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We present an mvestigation of the massless, two-dimensional, interacting field theories Therr
basic property 1s their invanance under an infinite-dimensional group of conformal (analytic)
transformations It 1s shown that the local fields forming the operator algebra can be classified
according to the irreducible representations of Virasoro algebra, and that the correlation functions
are built up of the *“conformal blocks” which are completely determined by the conformal
invanance Exactly solvable conformal theones associated with the degenerate representations are
analyzed In these theones the anomalous dimensions are known exactly and the correlation
functions satisfy the systems of hnear differential equations

1. Introduction

Conformal symmetry was introduced into quantum field theory about twelve
years ago due to the scaling 1deas in the second-order phase transttion theory (see [1]
and references therein). According to the scaling hypothesis, the interaction of the
fields of the order parameters 1n the critical point 15 mvariant with respect to the
scale transformations

£ \E°, (1.1)

where £° are the coordinates, a = 1,2,..., D. In the quantum field theory the scale
symmetry (1.1) takes place provided the stress-energy tensor 1s traceless

T;(§)=0 (1.2)

Under the condition (1.2) the theory possesses not only the scale symmetry but 1s
also mvariant with respect to the coordinate transformations

¢4 —>1°(¢) (1.3)
having the property that the metric tensor transforms as

gt o>
Bur= G 3o B =0 () (14
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where p(£) 1s a certain function. Coordinate transformations of thus type constitute
the conformal group. These transformations can be easily described, properties of the
conformal group bemng different for the cases D>2 and D=2. If D> 2. the
conformal group 1s finite-dimensional and consists of translations, rotations, dilata-
tions and special conformal transformations (see [2,3]) Kimmemauc mamfestation of
this symmetry and 1ts dynamical reahization in the quantum field theory has been
mvestigated in many papers (see for example, [2-4]). In particular, 1t has been shown
that the local fields 4,(§), mvolved 1n the conformal theory, should possess
anomalous scale dimensions d 1.8 they transform as follows under the transforma-
tion (1)

AN %4, (15)

where the parameters d, are non-negative. Computation of the spectrum {d, } of the
anomalous dimensions 1s the most important problem of the theory since these
quantities determine the critical exponents.

To solve this problem, in [4] the bootstrap approach based on the operator algebra
hypothesis has been proposed. Let us describe 1t mm some detail since 1t 15 most
suitable for our purposes. The operator algebra 1s a strong verston of the Wilson
operator product expansion [5], namely, if the existence of an infinite set of local
fields A (§) 1s assumed. then the set of operators { A (0)} 1s assumed to be complete
n the sense specified below. The set {4, } contains the identity operator I as well as
all coordinate denvatives of each field involved. The completeness of the set { 4,(0)}
means that any state can be generated by the hinear action of these operators This
condition 1s equivalent to the operator algebra

Aj(g)Aj(O)—__ZCll}(’g)Ak(O)’ (16)
3

where the structure constants C(¢) are the c-number functions which should be
single-valued so that local properties be taken into account. The relation (1 6) 1s
understood as an exact expansion of the correlation functions

(4,(8)4,(004,(&). -4, (&4)) =2 CS ()4, (0)4,(&). 4,,(&)).
k

which 1s convergent m some fite domamn of §, the domamn bemng certainly
dependent on the location of &, ,§&,. The most ngid requirement, considered as
the mamn dynamucal principle of this approach, i1s associativity of the operator
algebra (1.6). This requirement leads to an mnfinite system of equations for the
structure constants C,’;(&). Since the conformal symmetry fixes the form of the
functions C,’}(E) up to some numerical parameters (which are the anomalous

dimensions and numerical factors), this system of equations has to determine these
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parameters However in the multidimensional theory (D > 2) this system proves to
be too comphicated to be solved exactly, the main difficulty being the classification
of the fields 4, entering the algebra.

The situation 1s somewhat better in two dimensions. The main reason 1s that the
conformal group 1s mfinute-dimensional in this case, 1t consists of the conformal
analytical transformations. To describe this group, 1t 1s convenient to introduce the
complex coordinates

=g+, z=¢-ug?, (17)
the metric having the form
ds?=dzdz (18)

The conformal group of the two-dimensional space which will be denoted by 6,
conststs of all substitutions of the form

z—¢(z2), z-§(z2), (19)

where ¢ and { are arbitrary analytical functions

For our purposes 1t will be convement to consider the space coordinates £, £2 as
complex vanables, 1.e to deal with the complex space C* Therefore 1 general we
shall treat the coordinates (1.7) not as complex conjugated but as two independent
complex variables; the same 1s supposed for the functions (19) This space C* has
the complex metric (1.8) The euchdean plane and Minkowski space-time can be
obtained as appropriate real sections of this complex space

In the complex case 1t 1s clear from (1 9) that the conformal group & 1s a direct
product

§=reT, (110)

where I' (T) 1s a group of the analytical substitutions of the vanable z (Z) In what
follows we shall often concentrate on properties of the group I, keeping in mund
that the same properties hold for T’

Infinitesimal transformattons of the group I are

z—>z+e(z), (1.11)

where ¢(z) 1s an mnfimitesimal analytical function It can be represented as an infinite
Lourant series

¢

e(z)= Y eg,z""! (1.12)

n=—00
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Therefore the Lie algebra of the group I' coincides with the algebra of differential

operators

L=t n=0,2142, (1.13)

the commutation relations having the form
[ln’lm]=(n~m)ln+m' (1 14)

The generators /, of the group T satisfy the same commutation relations, the
operators /, and /,, being commutative. We shall denote the algebra (1.14) as £o-

The generators /_,,[y,/,, form the subalgebra sl(2,C)C £,. The corresponding
subgroup SL(2,C) C I consists of the projective transformations

az+b
cz+d’

—{= ad—bc=1 (1.15)

Note that the projective transformations are umquely mvertible mappings of the
whole z-plane on 1tself and these are the only conformal transformations with this
property

Thus 1s the first paper of the series we intend to devote to the general properties of
the two-dimensional quantum field theory, mnvanant with respect to the conformal
group §* In this paper we give the general classification of the fields 4 | (§) entering
the operator algebra (1.6) according to the representations of the conformal group
and mvestigate special “exactly solvable” cases of the conformal quantum field
theory associated with degenerate representations. In more detail we shall show the
following

(1) The components of the stress-energy tensor 7,,(£) (satisfying (1.2)) represent
the generators of the conformal group § in the quantum field theory. The algebra of
these generators 1s the central extension of the algebra £, (1.14) and cowncides with
the Virasoro algebra £_. The value of the central charge ¢ 1s the parameter of the
theory

(1) Among the fields 4,(§) forming the operator algebra, there are some primary
frelds ¢,(§) which transform in the simplest way

%(zj)_)(%)An(%)an%({ﬂ (1.16)

* Although the projective group (1 15) and the complete conformal group § are both consequences of
(1 2) and therefore appear 1n the quantum field theory together, we found 1t instructive to consider
first the general consequences of the projective symmetry The corresponding formulae, which are
certainly no other than the particular case D=2 of the results of refs [2-4], are presented in
appendix A
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under the substitutions (1 9) Here A, and A, are real non-negative parameters. In
fact, the combinations d,=4,+4, and s,=4,— 4, are the anomalous scale
dimension and the spin of the field ¢,, respectively* We shall often refer to the
quantities A, and A, as to the dimensions of the field. The simplest example of the
primary field 1s the 1dentity operator I A nontrivial theory mnvolves more than one
primary field and the index » 1s mntroduced to distinguish between them

() A complete set of the fields A4,(§) consists of conformal famulies [¢,]. each
corresponding to a certain primary field ¢,. The primary field ¢, belongs to the
conformal family [¢,] and, 1n some sense, serves as the ancestor of the family. Each
conformal family also contains infinitely many other secondary fields (descendants).
Dimensions of these secondary fields form integer spaced series

AM=A,+k, BSP=4 +k, (117)

where k,k=0,1,2, .. Vanations of any secondary field 4 €[¢,] under the
infimtesimal conformal transformations (1.11) are expressed linearly in terms of
representations of the same conformal famuly [¢,]. So, each conformal family
corresponds to some representation of the conformal group 6. In accordance with
(110), this representation 1s a direct product [¢,]= ¥, ® V,, where ¥, and V, are
representations of the Virasoro algebra £**, in general, these representations are
irreducible.

(1v) Correlation functions of any secondary fields can be expressed in terms of the

correlators of the corresponding primary fields by means of special hnear differential
operators Therefore, all information about the conformal quantum field theory 1s
accumulated 1n the correlators of the primary field ¢,.
(v) The structure constants C,’j (£) of the operator algebra (1 6) can, in principle,
be computed m terms of the coefficients C!,, of the primary field ¢, 1n the operator
product expansion of ¢,¢,,. Therefore, the bootstrap equations (i.c the associativity
condition for the operator algebra) can be reduced to equations imposing constraints
upon these coefficients and the dimensions 4, of the primary field.

(v1) At a given value of the charge ¢ there are infinitely many special values of the
dimension A such that the representation [¢,] proves to be degenerate The most
important property of the corresponding “degenerate” primary field ¢, 15 that the
correlation functions mvolving this field, satisfy special inear differential equations,
the simplest example of which 1s the hypergeometry equation

(vn) If the parameter ¢ satisfies the equation

V25—c—\/1—c=£ (118)
VS5 —c+V1-¢ ¢4’

* The spin s,, of a local field can take an integer or half-integer value only
** The representation V), 1s known as the Verma modulus over the Virasoro algebra (see, for example,
[6]) Thus representation 1s evidently characterized by the parameter A, only
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where p and g are positive integers, the “minimal” conformal quantum field theory
can be constructed so that 1t be exactly solvable in the following sense (1) A finite
number of conformal families [¢,] 1s involved n the operator algebra, each of them
being degenerate, (1) all anomalous dimensions A, are known exactly, (in) all
correlation functions of the theory can be computed as solutions of special systems
of linear partial differential equations There are infinitely many conformal quantum
field theories of this type, each associated with a certain solution of (1.18), the
simplest nontrivial example (¢ = ) descnibing the critical theory of the two-dimen-
sional Ising model. We suppose that other “minimal” conformal theories describe
second-order phase transitions 1n some two-dimensional spin systems with discrete
symmetry groups

Apart from second-order phase transitions m two dimensions, there 1s another
application of the conformal quantum field theory Thus 1s the dual theory From the
mathematical point of view dual models are no other than special kinds of the
two-dimensional conformal quantum field theory. This 1s natural in view of their
association with the string theory Quantum fields describe the degrees of freedom
associated with the string, the conformal symmetry being a manifestation of the
reparametrization ivariance of the world surface swept out by the string. In fact,
the dual amphtudes are expressed n terms of correlation functions of some local
fields (vertex operators). In standard models (like the Veneziano model) vertex
operators are related i a simple way to free massless fields. We suppose that if
considerably mteracting fields are incorporated into the theory, 1t can produce new
types of dual models with more suitable physical properties.

