. 2 becomes.

e−νE2/c2 − e−λ[p2r + p2Φ/r
2] = m2

0c
2 (3)

The Einstein field equations and static solutions for ν(r) and λ(r) for a single,
central field source mass, M , can be found in many standard works on relativ-
ity theory, (e.g. Tolman 1934, 1987, Weinberg 1972). In both the Einstein and
Yilmaz theories, Eq. 3 easily accounts for all of the classical weak-field tests of
gravity theory that have been performed in the solar system. These include the
perihelion shift of the planet Mercury, for which the orbital axis precesses by 43
seconds of arc per century, the deflection of star light that grazes the sun, and
the time delay of radar echoes from Venus when their path grazes the sun. (For
photons of light or radar, m0 = 0 in Eq. 3.)

2.1. The Yilmaz Metric g00
We can begin to explore the Yilmaz metric for a static gravitational field by

considering the behavior of test particles in the field. If a particle of mass m is
displaced quasistatically by dr⃗ by a force F⃗ , the work done is F⃗ · dr⃗ = c2dm.
This merely recognizes the Einstein relationship between energy and mass (E =
mc2). If the force is due to a gravitational field for which the potential is U ;
and rendered dimensionless by division by c2, such that ϕ = U/c2, then the

gravitational force on m is given by F⃗ = −mc2∇⃗ϕ. The change of potential
associated with a quasistatic displacement of the particle is the work done by
an opposing external force, thus

c2dm = mc2∇⃗ϕ · d⃗r = mc2dϕ (4)
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which integrates to m = mae
(ϕ−ϕ(a)) where the mass would be ma with the

particle at rest at position r⃗a. If the potential would be zero at this point we
can write (Martinis & Perkovic 2009)

m = m0e
ϕ (5)

We can consider a similar process from the standpoint of the the energy-momentum
equation. It is capable of encompassing a state of geodesic motion in which a
particle is at rest, at least temporarily, with no three-momentum, p⃗ = 0 under
the influence of a gravitational force alone. No opposing force needs to be con-
sidered here. This might occur, for example at the apex of motion of a projectile
that travels radially outward from the surface of a central mass, M . In this case,
Eq. 2 becomes

g00E2/c2 = g00m2c2 = m2
0c

2 (6)

Substituting for m from Eq.5 leads immediately to g00e2ϕ = 1. Noting that
g00 = 1/g00 for a diagonal metric we have

g00 = e2ϕ (7)

While Eq. 7 is a general result, Eq.5 must be modified if a particle is in
motion in a gravitational field. The end result is that the mass given by Eq. 5
needs to be increased by the Lorentz factor 1/

√
1− v2/c2, where v is the proper

speed of the particle at its current location.1 Thus the more general result is2

m = m0e
ϕ/

√
1− v2/c2 (8)

2.2. Spatial Dependence of the Static Metric

The spatial dependence of the Yilmaz metric can be determined by impo-
sition of a “harmonic coordinate” condition. This condition is expressed as
(Weinberg 1972, p. 163)3

∂j(
√
−g gkj) = 0 (9)

where (g) is the determinant of the metric. In rectangular coordinates and the
metric form of Eq. 1, this leads to

∂0(3λ− ν)/2 +∇(λ+ ν)/2 = 0 (10)

1This is most easily shown from Eq. 2 in cartesian coordinates where p1 = m0dx/dτ, p2 =
m0dy/dτ, p3 = m0dz/dτ , the proper speed is v = (−g11dx2 − g22dy2 − g33dz2)1/2/

√
g00dt

and dt/dτ = γ/
√
g00.

2The same sorts of mass changes are encompassed by the solutions from General Relativity
since eϕ is the equivalent of

√
g00. All that is necessary is to determine the General Relativity

form for the Einsteinian gravitational potential, ϕGR.
3This condition has physical significance for light and other waves that might exist in the

space described by the metric. A plane wave of the form ψ = ei(ωt−k·r)) should satisfy a
generalized d’Alembertian equation, �ψ = (1/

√
−g)∂i(

√
−g gij∂jψ) = 0. This will generate

nonzero terms of the form k · ∂i(
√
−g gij∇ψ) and make the speed of light depend on its

direction of travel unless ∂i(
√
−g gij) = 0.
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For static fields the time derivatives vanish, leaving the requirement that ∇(λ+
ν) = 0 Thus λ + ν = constant. Recalling that ν = 2ϕ, at places where the
gravitational potential ϕ would be zero we take the constant to be zero as a
boundary condition, leaving λ = −2ϕ. The static Yilmaz metric is then4

ds2 = e2ϕc2dt2 − e−2ϕ(dr2 + r2dθ2 + (r sin θ dΦ)2) (11)

For the case of the metric in the space exterior to a central spherical mass, M ,
centered on r = 0, the Yilmaz potential is simply the Newtonian gravitational
potential, ϕ = −GM/c2r and, we repeat

g00 = e2ϕ ≈ 1− 2GM/c2r + 2(GM/c2r)2 + ... (12)

This solution has a point particle singularity at r = 0, but it is of little practical
consequence. The Kretschmann invariant is zero rather than divergent at r = 0.
There is no curvature singularity there. In contrast, the event horizon was
discovered in the solution of the Einstein field equations of general relativity.
For the metric of the spacetime beyond a central point mass and the spatially
isotropic metric of Eq. 1, the solution of the Einstein field equations yields

g00 = eν =
(1−GM/2c2r)2

(1 +GM/2c2r)2
≈ 1− 2(GM/2c2r) + 2(GM/2c2r)2 + ... (13)

and

eλ = (1 +GM/2c2r)4 ≈ 1 + 2(GM/cr) + 2(3/4))GM/c2r)2 + ... (14)

It should be noted that in the Einstein theory, ν is not a gravitational potential.
Since Eq. 7 depends only upon special relativity and the definition of a potential,
it is apparent that the potential for the solution from General Relativity is given
by

e2ϕGR =
(1−GM/2c2r)2

(1 +GM/2c2r)2
(15)

from which we see that the gravitational potential ϕGR for the isotropic metric
would be

ϕGR = ln((1−GM/2c2r)/(1 +GM/2c2r))

≈ −GM/c2r − (GM/c2r)3/12− (GM/c2r)5/80 . . .
(16)

This is a Newtonian potential at lowest order, but diverges at the location of an
event horizon that occurs for r = GM/2c2.5 Further, the proper acceleration of
a freely falling body diverges as the event horizon is approached according to

a = F/m = −c2∇ϕGR =
−(GM/r2)

(1− (GM/2c2r)2)
(17)

4Yilmaz usually used different conventions for the relationship between gravitational forces
and potentials and used the negative of the ϕ used here.

5This event horizon radius is smaller by a factor of four than that obtained in the usual
Schwarzschild coordinates. The fact that the size of the event horizon is coordinate dependent
has been taken to suggest that it does not represent something physically real.
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Lorentz invariance of the spectral distribution of virtual photons in the quan-
tum plenum requires their energy density to be a cubic function of frequency
(Boyer 1969). It has also been shown that an accelerating particle experiences
a headwind of thermal photons with a temperature proportional to the mag-
nitude of the acceleration (Fulling 1973, Davies 1975, Unruh 1976, Matsas &
Vanzella 2002). Thus a particle approaching the event horizon would be inciner-
ated as the acceleration and radiation temperature increase without limit. This
divergence is the essence of the “firewall problem” at the event horizon.

2.3. PPN Constraints

General Relativity has been thoroughly confirmed where it has been tested in
the weak gravitational fields within our solar system where GM/c2r = 2×10−6

at the photosphere of the sun and GM/c2r = 7 × 10−10 at earth’s surface.
But surely there are reasons for caution when extrapolating by six orders of
magnitude to reach an event horizon where GM/c2r = 2.

Recapitulating the weak-field results, the metric can be written as a param-
eterized post-Newtonian (PPN) expansion to terms of second order, using the
tags, α, β, γ and δ as

g00 = eν ≈ 1− α2ϕ+ β2ϕ2 (18)

−gii = eλ ≈ 1 + γ2ϕ+ δ2ϕ2 (19)

Expanding the metric coefficients of Eqs. 13 and 14, we find α = β = γ = 1 and
δ = 3/4. The Yilmaz solutions of Eq. 12 differ only by having δ = 1. α = 1 is
needed to account for gravitational red shifts for earth and sun, β = 1 is needed
to account for results from laser ranging of the moon and photon redshifts in
weak fields. γ = 1 is needed for the deflection of light rays passing the limb
of the sun and the Venus radar echo delay. The fourth parameter δ cannot be
determined by the classical weak-field experiments alone, but Yilmaz (Yilmaz
1977, 1980) has made a case for δ = 1± 0.005 from two additional experiments.
These are the Hughes-Drever experiments on the isotropy of space (Hughes,
Robinson & Beltran-Lopez 1960 and Drever 1961) and the neutron phase shift
experiment (Colella, Overhauser & Warner 1975). In addition to the need for
second order terms to account for gravitational radiation (Lo 1995), this Yilmaz
analysis indicates that General Relativity needs corrections in terms of second
order in ϕ.

2.4. Gravitational redshifts

It is well known that frequency shifts occur for photons in gravitational fields.
If the frequency would be ν0 at a location where ϕ = 0, then the frequency at
other locations is given by

ν = ν0 g
−1/2

00 (20)

and according to Eq. 7, this would be

ν = ν0 e−ϕ (21)

6



Eq. 21 can be be shown to be an EXACT requirement of special relativity
and the principle of equivalence (See Appendix A). The photon red shift result
of Eq. 21 was stated by Einstein in a 1907 paper (available as translated by H.M.
Schwartz, Am. J. Phys, 45, 899, 1977). Although Einstein had first arrived at
a first order approximation, he noted that “in all strictness” this first order
result must be replaced by the exponential form of Eq. 21. For a time after 1907,
Einstein maintained that the metric coefficients must be strictly exponential
functions in order to conform to the requirements of special relativity, but his
final development of general relativity satisfied the requirement only to terms
of first order.

