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We present an mvestlgaUon of the massless, two-dimensional, interacting field theories Their 
basic property is their invanance under an lnfimte-dlmenslonal group of conformal (analytic) 
transformations It is shown that the local fields forlmng the operator algebra can be classified 
according to the irreducible representations of Vtrasoro algebra, and that the correlation functions 
are bmlt up of the "conformal blocks" which are completely determmed by the conformal 
mvanance Exactly solvable conformal theones associated with the degenerate representations are 
analyzed In these theories the anomalous dimensions are known exactly and the correlation 
functions satisfy the systems of hnear differential equations 

1. Introduction 

Conformal symmetry was introduced into quantum field theory about twelve 
years ago due to the scaling ideas in the second-order phase transmon theory (see [1] 
and references therein). According to the scahng hypothesis, the interaction of the 
fields of the order parameters m the cnucal point ~s mvarlant with respect to the 
scale transformations 

~a ~X~", (1.1) 

where ~" are the coordinates, a = 1, 2 . . . . .  D. In the quantum field theory the scale 
symmetry (1.1) takes place provided the stress-energy tensor ~s traceless 

r2(t )  = o (a.2) 

Under the condmon (1.2) the theory possesses not only the scale symmetry but is 
also mvanant w~th respect to the coordinate transfonnauons 

~a ~ ffa(~) (1.3) 

hawng the property that the metric tensor transforms as 

O U  O~ b' 
g~b-~ Orj~ Orfb ga'~' = P(~t)g:b, (1.4) 

333 
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where O(~) ~s a certain funcUon. Coordinate transformations of this type constxtute 
the conformal group. These transformations can be easily described, properties of the 
conformal group being different for the cases D > 2 and D = 2. If D > 2. the 
conformal group xs fimte-d~mens~onal and consists of translations, rotations, dxlata- 
tlons and special conformal transformations (see [2, 3]) Kmemauc mamfestat~on of 
this symmetry and its dynamacal reahzatlon m the quantum field theory has been 
investigated m many papers (see for example, [2-4]). In particular, ~t has been shown 
that the local fields Aj(~), revolved m the conformal theory, should possess 
anomalous scale d~menslons dj, Le they transform as follows under the transforma- 
tion (1) 

A j  ---+ ~ dsAj, (1 5) 

where the parameters d s are non-negatave. Computauon of the spectrum { d s } of the 
anomalous d~mens~ons ~s the most ~mportant problem of the theory since these 
quantmes determine the critical exponents. 

To solve this problem, m [4] the bootstrap approach based on the operator algebra 
hypothesis has been proposed. Let us describe ~t m some detail sance ~t xs most 
statable for our purposes. The operator algebra as a strong version of the Walson 
operator product expansion [5], namely, xf the extstence of an mfimte set of local 
fields As(~ ) as assumed, then the set of operators (Aj(0)} as assumed to be complete 
m the sense specafied below. The set (Aj } contains the adenuty operator I as well as 
all coordinate denvauves of each field revolved. The completeness of the set (As(0)} 
means that any state can be generated by the hnear action of these operators This 
condmon ~s equavalent to the operator algebra 

Aj(~ )Aj(O) = E c,~( ~)A~ (O), (1.6) 
k 

where the structure constants C,~(~) are the c-number functions which should be 
single-valued so that local properties be taken into account. The relauon (1 6) is 
understood as an exact expansion of the correlauon funcUons 

{A,(~)As(O)Aq(~I ). . A,~(~N) ) =~C,~(~){AA(O)Atl(~I). A ,~(~) ) ,  
k 

which xs convergent m some flmte dommn of ¢, the domain being certainly 
dependent on the loeatxon of (a, , (~. The most ngad requxrement, consadered as 
the main dynamxcal principle of this approach, ~s assocaat~vlty of the operator 
algebra (1.6). This requirement leads to an lnfimte system of equataons for the 
structure constants C,~(¢). Since the conformal symmetry fixes the form of the 
functions C,~(() up to some numencal parameters (whach are the anomalous 
dimensions and numerical factors), this system of equations has to deterrmne these 
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parameters  However in the multidimensional theory (D > 2) tlus system proves to 
be too comphcated to be solved exactly, the main difficulty being the classification 

of the fe lds  Aj entering the algebra. 
The situation is somewhat better m two dxmensmns. The mare reason is that the 

conformal group is mfinIte-dimensional in this case, it consists of the conformal 
analytical transformations. To descnbe this group, xt is convenient to introduce the 

complex coordinates 

Z =~1 + 1~2 ,  Z = ~ I - -  i~2, (1 7) 

the metric having the form 

ds 2 = d z d ~  (1 8) 