2. Stress-energy tensor in the conformal quantum field theory

Consider an arbitrary correlation function of the form
(X)=(4,(&) ..4, (&), 21)
where 4, (§) are local fields, and perform an mfimtesimal coordinate transformation
£7—> £+ e(§). (22)

As 1s well known 1in quantum field theory, the following relation 1s vahd

N
; (4,(&)... 4, (584,604, (6.1 -4, (6)

+ [ d% 9% (£)(T.0(£) X) =0, (23)
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where the field 7, (&) 1s the stress-energy tensor and 8,4, denotes variations of the
fields A, under the transformation (2.2). Due to thewr local properties, these
variations are linear combinations of a fimite number of derivatives of the function
e(£) taken at the pomnt £ =§,, the coefficients being certain local fields It follows
from (2.3) that

(T (£)X)=0 (2.4)
everywhere but at the points §,4,... , &, In the conformal quantum field theory
the trace of the stress-energy tensor vanishes, 7,7 = 0. Therefore in two dimensions
this tensor has only two independent components which can be chosen 1n the form

T(¢§)=Ty~ T+ 2T,
T(¢)=Ty, ~ Ty — 2Ty, (2.5)

Combining relations (1 2) and (2.4), 1t 1s easy to find that these components satisfy
the Cauchy-Riemann equations

3(T(£) Xy =0.
8_,(7—”(§)X>=0, (26)

where - and 7 are defmed by (17) So, each of the fields 7 and 7 1s an analytic
function of the single variable (z and Z, respectively) and we shall write

T=T(z), T=T(z) (27)

Take now the correlation function™
(T(z) X) (28)
It 1s the analytic function of z that 1s single-valued (due to 1ts local properties) and
regular everywhere but at the points z =z,, z, = £ +1£}, where 1t has poles, the
orders and residues of these poles being determined by the conformal properties of

the fields 4, (§). Actually, for the conformal coordinate transformations (1 11) the
relation (2 3) can be reduced to the form

(8,X) =95C dSe($)(T($) X, 29)

*Here and below we generally consider correlation functions in the complex space €7, see the
introduction
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where §.X 1s a vanation of the product X =4, (§,). 4, (§y) under the transfor-
mation (1.11) and the contour C encloses all singular pomnts z,, k=1, . ,N
Equivalently, the following relation 1s valid

SEA,(z,z)=56C dte($)T($)4,(2,2), (2 10)

where the contour C, surrounds the point z The same formula (with the substitution
T — T') holds for the vanation 8,4, of the field A, under the infinitesimal transfor-
mation

F>i+e(z) (2.11)

of the group I. Therefore the fields T(z) and T(Z) represent the generators of the
conformal group I' ® T 1n the quantum field theory.

The conformal transformation laws for general fields 4, will be considered in the
next section. Now we are interested in the conformal properties of the fields T(z)
and T(Z) themselves which are obviously related to the algebra of the conformal
group generators The variations 8.7 and 8.7 should be expressed hnearly in terms
of the same fields T and T and their derivatives and may also include the c-number
Schwinger terms. Taking into account tensorial properties of the field 7(z) and the
locality condition, write down the following most general expression for the varia-
tion §,T"

8.T(z)=e(z)T" +2e(2)T(z2) + 5ce” (2), (2.12)
where the prime denotes the z-derivative® For the variation 8,7 1t 1s possible to get

8.T(z)=0 (213)

* Formula (2 12) corresponds to the following transformation of T(z) under the fimte conformal
substitution (1 9)

gy’ .
T(:) =G ) TC) + e (6.2},
where {{, z} 1s the Schwartz denvative [12]
(oy (L8 Ja8)_3(ax fag)’
{§.2} dz3/ dz 214,22/ dz
Note, that the Schwartz denivative satisfies the following composition law

)= (EY ey (52
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The numerical constant ¢ 1n the relation (2 12) 1s not determuned by the general
principles, 1t should be treated as the parameter of the theory The varation 8,7
satisfies the same relation (2.1), the respective constant ¢ being equal to c. The
constant ¢ can take real positive values. These statements result from the reality
condition for the stress-energy tensor 1n euclidean space and Minkowski space-time

If none of the ponts z,, k=1,2,..., N 1n (2.1) 1s equal to infinity, the correlation
function {7'(z)X) should be regular at z= co. This means that, as can be easily
verified by means of the transformation law (2.12), that the function (7(z)X)
decreases as

T(z)-~l4 at z— 0. (2.14)
z

In the quantum field theory the correlation functions (2 1) are represented as
vacuum expectation values of the ime-ordered products of the local field operators
A j(é). In our case 1t 1s convenient to introduce the coordinates ¢ and 7 according to
the formulae

z=exp(1+10), z=exp(7—10). (2.15)

Choosing ¢ and 7 as real, ¢ being an angular vanable, 0 <o < #, one gets the
euclhidean real section. Correlation functions 1n this euchidean space can be repre-
sented as

<X>=<O|T[A/1(01a”'1) "AJN(UN’TN)],O>’ (2-16)
where the chronological ordering should be performed with respect to the “euclidean
time” 7. In the operator formahism the vanations §,4, can be expressed in terms of
equal tume commutators

8.4,(o,7) =T, 4,(s.7)], (217)

where the generators T, are defined by the formula

T, = e(z)T(z)dz (2.18)

loglz| =T

Note that due to eqs (2.7) these operators are 1n fact 7-independent.
The relation (2 12) becomes

[T,,T(2)] =e(2)T'(2) +2&/(2)T(2) + &ece” (2) (219)

It 1s useful to introduce the operators L,, L,, n=0, +1, +2.. . as coefficients of
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the Lourant expansions

)= T 5. Ta)- T oo (220

n=-o0 n=—o0 &

It follows from (2 19) that the operators L, satisfy the commutation relations.
[Ln’Lm]=(n_m)Ln+m+Tlfc(n3—n)6n+m.O (221)

Clearly, the same relations are sausfied by the L,’s, the operators L, and L, bemng
commutative The algebra (2.21) of the conformal generators L, 1s the central
extension of the algebra (114)* This 1s well known in the dual theory and the
algebra (2 21) 1s called the Virasoro algebra [11]; we shall denote it as 2,

Like the algebra £,, the Virasoro algebra £  contans a subalgebra sl(2,C),
generated by the operators L_, Ly, L, ; (note that the c-number term 1 (221)
vanishes for n =0, +1) In particular, the operators L_, and L_, generate transla-
tions whereas L, and L, generate mfinitesimal dilatations of the coordinates z and
z. In the coordinate system o, 7 defined by (2 15) the operator

H=Ly+L,, (222)

1s a generator of “time” shifts. It plays the role of the hamtltomian. Note, that the
“infinite past” T — —oo and the “infimite future” 7 — oo correspond to the points
z=0 and z = oo, respectively.

The vacuum |0) 1n (2.16) 1s the ground state of the hamiltoman (222) The
vacuum must satisfy the equations

L0y=0, 1if n>-1, (223)

since otherwise the stress-energy tensor would have been singular at z = 0. Note that
the operators L, with n> —1 generate the conformal transformations which are
regular at z =0 Therefore eqs (2 23) are manifestations of the conformal invariance
of the vacuum The transformations generated by the operators L, with n < —2 are
singular at z = (; these operators distort the vacuum

L,|0) =newstates 1if n< -2 (224)
The field T(z) should also be regular at z = oo Similarly to (2.23), it imphies that
(0|L,=0 if n<l (2.25)

Since in the Minkowsk: space-time (which can be obtained if imaginary values of 7

* This central extension has been discovered by Gelfand and Fuks [10]
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are dealt with), the field 7(z) must be real, the operators L, satisfy the conjugation
relation

Ly =L (2 26)
Note that the generators L_;, L,, L, annihulate both the “mn” and “out” vacuua
(O]L,=L,0Y=0, s=0,+1 (227)

These equations are manifestation of the regulanty of projective transformations
mentioned 1 the introduction. Egs. (2 27) are self-consistent because the ¢c-number
term 1n (2 21) vamshes for n =0, + 1.

Egs (2.23), (2.25) and the commutation relations (2 21) enable one to compute
any correlation function of the form*

<T(§1)- T(fN)T(Th) T(WM)>=<T(§1)-- T(§N)><T(’71)- T(TIM)>‘
(228)

In particular, a two-point function 1s given by the formula

(TEDT(5)) =5 — &) 7% (229)

which shows that ¢ > 0.