2.5. Relativistic Accretion Disks

There is an interesting astrophysical application of Eq. 3 consisting of the
description of particles in accretion disks in x-ray binary star systems. Con-
sider a particle in orbit around a central mass, M , for which ϕ = −GM/c2r.
Assuming that angular momentum, pΦ, is conserved, and rearranging Eq. 3 we
obtain.

e4ϕ(pr/m0c)
2 = (E/m0c

2)2 − e2ϕ(1 + a2ϕ2e2ϕ) (22)

Here a = pΦc/(GMm0) is now a dimensionless conserved angular momentum
parameter. Eq. 22 is similar to the energy equation of classical mechanics with
the last terms at the right taking the role of an effective potential U(r) for the
radial motion; i.e. U(r) = e2ϕ(1+a2ϕ2e2ϕ). Bound orbits can occur for suitably
low energies. Circular orbits can occur for pr = 0. Their radii can be located
by setting the derivative of the effective potential with respect to ϕ to zero.
Circular orbits occur for dU/dr = 0, for which we find (Robertson 1999)

a2 = −e−2ϕ/(ϕ+ 2ϕ2) (23)

with particle energies of

E = m0c
2 exp(ϕ)

√
1 + ϕ

1 + 2ϕ
(24)

Orbits are stable if the second derivatives are positive at turning points. They
are unstable otherwise. There is an innermost (marginally) stable orbit that
can be found by setting the first two derivatives of the effective potential with
respect to ϕ to zero. This produces coupled equations which have the solution,
ϕ = −(3−

√
5)/4 ≈ -0.191 for which a2 = 12.4. For this innermost marginally

stable circular orbit, the particle energy is reduced below its rest mass value,
m0c

2 by 5.5% in spite of its motion at ∼ 35% of light speed. This is a result of
the reduction of mass that occurs for a particle that is lower in the gravity field
of the central mass for ϕ < 0, in accord with Eq. 8.

In relativistic astrophysical accretion disks, such as those found in low mass
x-ray binary systems, orbiting fluid particles lose energy due to friction while
fluid viscosity transports angular momentum outward. This allows the fluid to
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spiral inward to a central compact star or black hole candidate. In the process,
accreting plasma can become hot enough to allow energy to be radiated away
as soft x-rays. Apparently 5.5% of the rest mass energy can be converted to
radiation for particles that would reach an innermost marginally stable orbit
at r = 5.24GM/c2. 6 This provides luminosities far in excess of what can be
obtained from nuclear interactions. Nuclear processes typically result in energy
losses of less than about one percent. Note also that it would take an extremely
compact object to exist inside the innermost marginally stable orbit. A mass
as large as that of the sun would have a radius of only 7.8 km if it were all
contained inside its innermost stable orbit. Thus it is not surprising that the
x-ray binary systems have very compact neutron stars or black hole candidates
as their central massive objects.

According to Eq. 24, it would appear to require infinite energy for a par-
ticle to exist in a circular orbit for ϕ = −1/2. But there are simply no stable
orbits with ϕ < −0.191. As can be shown by working through the solutions for
photon trajectories (take m0 = 0 in Eq. 3), there is an unstable circular orbit
for photons for ϕ = −1/2 and r = 2GM/c2. 7 For particles with nonzero rest
mass, there are no stable elliptical orbits that pass inside the photon orbit.

2.6. Black hole candidates

In addition to accommodating relativisitic accretion disks, it should be noted
that it might be possible for objects to become so compact that ϕ ≪ −2. In this
circumstance, photons emitted at the surface would be extremely red shifted as
observed distantly and very little, if any, luminosity would be observed for the
object. A correct treatment of realistic compact objects of astrophysical inter-
est will require consideration of their internal structures and trapped radiation
fields, especially in cases involving an active collapse process. Nevertheless, the
external luminosity differences between a very large redshift, z, and the z = ∞
of a black hole might be small and subtle. Other differences, such as the pres-
ence of magnetic fields, might betray the lack of an event horizon. Evidence has
been presented (Robertson & Leiter 2002) for the existence of intrinsic magnetic
moments in stellar mass black hole candidates.

It has been proposed that trapped radiation pressure is capable of slowing
the rate of gravitational collapse of black hole candidates to such an extent that

6The innermost marginally stable orbit of the Schwarzschild metric of General Relativity
has a radius of 6GM/c2 and the energy lost in an accretion disk would be 5.7% of the accreting
particles rest mass energy. In the isotropic metric of General Relativity, the marginally stable
orbit radius is 4.96GM/c2 and the accretion disk energy loss is 5.7%. General Relativity thus
encompasses mass changes similar to those of Eqs. 8 and 24.

7It is meaningless happenstance that the photon orbit here has ϕ = −1/2 which I corre-
sponds to the event horizon in Schwarzschild coordinates. In isotropic coordinates for Gen-
eral Relativity, g00 = (1 − GM/2c2r)2/(1 + GM/2c2r)2 and the event horizon occurs for
r = GM/2c2.
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it would take many Hubble times for a collapsing star to radiate its mass away.
It has been shown to be possible (Robertson & Leiter 2003) to maintain an Ed-
dington balance between gravity and radiation pressure even at high redshifts,
however, it is not clear that this condition would always hold in active gravita-
tional collapse. Eddington balanced objects of this kind have been designated
as ECO (Mitra 2000, 2002, 2006) or MECO when strongly magnetic (Robert-
son & Leiter 2003, 2004, 2006). Additional observational evidence for magnetic
moments in AGN has also been found (Schild, Leiter & Robertson 2006, 2008)
and the MECO model has been extended to encompass active galactic nuclei.
ECO and MECO models have been shown to be capable of accounting for the
luminosity constraints that have been found for black hole candidates without
delving very far into the details of their internal structures.

The previous models of ECO andMECO have been based on the Schwarzschild
metric, which allows extreme redshifts of surface luminosity without requiring
extreme compactness; i.e. ϕGR ∼ −1/2,−2. To achieve the same necessary
redshifts in the exponential metric would require a much greater degree of com-
pactness such that ϕ ∼ −10,−20 might be required. This is so far beyond the
ϕ ∼ −0.2 of a neutron star that it is very clear that a MECO model based on
an exponential metric would require a very exotic and extremely hot material
such as a quark-gluon plasma at its core. Except for this requirement of an ex-
tremely exotic core material, the MECO model needs only minor revisions for
compatibility with the exterior Yilmaz exponential metric (Robertson 2016).

3. The Field Equations of the Yilmaz Metric

Eq. 7 depends only upon the definition of a potential and the correctness
of special relativity. The problem is that this expression for g00 is NOT part
of the solution for the metric of any configuration of gravity sources within
the context of General Relativity. The solutions for a central mass for the
Einstein field equations begin to differ in terms of second order in GM/c2r
and eventually terminate in an event horizon that occurs before r → 0. This
occurrence of an event horizon is considered by many to be a mere coordinate
singularity that can be removed by a transformation to different coordinates,
but as noted above, there is a genuine divergence of a physical quantity, the
norm of the acceleration vector of a freely falling particle, at an event horizon.
This is an important matter that apparently cannot just be ignored in view of
the firewall problem that it presents.

Eq. 7 can be incorporated into the solution of the Einstein field equations
if they are modified by the addition of a second order source term to the right
hand side of the Einstein field equations:

Gj
i = −(8πG/c4)T j

i (25)

where Gj
i is the Einstein tensor (hopefully, not to be confused with the Newto-

nian gravitational constant of the right member) and T j
i is mass-energy tensor

of matter. Einstein intended that T j
i include all sources of mass-energy except
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any energy of the gravitational field itself. As amended by Yilmaz, the field
equations are

Gj
i = −(8πG/c4)(T j

i + tji ) (26)

where tji is the stress-energy density of the gravitational field. This clean separa-
tion of matter and field effects can be maintained as long as there are separate
particle and fields, but the situation is much more complicated in a matter
plus field continuum. This will be discussed later, but for now we imagine this
separation of matter and field to be possible.

In the case of the field of a central particle mass centered at the origin
of coordinates, the external g-field in the Newtonian gravity limit would be
g = −c2∇ϕ and, by analogy with the energy of the electric field for an electric
charge, the gravitational field energy density would be t00 = Eg = −g2/(8πG).
For r > 0, T 0

0 = 0. Note that t00 is a negative source term as an anti-gravity
character is needed to keep gravity from being self-generating (Lo 1995). The
corresponding Yilmaz equation for G0

0 for the space outside the central particle
is

G0
0 = e−2ϕ[(2/r2)∂r(r

2∂rϕ) + (∂rϕ)
2] =

−(8πG/c4)[0− g2/(8πG)]
(27)

If the second degree terms are ignored for the moment, we would have

(1/r2)∂r(r
2∂rϕ) = 0 (28)

for which the solution is, of course, the Newtonian potential

ϕ = −GM/c2r (29)

If this be the case, we find that the field energy density would be given by
g2/(8πG) = e−2ϕc4(∇ϕ)2/(8πG), which is exactly what is required to satisfy
Eq. 27 exactly. Here ∇ is given by its metric form equivalent, ∇ → eϕ∂r. The
metric is thus given exactly by Eq. 11. It should be noted that the other field
equations for G1

1, G
2
2 and G3

3 have similar second degree terms that require the
other components of tji to be t22 = t33 = t00 = −t11 for a complete solution.