The conformal group of the two-dimensional space which will be denoted by ~, 
consists of all substitutions of the form 

z --+ ~'(z),  2 ~ ~(2) ,  (1 9) 

where ~ and ~ are arbitrary analytical functions 

For  our purposes it will be convenient to consider the space coordinates ~ ,  }z as 
complex variables, i.e to deal with the complex space C 2 Therefore m general we 

shall treat the coordinates (1.7) not as complex conjugated but as two independent 
complex variables; the same is supposed for the functions (1 9) Thts space C 2 has 
the complex metnc (1.8) The euclidean plane and Mlnkowskl space-time can be 
obtained as appropriate real sections of this complex space 

In the complex case it is clear from (1 9) that the conformal group c3 ~s a direct 

product 

¢ = r ® Y ,  (1 lo) 

where F (F)  is a group of the analytical substitutions of the variable z (7:) In what 
follows we shall often concentrate on properties of the group F, keeping m mind 
that the same properties hold for 

Infinitesimal transformations of the group iv are 

z--+z + e ( z ) ,  (1.11) 

where e(z)  is an infinitesimal analytical function It can be represented as an infinite 
Lourant  senes 

oo 
e ( z ) =  Z e,, z"+a (1.12) 

1/~ --00 
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Therefore the Lie algebra of the group /" coincides with the algebra of dlfferenual 
operators 

ln= Z n+l d d z '  n = 0, __+1, + 2  . . . .  (1.13) 

the commutat ion relanons having the form 

[l . , lm] = ( . -  (114) 

The generators ]~ of the group _P satisfy the same commutat ion relations, the 
operators l, and ],, being commutauve.  We shall denote the algebra (1.14) as E0. 

The generators l a, 10, l+a form the subalgebra s l (2 ,C)c  E0. The corresponding 
subgroup SL(2, C) c F consists of the projecnve transformations 

az + b  
z --* ~ = cz + d a d -  bc = 1 (1.15) 

Note  that the projective transformations are uniquely lnvertlble mappings of the 
whole z-plane on xtself and these are the only conformal t ransformanons with this 
property 

Tbas is the first paper of the series we intend to devote to the general properties of 
the two-dimensional quantum field theory, mvarlant with respect to the conformal 
group 9"  In tins paper  we give the general classification of the fields Aj(~) entenng 
the operator algebra (1.6) according to the representauons of the conformal group 
and investigate special "exactly solvable" cases of the conformal quantum field 
theory associated w~th degenerate representations. In more detail we shall show the 
following 

(1) The components of the stress-energy tensor Tab(~ ) (satisfying (1.2)) represent 
the generators of the conformal group ~ in the quantum field theory. The algebra of 
these generators is the central extension of the algebra ~o (1.14) and coincides with 
the Vwasoro algebra ~ .  The value of the central charge c ~s the parameter  of the 
theory 

(11) Among the fields .,'~j(~) forn'nng the operator algebra, there are some p r l m a ~  

ftelds q~,(~) which transform in the simplest way 

dzJ  

* Although the projective group (l 15) and the complete conforrnal group ~ are both consequences of 
(1 2) and therefore appear an the quantum field theory together, we found ~t mstrucnve to consider 
first the general consequences of the projecnve symmetry The corresponding formulae, which are 
certaJnly no other than the parncular case D = 2 of the results of refs [2-4], are presented m 
appendax A 
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under the substitutions (1 9) Here z~, and ~ ,  are real non-negative parameters. In 
fact, the comblnatmns d n = A  n + ] ,  and s n =A n - I n  are the anomalous scale 
dimension and the spin of the field q~, respectively* We shall often refer to the 
quantities A n and ~n as to the &menslons of the field. The simplest example of the 
pnmary field xs the identity operator I A nontrivml theory involves more than one 
primary field and the index n is introduced to distinguish between them 