3. Ward identities and conformal families

Consider the variatton §.4,(£€) of a certain local field A4 , under the nfinitesimal
conformal transformation (1 11) Due to 1ts local properties, this variation 1s a linear
combination of the function e(z) and a finite number of its derivatives taken at the
pomnt z =¢' +1¢?

v

A
04,(2)= T B* (z)=els). (31)
k=0 z
where B'*~ " are local fields belonging to the set { 4,} and », 15 a certain integer In
* It can be shown that these correlators coincide with those of the fields
TO= ..+ 2anp..

where ¢ 15 a free massless boson field and the parameter « 18 defined by the formula

c=1+24a}
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(31) we have omutted the argument 7 which 1s not important here. The study of
mfinitesimal translations and dilatations of the variable shows that the first and
second coefficients 1n (3.1) are

BU(2)=4-4,(2),  BY(2)=A,4,(2). (32)

where 4, 1s the dimension of the field 4 ” It 1s evident that the dimensions of the
fields B*~" n (3 1) are equal to

A en=48,+1—k, k=01, .,». (3.3)

Let us take again the correlation function (2 8). As has already been mentioned in
the previous section, this correlator 1s a single-valued analytic function of z,
possessing the poles at z=1z,, k=1,2,... N. In virtue of (210) and (3.1) 1t 1s
possible to write down the relation

N 7
<T(Z)A/1(Zl)' A_/N(ZN)>= Z Z k'(z“zl) ‘kﬂ(Ajl(Zl)---

=1 k=0

A],_l(zl—l)B,(,k'”(zl)A/,H(Z/ﬂ) AJV(ZN)>'
(34)

This formula 1s a general form of the conformal Ward 1dentities.
In a physically suitable theory the dimensions 4, of all the fields 4, should satisfy
the mequality

4,>0, (35)
since otherwise the theory will possess correlations increasing with distance In what
follows we shall suppose that the only field with zero dimensions 4 =4 =0 1s the
identity operator 1. Comparing (3.3) with condition (3.5) we see that the sum 1n (3.1)
contains a finite number of terms », <4, +1 Another important conclusion follow-
mng from (3 3) 1s that the spectrum of dimensions {4} in any two-dimensional
conformal quantum field theory consists of the infinite integer spaced series

A=A +k, k=0,1,2,.. (3.6)

Here A, denotes the minimal dimension of each series, whereas the index » labels
the series. The same 1s obviously valid for the dimensions 4 , 1e. the spectrum {4}
also consists of the series

AO=A +k,  k=0,1,2, . 37
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Let ¢, be the field with the dimenstons 4, and 4. The vanation (3.1) of this field
has the simplest possible form

b (2) = e(2) o du(2) +4,6(2)8,(2), (38)

since the corresponding fields B~ with k >0 would have dimensions smaller
than A, A simlar formula holds for the vanation 8¢, The finite form of this
conformal transformation law 1s given by (1.16). We shall call the operators ¢,
having the transformation laws (1.16) the primary fields. Note that formula (3.8) 1s
equivalent to the commutation relation

(L ()] = 271 0,(2) + 4, (m+ 1) 278, (2). (39)

which are satisfied by the vertex operators of the dual theory [8,9].
If all the fields 4,(§) entering the correlation function (28) are primary, the
general relation (3.4) 1s reduced to the form

1
(z—z) z—-z 82

(T(z)1(21) ... dn(2x)) = Z

IR NE

(3.10)

where 4,,4,,...,4, are dimensions of the primary fields ¢, ¢,,.. , ¢y, respec-
tively Note that this Ward identity exphcitly relates the correlation functions
(T(z)¢,...9y) to the correlators (¢,... ¢y ). It 1s also noteworthy that the projec-
tive conformal Ward tdentities (A 6) can be directly derived from (3.10) if one takes
mto account the asymptotic condition (2.14).

The primary fields themselves cannot form the closed operator algebra. In fact,
there are infinitely many other fields associated with each of the pnmary fields ¢,.
We shall refer to these fields as to the secondary fields with respect to the primary
fields ¢, The dimensions of the secondary fields form the integer spaced series,
mentioned above. These fields together with the primary field ¢, constitute a
conformal famuly [¢,]. It 1s essential that under the transformations every member of
each conformal famuly transforms i terms of the representatives of the same
conformal family. So, each conformal family forms some irreducible representation
of the conformal algebra. The complete set of the fields {A4,} consists of some
number (which can be infinite) of the conformal families

{4,)= @ [4,]. (3.11)

To understand the nature of these secondary fields, consider the product
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T({)9,(z,z) This product can be expanded according to (1.6), the coefficients C,’j
being single-valued analytic functions of (§ — z) m vartue of relation (2.7) and the
local properties of the fields T({) and ¢,(z, Z). Therefore this product can be
represented as

T(§)o,(z)= 3 (§—2) > et 0(2), (312)
A=0

where we have again omutted the dependences of the fields on the vanable z The
dimensions of the fields ¢{™% are given by (3 7). The singular terms n (3 12) are
completely determined by the transformation law (3.8) (remember (2.10)). Thus the
first two coefficients i (3.12) are

A =Ea(s), 40 =A,0,(0). G1)

The coefficients ¢\ *), k=2,3,..., of the regular terms in (3.12) are new local
fields To make sure of the existence of these fields, 1t 1s possible to expand the Ward
identity (3.10) 1n power series, say, 1n z — z;. These new fields are representatives of
the conformal famly {¢,], ¢ “' € [¢,] The conformal properties of these secondary
fields ¢{ % are more complicated than those of the primary field ¢,. The nfinitesi-
mal conformal transformation and companson of both sides of (3.12) yield

3 M(z) = e(z)a%¢‘n"‘>(z) +(4,+k)e(z2) ¢ F(z)

+1

dzl+1

K
k+1
+
El (/+1n

(o) o0

. 1 dk+l
e et a) (319

The fields ¢{~% are not the only ones belonging to the conformal family [¢,]
Consider, for mstance, the operator product expansion

T(§) o 2 (z) = de(§ —2) "2 (k3—k,) 0,(2)

ko
+ X (§—2) U+ k)R (2)
I=1

O () At STy (315)

k=0
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The operators accompanying the singular terms in (3 15) are unambiguously de-
termuned by formula (3.14). In particular

o) =L ), ()= (A, 4K ) (316

The new local fields ¢¢~*1 ~*2)with k; > 1 also belong to the conformal famuly [¢,]
The vanauons 8¢~ *1 ~*2) are expressed 1n terms of the fields ¢!~ '), ¢! " and

b,
Considering the operator products T($)¢, ** “*2)(z),. etc., one can discover an
mfinite set of the secondary fields

g (), (317)

where k,>1 and N=1,2,.. . The fields (317) can be defined by the explcit
formula

(R A (Y=L, (2). Lo, (2)$,(2), (318)

where the operators L_,(z) are given by the contour integrals

¥ T(§)
L_,(z)=¢——— (319)
A ¢ (§. _ Z)k+1
The 1ntegration contours associated with each of the operators L_, (z) m (3.18)
enclose the point z as well as the ponts §,..{,,,, .{y. which are the integration

variables, corresponding to the operators L to the right of L _ ,(l* The dimensions of
the fields (3 17) are

Ak A=A k4 -k, (3 20)

An infinite set of the fields (3 17) constitutes the conformal famuly (¢,] These fields
are not linearly independent (see below) In fact, in general the fields (3 17) with

k,<k,< < ky form the basis** Note that
(=1, —k; —k, —hy) = (9 (—kiv— k>, —ky)
'n - _—E n - (3 21)

Therefore the conformal family [¢,] naturally includes all the derivatives of each
field involved It can be derived from (3.18) that the varations 8¢{*), {k}=
(—ky, ,—k,) are expressed 1n terms of the fields, belonging to the same confor-
mal famly [¢, ], and therefore each conformal family corresponds to some represen-
tation of the conformal algebra.

* One can easily venify that the operators (3 19), where =0, +1,+2, , satisfy the Virasoro algebra
(2 21) Obviously, the operators L, introduced 1n sect 2 are no other than L, (0)
** This statement does not hold for some spectal values of 4, see sect 5
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To describe the structure of the representation 1t 1s convement to turn again to the
operator formalism. Let us introduce the vectors (primary states)

In) =,(0)10). (3.22)

Using the properties (2.23) of the vacuum and the commutation relations (3.9) one
can get

L, n)=0 f m>0,
Lolny=4,In) (3.23)
It follows from (3.18) that
ik 00y =L_,, . L, ln). (3.24)

So, the conformal famuly [¢,] 1s isomorphic to the space of states, generated from the
primary state |n) by the negative components L,,, m <0* In the representation
theory this space 1s known as the Verma modulus V, (see, for example, [6]). Due to
the relations (2.21), there are linear dependences between the vectors (3 24). As has
been mentioned above, 1n all cases, excluding certain special values of 4, (see sect
5), the states (324) with k; <k, < - - <k, form the basis in ¥, Note that the
vectors (3 24) are the eigenstates of the operator L, the eigenvalues being given by
(320)

So far we have dealt only with the subgroup I' of the conformal group 6. Actually,
more precise definitions are required. Since the complete conformal group 1s the
direct product (1.10), the representations [¢,] are, i fact, the direct products of the
representations of I' and T’

[¢.1=V, 87, (325)

Thus means that 1t contains not only the vectors (3.24) but also all the states of the
form

o (0)0y=L_ ..L_, L z.. L.y In)y, (3.26)

where

{k}=(—kp—ky s —ky).  {K}=(-ki—ky. ,—ky)
k,and k |, are independent positive integers. Remember that the operators L and L

* This statement 1s not precise because we neglected the Z dependence of the fields, the correct
definition 1s given below
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are commutative. According to (1.16), the primary state |n) satisfies, besides (3.23),
the equations

L,|n)=0, if m>0,
Loiny =B, In). (327)

Therefore each conformal famuly [¢,] 1s characterized by two parameters 4, and 4.