This addition of Eg is all that is required to make the metric of Eq 11 become
a solution of the Einstein gravitational field equations. The failure to include it
has led to the Hilbert modification of the original Schwarzschild (Schwarzschild
1916) solution with its gravitational time dilation singularity and event horizon
at r = GM/2c2, for an isotropic metric.8 With ϕ = −GM/c2r, g00 → 0
as r → 0, but this is just an indicator of the inadequacy of a classical point
particle model. With the simple addition of a gravitational field as an energy
source, the Yilmaz theory eliminates event horizons. The lack of the negative t00
is the reason that curvature collapses g00 to zero before r → 0 is reached, thus
generating the event horizon condition of the unmodified Einstein theory.

8But Schwarzschild’s original solution had neither, see translation of original article by
Antoci and Loinger, arxiv.org/abs/physics/9905030
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4. Gravitational waves

As another example of how the inclusion of the field stress-energy terms can
improve our understanding, consider a topic of considerable recent interest; viz,
gravitational waves. We imagine these to be disturbances of spacetime that
propagate essentially in a Minkowskian interstellar vacuum. In this case, the
Einstein equations would be equivalent to those obtained by setting the Ricci
tensor components equal to zero. Consider a metric that might represent grav-
itational waves propagating along a z-axis with small perturbations of opposite
amplitudes in the x and y directions, i.e.;

ds2 = c2dt2 − e4ϕdx2 − e−4ϕdy2 − dz2 (30)

Where ϕ = ϕ(ct ± z) represents a wavelike distortion of what would otherwise
be Minkowskian spacetime propagating along the z-axis direction. Denoting
partial derivatives with respect to z with primes and time derivatives with dots,
the Ricci tensor components for the metric are:

R11 = −2e4ϕ(ϕ̈− ϕ′′) R22 = 2e−4ϕ(ϕ̈− ϕ′′)

R00 = 8(ϕ̇)2, R33 = 8(ϕ′)2, R30 = −8(ϕ̇)(ϕ′)
(31)

If set equal to zero, R11 and R22 obviously yield the wave equation for waves of
arbitrary amplitude propagating along the z-axis. Unfortunately, these waves
are NOT solutions of the Einstein field equations because none of R00, R30

or R33 are exactly zero, as required by Einstein. In fact R00, R30 and R33

look suspiciously like terms that represent the energy that would propagate
with ordinary waves in space9. If we insist that Rik = 0 because we are in
matter free space, we are effectively saying that gravitational waves of the kind
considered here are not solutions of the Einstein field equations. They would be
solutions only for infinitesimal amplitudes and first order. It would make a lot
more sense to say that there are energy densities associated with these waves
that should be included as source terms in the right members of the Einstein
field equations. Given the form of the metric of Eq. 9, and recognizing that
the function, ϕ, is a time dependent gravitation potential, it should be apparent
that the squared derivatives of ϕ might have something to do with the energy
that propagates with the gravitational waves. All five equations can be satisfied
in this way without restricting the waves to be of infinitesimal amplitude. This
is another case in which we can gain consistency by regarding gravity fields as
real entities that can contribute as sources for the Einstein tensor.

5. Spherically symmetric mass distributions

Some additional topics of interest for relativistic astrophysics concern the
interior structures of neutron stars and black hole candidates and the metric of

9The Einstein equations, in the form Gj
i = −(8πG/c4)T j

i can be rewritten as Rik =
−(8πG/c4)(Tik−gikT/2), where Tik is the stress-energy tensor that represents matter and/or
all other energy densities and T is its trace.
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cosmology. For stars and black hole candidates, the matter sources of the field
equations might be regarded as continuous. The cosmological metric that will be
discussed below will be used to describe a cosmos consisting of a fairly uniform
distribution of discrete galaxy “dust” particles. In each of these circumstances,
the field equations for a completely spherically symmetric mass distribution will
be those obtained from Eq.s B.1 - B.4 of Appendix B. For the metric form of
Eq. 1, Eqs. B.4, B.5 and B.6 yield:

t00 = −t11 = (c4/8πG)[e−ν3λ̇2/4 + e−λ(λ′ν′/2 + λ′2/4)] (32)

and
t22 = t33 = (c4/8πG)[−e−ν3λ̇2/4 + e−λ(λ′ν′/2 + λ′2/4)]. (33)

Here dots represent partial derivatives with respect to time, and primes represent
partial derivatives with respect to the radial coordinate, r. With these terms
for the right member of Eq. B.1, the field equations become

G0
0 → e−λ[(1/r2)∂r(r

2∂rλ) + λ′(λ′ + ν′)/2] = −(8πG/c4)T 0
0 (34)

G1
1 → −e−ν(λ̈+ λ̇(3λ̇− ν̇)/2) + e−λ(λ′ + ν′)/r = −(8πG/c4)T 1

1 (35)

G2
2 → − e−ν(λ̈+ λ̇(3λ̇− ν̇)/2) + (1/2)e−λ[λ′′ + ν′′

+(λ′ + ν′)/r + (λ′ + ν′)2/2] = −(8πG/c4)T 2
2

(36)

The G3
3 equation repeats the one for G2

2 with T 3
3 = T 2

2 .

6. Cosmological Red Shifts

In this section we will obtain a relation between redshift and luminosity
distance for SNe 1a for a model universe consisting of an expanding, isotropic,
spherically symmetric cosmic dust comprised of galaxy sized dust particles. We
will use the metric form of Eq. 1 as applied by an observer located at r = 0 at
the present time, t = 0. There is no “universal” time for the universe in this
approach, only the local time of an observer at the origin of coordinates. But
there is time dependence that excludes the use of the metric Eq. 11. For these
present conditions, λ = ν = 0 at the observer’s location and the observer’s local
spacetime is Minkowskian. Photons emitted at earlier (negative) times and at
large distances, r, will be detected as redshifted by 1 + z = e−ν/2. Photons
emitted at earlier times into a particular solid angle will be spread over a larger
area as the universe expands while they are in transit. As a result, they will
appear to have come from a more distant source10. The luminosity distance will
be enlarged and given by dL = (1+z)r. The approach taken here was motivated
by that of Mizobuchi (1985) but differs significantly in details.

10In conventional FRW cosmology, the measured photon flux is diluted by two factors of
(1+ z). The individual photons redshift by a factor (1 + z), and the photons hit the detector
less frequently, due to time dilation. In the present approach, one of these factors is taken
into account in ν ̸= 0.
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For this model universe, only T 0
0 is nonzero. T 0

0 = σu0u
0 = σc2, where σ is

the average mass density of “dust particles” in the universe. These equations can
be considerably simplified by application of the harmonic coordinate condition
∂j(

√
−g gjk) = 0. As noted previously, this condition assures that the speed of

light be the same in all directions in space. This provides two relations

∂0e
(3λ−ν)/2 = 0 (37)

∂re
(λ+ν)/2 = 0 (38)

Defining two new functions

ϕ0 = (3λ− ν)/8, ϕ1 = (λ+ ν)/8 (39)

it is apparent from Eqs. 37 & 38 that we must have ϕ0 = ϕ0(r), independent of
time, and ϕ1 = ϕ1(t), must be independent of r. In terms of these functions,

λ = 2ϕ0 + 2ϕ1 ν = 6ϕ1 − 2ϕ0 (40)

Equations 34 - 36 can then be rewritten as

(1/r2)∂r(r
2∂rϕ0) = −(4πG/c2)σe(2ϕ0+2ϕ1) (41)

and
ϕ̈1 = 0. (42)

For a consistent set of equations with ϕ0 independent of time, we must
choose a condition that allows σ to vary with time in a way that removes the
time dependence of the right member of Eq. 41. From Eq. 42 we see that ϕ1

will vary linearly with time. By choosing our observation point to be located at
r = 0, t = 0, where the present value of mass-energy density would be σ0, we
can take

σ = σ0e
−2ϕ1 (43)

where σ0 is a constant. Taking ϕ1 = C1t, with C1 an integration constant,
satisfies Eq. 42 and provides for a cosmos with a matter density that decreases
with time; i.e., an expanding universe. Substituting for σ in Eq.41, and defining

R0 =
√
c2/(4πGσ0), x = r/R0, T = ct/R0 (44)

Eq. 41 becomes
d2ϕ0/dx

2 + (2/x)dϕ0/dx = −e2ϕ0 (45)

A low order solution can be obtained by expanding the exponential function of
the right member. Assuming that ϕ0 = Σanx

n+2, we find,

ϕ0 = −x2/6 + x4/60− x6/687 + x8/3565 . . . (46)

This fits well to x ∼ 1, but numerical solutions are needed for larger values of
x. The solutions of Eqs. 42 and 45 allow us to determine the metric functions

λ = 2C1T + 2ϕ0 (47)
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ν = 6C1T − 2ϕ0 (48)

C1 is proportional to the Hubble constant as will be seen by considering the
gravitational red shift that would be expected for a photon emitted at some
previous time and detected now at our location x = 0, T = 0. A null geodesic
photon path taken from r to zero and time T in the past to the present will have
ds2 = 0. Thus, eν/2cdt = −eλ/2dr, where the negative sign is taken because
r decreases as t increases from the time of emission to our detecting it at the
present time. Substituting the solutions for λ and ν into this last relation and
rearranging, we obtain∫ 0

T

e2C1T dT = (1− e2C1T )/2C1 = −
∫ 0

x

e2ϕ0dx (49)

For large values of x, the integral on the right must be evaluated numerically,
but it is instructive to first consider the expansions to lowest orders, for which
we obtain

T + C1T
2 = −x+ x3/9 (50)

To lowest order, we have T = −x, or t = −r/c, as expected. The redshift of a
photon, to lowest order, would be

z = e−ν/2 − 1 ≈ 3C1x = 3C1

√
4πGσ0 r/c (51)

it is now apparent that the Hubble constant, H0, is given by

H0 = 3C1

√
4πGσ0 (52)

By numerically solving Eq. 45 for ϕ0 and integrating numerically, the inte-
gral on the right side of Eq. 49 is found to have the limiting value of -2.1405 for
very large x. For the corresponding time, T → −∞, we find from Eq. 49 that
1/(2C1) = 2.1405, or C1 = 0.2336. This is a self-consistent choice for C1 that
leaves only one free parameter, σ0, to be chosen to fit the redshift-luminosity
data. With the value of C1 now determined, the appropriate time, T , for any
x, can be found from

T = [1/(2C1)] ln [1− 2C1

∫ x

0

e2ϕ0dx] (53)

Once T is calculated for given x, the values of ϕ1, ν, λ, z and dL = r(1+z) can
be computed and tablulated for each x. Numerical solution data for C1 = 0.2336
and σ0 = 1.06× 10−29g cm−3 are given in Table 1.