(m) A complete set of the fields Aj(~) consists of conformalfamlhes [q~n], each 
corresponding to a certain primary field q~n. The primary field q,, belongs to the 
conformalfamtly [q~n] and, in some sense, serves as the ancestor of the family. Each 
conformal family also contains infinitely many other secondary fields (descendants). 
Dimensions of these secondary fields form integer spaced series 

A(~)= An + k,  ~ ) = ~ + k ,  (1 17) 

where k , k =  0,1,2, .. VanatIons of any secondary field A e [q~n] under the 
lnfimteslmal conformal transformations (1.11) are expressed hnearly m terms of 
representations of the same conformal farmly [4'n]. So, each conformal farmly 
corresponds to some representation of the conformal group G. In accordance with 
(1 10), this representanon is a direct product [4~n] = Vn ® Vn, where V n and Vn are 
representations of the Vlrasoro algebra £c**, in general, these representations are 
irreducible. 

(iv) Correlation functions of any secondary fields can be expressed in terms of the 
correlators of the corresponding pnmary fields by means of special linear dlfferennal 
operators Therefore, all mformanon about the conformal quantum field theory is 
accumulated in the correlators of the primary field q~.. 

(v) The structure constants C,~(~) of the operator algebra (1 6) can, in principle, 
be computed in terms of the coefficients C.t,. of the pnmary field q~ m the operator 
product expansion of qan~ m. Therefore, the bootstrap equations (i.e the associanvity 
condition for the operator algebra) can be reduced to equanons imposing constraints 
upon these coefficmnts and the d~menslons A of the primary field. 

(Vl) At a given value of the charge c there are infinitely many special values of the 
dimension Zl such that the representation [~a] proves to be degenerate The most 
important property of the corresponding "degenerate" primary field ~j is that the 
correlation functions involving this field, satisfy special hnear differential equations, 
the simplest example of which is the hypergeometry equation 

(vii) If the parameter c sansfies the equation 

v l ~ - c - ~ / 1 - c  - £  

v ' ~ -  c + x/1- c q 
(1 is) 

* The spin s n of a local field can take an integer or half-integer ,,alue only 
** The representanon V~ ,s known as the Verma modulus o'~er the Vlrasoro algebra (see, for example, 

[6]) This representanon is evidently characterized by the parameter J,, only 
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where p and q are pomlve integers, the "mlmmal"  conformal quantum field theory 
can be constructed so that it be exactly solvable m the following sense (1) A fimte 
number of conformal famlhes [q~,] xs mvolved m the operator algebra, each of them 
being degenerate, (ll) all anomalous dxmenslons za,, are known exactly, (111) all 
correlaUon functmns of the theory can be computed as solutions of specml systems 
of hnear partial dlfferentxal equatmns There are mfmltely many conformal quantum 
field theones of tins type, each assocxated with a certain solution of (1.18), the 
sxmplest nontrlwal example (c = ½) describing the crmcal theory of the two-dlmen- 
smnal Ismg model. We suppose that other "mammal" conformal theories descnbe 
second-order phase transmons m some two-d~menslonal spin systems w~th d~screte 
symmetry groups 

Apart from second-order phase transmons m two dimensions, there ~s another 
apphcat]on of the conformal quantum field theory Tins is the dual theory From the 
mathematmal point of wew dual models are no other than special kinds of the 
two-dimensional conformal quantum field theory. Ttus xs natural m wew of their 
assomatlon wxth the stnng theory Quantum helds describe the degrees of freedom 
associated with the string, the conformal symmetry being a mamfestatmn of the 
reparametnzatxon mvanance of the world surface swept out by the stnng. In fact, 
the dual amphtudes are expressed m terms of correlatmn functmns of some local 
fields (vertex operators). In standard models (hke the Venezlano model) vertex 
operators are related m a simple way to free massless fields. We suppose that ff 
consxderably interacting fields are incorporated into the theory, ~t can produce new 
types of dual models with more statable physical propemes. 