Because of the conformal invariance, the two-point functions {¢,(£;)9,,(£))
vamish unless the fields ¢, and ¢, have the same dimensions (see appendix A).
Moreover, the system of the pnimary frelds can always be chosen to be orthonormal

(0u(21,2) 0 (23, 2,)) = 8, (2 — 2,) 247, 2,) 2. (3.28)
Let us define the “out” pnimary states by the formula

(n|= hm (0|¢,(z,z)z2 oz2Lo, (329)
z,Z- 0

These vectors satisfy the equations
(n|L,, =0, 1f m<0,
(n|Ly=4,<n|, (3.30)

and the same equation with the substitution L — L, A, — 4,. Like mn (3.26), we
have

hm (0|¢{kHF) (2, z) 220z o= (n|Ly Ly, ... Ly Ly, ... Ly, (331)
Z2,Z—00

The orthonormality condition (3.28) can be rewritten as
(nlm) =8, (332)

The conformal Ward 1dentities make 1t possible to express explicitly any corre-
lation function as

(T(§)-- TGw)o:(21)-.-on(2n)) . (333

in terms of the correlator
<¢1(21) "¢N(ZN)>' (3 34)

Here ¢,,..., ¢ are certain primary fields This can be done by successively applying
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the relation

(TOTE) - TS e (2) .- dnlzy))

S 4, 1 9| M 2 1 9
= + — |+ + —
e et

X <T(§1) 'T(§M)¢1(Zl) - -¢N(ZN)>

M
; © —§) <T(§1 T(fj 1)T(§]+1) T(Sa)o1(z1) - onl(zy))

(3 35)

The first term 1n (3 35) 1s of the same origin as (3 10), whereas the second term 1s due
to the c-number term 1n the transformation law (2.12)*

Using the correlation functions (3 33) one can also compute any correlators of the
form

o*(z)) o (zy ). (3 36)

where ¢!*} are some secondaries of the field ¢, since these secondary fields are no
other than the coefficients i the operator product expansions hke (3 12), (3 15). etc
Actually 1n this way the correlators (3 36) are expressed 1n terms of the correlation
functions (3 34) by means of linear differential operators. The general expression 1s
rather cumbersome and we present the simplest example only **

<¢;(1_A1'_k2’ AAM)(Z)%(Zl)- onlzn))
A"\M(Z’Z')Q ("z) kl(z 2 Ko (2)1(21). conlzy),
(337)

where the differential operators £ . are given by the formula

N —
=3 0=ka, i

- (3 38)
Sl G=z)h (z-z)h A

* Obviously, the fields T(-) and T(Z) are not primary fields they belong to the conformal family [ 7] of
the 1dentity operator
** To obtain (4 5) 1n the simplest way one can substitute the exphicit formula (3 18) and deform the
integration contours so as to enclose them around the singularities z;, 2., .2y
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Thus the conformal Ward 1dentities enable one to express any correlation functions
1n terms of the correlators of the primary fields (3 34) Hence, all the information
about the conformal quantum field theory 1s contained in these correlators

4. Conformal properties of the operator algebra

In the quantum field theory the correlation functions (21) should obey the
operator algebra (1.6). The conformal symmetry imposes hard restricttons on
the coefficients C,‘;(&) Consider the product of two primary fields ¢,(§)¢,,(0) The
operator product expansion can be represented as

6,(2,2)9,,(0,0) =Y 3 ¥ ¢k k)

p {k} {k}
XZAP—A,,rAm+Z,k,ZZP—Z"—3m+ZI?,¢I§A}{Z}(O’O)~ (4 1)

where ¢I§"”7‘) are the secondary fields, belonging to the conformal famuly [¢,] Both
sides of (4 1) should exiubit the same conformal properties The transformation law
of the left-hand side 1s determined by (3 8), the conformal properties of each term 1n
the right-hand side can be derived, in principle, from (3 18) The requirement of the
conformal invariance of (4.1) leads to the relations for the numerical constants
CPLA K yath different { k )’s but with the same index (see appendix B) In principle.
these relations can be solved recurrently, the solution being represented as

CPIRY = cp B2, LkIBPIKY (42)

where C},, are the constants of the primary fields ¢, themselves and the factors
(B) are expressed unambiguously in terms of the dimensions 4, 4,,.4,(4,,4,,4,)
only, the condition BF% = B7{% =1 1s implied The factorized (in terms of 8) form
of (4 2) 15 a consequence of (3 25) The expansion (4 1) can be rewritten as

¢n(2. 2)¢m(0’0) =ZC,fmZAP‘A"7A"'“:5”75"~3m‘1,p(:’ Zl(),())’ (4 3)
4
where
¥ (2,2(0,0) = y B’{z”{lk}B'np”('Z}ZZ/\,ZEZ,(p[{)A}{Z)(050) (4 4)
{kY{K)

1s the contribution of the conformal famuly [¢,] Let us stress that the conformal
properties of the “bilocal” operators (4.4) comcide with those of the product
¢,(z,2)¢,,(0,0), all the coefficients 1n the power series (4 4) being unambiguously
determined by this requirement. Unfortunately, equations. determuning these coeffi-
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cients are too complicated to be solved exactly. The first few coefficients 8 are
presented in appendix B for the particular case 4,= 4.

The constants C7,, in (4.3) and the values of the dimensions 4,,4, are not
determined by the conformal symmetry itself. These numerical parameters are the
most important dynamical characteristics of the conformal quantum field theory
Note that under the orthonormality condition (3.28) the coefficients C!,, = C, ., are
symmetric functions of the indices n, m, / and comcide with the numencal factors in
the three-point functions.

(1o (2, 2)I) = C,pyzir An=2iz8n=2n=41 (4.5)

where for simplicity we put two points equal to 0 and oco. To determine the
parameters C/and A, 1t 1s necessary to apply some dynamical principle. In the
bootstrap approach described in the introduction, the associativity of the operator
algebra (1.6) is taken as the main dynamucal principle. As 1s shown 1n appendix C,
the associativity condition 1s equivalent to the crossing symmetry of the four-point
correlation functions

(4,(6)4,,(§)4,(§)4,(&,)) (4.6)

Thanks to the relations discussed at the end of the previous section, 1t 1s suffictent to
consider the four-point functions of the prnimary fields

(&) 91(62)0,(63) 0 (44)) - (4.7)

Due to the projective mvariance (see appendix A), the four-point functions essen-
tially depend only on two anharmonic quotients

(21— 23)(23— 2,) =4 = Z,)(Z; — Z,)
(21—33)(22_24)’ (2, - 23 )(2, - Z4)

‘m (48)

Therefore 1t 1s convenient to set z, =2z, =00, z,=2,=1, z3=x, Z; =X, 2,=2,=0
and to define the functions

G (%, X) = (k| (1,1) ¢, (x, B)m) . (4.9)
In terms of these functions the crossing symmetry condition 1s
Gk (x,%)=G*(1 — x,1 — %) = x " 24ax~2AuGlm (—, :) (4.10)

Substituting the expansion (4.3) for the product ¢,(x, X)4,,(0,0) one can rewrite
(4.9) as

G (x,%)= Z P CopAita( plx, %), (411)



A A Belavin et al / Infimite conformal symmetry 353

where each of the “partial waves”

AR (pIx,X) = (Cp) ™ x4 bnghydn=ds
X (k|9 (1,1)¥,(x,%0,0)|0) (412)
represents the “s-channel” contribution of the conformal famuly [¢,] to the four-pont

function (4.9) It 1s convement to introduce the diagrams associated with these
amplitudes

(0) (1)
n
A (o), %) = >p—<( (413)
(x) (o0}

Then the “partial wave” decomposition (4.11) can be represented as

n | n |
G (x, %) = -sCP ¢ NP 14
nm 7 ~ g nm vikp . (4' )
m m k

It 1s clear from (4.4) that the amphtudes (4.12) have the following factorized form
A (p1x, %) =G0 (p1x) 5,0 (p1%), (4.15)
where, for mstance, the function % 15 given by the power series

(klo,(LL1)L_, . .L_, |p)
G'Ik 4,-4,-4, p{k} Lk, - =
m{Plx)=x {% (kle,(1,1)p)

(4.16)

The matnx elements in the nght-hand side of (4.16) can be computed exactly with
the use of the commutation relations (3.9) and eqs. (3.30). Therefore, the functions
(416) are completely determined by the conformal symmetry. These functions
depend on six parameters. five dimensions 4,, 4,, 4,, 4, 4, and the central
charge c. We shall call (4.16) the conformal blocks, because any correlation function

(4.7) 1s built up of these functions ¥
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The crossing symmetry conditions for the four-point functions (4.9) can be
represented as the following diagrammic equations

=
2

’
N

n |

\ L
v cp = 9
Up Cnm Clkp . ¢} Eq Cn! kaq q (4 17)

N

il
The analytic form of these equations 1s

ZC,{’mCzkf”‘(plx)%”‘(plx) E Cor T (g1 = x)5,"(q]1 = %)

(4.18)

If the conformal blocks & are known, (4 18) yields a system of equations, determin-
ing the constants C!,, and the dimensions 4,, 4, Therefore, the computation of the
conformal blocks (4.16) for general values of A,’s 1s the problem of principle
importance for the conformal quantum field theory. The first few terms of the power
expansion for these functions are given 1n appendix B, where thecase 4, =4, =4,
= A,= A 1s considered for the sake of simpheity. Although the conformal blocks are
not yet known for the general case, there are the special values of the dimensions A
(associated with the degenerate representation of the Virasoro algebra. see sect 5)
such that the corresponding conformal blocks can be computed exactly, being the
solutions of certain linear differential equations The simplest example 1s the
hypergeometric function. In these special cases the bootstrap eq (4 18) can be solved
completely.

5. Degenerate conformal families

The representation ¥, of the Virasoro algebra 1s irreducible unless the dimension
A takes some special values [6,7]. For these values the vector space ¥, proves to
contain a special vector (the null vector) |x) € V, satisfying the equations

L,x>=0, if n>0,

Lolx) = (A + K)Ix), (51)

charactenstic of the primary fields Here K 1s some positive integer. For example,
one can easily venfy that the vector

3
Ix) = L_2+5—(2A—+1)L2_1 14, (52)
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{where |A) denotes the primary state of the dimension 4) satisfies (5 1) with K =2,
provided A takes any of the two values

A=4[5-cx{(c=D(c-29)]. (53)

In general, the jessenull vector |x ) can be considered as the primary state of 1ts own
Verma modulus V, , Therefore the representation ¥y proves to be reducible One
obtams the wrreducible representation V' 1f the null vector |x) (together with all
the states belonging to V,_ x) 1s formally put equal to zero

Ix)=0 (5 4)

Note that eq (5.4) does not lead to contradictions since due to (5 1) the null vector 1s
orthogonal to any state of ¥, and, in particular, has the zero norm

Wix)=0, [¥)eV,.

(xlx)=0 (55)

In the conformal quantum field theory the meanmng of this phenomenon is the
following. If the dimension 4 of some primary field ¢, happens to take one of the
special values mentioned above, then the conformal family [¢, ], formally computed
according to (3 18) proves to contain the special secondary field x4, x € [¢,]. which
possesses the conformal properties of a primary field, 1 ¢. satisfies the commutation
relations of the type (3 9). Thus field corresponds to the null vector |x) € V, and we
call 1t the null field For example, 1f A 15 given by (5.3) the operator

3 a*

224+1) 92 (56)

(-2
XA+2“¢_§\ '+

1s the null field.