This choice for σ0 was based on a Hubble constant obtained by a least
squares fit to 166 data points for z ≤ 0.1 from the data of the Supernova
Cosmology Project (Amanullah et al 2010, Suzuki et al. 2012). This fit yielded
H0 = 64.5 ± 0.7 km s−1 Mpc−1. Eq. 52 was then used to calculate σ0 =
1.06× 10−29g cm−3 This choice for σ provides a very good fit to the supernova
redshift data over the whole range of observed redshifts as shown in Figure 1.
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Table 1: Parameters of redshift and distance calculations

x ϕ0(x)
∫ x

0
e2ϕ0dx T z adL(Mpc) )

C1 = 0.2336
0.000 0.000 0.000 0.000 0.000 0.000
0.100 -0.002 0.100 -0.102 0.073 350
0.200 -0.007 0.199 -0.209 0.150 750
0.300 -0.015 0.297 -0.320 0.233 1206
0.400 -0.026 0.393 -0.434 0.321 1722
0.500 -0.041 0.487 -0.552 0.414 2304
0.600 -0.058 0.577 -0.673 0.512 2958
0.700 -0.078 0.665 -0.796 0.616 3687
0.800 -0.100 0.748 -0.921 0.725 4498
0.900 -0.125 0.828 -1.047 0.838 5394
1.000 -0.152 0.904 -1.175 0.957 6380
1.100 -0.180 0.976 -1.303 1.080 7459
1.200 -0.211 1.043 -1.431 1.208 8637
1.300 -0.242 1.107 -1.559 1.339 9915
1.400 -0.275 1.167 -1.686 1.475 11296
1.500 -0.309 1.222 -1.812 1.614 12783
1.600 -0.344 1.275 -1.937 1.756 14377
1.700 -0.379 1.323 -2.061 1.901 16079
1.800 -0.415 1.368 -2.182 2.049 17890
1.900 -0.451 1.410 -2.302 2.198 19810
2.000 -0.487 1.450 -2.420 2.350 21840
3.000 -0.845 1.718 -3.473 3.896 47880
4.000 -1.164 1.853 -4.299 5.353 82840
5.000 -1.434 1.928 -4.945 6.625 124280
6.000 -1.662 1.973 -5.459 7.704 170250
7.000 -1.856 2.003 -5.878 8.618 219480
8.000 -2.023 2.024 -6.228 9.399 271200
9.000 -2.168 2.039 -6.525 10.075 324900
10.000 -2.296 2.050 -6.783 10.670 380400

a These values calculated for σ0 = 1.06× 10−29 g cm−3 are shown by the solid
line on Fig. 1.
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Figure 1: Figure 1., Luminosity distance vs redshift for SNe 1a. Data from The Supernova
Cosmology Project, (Amanullah et al 2010, Suzuki et al. 2012). The fitted curve is determined
by only one free parameter, σ0 = 1.06 × 10−29g cm−3 that was obtained from the Hubble
Constant fitted for z ≤ 0.1 (see text).
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The value of σ0 is very close to the critical density that would be obtained for
a Friedmann-Robertson-Walker (FRW) metric and the same Hubble constant.

Accommodating the data for the large values of z shown in Fig. 1 within
the framework of General Relativity requires the introduction of Einstein’s cos-
mological constant with non-zero value. It represents the apparent existence of
a “dark energy” that is supposedly driving an acceleration of the expansion of
the universe. In addition, the existence of a substantial amount of non-baryonic
“dark matter” seems to be required. These ideas have been quantified in terms
of contributions to the critical density required for a universe with an average
locally flat space-time. Letting Ωm be the fraction of the critical density con-
tributed by matter, including both baryonic and dark matter, and ΩΛ the frac-
tion contributed by “dark energy”, and assuming that Ωm +ΩΛ = 1, the “con-
cordance values” found for these parameters are ΩΛ = 0.729 and Ωm = 0.271
(Suzuki et al. 2012).

It is difficult to see how any theoretical curve fitted to the hard won, but
noisy, observational data shown in Fig. 1 might be used to draw any sweeping
conclusions about the composition of the universe, yet that is exactly what has
been done. A theoretical relation that fits the high redshift data of Fig. 1 no
better than the line on Fig. 1 has been used as the basis for claiming that the
stuff of the universe is 72.9% dark energy. The baryonic matter contribution to
Ωm is believed to be no larger than about 0.05 - 0.10, with the visible part of it
being only about one fifth of this. The non-baryonic contribution to Ωm is the
dominant part.

The requirement for Ωm +ΩΛ = 1 arose from the wish to have a flat space-
time within the context of General Relativity and a FRW metric. In the Yilmaz
theory, the values of the metric coefficients are determined locally. The poten-
tials can be set to zero as boundary conditions at the location of an observer and
in the absence of gravitating bodies, they will remain zero in the surrounding
space and the space-time would be locally Minkowskian. Time is returned to its
special relativistic status of being relative to the observer. There is no universal
time here. No particular requirement is imposed on the density of mass-energy
that would necessitate the existence of non-baryonic dark matter. The Yilmaz
theory is indifferent to its existence. If it exists, then it must contribute to
the mass-energy density, but finding it is an empirical matter rather than an
exercise in faith in a gravity theory.

Three other attempts have been made to apply the Yilmaz theory to cos-
mology. Yilmaz (1958) developed a metric for a static universe. Increasing
evidence of the inadequacy of this approach led him to the extensions in his
1971 theory. Mizobuchi (1985) applied the 1971 theory to a cosmological model
consisting of a perfect fluid. This was not a central point of an otherwise very
informative article, but it appears to have been based on the erroneous inclu-
sion of a factor of

√
−g in T ν

µ , where (−g) is the determinant of the metric. T ν
µ

should have been taken to be just the diagonal matter tensor of a perfect fluid,
T ν
µ → (ρc2,−P,−P,−P ). The approach taken here was motivated by that of

Mizobuchi (1985) but correcting the error leads to significantly different results.
A third attempt to apply the Yilmaz theory to cosmology was provided by
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Ibison (2006). Ibison assumed the correctness of the flat-space FRW metric
ds2 = dt2 − a(t)2(dr2 = r2dθ2 + r2sin2θdΦ2) and found a coordinate transfor-
mation to the form of Eq. 1. This transformation was shown to satisfy the
harmonic coordinate condition, but only at the expense of leaving λ and ν de-
pendent only on time with no position dependence. Ibison’s transformation,
dt = a(ζ)3dζ, produces a result that is equivalent to setting ϕ0 = 0 and is in-
capable of fitting the the SNe 1a redshift data. Fig. 1 shows that the redshift
data is nicely encompassed by the Yilmaz theory and the metric of Eq. 1.

The Cosmological Principle asserts that the universe is spatially homogenous
and isotropic, but it does not demand strict adherence to the FRW metric. The
FRW metric mathematically ensures a translational invariance that would leave
the universe with the same appearance to all observers at the same “cosmic
time”, but that is not the only way to obtain consistency with the principle.
Form invariance of Eq. 1, the requirement that ϕβ

α = 0 hold at the observer’s
location and the requirement that ρ0 = constant satisfy the requirements. In
this case, however, a “cosmic time” would have no meaning.

It should be possible to extend this discussion of cosmology back to the
early universe, but that would necessitate the inclusion of the internal pressures
of both matter and radiation. Eqs. 34, 35 and 36 become much more complex
when pressures are not negligible. It might possibly require the abandonment of
the harmonic coordinate condition. Nevertheless, it would seem to be preferable
to approach the study of the early universe in the same way, from the standpoint
of an observer at the origin in a locally Minkoswkian spacetime. This would
permit the existence of gravitational redshifts of photons just as has been found
here for the Yilmaz theory. In contrast, the FRWmetric with g00 ≡ 0 completely
precludes the possibility of occurrence of the gravitational redshift. In addition,
no cosmological translational invariance has been imposed by the Yilmaz theory.
We may hope that we are not privileged observers in some way, but we do not
impose that as a mathematical requirement. It is left to be verified by other
means if possible.