2. Stress-energy tensor in the conformal quantum field theory 

Consider an arbitrary correlation funcuon of the form 

( X )  = (AjI(~I) .. A,~(~w) } , (2 1) 

where A:~(~) are local fields, and perform an mfimteslmal coordinate transformatxon 

~a ~ ~a _1_ Ea(~) .  (2 2) 

As xs well known in quantum field theory, the following relation ts vahd 

N 

E (A:fl~l)... Aj, ,(~k_I)8,A,a(~A)A,,+,(~/,+I).. A:~,(17gN) ) 
k = l  

+ fd2  O%b(li)(Tab(li)X) = 0, (2 3) 



4 A Belavm et al / lnfimte conformal s)mmetrv 339 

where the field Ta~(( ) is the stress-energy tensor and 6~A~ denotes vanauons of the 
fields Aj under the transformation (2.2). Due to their local properUes, these 
variations are linear combinations of a finite number of derivatives of the function 
e(()  taken at the point ( =  ~ ,  the coefficients being certain local fields It follows 
from (2.3) that 

3~(T"b(gi)X)  = 0 (2.4)  

everywhere but at the points ~1, ~2 . . . .  ~N In the conformal quantum field theory 
the trace of the stress-energy tensor vanishes, T~ = 0. Therefore in two dimensions 
tlus tensor has only two independent components which can be chosen in the form 

T ( t )  = T u - T22 + 2,T12 , 

T(~)  = T n - T22 - 2tT12 (2.5) 

Combining relations (1 2) and (2.4), it is easy to find that these components saUsfy 
the Cauchy-Raemann equations 

= O. 

O : ( T ( ~ ) X )  = 0, (2 6) 

where z and ,~ are defined by (1 7) So, each of the fields T and T is an analytic 
function of the single variable (z and L respectively) and we shall write 

T =  T ( z ) ,  T =  T(~)  (2 7) 

Take now the correlation function* 

( T ( z ) X )  (2 S) 

It is the analytic function of z that is single-valued (due to its local properties) and 
regular everywhere but at the points z = z k, z k = ~ + l~ 2, where it has poles, the 
orders and residues of these poles being determined by the conformal properties of 
the fields Aj,(ti). Actually. for the conformal coordinate transformauons (1 11) the 
relation (2 3) can be reduced to the form 

( 6 , X )  = f c  d~ e( ~ ) ( T(  ~ ) X )  , (2 9) 

'~ Here and below we generally conslder correlanon functions m the complex space C 2, ~ee the 
mtroductmn 
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where 6~X is a variation of the product X = As,(~l). AjN(~N) under the transfor- 
mation (1.11) and the contour C encloses all singular points z~, k = 1, . , N 
Equivalently, the following relation is valid 

3,Aj(z, 5) ---¢c d~e(~)T(~)As(z' 5), 
z 

(2 10) 

where the contour C~ surrounds the point z The same formula (with the substitution 
T ~ T)  holds for the vanatlon 3,A s of the field A s under the infinitesimal transfor- 
mation 

,~--o ,? + ~(z) (2.11) 

of the group F. Therefore the fields T(z) and T(~) represent the generators of the 
conformal group F ® P in the quantum field theory. 

The conformal transformation laws for general fields Aj will be considered m the 
next section. Now we are interested in the conformal properties of the fields T(z) 
and T(2) themselves which are obviously related to the algebra of the conformal 
group generators The vanatlons 6~T and 6~T should be expressed linearly in terms 
of the same fields T and T and their derivatives and may also include the c-number 
Schwinger terms. Taking into account tensonal properties of the field T(z) and the 
locality condition, write down the following most general expression for the varia- 
tion 6~T" 

3 . T ( z )  = e ( z ) T '  + 2 e ' ( z ) T ( z )  + 1 , , ,  (2.12) 

where the prime denotes the z-derivative* For the variation 3~T it is possible to get 

3~T(z) = 0 (2 13) 

* Formula (2 12) corresponds to the following transformaUon of T(z) under the flmte conformal 
subsUtutaon (1 9) 

r(:).-, v(t)  + &fL- -} ,  

where (~, z } is the Schwartz denvatwe [121 

Note, that the Schwartz denvatlve satisfies the following composxtlon law 

d~' 2 
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The numerical constant c m the relatxon (2 12) is not determined by the general 
pnnc~ples, it should be treated as the parameter of the theory The vananon 6~T 
satisfies the same relatmn (2.1), the respective constant ? being equal to c. The 
constant c can take real posmve values. These statements result from the reahty 
condmon for the stress-energy tensor m euchdean space and Mmkowska space-Ume 