Formally, the extra primary field x,, , ongmnates from the conformal family
[X 4+ x] which 1s imbedded nto [¢,] Note, however, that any correlation functions
of the form

Xa+x(2)01(21)  on(zn))

vanishes So, the null field x4, x can be self-consistently regarded as zero

Xa+x=0. (5.7)

This condition obviously kills all the secondary fields of the null field

[xs+x]1=0 (5.8)
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If eq. (5.7) 15 applied, one gets the true irreducible conformal famuly {¢,] of the
origmal primary field ¢,. In this case the conformal family contains “less” fields
than usual and we call it a degenerate conformal fanuly. We shall also call degenerate
the corresponding primary field ¢,

All the special values of 4, corresponding to the reducible representations V,, have
been listed by Kac [7] (see also [6]) These values, which can be labelled by two
positive integers n and m, are given by the formula

2
A(n.m)=A0+(%a+n+%a—m) ) (59)
where
Ag=7%(c~1), (5 10)
V—-c+vV25—«¢
a,= (511)
- V24
If A=4, . then the correspondmg null vector has the dimension

Ay T nm. (512)

Let us denote the degenerate pnimary field ¢,  ~having the dimension 4, ,, as
Yin.my: Note that

Aan=0 (513)

It can be shown that the field ¢ ;, 1s z-independent, 1.e.**

d
Z‘p(l,l)=0' (5 14)

The dimensions 4, ,, and 4, ,, are just the two values given by (5.3).
Consider the correlation functions of the form

<¢(n,m)(z)¢'l(£1)' ¢'N(£N)> (515)

* This notation 1s not complete because it says nothing about the second dimension A of the primary
field This fact, which should be always kept in mind, does not violate the conclusions we make
below

** If both dimensions A and 4 of the field ¢ are zero thus field does not depend on the coordinates at all
and coincides with the identity operator /
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An mmportant property of these correlation functions 1s that they satisfy the hinear
partial differential equations, the maximal order of derivatives being nm* To make
this evident let us recall that the correlation functions of any secondary fields

<‘1’§;,kr}f) TE(z) e (£1).. dn(én)) (5.16)

can be expressed in terms of the correlation function (5 15) by means of the linear
differential operators (see (3 37)). The null field x4, ,,, 15 a certain linear combna-
tton of the secondary fields ‘P(‘nff‘,,l)' '~k Therefore, the differential equation for
(5.15) follows directly from eq. (5 7). For example, taking into account (5.6) and
(3 37), for the degenerate field ¥, ,(2) one gets

_3 9 e 4 g1 4
2(26+1) 922 4 (z—z,)2 S22, 0z,

X(¥q»(2)0:1(2))  on(zy)) =0, (5.17)

where § =4, , and 4,,. , 4 are the dimensions of the primary fields ¢;. ., ¢y,
respectively. The correlation function, mvolving the field ¢, ), satisfies the same
differential equation, the only difference being § =4, ,,** The differential equa-
tion, sausfied by the degenerate fields ¢, ;) and y5 ;), 1s presented in appendix D as
another example

In the case of the four-point functions

‘p(n,m)(z|21~ 2,,23) = <\P(n,m)(z)¢l(zl)¢2(22)¢3(Z3)>’ (518)

the partial differential equations can be reduced to ordmary ones. Actually 1n this

* The simplest example of these equations s (5 14)
** The following wnterpretation of eq (517) 1s worth noting Let y(z) stand for one of the fields ¢ 5,
or 1), 8 beng the corresponding dimension A 3 or 453, Then the field ¥(z) satsfies the
operator equation

62
V() =y T(2)¥(2) . (*)
az
where y = (28 + 1), whereas the singular operator product 1s regulanzed by means of the subtrac-
tions
T(:)¥(2) = hm {T(mm - (o) - -a«v,(z)}
z [ 2 ({_Z)z {—z 9z

The classical imut of eq (*) (which corresponds to the choice ¥ =y, 5 and ¢ — o0) 1s an essential
part of classical theory of the Liouville equation (see, for example, [13]) We suppose that eq (*)
plays the analogous role 1n the quantum theory of this equation, which 1s apparently associated with
the string theory [14] We intend to discuss this point in another paper
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case the relations (A. ) can be solved for the denvatives d/dz,, 1=1,2,3 For
example substituting these denivatives into (517) one gets the Riemann ordinary
differential equation

3 @ g1 o4 4
2(26+1) 422 Zlz—z dz (z—z,)

§+A
+3 Ll

e AW (224, 244 24) = 0. (519)
j<1 (Z_Zt)(z—zj)

where 4, =4, + A, — A ete., =4, 5. ¥ =¥, 01 0=4,,, ¥="¥,,, So, for
the cases (n, m)=(1,2) or (2,1) the four-pownt function (5 18) can be expressed 1n
terms of the hypergeometric function

Consider the operator algebra contaiming the degenerate fields. Some important
mformation about this operator algebra can be obtamned from the differential
equations discussed above. For example, consider the product ¢ (z)¢,(z,) where ¢
1s some primary field of the dimension A whereas y/(z) temporarily stands for one of
the degenerate fields ¥, 5)(z) or ¥, 1,(z) Let us subsuitute the expansion

¥ (z)¢a(2,) = const(z - Zl)x[%'(ﬁ) +BTN(z -z (7)) + ] .
(5 20)

into the differential eq. (5.17) In (5.20) ¢, denotes some primary field of the
dimension A’, k = A’ - A — § where § 15 the dimension of the field ¢, 1.e one of the
values given by (5 3). Considering the most singular term at z — z;, one immediately
obtamns the characteristic equation, determining the exponent

3k(x—1)

2(26+1)~A+x=0 (521)

To describe the solutions of this equation 1t 1s convement to introduce the following
parametrization of the dimensions

8(a) =4, + tal, (5.22)

where A, 15 defined by (5 10). If A = A(«), the two solutions of (5 21) are given by
the formulae

, 2
Ay=4¢+i(ata,),

Ngy=Ag+i(a—a,), (5 23)
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where a, are given by (5.11) and «, («_) 1s chosen 1f Y =y, (¥ =1+, ,) Let
¢,(z) be the primary field with the dimenston (5.22) The result of the above
calculation can be represented by the following symbolic formulae

Va2 = [¢(a—a+)] + [¢<n+a1)] )

Yo P = [‘P(a—a,)] + [¢(a+a,)] (524)

Here the square brackets denote the contributions of the corresponding conformal
families to the operator product expansion of Y(z)¢,,(z;). In (5 24) overall factors,
standing 1n front of these contributions are omtted These factors cannot certainly
be determined by simple calculations like the one performed above* As we shall see
m the next section, some of these coefficients could vanish

It can be shown that the “fusion rule” (5.24) 1s generalized to the cases of
arbitrary degenerate fields ¢, ,,, as follows.

1+m 1+n

lP(n,m)(baz = Z Z [¢(a+la_ tha )| (5 25)

[=1~mh=1-n

where the variable & runs through the even (odd) values provided the index »n 1s odd
(even), the same 1s valid for the vanable / and the index m So in the general case
the sum 1n (5 25) contamns nm terms 1n agreement with the fact that the degenerate
field ¢, ,,, satisfies the nm-order differential equation.

We see that the differential equations satisfied by the degenerate fields impose
hard constraints on the operator algebra Certamly, in the general case these
differential equations do not provide enough mformation to determine the correla-
tion functions (5.15) completely Even in the cases of the four-point functions (5 18)
one has to take into account the Z-dependence of the fields and local properties In
the next section we shall study the “mimmal models” of the conformal quantum
field theory in which all primary fields involved are degenerate

6. Minimal theories

Consider the “fusion rule” (5.24) The substitution ¢,, = ¥, ,, yields
Yaou¥ay= [‘P(l,l)] “’[4/(1 3)] (61)
Here (5 9) 1s taken 1nto account. Simularly, one gets for m > 1
Yay¥a,m= [‘P(l,mﬂ)] + [‘Pu,mﬂ)] (6 2)

* To determine these factors in the quantum tield theory one should take into account the associativity
condition for the operator algebra and local properties of the fields
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So, 1f the degenerate field ¢, ,, 1s involved 1n the operator algebra, in the general
case this algebra includes also all the degenerate fields ¢ ,,,. Moreover, assuming
that the operator algebra also includes the degenerate field ¢, ;, and using (5.24),
one can obtain all the degenerate fields ¢, ,,,. In the “fusion rule” (5.24) the fields
Va2 and ¥, 1, act as the “shift operators”

Vao¥mm= [1P(n,mfl)] + [\b(n,mﬂ)] ) (6.3a)
\P(Z,l)\ll(n.m): ['4/(n~1,m)] + [¢(n+1,m)] . (63b)

The following remark is necessary Using the rules (8.3) formally, one would get as
a result all the fields of dimension 4, ,, given by (5.9) where the integers n, m take
the zero and negative values as well as positive values In fact, the fields of
dimension 4, ,, with the zero and negative n, m drop out from the algebra, 1.e the
operator algebra developed by “fusing” the fields ¢, ;) and ¢, ;. ¥ 2, proves to
contain the degenerate fields Y, ,, (n,m>0) only To understand the nature of
this phenomenon, consider, for instance, the product ¥ »¥,,, Analyzing the
differential equation for the degenerate field ¢, ,,. one gets, according to (6 3a),

Ya¥en= C1[¢(2 0)] + Cz[‘I'(z,z)] , (6 4)

where ¢, o, denotes the primary field of the dimension 4, o, =4, + (a,)* In (6 4)
we have explicitly written out the numerical coefficients C; and C, of the correspond-
mg pnmary fields in the operator product expansion. In the above symbolic
formulae like (6.1)-(6.3) such coefficients are omitted On the other hand, the field
¥ 1) also being degenerate, satisfies the differential eq (5 17) which leads to the
€Xpansion

VYayten= Cf[¢(o,2)] + Cz’[‘l'(z 2)] ) (65)

where the field ¢y ,, has the dimension A, =44+ («_)? and C{,C; are some
numerical coefficients The comparnison of this formula with (6 4) yields that C, = ¢/
=0 and C, = Cj. Hence, the expansion of the product ¢ , v, contamns the
contribution of only one conformal famly

Yaaven= [‘P(z.z)] (6 6)

We shall call the phenomenon described above the truncation of the operator
algebra® It can be shown that for the degenerate fields y,, ,, this 1s the general