As will be seen in the discussion of neutron stars, the right member of the
field equations for a perfect fluid is (T j

i + tji ) = (ρc2,−p,−p,−p), where ρc2 and
p are symbolic place holders for both mass-energy densities and material and
gravitational stress-energy contributions. It might be possible to decompose
these such that ρc2 = σc2 + t00 and p = pk + tii for i = 1, 2, 3, where pk is the
kinetic contribution to pressure and σ excludes the field energy density within
the space occupied by a fluid particle. Then in Eqs. 34, 35 and 36, we could
take T 0

0 = σc2, and for other components, T i
i = −pk. It then might be possible

to retain the use of the harmonic coordinate condition. If so, this would lead
to equations for ϕ0 and ϕ1 that are fairly simple in appearance. Eqs 35 and
36, would be identical and it would be readily apparent that the effect of the
kinetic pressure would be to cause an acceleration in the rate of expansion; i.e.,
ϕ̈1 > 0. But this remains as a research agenda for someone else.
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7. Neutron Stars

Although neutron stars are very compact objects, with typically 1.4M⊙ and
∼ 10 km radius, their surface gravitational potentials are only GM/c2r ∼ 0.21.
Gravitational field energy density terms of second order in potentials this small
are not of great importance. The limit on neutron star mass is set by the support
that can be provided by neutron degeneracy pressure subject also to a limit that
it should not exceed the pressure of a fully relativistic gas with p ∼ ρc2/3 or a
causality limit with sound speed less than light speed with ∂p/∂ρ < c2.

Pressure is a non-gravitational contact force between fluid elements, yet
in the case of a neutron star, the presence of pressure depends entirely on
the existence of the gravitational field. It is not clear just how to separate
pressure from a gravitational energy density and this has been the source of
some confusion. In a 1995 arXiv paper with the title “Yilmaz Cancels Newton”
(Misner 1995, 1999), Misner claimed that the Yilmaz theory could not correctly
include pressure. That was immediately followed in the same journal issue by a
similarly delayed refutation by Yilmaz and Alley (Yilmaz & Alley 1999). Misner
made an error that will be obvious here, but Yilmaz and Alley did not not clearly
expose it.

In the time independent equations that should be applicable to a neutron
star, the Yilmaz equations for the metric form, Eq. 1, differ from Eqs. 34 - 36
by the omission of time derivatives. In this case, neither T 1

1 nor T 2
2 are zero.

G0
0 → e−λ[(1/r2)∂r(r

2∂rλ) + λ′(λ′ + ν′)/2] = −(8πG/c4)T 0
0 (54)

G1
1 → e−λ(λ′ + ν′)/r = −(8πG/c4)T 1

1 (55)

G2
2 → (1/2)e−λ[λ′′ + ν′′ + (λ′ + ν′)/r

+(λ′ + ν′)2/2] = −(8πG/c4)T 2
2

(56)

For this spherically symmetric case, T 3
3 = T 2

2 and the G3
3 equation again repeats

the one for G2
2.

Misner assumed that T j
i = [(ρ+p/c2)uiu

j−pδji ], where p represents pressure
and ui is the four-velocity of a fluid parcel. Here ρ is mass-energy density11 and
in this static case Misner would have T 1

1 = T 2
2 = T 3

3 = −p. But his entire
argument was also based on the assumption that ν = −λ, as shown clearly in
his Eq. 3.1. This leads immediately to p ≡ 0 in Eqs. 55 & 56, which is essentially
why he stated that Yilmaz cancelled Newton. Misner’s entire analysis based on
ν = −λ is simply wrong. It requires both independent metric coefficients ν and
λ to correctly describe the interior of a gravitating object.

But there is more to consider here. First, if ν ̸= −λ, the harmonic coordi-
nate condition cannot apply12. Next, as shown by Yilmaz and Alley, Misner’s

11ρ necessarily includes the gravitational field energy density in the space occupied by a
fluid particle, whereas σ does not: ρc2 = σc2 + t00.

12The failure of the harmonic coordinate condition led Robertson (1999) to abandon the field
equations and instead to calculate the metric components from a superposition of potentials
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assumption that T j
i = [(ρ + p/c2)uiu

j − pδji ] is also wrong. The reason for

this is that the Yilmaz theory requires that T j
i must satisfy the Freud identity

requirement ∂̄j(
√
−K T j

i ) = 0 (appendix B), but Misner’s assumed expression
does not.13

On the other hand, since the covariant derivative of Gj
i vanishes, it is appar-

ent from Eq. B.1 that the Yilmaz theory must require that (T j
i +tji ); j = 0. This

is known as the Bianchi requirement. Since Misner’s assumed expression for T j
i

does satisfy this covariant derivative requirement, Alley and Yilmaz proposed
that it is (T j

i + tji ) that is given by [(ρ + p/c2)uiu
j − pδji ]. They went on to

show that this is the case through second order terms. If this holds generally,
it is necessary that T j

i be given by T j
i = [(ρ + p/c2)uiu

j − pδji − tji ] and it is

still necessary for T j
i to satisfy the Freud requirement. Straightforward but very

tedious and lengthy tensor algebra shows that it does.
The end result is that the symbol ρ in the right member of the field equations

represents both the mass-energy density and the energy density of the gravita-
tional field in the space occupied by a fluid element. Similarly, the symbol p,
represents not only mechanical pressure, but also a stress-energy component of
the gravitational field. ρ and p are symbolic place holders for all forms of ener-
gies, including those of the gravitational field. It is only in the absence of matter
terms that it is necessary to include a term such as g2/(8πG) to represent the
field energy density in the right member of the field equations.

Substituting T j
i = [(ρ+p/c2)uiu

j −pδji − tji ] into Eqs. 34 - 36 produces field
equations for the interior of a neutron star that are, of course, exactly the same
as those of conventional general relativity. These are:

e−λ[(1/r2)∂r(r
2∂rλ) + λ′2/4] = −8πGρ/c2 (57)

e−λ[(λ′ + ν′)/r + λ′ν′/2 + λ′2/4] = (8πG/c4)p (58)

(1/2)e−λ[λ′′ + ν′′ + (λ′ + ν′)/r

+(λ′ + ν′)2/2 + ν′2/2] = (8πG/c4)p
(59)

p′ = −ν′(p+ ρc2)/2 (60)

Eq. 60 can be deduced from the two preceding ones, but it also results from both
the Freud and Bianchi identity requirements. The fact that the Freud identity is
satisfied shows that the set of equations rightfully belongs to the Yilmaz theory.
Further, T j

i = (ρ+ p/c2)uiu
j − pδji cannot belong to the Einstein theory, for if

it did, tji would not be contained within it.
The way that the Yilmaz solution of these equations differs from that of

conventional general relativity consists of the boundary conditions that apply.

of shells of matter inside the star. The results erroneously suggested that neutron stars might
have masses as large as 10M⊙ because no pressure limits were imposed.

13In spherical coordinates, it is necessary to take the derivatives of the Freud requirement
as covariant derivatives relative to the local Minkowskian background to avoid problems with
pseudotensors. (Yilmaz 1992), see Appendix B.
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Table 2: Calculated Neutron Star Properties

Metric aρ(0) bP (0) p(0) ϕ(R) czs R(km) M(M⊙)

Yilmaz 12.1 20.90 0.192 0.269 0.308 7.70 1.40
15.9 47.7 1/3 0.394 0.483 6.79 1.81

Eq. C.1-C.4 const 2.8 8.4 1/3 0.417 0.516 8.33 2.34

GR-Iso 12.1 20.90 0.192 0.264 0.304 7.86 1.40
15.9 47.7 1/3 0.380 0.469 7.11 1.82
const 1/3 0.400 0.500

GR-Sch 12.1 20.90 0.192 0.206 0.304 10.07 1.40
15.9 47.7 1/3 0.268 0.469 10.07 1.82

a1014 g cm−3 b1034 erg cm−3 c surface red shift

The Yilmaz theory requires a match to the metric of Eq. 11 at the star surface
rather than the metric of Eqs. 13 & 14. Since these metrics first show a minor
difference in second order terms one would not expect major differences and
as shown in Table 2, this is the case. Thus the previous conclusions that have
been reached concerning maximum neutron star mass are essentially unaffected.
A maximum mass of about 3M⊙ (Rhoades & Ruffini 1974, Kalogera & Baym
1996) is still a firm limit.

Results of numerical solutions of the field equations (57- 60) for Yilmaz
boundary conditions and a realistic equation of state (Wiringa, Fiks & Fabrocini
1988) are shown in Table 2. The details of the numerical solution are given
below. A maximum neutron star mass of about 1.8M⊙ for a limiting relativistic
core pressure of p = ρc2/3 is shown there. p(0) = (1/3)ρc2 should correspond
to a maximum pressure because the core would be fully relativistic under these
conditions and no longer cool enough to permit the neglect of radiation.

At the outset of numerical solutions of Eqs. 57 - 60, the values of λ and ν are
not known at either the surface or the center of the star. Nevertheless, we can
avoid having to do trial and error solutions starting from some guess of either
of these at the surface by defining new variables as y = λ− λ(0), w = ν − ν(0),

a new radial coordinate as x = r
√

4πGρ(0)/(c2eλ(0)), a dimensionless pressure,
P = p/(ρ(0)c2), and dimensionless density, z = ρ/ρ(0). With primes now
denoting derivatives with respect to x, Eqs. 57, 58 & 60 become

(1/x2)∂x(x
2∂xy) + y′2/4 = −2zey (61)

w′/x+ y′/x+ y′w′/2 + y′2/4 = 2Pey (62)

P ′ = −w′(P + z)/2 (63)

Initial conditions for the solution of these equations are y = y′ = 0, w =
w′ = 0, z = 1 at x=0. At the outer surface of the star at r = R → x = X,
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the boundary conditions are P = 0, which serves to determine X, ν = −Xw′

and λ = −ν. The condition ν = −Xw′ follows from matching the external
exponential metric and its derivative14 for which ν = −2GM/(c2r) = −xν′.

What is needed for the solution of these equations is a neutron equation of
state and an initial trial central pressure P (0). For the latter, it will be assumed
here that P (0) = 1/3 corresponds to the maximum realistic pressure because
the core would be fully relativistic under these conditions and no longer cool
enough to permit the neglect of radiation. Trial and error was used to determine
a pressure that would correspond to a canonical 1.4M⊙ neutron star.