If none of the points z k, k = 1, 2 , . . . ,  N in (2.1) is equal to lnfimty, the correlation 
function ( T ( z ) X )  should be regular at z = ~ .  This means that, as can be easily 
verified by means of the transformation law (2.12), that the function ( T ( z ) X )  
decreases as 

1 
T ( z )  - 7 at z ~ oo. (2.14) 

In the quantum field theory the correlatmn functions (2 1) are represented as 
vacuum expectation values of the nme-ordered products of the local field operators 
Aj (~). In our case it is convement to introduce the coordinates o and r according to 
the formulae 

z = exp( r  + 1o), Y = exp(r  - to ) .  (2.15) 

Choosing o and r as real, o being an angular variable, 0 < o ~< 7r, one gets the 
euchdean real sectmn. Correlatmn functions in thts euchdean space can be repre- 
sented as 

<x> = <01 r [  41(oi ,  .. (2.16) 

where the chronological ordering should be performed with respect to the "euclidean 
time" r, In the operator formalism the variations 6~Aj can be expressed in terms of 
equal time commutators 

8~Aj(o, r ) =  [T~,Aj(o, r ) ] ,  (2 17) 

where the generators T E are defined by the formula 

=~o  e ( z ) T ( z ) d z  T~ glzl =r (2.18) 

Note that due to eqs (2.7) these operators are in fact r-independent. 
The relatlon (2 12) becomes 

[T~, T(z) ]  = e ( z ) T ' ( z )  + 2e ' ( z )T ( z )  + Ice ' "  (z)  (2 19) 

It is useful to introduce the operators Ln, Ln, n = 0, ___1, + 2 , . .  as coefficients of 
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the Lourant expansions 

~ Ln T(z)= L° E 
z n + 2 '  

(2 20) 

It follows from (2 19) that the operators L n satisfy the commutat ion relations. 

[ L n, Lm] = (n  - m ) L n +  m + ~ c ( n  3 - n)Sn+m, o (2.21) 

Clearly, the same relations are satisfied by the L~'s, the operators L~ and f-~m being 
commutative The algebra (2.21) of the conformal generators Ln IS the central 
extension of the algebra (1 14)* Thas is well known in the dual theory and the 
algebra (2 21) is called the Vlrasoro algebra [11]; we shall denote it as ~c 

Like the algebra ~0, the Virasoro algebra ffc contains a subalgebra sl(2,C), 
generated by the operators L_t ,  L 0' L+a (note that the c-number term in (2 21) 
vanishes for n = 0, _+ 1) In particular, the operators L i and L ,  x generate transla- 
tions whereas L 0 and Lo generate infinitesimal dilatations of the coordinates z and 
L In the coordinate system o, ~- defined by (2 15) the operator 

H = L 0 + I '0,  (2 22) 

is a generator of " t ime"  shafts. It  plays the role of the hatmltonian. Note, that the 
"infinite past" ~- ~ - oo and the "infinite future" • ---, ~ correspond to the points 
z = 0 and z = ~ ,  respectively. 

The vacuum 10) in (2.16) is the ground state of the hamaltonlan (2 22) The 
vacuum must satisfy the equations 

L,  I0) = 0, if n>~ - 1 ,  (223)  

since otherwise the stress-energy tensor would have been singular at z = 0. Note that 
the operators L n with n >1 - 1  generate the conformal transformations which are 
regular at z = 0 Therefore eqs (2 23) are manifestations of the conformal mvanance  
of the vacuum The transformations generated by the operators L,  with n ~< - 2  are 
singular at z --- 0; these operators distort the vacuum 

L,10) = new states if n ~< - 2  (2 24) 

The field T ( z )  should also be regular at z = oo Similarly to (2.23), it imphes that 

(OIL n = 0 if n ~< 1 (2.25) 

Since in the Mlnkowskl space-time (whach can be obtained if imaginary values of ~- 

* Thas central extension has been discovered by Gelfand and Fuks [10] 
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are dealt with), the field T(z)  must be real, the operators L~ satisfy the conjugation 

relation 

L~ = L . (2 26) 

Note  that the generators L t, Lo, L l  annltulate both the " m "  and "out"  vacuua 

(01L~ = L~I0) = 0, s = 0 , + l  (227)  

These equations are manifestation of the regularity of projective transformations 
menhoned m the introduction. Eqs. (2 27) are self-consistent because the c-number 
term in (2 21) vanishes for n = 0, + 1. 