* 1t 15 interesting to understand the connection of the truncation phenomenon with the monodromy
properties of the differential equations satisfied by the correlation functions This problem can be
most easily investigated for the four-point differential equations If all the fields involved are
degenerate, the space of solutions of the differential equations proves to contain the subspace
mvarnant under the monodromy transformations The solutions, belonging to this subspace, corre-
spond to the degenerate fields ¢, ,, (k,/>0) 1n (6 7) and these very solutions contribute to the
correlation function
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situation. the degenerate conformal familes (¢, ,,,] with n, m > 0 actually appear
only 1n the “fusion rules” hike (6.3) The general “fusion rules” for the degenerate
fields have the form*

ny+n,—1 m+m,—1

xlb("l«'"1)‘P("2,’"2)== Z Z [\P(k./)] > (6 7)

k=|n —ny|+1 1= |m—my|+1

where the vanable & (/) runs over the even mtegers, provided n, + n, (m; + m,) 1s
odd and vice versa

So. the degenerate fields (more precisely, the degenerate conformal families) form
the closed operator algebra. This observation gives nise to the idea of conformal
quantum field theory in whach all the primary fields are degenerate To examine this
possibility let us concentrate once again on the Kac formula (59) It 1s clear that
there are three distinct domains of the parameter c. If ¢ > 25 the second term 1n (5 9)
1s negative and the dimensions 4, ., become negative for sufficiently large n and
m. If 25 > ¢ > 1, the dimensions 4, ,,, are, 1n general, complex Neither possibility
1s acceptable 1n the quantum field theory** Therefore in what follows we shall
consider the domain

0<cxl (6 8)

To understand the properties of the spectrum (59) clearly, let us consider the
“chagram of dimensions” shown in fig 1. The vertical and horizontal axes in this
figure correspond to the values of the parameters # and m 1n (5 9). The * physical”
(1e. the positive integer) values of these parameters are shown by dots. The dotted
line has the slope.

tg0=_ﬂl_+=\/25—c—\/l—c (6 9)
a_ Yy25—-c+vyl—c

The value (5.22) of the dimension 1s assoctated with each point of the plane in fig. 1,
the parameter a being proportional to the distance between the point and the dotted
Iine

* The “fusion rule” (6 7) can be obtamned from the following formula

m-—1 n—1
Yoo m={(¥a2)" (¥ay)

for the degenerate field ,,, ,,, Although this formula scarcely has a precise mathematical meaning,
one can use 1t to derive (6 7) assuming the associativity and taking into account the truncation
phenomenon

** To avoid musunderstanding let us stress that these statements by no means exclude the possibihity of
quantum field theory existing at ¢ > 1, but rather prevent from including the degenerate fields in the
operator algebra
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Fig 1 “Diagram of dimensions” The dimension A4 =A4,+ a2 1s associated with each pomt of the
plane, « bemg proportional to the distance between the pomnt and the dotted hne The dots with
coordinates (n, m) corresponds to the dimensions 4, ,,,, descnbed by Kac formula (5 9)

If the slope (6.9) takes an arbitrary 1rrational value, the dotted line 1n fig 1 passes
arbitranly close to some of the dots. Since at ¢ <1, 4, 15 negative, we meet again
with the problem of negative dimensions. Let us consider, however, the cases of the
rational slope

tgf=—a_/a,=p/q, (6.10)

where p and ¢ are positive integers. The characteristic feature of the corresponding
values of ¢ 1s that each degenerate representation Vj ~ — contains not only one but
mfinitely many null vectors of different dimension This 15 evident from (5 9) and
(6.10) In these cases the irreducible conformal famulies [y, ,,] obtained by
nullification of all the null fields, contain considerably fewer fields than the usual
farmlies and we call the conformal quantum field theones, corresponding to (6 10)
and nvolving these degenerate fields ¢, ,,,, mmmal theornes. It 1s important that in
the mummal theories the correlation functions satisfy infinitely many differential
equations, obtained by nullification of all the corresponding null fields* This fact
enables one to prove that the operator algebra of degenerate fields 1n the munimal
theories possesses not only “truncation from below”. described 1n the beginning of
the section, but also the “truncation from above”. Namely, 1f one starts with the
fields ¥, ,,, with 0 <n <p, 0 <m <gq, the degenerate fields with n>p or m>gq
drop out from the “fusion rules” (6 7) (like the fields ¢, 5, and ¢, » 1 (6 4),(6.5))
In other words, the conformal fambes (¢, ,,,] with 0 <n <p, 0 <m < g form the

* In fact, these differential equations are not all independent they follow from two “basic” equations
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Fig 2 Diagram of dimensions corresponding to the case tgf =3 (¢=1) The degenerate conformal
families associated with the dots inside the rectangle form the closed operator algebra

closed algebra which can be treated as the operator algebra of the quantum field
theory Note that (under the condition (6 10)) n = p, m = g are the coordinates of
the nearest dot 1n fig. 1 which the dotted line passes through The degenerate fields
with the dimensions associated with the dots inside the rectangle 0 <n < p,0 <m < ¢,
shown 1n figs 2 and 3, form the closed operator algebra Due to the diagonal
symmetry of this rectangle there are 1( p — 1)(¢ — 1) different dimensions

Consider 1n more detail the simplest nontrivial example of the minimal theory
corresponding to the case

p/9=1, (611)
which occurs if
c=4% (6 12)

61 B2 B3
, , , 3,4
UL IS P

3
e
/
20 22 123 2.4)
2 . . / . .
| / |
L (1,2 (1,3 (1,9
1 .« . . .
~
/
-
. . . A e m
1 2 3 4 5

Fig 3 Diagram of dimensions for the case tg 8 = § (¢ = &)
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The “diagram of dimensions” for this case 1s shown 1 fig 2 Let us demonstrate
the “truncation from above”, using this example. The dimensions corresponding to
the dots 1n fig 2 are

Aan=4e»=0,
A(2,1)= Au NT 2o

Aan=4:5=1% (6.13)
Respectively, there are three degenerate fields* which we shall denote by
I=ya1h=%03,
(2 1) 4’(1 3)»
=Vay=Vaeo- (6.14)

Consider, for mstance, the product ¢ & The field ¢, bemng equal to ¢, ;,, satsfies
the second order differential eq. (5 17). Therefore, according to (6.36), one gets

5'5=¢(2_1)’~P(2,1)=C1[”+C2[‘P(3,1)] ) (615)

where the field y;,, has the dimension 4., =3. On the other hand, since
€ =1 3, this field satisfies the third order differential equation (D.8) and hence

e =Y yVapn=cll]+ cé[\P(l,z)] + Cg[‘PF(Ls)] ) (6 16)

where the field ¥, s, has the dimension 4, 5, = 3. Comparing (6 16) and (6.15), one
concludes that in fact

e-e=[I]. (6.17)
By similar considerations the following “fusion rules” for the fields (6.14) can be

obtained.
Ie=[e], ee=[1],
I o=[o], e-0=[o],
I I=[1], o o=[I]+[e]. (6.18)

* Certainly, the analysis of the dimensions (6 13) does not prove that the operator algebra contains only
threec pnmary fields To elucidate the structure of the fields constituting the operator algebra one
should take into account the Z-dependence and the local properties of the fields For the model under
consideration this 1s done 1n appendix E
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It 1s shown 1n appendix E that this minimal theory describes the critical point of the
two-dimensional Ising model, the primary fields o, ¢ and I bemng 1dentified with the
local spin, energy density and 1dentity operators, respectively

In fig 3 the “diagram of dimensions™ for the mimimal theory characterized by the
values

s

p/4=%, C=15, (6 19)

1s presented as another example The corresponding numerical values of the dimen-
sions are

Aan=4¢4=0,
A<1,2)=A(3.3)=1%a
A(1‘3)=A<3,2)=%a
Aqo=8p1=12.
A<2,2)=A<2,3)=?}T)~
Aoy=d8en=1 (6 20)

Note that due to the inequalities (6 8) the integers p and g 1n (6 10) are restricted as
follows

i<p/g<1 (621)

Nevertheless, there are infinitely many rational numbers, satisfying (6 21) and each
of them corresponds to some minimal model of the conformal quantum field theory.
We suppose that the mimimal theories describe second order phase transitions in
two-dimensional systems with discrete symmetry groups®* In any case each of the
minimal models seems to deserve a most detailed ivestigation. Note that the
anomalous dimenstons assoctated with each of the minimal model are known exactly
(they are given by the Kac formula (5.9)), whereas the correlation functions can be
computed 1n the following way. At first one has to derive the corresponding
conformal blocks as solutions of the respective differential equations with the

*V Dotzenko has noticed that the spectrum of dimenstons associated with the mimimal model

contains some dimenstons characteristic of the three-state Potts model
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appropnate 1nitial conditions. Then, substituting these conformal blocks into the
bootstrap eq (4 18) and taking into account the local properties of the fields, one
should calculate the structure constants C/  of the operator algebra, which provide
enough information to construct the correlation functions. For the mimimal theory
(6.11) this computation 1s presented in appendix E. In the general case 1t has not yet
been performed.

We are obliged to B Feigin for numerous consultations about the representations
of the Virasoro algebra and to A.A Magdal for useful discussions The two of us (AB
and AZ) are very grateful to D Makagonenko and A A. Anselm for the kind
hospitality 1in the Scientific Center in Komarovo during January 1983 where this
work was completed.

Appendix A

Let L_,,Ly,, L., and L_,, Ly, L, be generators of the mfinitesimal projective
transformations

zoz+e | +egz+ez’,
Z—>Z+E | +EI+EZT, (A1)

where € and & are infinitesimal parameters. The operators L, s =0, £ 1 satisfy the
commutation relations

[Lo.Loy]==%L,,,
[Ly, L \]=2L,. (A2)

The same relations are satisfied by the L’s, the L’s and L’s being commutative The
operators P°=1_,+L_, and P'= —i(L_, — L_,) are components of the total
momentum, whereas M =i(Ly— Ly) and D = L, + L, are generators of the rota-
tions (Lorentz boosts in the Minkowsk: space-time) and dilatations, respectively The
operators L, and L, correspond to the special conformal transformations The
vacuum of the conformal quantum field theory satisfies the relations

O|L,=L,J0)=0, 5=0,+1, (A3)

which are equivalent to the asymptotic condition (2 14).
We shall call the local field O,(z,z) quasiprimary, provided it satisfies the
commutation relations.