The AV14+UVII neutron model equation of state of Wiringa, Fiks, and
Fabrocini was used here (Wiringa, Fiks & Fabrocini 1988). Densities from their
Table VI were fitted to a quartic polynomial in p1/3. The quartic polynomial
for neutron densities was of the form ρ = Σnan(p

1/3)n. The coefficients are:
a0= -0.9167367, a1=6.960282, a2=-1.462936, a3=0.267646, a4=-0.0112676. Fit-
ting errors were below one percent over the range of densities used in these
calculations.

After selection of an initial central density and corresponding pressure, the
solution proceeds in steps outward with corresponding decrements of pressure
until reaching P=0. As a check on the validity of using the polynomial, the field
equations of the Schwarzschild metric were solved numerically in the same step-
wise fashion described above. Stellar radii and masses agreed to better than one
percent with those shown in Table VI of Wiringa, Fiks & Fabrocini. Since their
values were calculated via the Tolman, Oppenheimer, Volkoff equation which
was derived for the Schwarzschild metric, this should be expected; however, a
failure to agree would have indicated a problem with the numerical methods
used here.

For the limited purpose of comparing results for different theories, only a few
results have been selected. It is of obvious interest to examine the properties
of the canonical 1.4 M⊙ neutron star. A second case of interest occurs for a
core pressure of p(0) = ρ(0)c2/3, which is a strongly relativistic case, though it
does not reach the “causality limit” for which ∂P/∂ρ → c2. Results of these
calculations are shown in Table 2.

The tabled values for 1.4 M⊙ show that there is good agreement on surface
red shift for all of the metrics used. Radii for the isotropic metrics of Yilmaz
and General Relativity are also in good agreement, but quite different from the
one obtained for the Schwarschild metric. This merely reflects the fact that the
radii are coordinate quantities. The proper length radius is

Rp =

∫ R

0

√
−grr dr (64)

For the 1.4 M⊙ stars, the proper radii are Rp = 11.4 km for all of these metrics.
All things considered, the Yilmaz theory calculations produced very realistic

14Although λ , ν and ν′ are continuous at r = R, λ′ is not. Continuity of ν′ is necessary in
order to obtain the correct initial pressure gradient just inside the outer surface of the star.
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neutron star properties and, as expected considering the small metric differences,
very little change from the isotropic metric of General Relativity for a realistic
neutron equation of state. Thus the Yilmaz theory seems quite capable of
handling the physics of compact objects.

Eqs. 57 - 60 have been solved analytically (Buchdahl 1982)15 for an object
that would have ρ = constant. While this is wildly physically unrealistic for
anything but very small planets, it is of some interest because it shows that no
event horizon conditions are generated in the interior solutions when matched
to an exterior Yilmaz exponential metric. Another reason for interest is that
the results are not very different from those of more rigorous calculations if a
nuclear density is used for ρ. Buchdahl’s solution modified by use of Eq. 11 as
a boundary condition is shown in Appendix C.

8. Summary and Conclusions

In Eq. 7 we found a result that is required by special relativity, but in-
compatible with the known solutions of the Einstein field equations for static
fixed mass gravitational sources. By considering gravitational waves, it could
be easily seen that the issue is a conceptional problem: Einstein’s wish to ex-
clude gravitational field energy densities as sources in the right members of the
Einstein field equation appears to be both unwarranted and unfulfilled. Gravi-
tational waves of arbitrary amplitude can occur if field energy terms of second
order are permitted.

It was also shown that the addition of the energy density of the gravitational
field of a central mass as a source term in the field equations permitted a New-
tonian potential to survive as a solution of the field equations. This restored
compatibility of the solution with Eq. 7 and had the effect of eliminating the
event horizon from the solution for a point mass. This still leaves a point mass
singularity as r → 0, for which g00 → 0, but this is just a problem with the
concept of a point mass and not a pathological feature of the metric as there
is no curvature singularity there. In contrast, in the well-known solution of the
unmodified Einstein field equations, g00 vanishes at the event horizon before we
reach r = 0.

In this regard, we can see that the added gravitational field energy density
had a negative curvature effect on the spacetime metric. If sources of positive
mass-energy densities produce positive curvature of spacetime, gravitational
field stress-energy densities inherently produce the opposite effect on curvature.
Without this negative effect (Lo 1995), spacetime becomes too warped too soon
as we approach the point particle and an event horizon forms for r > 0.

A similar effect occurs in the case of a cosmological metric. The presently
accepted cosmology uses a two parameter combination of the mass-energy of the
cosmos and “dark energy”; Einstein’s exclusion notwithstanding, to account for
the redshift - luminosity distance relation of distant type 1a supernovae. Dark

15Buchdahl’s field equations require minor corrections

23



energy represented by a cosmological constant has the effect of partially coun-
tering the gravitational attraction of the “cosmic dust” particles and allowing
the model cosmos to expand at an accelerating rate at late times.16 It is clear
from the results presented here that the supernovae data can be accommodated
very well by the inclusion of the gravitational field stress-energy tensor source tji
and only one free parameter, the present mass-energy density of “cosmic dust”
in our vicinity. Event horizons and dark energy are simply not necessary for a
correct accounting for any astrophysical observations.

Removing event horizons from the astrophysical menagerie does, however,
leave a need for a new understanding of the nature of the gravitationally col-
lapsed and compact objects that are presently thought by many to be black
holes. Models that require the use of unmodified Schwarzschild or Kerr met-
rics must make way for models that have no event horizons. Since the objects
presently considered to be black holes are too massive and compact to be sup-
ported by neutron degeneracy pressure, they most likely would collapse to a size
that can be supported by internal radiation pressure (Mitra 2006). They might
well become quark-gluon plasmas. At the same time, their surface emissions
would occur with such extreme redshifts that their distantly observed lumi-
nosity would be quite low. In this regard, the ECO (e.g., Mitra 2000-2006)
or MECO (e.g., Robertson & Leiter 2002-2006) models, which only need large
gravitational redshifts and/or intrinsic magnetic fields to function can likely be
encompassed within the Yilmaz theory (Robertson 2016). This remains to be
worked out for spacetimes dominated by electromagnetic radiation fields.

The criticism of the Yilmaz theory by Misner has been shown here to be
incorrect, but it raised a subtle point: Symbols representing mass or energy
densities in the right members of the Einstein field equations will also represent
the gravitational field energy densities unless these are separately specified in
explicit expressions for tji . This had the effect of leaving the field equations for
neutron stars unchanged from those of the Einstein theory. Nevertheless, the
nature of the solutions is affected by new boundary conditions. The metric must
match the static exterior Yilmaz metric at the star surface.

The clear implication of these results is that permitting gravitational field
energy to serve as a source in the Yilmaz field equations allows the solutions to
be valid to more than first order in the potentials. The new theory still passes all
of the observational tests that have been devised for relativistic gravity theories.
Whether it will remain correct when higher order tests can be devised remains
to be seen. In the meantime, the clear message that needs to be understood
here is that gravity is a field in its own right. It is NOT merely and entirely and
only an effect of the geometry of spacetime. Alley (1995) has opined that the
inclusion of tji (as given by Eqs. B.4-B.6) as an additional source term in the
Einstein field equations is as important for our understanding of gravitational
fields as Maxwell’s addition of displacement currents was for the understanding

16It is hard to believe that the noisy data of supernovae luminosity and redshift provides a
compelling reason to think that “dark energy” makes up ∼ 72% of the stuff of the cosmos.
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of the electromagnetic field.
If gravity must be regarded as something more than spacetime geometry,

then what is it? That remains to be determined by theorists who take up the
task in the future. The Yilmaz theory is a good underpinning for the descriptive
and geometric aspects that have been discussed here, but it remains to be seen
if it can be generally extended to a matter continuum or to other places where a
“harmonic coordinate condition” might fail. This would seem to be a promising
research area.

As for the physical reality that undergirds gravity, it is probably some sort
of quantum field. It could involve quarks and gluons, Higgs bosons or even
photons. For example, it has been proposed that gravity might be electromag-
netic in origin (e.g., see Puthoff 1989, 1999 and references therein) and gravity
somewhat similar to a van der Waals force. But whatever one may think, a
correct theory of gravity will require elements of reality that are more than just
spacetime geometry.

Appendix A. Einstein’s elevators

Consider two elevators, one at rest on a planet where the local gravitational
free-fall acceleration would be g. Let the other be out in free space away from
gravitational fields. Let it be equipped with a rocket engine and accelerating at
the same rate, g, in the z direction as determined by its on-board accelerometer.
At the time the second elevator begins to accelerate, let a photon be emitted
from a source at its floor and let it be absorbed later in a detector in its ceiling, a
distance L away in the frame of the elevator. While the photon is in transit, the
detector acquires some speed, v, relative to inertial frames. From the position
of the detector, it is the same as if the source were receding from it at speed v.
Thus if the frequency of the photon emitted at the floor is ω0, the detector will
detect the Doppler shifted frequency

ω =
ω0(1− v/c)√
1− v2/c2

(A.1)

We can determine the speed, v, of the ceiling photon detector from the special
relativistic relation

az =
dv

dt
=

a′z
(γ3)(1 + u′

zv/c
2)3

=
g

γ3
(A.2)

where γ = 1/
√
(1− v2/c2) and u′

z = 0 is the detector speed relative to an
inertial frame that is comoving and coincident at the time the photon reaches
the detector. Time increments, dT in the elevator are contracted such that
dT = dt/γ. Substituting into Eq. A.2, integrating and setting T = L/c, we
obtain

v/c = tanh(gL/c2) (A.3)
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Substituting Eq. A.3 into Eq. A.1, there follows

ω = ω0e
−gL/c2 (A.4)

By the principle of equivalence the first elevator, which is at rest in a gravita-
tional field, would have to produce the same frequency shift gravitationally. In
this elevator, the change of (dimensionless) gravitational potential between floor
and ceiling is, of course, ∆ϕ = gL/c2. So the gravitational red shift is given EX-
ACTLY by 1 + z = e∆ϕ. This photon red shift result was derived by Einstein
in a 1907 paper (Schwartz 1977). For a time after 1907, Einstein maintained
that the metric coefficients must be strictly exponential functions in order to
conform to the requirements of special relativity, but his final development of
general relativity failed to satisfy the requirement.