Eqs (2.23), (2.25) and the commutat ion relations (2 21) enable one to compute 
any correlation function of the form* 

( T ( ~ I ) .  T ( ~ N ) T ( T / i )  T ( ' r / M )  > = < T ( f f l ) - .  T ( f f N ) ) < T ( T ] I ) .  

In partmular, a two-point function is given by the formula 

= c( l -  2)-L 

which shows that c > 0. 

T(,TM)>. 

(2 28) 

(2 29) 

3. Ward identities and conformal families 

Consider the vanatzon 6~Aj(~) of a certain local field A s under the lnfimteslmal 
conformal transformation (1 11) Due to its local propertms, this variation is a hnear 
combination of the function e(z) and a finite number of its derivatives taken at the 
point z = ~:1 + 1~:2 

vj da 
8,A,(z) = £ B) k l'(z)-~Tz~e(: ), (3 l) 

I, =0 

where B/<k-1) are local fields belongong to the set { Aj  } and v s is a certain integer In 

* It can be shown that these correlators coincide with those of the fields 

7 ~°) = %~0= + 2ao% = 

where V is a free massle~s boson field and the parameter a o is defined by the formula 

= 1 + 24a o 
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(31)  we have omitted the argument ~ winch is not important here. The study of 
infimtes~mal translations and dilatations of the variable shows that the first and 
second coefficients m (3.1) are 

, = Oz : ( z )  B ° ( z ) = A s A s ( z ) ,  (3.2) 

where A is the dlmensmn of the field A s. It is evident that the dlmensmns of the 
fields B) k-I> in (3 1) are equal to 

Aj,(k_D = As + 1 - k ,  k = 0 , 1  . . . .  v s . (3.3) 

Let us take again the correlation function (28). As has already been mentioned in 
the previous section, this correlator is a single-valued analytic funcnon of z, 
possessing the poles at z = z k, k = 1,2 . . . .  N. In virtue of (210) and (3.1) it is 
possible to wnte down the relation 

N Vl 
( r ( z ) A : ~ ( z a ) .  A : u ( Z u ) ) =  E Y'. k ' ( z - z : ) - k = l < A j , ( Z l ) . . .  

/=1  k = 0  

aj, A,(zN)>. 

(3 4) 

Ttus formula is a general form of the conformal Ward identities. 
In a physically suitable theory the dimensions A: of all the fields A: should sansfy 

the mequahty 

/b 0. (3 5) 

since otherwise the theory wall possess correlations increasing with distance In what 
follows we shall suppose that the only field with zero dlmensmns A = ~ = 0 is the 
ldennty operator I. Comparing (3.3) with condmon (3.5) we see that the sum in (3.1) 
contains a fimte number of terms v s ~< a + 1 Another important conclusion follow- 
lng from (33) is that the spectrum of dimensions (A s } m any two-dimensional 
conformal quantum field theory consists of the infinite integer spaced series 

A(~ ) = A, + k ,  k = 0 ,1 ,2 , . .  (3.6) 

Here A denotes the minimal dimension of each series, whereas the index n labels 
the series. The same is obviously vahd for the dimensions ~:,  1 e. the spectrum { ~: } 
also consists of the senes 

~(~)= ~ ,  + k,  k = 0 ,1 ,2 ,  . ( 37 )  
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Let 0n be the field with the dimensions A n and ~. .  The variation (3.1) of thts field 
has the simplest possible form 