[L,,0/(z.2)] = [z”laiz +(s+ 1)A,z“]0,(z, z),

[L,.0,(z,2)] = [zf“% +(s+ 1)Z,E°]O,(z, 7). (A 4)
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where s =0, +1. The constants 4, and 4, are dimensions of the field O, These
relations mean that the fields O,(z, Z) transform according to formula (1 16) under
the projective transformations (1 15) This distinguishes them from the primary
fields ¢, which transform according to (1.16) with respect to all conformal transfor-
mations (1 9)*. In the conformal quantum field theory the complete set of local
fields 4, formng the algebra (1 6), can be constituted by an infinite number of
quasiprimary fields and therr coordinate derivatives of all orders

dz?

d a e
{AJ}={OI,5;0/,—H_20[ 0/, -}- (AS)

Consider an N-pomt correlation function of the quasiprimary fields It follows
from (A.3) and (A.4) that this correlation function satisfies the equations

As<0{1(21’21) . OIN(ZN’Z?V)>=0’ (A 6)

where s =0, +1 and A, are the differential operators

A=Y (z,zgz—Jrz:,A,). (A7)

where 4;,4,, , Ay are dimensions of the fields O,,. O, , respecuvely Eqs (A 6)
are the projective Ward 1dentities. Note that these Ward 1dentities follow directly
from the general relation (29) For the mfimtesimal projective transformations the
function &(z) 1s regular 1n the finite part of the z-plane and due to the asymptotic
condition (2.14) the contour integral 1n (2.9) vamshes. Let us stress that for the
general conformal transformations the analytic function e(z) has singularities
Therefore the corresponding Ward 1dentities cannot be reduced to the closed
equations for the correlation functions like (A.6) The general solution of eqs (A.6)
(and the analogous equations obtained by the substitution z, > z,, A, > 4,) 15

(0,(z21,7,)- OIN(ZN’ZN»=I—[(ZI_ZJ)Y”(Z,—ZJ)E/Y(X!‘/ 7‘“)» (A 8)

» Ay
1<y

* Obviously, any pnimary held 1s quasiprimary whereas there are 1nfimutely many quasiprimary fields
which are secondaries
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where v, and ¥,, are arbitrary solutions of the equations

2 v,=24,, 2 ¥,=24,. (A.9)

J#1 J*I
whereas Y 1s an arbitrary function of 2( N — 3) anharmonic quotients

kl_(zx_zj)(zk—zl) —k! (Ez‘fj)(fk“fl)

X, = ) ; - A0
YU (Z:‘ZI)(Z/('-"]) s (31'3/)( ( )

L]

[ Ej)

In the particular cases N =2 and N = 3 the correlation functions are determined by
formulae (A 8)-(A 10) completely up to the numerical factor Namely,

0 if 4, #4, or Z,l#ﬁ,z

A =4, and 4,=4,,

1

for N=2 and

- - - “A, s = -4,
<011(31s51)0/3(32~—"2)0/,(53»23)>:Yl,/ll,n(—",_—]) "(z,-z,) .

1<y
(A12)
for N =3 where D, and Y}, , are constants and
A,=A4,+A,—-A4A; etc.,
A,=4A+4,—4, etc (A 13)

Note that the functions (A 11) and (A 12) are single-valued in the euclidean space
(obtaned by the substitution z,=:*), provided the spins S,=A4,— 4, of all the
fields mvolved take integer or half-integer values

In the conformal quantum field theory the expansion (1.6) can be represented in

the form

20
0/,(5-5)012(&0):2 Z Y'III}ZI\,A:A,+I\7._\1*A33A‘+I\f..\lf.ll
Ii k A=0

L 0] . (A 14)
acagt |

where Y/.** are constants, k and k beng mntegers The transformation properties
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of the both sides of this equation with respect to the projective transformations (A 1)
must comncide Commuting both sides of (A 14) with the projective generators L.,
s=0, +1 and using (A 4), one gets equations relating the coefficients Y,{ » A K with
different values of k. Solving these equations, one can rewrite (A 14) as

0,(:.2)0,(0.0) = L Gz 2323

XF(A’.ZA’, z

where the case /; =/, 15 considered for the sake of simpheity. 4, =4, =4, 4, =4
In (A 15) G/ are the constants, comciding with Y/ in (A14) and F(a,c, x)
denotes the degenerate hypergeometric function

Obwiously, each conformal family [¢,]=V, x V, (see sect 3) contains infinitely
many quasiprimary fields These fields correspond to the states satisfying the
equations

Lyl =zl[1> =0
Lolly =441y,  Lyly=34,1) (A 16)

It can be shown that the basis in [¢,] can be constituted by the states

(L)"(Z )1y, (A 17)

where n,7n=0,1,2, . and |/) are the quasiprimary states. belonging to [¢,]. This
statement 1s equivalent to (A 5) because the operators L_, and L _, are associated
with the derivatives d/dz and d/0z

Appendix B

Here we shall demonstrate that the coefficients 8/{*/ 1n (4.2) are determined
completely by the requrement of the conformal symmetry of the expansion (4 1),
considering the particular case 4, =4, =4 for the sake of simplcity. Applying

both sides of (4 1) to the vacuum state, one¢ gets the equation

¢A(275)|A>=ZCAAA'ZAF“EA ‘PA 2)@s(2)4,), (B1)
/

where |4) 1s the primary state of the dimensions A. A and the operator @,(z) 1s
grven by the series

ga(z)= ZZU’BAAA"M}L%[ Ly, (B 2)
{A}
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The same formula with the substitution z — z, 8 = B8, L — L holds for ¢5(Z) Letus
consider the state

|2.4%) = g(2)]47). (B3)

It can be represented as the power series

[ee]
2.4 = ¥ 2VIN.4Y). (B4)
N=0
where the vectors |N, 4”) satisfy the equations
LyIN,AY=(4,+ N)|N,4A"). (B 5)
To compute these vectors let us apply the operators L, to both sides of (B 1) This
leads to the equations

2"+1%+A(n+1)zn |21A1>=Ln‘Z’A/> (B 6)

Substituting the power series (B 4) one gets
LN+n,&)=[N+(n—1)A+ 4N, 4) (B 7)

Actually, one can consider egs. (B 7) with n = 1,2 only because in virtue of (2 21) the
remaining equations follow from these two Solving these equations one can com-
pute the power series (B.4) order by order In the first three orders the result 1s

, A +1

1 +%ZL_1 + %Z'ml‘il +z

3,
X (L_z"f-ml,l) +

LA(A = 1)+ 24024 + 1)
c(28" + 1) +24'(84' - 5)

|z,4%) =

147 (B 8)

This formula gives the first three coefficients 8 n (B 2)
Obviously the conformal block "Y(A,A’,x)E‘i{‘AAA(A’lx) 1s given by the scalar
product

F(A, A, x)=x%"241, 4 |x,47). (B9)

The first few terms of the power expansion of this function can be directly obtained
from (B 8)

. A8 +1)7

o ’ — 4’24 +LlA = T2 42

F(A, A, x)=x {1 LA 4(ZA’+1)X
[4(1 — &) ~24(24" + D)]? ,

20248+ D[ e(24" +1) +24'(84" - 5)]
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Appendix C

Consider the associative algebra determined by the relations

A A, =), CRA, (C.1)
K

Eq (1 6)1s just (C 1) where each of the indices, say /. combines the space coordinate
¢ and the index ¢, labelling the fieids. Let the algebra (C 1) be supplied with the
symmetric bilinear form

Dy =(4,4;), (C2)

which 1s no other than a set of all two-point correlation functions Let us introduce
the form

CIJK=ZDI&K’CII§l‘ (C 3)
Pz

and assume that this 1s a symmetrnic function of the indices 7, J, K Evidently, (C 3)
coincides with the three-point correlation function

Cx=(A414,4¢). (C4)
and 1t can be conveniently represented by the “ vertex” diagram

)

L (C5)
Cx = N

AN
7

Also introduce the diagram

ol = P (Ce6)
for the “inverse propagator” D’ defined by the equation

Y. D'¥Dy, =], (C7)
K

The associativity condition of the algebra (C 1)

Z CIIJ(CI](WL = Z C]AI?CJ[}: (C8)
K K
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can be represented by the diagrammatic equation

N Y
S K = X
© T % y (€9)
/N

which comncides with the “crossing symmetry” condition by the four-point functions

(ArA A Ay (C10)

Appendix D

In this appendix we shall derive the differential equation satisfied by the correla-
tion function

<4’(ﬂ¢1(21) on (2 ). (D1)

where ¢(z) denotes any of the degenerate fields ¢, 5(2) and ¢ ,(z), whereas
¢,(z) are arbitrary primary fields with the dimensions 4,, 1 =1,2, | N Furst of all,
note that the state

1

|X3>= (A+2)L73—2L‘1L~2+(A )

114, (D2)

(where |A) 1s the pnimary state with the dimension A) 15 the null vector (with the
dimension A + 3), provided A takes any of the values 4 ; 5y0r 45, 1€

A=%[7—ci\,’(1—c)(25—c)] (D 3)
The equivalent statement 1s that the operator

XA+3( )‘(A“”Z)‘P( 3)( ) - 2 ‘P( (2 )+A+1 8833‘&(") (D 4)

15 the null field of the dimension A+ 3 In (D.4) are the secondaries of the
degenerate field Y(z) (=¥ 3,0r Y3 4,) and 4 1s given by (D 3) The differenual
equation for the correlation function (D 1) follows from the condition

Xa+3=0. (D.5)
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It follows that

<4’(_2)(z)¢1(21) ¢N(ZN)>

= { ‘_A: —L?+ Z : }<¢(Z)¢1 ) ovlzy)). (D)

<‘:l’(_3)(z)¢1(21)- on(zy))

N N
=—{Z 22, + 2 : 23—(1_}<¢(3)¢1(31) M EM)

(D7)

Substituting (D 4) into (D 5) and taking mnto account (D.6) and (D 7), one gets the
third order differential equation

_Z_—_Izﬁ%—z;fz::aza ($(2)91(z) ..¢y(z,)y=0 (D3B)

In the particular case N =3, the derivatives can be excluded by means of the

projective Ward 1dentities (A 7) Simple calculations lead to the following ordinary
differential equation

1 4 &1 —-24 d
— —+ ‘—
A+14:° E:Z“,dz ,Zl( 2dz

244, 3 24+2+4,

3 A+4, 1 1

+I§ (z—z,)z—2) (z—z) (- ))}<¢( Je(2)92(22)5(23)) =0,

(D 9)

where
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Appendix E

As 1s well known (see, for istance, [15] and references therein), the two-dimen-
sional Ising model 1s equivalent to the theory of free Majorana fermions In the
continuous limit this theory 1s described by the lagrangian density

P =

s
ol

Yooyt J%me. (E.1)

<
Sl

where m 1s the mass parameter, proportional to T— 7., and (¢.y) 1s the two-
component Majorana field* In what follows we shall consider the critical point
only, where this field 15 massless.

m=0 (E.2)

According to (E.1), in this case the fields ¢, ¢ satisfy the equation of motion
a d -
Elp—o. 52\#—0. (E 3)

and therefore these fields are analytic functions of the variables z and Z, respec-
tively We shall write

v=v9(z), ¥=9(2) (E4)

The stress-energy tensor corresponding to this theory can be computed directly In
the case (E 2) 1t 1s traceless and the components (2.5) are given by the formulae

d
T(z)= =} ¥(z)5-0(2).