One last situation should be examined as a two elevator experiment. Con-
sider two identical masses constructed in field free space and then placed sepa-
rately with one in the ceiling of each elevator. If dropped from the ceilings, there
would be kinematical equivalence. The local transit times to the floors would be
identical, but they might not be dynamically equivalent. If the mere presence
of the earth caused a change of the mass within the elevator on earth, dents in
the floor might differ. In order to avoid such a possibility it is necessary that
the metric depend only upon gravitational potential differences (Yilmaz 1981)
rather than upon absolute values of the potential.

Appendix B. Yilmaz Theory

The right member of the Einstein field equations permits the addition of a
“Cosmological Constant”, denoted Λ. As part of the right member, δjiΛc

4/(8πG)
is considered to be a constant “dark energy” density of the cosmological vacuum.
This makes it quite clear that it is apparently acceptable to have an energy den-
sity source in addition to the “matter tensor”, T j

i , in the right member of the
Einstein field equations. Λ represents an energy density in the otherwise empty
space of the cosmological vacuum for which T j

i = 0 where no mass is present.
On planetary or galactic scales, the cosmological constant can be ignored. If

it represents the ground state oscillations of all of the fields within the cosmos,
we might expect its value to be roughly 120 orders of magnitude larger (Carroll
2004, Sec. 4.5) than the ∼ 10−8erg/cm−3 that is needed to explain the cosmo-
logical redshift observations of type 1a supernovae. In addition to this rather
glaring discrepancy, the energy density of matter would decrease in an expand-
ing universe, which would allow only one coincidental moment in time in which
matter and vacuum energy densities might be of comparable magnitude as they
are at present. This coincidence problem and the difficulties associated with
the cosmological constant and the dubious concepts of dark energy and non-
baryonic dark matter can be removed by replacing the cosmological constant
with a variable stress-energy tensor in the right member of the field equations.
Contrary to Einstein’s fiat, if a gravitational field exists in space, there will also
be a field energy density.
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Huseyin Yilmaz (Yimaz 1958 ... 1992) proposed that the right member of
the Einstein field equations be modified by removing the cosmological constant
and replacing it with a variable gravitational field stress-energy tensor. The
modified equation can be written as:

Gj
i = −(8πG/c4)(T j

i + tji ) (B.1)

where T j
i = σuiu

j is the matter tensor when no non-gravitational forces con-

tribute. tji is the gravitational stress-energy tensor. Other requirements are17

(T j
i + tji ); j = 0 Bianchi requirment (B.2)

∂̄j(
√
−K T j

i ) = 0 Freud requirement (B.3)

Here the overbar represents a covariant derivative with respect to local Minkowskian
coordinates which share the same origin and orientation as those of the metric.√
−K =

√
−g/

√
−η, where

√
−g is the determinant of the metric and

√
−η is

the determinant of the metric of the Minkowskian background. In rectangular
coordinates (x,y,z,t),

√
−η = 1 and all Christoffel symbols vanish, leaving a

normal partial derivative.
This elaborate derivative procedure is necessary to eliminate pseudotensors

that might otherwise arise. The pseudotensor problem has been discussed in
detail (Yilmaz 1992). This procedure eliminates them. Pseudotensor problems
can be avoided in two ways. The first simply consists of the use of rectangular
coordinates, in which they never appear. The second is to take derivatives as
covariant derivatives in local Minkowskian coordinates.

Einstein’s gravitational energy expression, tji , has been shown to be a pseu-
dotensor; however, it can be expressed in terms that eliminate pseudotensors
and leave a true tensor quantity. First define terms

gij =
√
−Kgij gij = gij/

√
−K (B.4)

and

W j
i = (1/8

√
−K)gjk[∂̄kgab∂̄ig

ab − 2∂̄k
√
−K∂̄i(1/

√
−K)− 2∂̄agkb∂̄ig

ab] (B.5)

then
tji = W j

i − (1/2)W k
k (B.6)

Yilmaz often used expressions that incorporated a harmonic coordinate condi-
tion. The expressions for W j

i and tji were based on Pauli’s decomposition of

17Einstein’s theory, in which T j
i would expressly exclude gravitational field energy would

require T j
i ; j = 0. As noted by Landau & Lifshitz, (Landau & Lifshitz 1962), this does not

express any conservation law whatever. It would not be a statement of energy-momentum
conservation, because it would not include the energy-momentum of the gravitational field.
Eq. B.3 above is the energy-momentum conservation law of the Yilmaz theory.
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the Einstein tensor with no harmonic coordinate conditions included. Yilmaz
(1992) also provided a general expression for T j

i .

(1/4
√
−K)∂̄a[ḡ

akḡjb(∂̄bgik − ∂̄kgib) + δji ∂̄bg
ba − δai ∂̄bg

bj ] = T j
i (B.7)

Of particular interest here is tji for the metric form

ds2 = eνc2dt2 − eλ(dr2 + r2dθ2 + r2sin2θdΦ2) (B.8)

and complete spherical symmetry for which r and t are the only variables. The
background Minkowskian metric is ds2 = c2dt2 − dr2 − r2dθ2 − (r sinθ)2dΦ2

and
√
−η = r2sinθ.

After some tedious tensor algebra, the results from Eqs B.4, B.5 and B.6 are
(as also stated in the text Eq.s 32 & 33):

t00 = −t11 = (c4/8πG)[e−ν3λ̇2/4 + e−λ(λ′ν′/2 + λ′2/4)] (B.9)

and
t22 = t33 = (c4/8πG)(−e−ν3λ̇2/4 + e−λ(λ′ν′/2 + λ′2/4) (B.10)

Here dots represent partial derivatives with respect to time, and primes represent
partial derivatives with respect to the radial coordinate, r. In the special case
of the static point particle metric, (Eq. 11 of the text) for which ν = −λ = 2ϕ,

t00 = −(c4/8πG)(e−λλ′2/4) = −(c4/8πG)e−2ϕ(∂rϕ)
2 (B.11)

This is the necessary right member for Eq. 27 of the main text.
In addition to the previous equations, it is assumed that the equations of

motion of particles moving in the metric spacetime would be geodesic equations
if no non-gravitational forces act. The gravitational forces that drive the motion
are the stress tensor right members of Eq. B.1. We can examine an interesting
aspect of this (in rectangular coordinates) by expanding Eq. B.2

(T j
i + tji );j = (1/

√
−g)∂j(

√
−g(T j

i + tji )− 1/2(∂igab)(T
ab + tab) = 0 (B.12)

but by Eq. B.3, ∂j(
√
−g T j

i ) = 0. Thus (1/
√
−g)∂j(

√
−g tji ) = 1/2(∂igab)(T

ab+
tab) and the geodesic equation becomes

σdui/ds = 1/2(∂igab)(T
ab + tab) = (1/

√
−g)∂j(

√
−g tji ) (B.13)

This shows that particle motions in the Yilmaz theory are actually driven by
the particle interactions with the gravitational field stress-energy tensor. In
cases involving multiple particles as sources, they interact via the collectively
established tji . These can be most easily constructed in terms of the metric
coefficients constructed from the gravitational potentials described below.
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Appendix B.1. Time dependence

Thus far it has been shown that it is possible to include a true gravitational
field stress-energy tensor with only minor impact on Einstein’s grand concept of
curved spacetime, yet it would drastically change the black hole-dark energy or-
thodoxy of current astrophysics. Einstein’s theory is more radically altered when
gravitational radiation is considered. Einstein’s gravitational radiation formula
is supported by observations of the decay of binary pulsar’s orbits (Hulse & Tay-
lor 1975, Taylor & Weisberg 1984); however, as Einstein discovered, his formula
is not compatible with his field equations. Lo (1995) cited Vlasov & Denisov
(1982) as showing that the calculated rate of energy emission depends on the
choice of coordinates. This is a result of calculations being based on Einstein’s
gravitational field pseudotensor. Lo (1995) provided a derivation of the formula
based on the inclusion of a field energy tensor but failed to recognize that it was
actually compatible with the Yilmaz theory. Lo stated that tji must be added as
a source term in the right member of Einstein’s field equation, yet it could not
be a physical cause of the curvature exhibited by the metric, otherwise grav-
ity would be self-generating. In addition to the anti-gravity coupling explicitly
demonstrated in this text for the point mass metric, the Yilmaz theory obviates
this problem with a stress-energy tensor that depends on potentials rather than
directly upon the metric coefficients.