T(2)= ~4.9(2) 2 0(2). (ES)

It can be easily venfied that the fields (E 5) satisfy the Virasoro algebra (2 21), the
central charge ¢ being

c=1 (E6)

The fundamental fields ¢ and ¢ satisfy the relations (116), 1¢ these fields are
primary. The dimensions of the field Y(z) (¢(Z))areA=1, A=0(4=0,4=13) It
can be shown that four conformal families [7],[¥],[¥],[ ¥ ] contitute a complete
set of fields { 4, }, formung the operator algebra (1.6)

* The field § 1s an independent component but 1n general 1t 1s not the complex conjugated value of the
field ¢
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Let us take, for mstance, the field ¢ (z) This primary field proves to coincide with
the degenerate field ¢, ,(2) (see (6.13)) Actually, the operator product expansion
for T({)y(z) (which 1s easily computed 1f (E.5) 1s employed) 1s given (up to the first
three terms) by the formula

)t 06 -2). (BT)

7(5)y(z) =3

(—)

which shows that the secondary field (5.2) vanishes. Therefore, the correlation
functions, 1nvolving the degenerate field ¥ (z). satisfy the differential equation

N A N
4e»2‘23(;_4> Z% = & (W(2)9:(z1)  oy(z4)) =0, (EB)

1=

where ¢,(z) are arbitrary primary fields (which are local themselves but not
necessarily local with respect to ¢/(z)) In particular, the correlation functions

<‘P(Z)¢(51) RENR (E9)

(which can be computed 1f the Wick rules are used) satisfy (E 6)

On the other hand, the critical Ising model can be described in terms of either the
order-parameter field o(z, Z) or the disorder-parameter field p(z, Z)* Obviously,
the fields o and p are primary. These fields have zero spins, 1e 4, =4, 4,= A
and n virtue of the Krammers-Wanier symmetry, have the same scale dlmensmns

A,=4,=4A. (E 10)

The fields o(z, Z) and p(z, Z) are neither local with respect to the fields ¢(z) and
¥(Z) nor mutually local. In fact, the correlation function

<’~P(~’)°(§1) co(Eanv o )e(éay) L op(én)) (E 11)

1s a double-valued analytic function of z which acquires the phase factor (—1) after
the analytical commutation around any of the singular ponts z, = & + 17, k=
1, .2M Tt follows from the defimtion that the products ¢(${)o(z.Z) and
Y({)p(z, Z) can be expanded as

W(o(z,2)=(E—2) V{p(z2.2)+ 08— 2)).
Op(z,2)=(¢~2) " Ho(z.2)+0(s - 2)) (E12)

* The fields o and p are the scahng limut of the lattice spin o, ,, and the dual spin g, 1 2 1 2.
respectively See ret {15] for the detailed defimtion
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Substituting these expansions into the differential eq (E.8), one gets the characteris-
tic equation, determining the parameter A

A= (E.13)

m agreement with the known value of the scale dimension of the spin field
d, =24 =4 [15] So. the differential eq. (E 8) together with the qualitative properties
(E 12) of the operator algebra enables one to compute exactly the dimension of the
field o(z,2)

Now we are to compute the correlation functions of the order and disorder fields

(o(&)  o(&n)nléni).. p(€n)) (E.14)

Note that the double-valued function (E 11) can be represented by

M
W(2)o(&) - w6y =11z =2) P21z, 7). (E 15)
where P(z|z,, Z,) 1s a polynomial 1n z:
AM—1 R
P(Z‘Z,,Z,)z Z (Z“ZZV) G/\(ZI‘EI) (El6)
k=0

The order 2M — 1 of this polynonual 1s determuned by the asymptotic condition
y(z)~z1, z>®© (E17)

The coefficients G, are some functions of z;, 5.2, . Zyy Invirtue of (E 12),
the coefficient G,(z,, z,) comncides with the correlation function (E 14) Substituting
(E 15) into the differential eq (E.8), one gets the differential equations for the
coefficients G, (z,, z,) which enables one to compute the correlation function (E 14)
In fact, the differential equations for the correlation functions (E 14) can be
obtained 1n a simpler way Note that comparing (E 13) with (6 13), the field o(:z, 2
1s the degenerate field v, ,, with respect to the both variables z and z The same 15
vald for the field p(z,z) Therefore, the correlation functions (E 14) satisfy the
differential equations
{ 4 92 WM L M P
-2 i M

\3 a:IZ JF1 (ZI_ Z ) IE X “J a:/

“J

x<0(51»31) G(ZZN*‘:lN)nu'(Z2N+1’32N+1) M(ZZAI*‘:ZNI)):O! (E 18)

(where 1=1,2, ,2M) and the differential equations obtained from (E 18) by the
substitution z, = Z,
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Let us consider, for example, the four-point correlation function
G(&.6,,65.8,)=(o(§)a(€3)0(83)0(&4))

= [(21 =23z, =z, (5 = )5, — 24 )] ) l/xY(x, x).

(E 19)
where Y(x, X) 1s some function of the anharmonic quotients
=(21’zz)(53—24)‘ )‘c=(bil_%2)(::3_é4 i (E 20)
(21"33)(22_34) (z; -5z, —Z,

(we took mto account (A.8)). In this case the differential eq (E 18) 1s reduced to the
following form.

44 1 L+ L +l 1 +[—1—+ L ]i Y(x.Xx)=0
3dx? 16[x? (x-1)*| 8x(x—1) Llx x—1ldx o

(E 21)
The same equation with respect to X 1s also vahd Substituting
Y(x,%)=[xx(1-x)(1 -x)] "*u(x, %), (E 22)
one gets the following equation for
x(l—x)—a—z—-i-(%—vc)—a—-kL u(x.x)=0 (E 23)
axz 2 - ax 16 bl
The change of variables
x=sm’d, x=s’8, (E 24)
reduces (E 23) to
a2 -

The equation obtamed from (E 25) by the substitution § — 15 also vahd Therefore,
the general solution of these differential equations has the form

u(6,8)=u,,costfcostf + u ,costfsinid
+uys1n10costf + u,,sintfsinid, (E 26)

where u,4 (a, B =1,2) are arbitrary constants
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Note that two independent solutions of (E.21) coincide with the conformal blocks
(see (B 9))

F(4,0,x)=[x(1-x)] *cosls,
(1 1 - -1/8 1
5 (f,3.x) = [x(1—x)] sinif, (E 27)

and therefore the formula (E.26) can be considered as the decomposition (4.11), the
coefficients u,z being the structure constants

Since the field o(z, Z) 1s local, the correlation function (E 20) should be single-val-
ued 1n the euclidean domain

X =x*, (E.28)

where the asterisk denotes complex conjugation. As 1t i1s clear from (E 24), the
analytical continuation of the variables x and X around the singular pomnt x =x =0
corresponds to the substitution

60— -9, - -6 (E29)
The function (E 26) 15 unchanged under this transformation provided
U =uy=0. (E.30)

The same mvestigation of the singular point x =X =1 (or, equivalently, imposing
the crossing-symmetry condition) leads to the relation

Uy = Uy, (E 31)

The overall factor in (E 26) depends on the o-field normalization We shall normal-
1ze thus field so that

(0(z.2)0(0,0)) =[2z] ** (E 32)
Then
u(6,0)=cosi(6-6) (E 33)

The four-point function given by the formulae (E.20), (E.22) and (E 33) 1s
agreement with the previous result (see ref. [16]) obtained by a different method
Note that m virtue of (E.27) the four-point function (E 20) can be represented as

=
=

L} s

G=9(%,0,x)9(%.0, %) +F(%&, 1, x)F (&, 4, %) (E 34)

—
s
[
(R

=2
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It 1s evident from this formula that only two conformal families contribute to the
operator product expansion of o(£)a(0) The corresponding primary fields have the
dimensions A=A =0and A=A =1 The first of them 1s obviously identified with
the identity operator I whereas the second 1s known as the energy density field

e(2,2) =¥ (2)¥(z2) (E 35)
The four-point correlation function
H(£1~§2’§3’§4)= <°(§1)H(52)0(§3)M(§4)> (E.36)
can be represented in the form
H= [(21 —z3)(z, = 2, (2, — 23)(2, _54)] 71/8?()0 X). (E 37)

where the function Y satisfies the same differential equation (E 21) The nvestiga-
tron similar to the one performed above leads to the result

¥(x,%)=[xx(1-x)(1-%)] *sini(6+8) (E 38)
Therefore the function (E 36) 1s

(&.5, %) +5(&. 4, x)5(%.0,%) (E 39)

)

H=%(%.0,x)

5

This formula corresponds to the following operator product expansion
0(z,2)p(0,0) =371V ¥(2) + O(z,2)} + 2 V2 ¥(2)+ 0(z.2)],
(E 40)

which 15 1n accordance with the 1dea of the field ¥ as the regularized product op
To avord misunderstanding, let us stress that there are three different sets of fields

(4,) = (L1191, [3].1e]).
{B1={[/][o].[€]}.
{CG}={[1].[1].[e]}. (E 41)

Each of these sets forms the closed operator algebra and 1t 1s appropriate to describe
the critical Ising field theory All the fields entering the same set are mutually local
whereas the fields entering different sets are in general nonlocal with respect to each
other
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