A hint of this was shown in the previous discussion of the metric for cos-
mology where the metric coefficients were expressed as λ = 2ϕ0 + 2ϕ1 and
ν = 6ϕ1 − 2ϕ0. The functions ϕ0 and ϕ1 are potentials that actually form
the metric rather than the reverse. As originally presented (Yilmaz 1971), his
general theory was formulated in terms of a potential tensor ϕν

µ and the metric
coefficients gij determined as functions or functionals of the ϕν

µ. The theory was
later presented with the Einstein tensor in the form used here just to clearly
show how it would modify the Einstein field equations. This last correspondence
was based on Pauli’s decomposition of the Einstein tensor (Yilmaz 1992), which
Yilmaz writes as18

(4πG/c4)T ν
µ = �2ϕν

µ − (1/
√
−g)∂α(

√
−g∂νϕα

µ) (B.14)

where �2 = (1/
√
−g)∂α(

√
−g ∂α) is the Laplace-Beltrami operator and T ν

µ

satisfies the Freud requirement, Eq. B.3.
Yilmaz has proposed, by analogy with electromagnetism, that one can re-

gard the rightmost terms of Eq. B.14 as gauge terms that can initially be
neglected19. After the remaining equation has been solved, the gauge terms can
be regenerated from the solution to satisfy Eq. B.11. Thus one has the simpler
equation

�2ϕν
µ = (4πG/c4)T ν

µ (B.15)

18As previously noted, in other than rectangular coordinates the derivatives must be taken
as covariant derivatives relative to the Minkowskian background and

√
−g replaced by

√
−K.

19In a Lagrangian formulation of the theory, the gauge terms contribute to the Lagrangian
density by an ordinary divergence and they do not affect the field equations.

29



Here T ν
µ = σuνu

ν , where σ is the mass density of particles in a volume element,
excluding any gravitational field energy. This is a theory of particles and fields
considered separately and not a matter plus field continuum. The solutions of
Eq. B.15 are

ϕν
µ = (G/c4)

∫
T

′ν
µ dV ′/r′ (B.16)

Here primes denote the usual retarded condition t− r/c.
In his first presentation of the theory in terms of potentials, Yilmaz (1971)

stated the relation between the fields ϕν
µ and the metric as a functional differ-

ential equation
dgµν = 2(gµνdϕ− gµαdϕ

α
ν − gναdϕ

α
µ) (B.17)

where ϕ is the trace of ϕν
µ. Substituting the solutions of Eq. B.15 leads to a

formal exponential metric, which is exact for many cases of physical interest

gµν = (ηe[2(ϕÎ−2ϕ̂)])µν (B.18)

where η is the metric of the Minkowskian background, ϕ = ϕk
k is the trace

of ϕ̂ = ϕν
µ and Î is the identity matrix. The exponential function is defined

in terms of its ordered Taylor expansion and in rectangular coordinates, η =
(1,−1,−1,−1).

As an example, a diagonal exponential metric to describe a spherically sym-
metric spacetime, could have potentials ϕ0

0, ϕ
1
1, ϕ

2
2, ϕ

3
3. Then

g00 = η00e
2(ϕ0

0+ϕ1
1+ϕ2

2+ϕ3
3−2ϕ0

0) (B.19)

g11 = η11e
−2(ϕ0

0+ϕ1
1+ϕ2

2+ϕ3
3−2ϕ1

1) (B.20)

etc. For the isotropic metric of Eq. 1 of the text, we need ϕ1
1 = ϕ2

2 = ϕ3
3, thus

we obtain metric coefficients

g00 = eν = η00e
6ϕ1

1−2ϕ0
0 , gii = −eλ = ηiie

2ϕ1
1+2ϕ0

0 (B.21)

The harmonic coordinate condition that was applied in the cosmology discussion
required that ϕ0

0 be time independent and that ϕ1
1 depend only on time. At that

point we could have solved Eqs. B.15 for ϕ0
0 and ϕ1

1 without bothering with the
Einstein tensor. In fact, subject to the harmonic coordinate condition, these
yield Eqs. 41 & 42 of the text.

In the case of a mass distribution consisting of discrete particles moving at
low speeds, i.e., ui ≪ c, T j

i = σuiu
j = σu0u

0 = σc2.

T 0
0 = Σimic

2δ(x− xi) (B.22)

T ν
µ = 0 in the space outside the particles. The field equations are Gj

i =

−(8πG/c4)tji ̸= 0, as has been shown (Lo (1995). The solution of Eq. B.15,
from which the metric (Eq. 6) can be constructed, is

ϕ = ϕ0
0 = ΣiGmi/(c

2|x− xi|) + C (B.23)
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Note that these are not necessarily static conditions, but only circumstances for
which the particle speeds are much less than light speed. This means that for any
distribution of sufficiently slow moving particles, no matter how complex, we can
immediately write down the corresponding exact curved spacetime solution. The
motions of such distributions can then be studied by Hamilton-Jacobi methods
(Yilmaz 1994).

Appendix B.2. Additional Comments

As shown by Yilmaz (1975) the passage from general relativity to Newtonian
mechanics requires first passing through the special relativistic limit. The failure
to honor this limit exactly for gravitational redshifts may at first glance seem
minor, but it shows clearly that second order corrections are needed.

The treatment of free-fall differs between the Yilmaz and Einstein theo-
ries. In the Yilmaz theory, the presence of free fall is indicated by a locally
Minkowskian metric. Removal of constraining forces that prevent free fall is rep-
resented by subtracting constants from the potentials that appear in the metric
coefficients. This is not a coordinate transformation. The ability to set the
potentials to zero at the location of an observer produces a locally Minkowskian
spacetime for any observer, including even those in accelerating systems. While
it is true that tji can be compensated at the location of the accelerated observer,
one cannot conclude that it must vanish everywhere.

Misner, Thorne & Wheeler (1973) have argued that there can be no local-
ized gravitation field stress-energy because the transition to free-fall requires a
coordinate transformation to a local Minkowskian spacetime for which the first
derivatives of the metric coefficients vanish. The gravitational field stress-energy
tensor is quadratic expression in the first derivatives and vanishes in that trans-
formation. Therefore, it is argued that it must vanish in any coordinates, but
this argument does not apply to the Yilmaz theory because it does not rely on
a coordinate transformation to achieve free fall. This also permits local energy
conservation in the Yilmaz theory.

Appendix C. Analytic solution for a neutron star model

Eqs. 57 -60 for a sphere of constant ρ (Buchdahl 1982) can be matched to
the exterior Yilmaz metric Eq. 11. Matching λ, ν and ν′ across the exterior
boundary is sufficient to determine the integration constants of the solution.
Using u = −ϕ(R) = GM/(c2R), the solutions are given in terms of

k =
5 + 3

√
1 + u2

4− 3u
(C.1)

Results that reduce to λ = −ν = 2u at r = R can then be expressed as:

eλ = { 3eu(k − 1)

2k − 1 + (k − 2)(r/R)2
}2 (C.2)
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eν = {3e
−u[(2k − 1) + k(k − 2)(r/R)2]

(k + 1)[2k − 1 + (k − 2)(r/R)2]
}2 (C.3)

p

ρc2
=

(2k − 1)(k − 2)[1− (r/R)2]

3[(2k − 1 + k(k − 2)(r/R)2]
(C.4)

R = R0e
−u

√
u (C.5)

where R0 =
√

c2/(4πGρ).
As can be seen from Eqs. C.1 and C.4, infinite central pressure would be

generated for u → 4/3 and k → ∞. Although this would also result in g00 → 0,
infinite central pressure can be rejected as unphysical. The u = 2 condition
for the event horizon in the isotropic Schwarzschild solution would correspond
to an unphysical negative pressure here. For u ≤ 4/3, the metric coefficients
remain well-behaved. A causality limit of p(0) = ρc2 would be reached first for
u = 3/4, k = 5; again without creating any event horizon conditions. Realisti-
cally, the maximum mass of a neutron star should correspond to p(0) = ρc2/3,
for which k = 3 and u = 5/12. Using a nuclear density ρ = 2.8× 1014 g cm−3,
the mass of such a star would be 2.34M⊙. In addition, the solution for a 1.4M⊙
star would have u = 0.268, R = 7.75 km, a central pressure of p(0) = 0.178ρc2,
and a surface redshift of z = 0.307. Mass, radius and surface redshift are all
very close to the results calculated for a realistic neutron equation of state and
shown in Table 2. The simple analytical model is better than might have been
expected.

Appendix D. Mach’s Principle and the Exponential Metric

Assuming that the (appropriately retarded) gravitational potentials are ad-
ditive, the potential of a collection of masses, (M1, M2, M3, . . .) would be

ϕ = Σiϕi = −(
GM1

c2r1
+

GM2

c2r2
+

GM3

c2r3
+ ...) (D.1)

and the metric would retain the form

ds2 = e2ϕc2dt2 − e−2ϕ(dx2 + dy2 + dz2) (D.2)

Now suppose that one is relatively near to one of the masses, say M1, such that
only its potential would vary significantly over a region of interest. Then one
can redefine time and distance scales such that

dt′ = dte
−(

GM2
c2r2

+
GM3
c2r3

+...)
(D.3)

and

dx′ = dxe
(
GM2
c2r2

+
GM3
c2r3

+...)
, dy′ = dye

(
GM2
c2r2

+
GM3
c2r3

+...)
.... r′ = r1e

(
GM2
c2r2

+
GM3
c2r3

+...)

(D.4)
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Thus
ds2 = e2ϕ1c2dt′2 − e−2ϕ1(dx′2 + dy′2 + dz′2) (D.5)

This amounts to letting the collective effects of all distant masses determine the
local measures of distance and time. To complete the removal of all vestiges of
our former coordinates, we can also redefine

M ′ = M1e
ϕ2+ϕ3+... (D.6)

which is just what we would expect from special relativity in accord with Eq.
2. Substituting from Eq. D.6 for M1 and from Eq. D.4 for r1 in ϕ1, and then
dropping subscripts and primes, the local metric near a dominating mass M is

ds2 = e2ϕc2dt2 − e−2ϕ(dx2 + dy2 + dz2) (D.7)

where ϕ = −GM/c2r for the mass M.
In this way, we can regard our local measures of mass, length and time to

have been determined by the distant masses of the universe, as was suggested
by Mach. This factoring of the metric is unique to the exponential metric and
is a powerful argument in its favor.
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