0 0 =  (Z)Tz . (z)  + a / ( z ) 0 . ( z ) ,  (3 8) 

since the corresponding fields B (k-l)  with k > 0 would have dimensions smaller 
than A n A similar formula holds for the variation 6~0n The fimte form of ttus 
conformal transformation law is ~ven by (1.16). We shall call the operators 0n 
hawng the transformation laws (1.16) the prtmary fields. Note that formula (3.8) is 
equivalent to the commutation relation" 

[ L m ,  On(Z) ]  ~--- zm+l  ~'~On(Z ) +an(m + 1 ) z ~ O ~ ( z ) ,  (3 9) 

which are satisfied by the vertex operators of the dual theory [8, 9]. 
If all the fields Aj(~) entenng the correlation function (2 8) are primary, the 

general relation (3.4) is reduced to the form 

= E 1=1 (Z ---  2 - - Z I )  

1 
q'- ( 0 1 ( Z 1 )  O N ( Z N ) )  Z -- Z t OZ t " 

(3.10) 

where /11, A 2 . . . .  , A N are dimensions of the primary fields 01, 02 . . . .  0N,  respec- 
twely Note that ttus Ward identity explicitly relates the correlation functions 
(T(z)01...  0N} to the correlators (01... 0N}. It is also noteworthy that the projec- 
tive conformal Ward identities (A 6) can be directly denved from (3.10) if one takes 
into account the asymptotic condition (2.14). 

The primary fields themselves cannot form the closed operator algebra. In fact, 
there are infinitely many other fields associated with each of the pnmary fields 0n. 
We shall refer to these fields as to the secondary fields with respect to the primary 
fields 0n The dimensions of the secondary fields form the integer spaced series, 
mentioned above. These fields together with the primary field q'n constitute a 
conformalfarntly [0n]. It Is essential that under the transformations every member of 
each conformal family transforms m terms of the representatives of the same 
conformal family. So, each conformal family forms some irreducible representation 
of the conformal algebra. The complete set of the fields (Aj } consists of some 
number (wtuch can be infinite) of the conformal famihes 

{dj}  = ~ [0n]. (3.11) 
n 

To understand the nature of these secondary fields, consider the product 
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T(~)eO,,(z, ~) Tins product can be expanded according to (1.6), the coefficients C,~ 
being smgle-valued analytic functions of (~"- z) in virtue of relation (2.7) and the 
local properties of the fields T(f )  and ~ ( z ,  5). Therefore tins product can be 
represented as 

r (~ ' )q~,(z)= E ( ~ ' - z )  2+kq~-h)(Z), (3 12) 
/~=0 

where we have again onutted the dependences of the fields on the variable g The 
dimensions of the fields G (-k) are given by (3 7). The singular terms in (3 12) are 
completely deterrmned by the transformation law (3.8) (remember (2.10)). Thus the 
first two coefficients m (3.12) are 

0 ,~°)(z) = a.~o(z). (313) 

The coefficients q~(-k), k = 2,3 . . . . .  of the regular terms in (3.12) are new local 
fields To make sure of the exastence of these fields, it is possible to expand the Ward 
identity (3.10) in power series, say, in z - z I. These new fields are representatives of 
the conformal fanuly [fin], q~(~-k) ~ [~n] The conformal properties of these secondary 
fields ff~-k) are more comphcated than those of the primary field q~n. The infinitesi- 
mal conformal transformation and comparison of both sides of (3.12) yield 

3eO(-~)(z) = e(z) f---~¢~-k)(z) + (A + k )e ' ( z )4} -~) ( z )  

k k + l  [ d t+l ] 
d--Z~(z)  ¢.' k~(z) + Z (1+ 1)' [ ] 

l = 1  

[ d k + l  ] 
1 ~  [ d - ~ e ( z ) ]  q~n(z ) (3 14) +~c(k-2)! 

The fields ~ - k )  are not the only ones belonging to the conformal fanuly [if,,] 
Consider, for Instance, the operator product expansion 

T(f)4'(~-k2)(z) = hC( f  -- z)-k2-2(k~ - k 2 ) ~ ( z )  

It 2 

l = 1  

+ E (f - z)-2+%. ~-~, -~--~(z). (315) 
/~1 = 0  
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The operators accompanying the singular terms m (3 15) are unambiguously de- 
termined by formula (3.14). In pamcular  

q,~-I, a , (z )  = ~ z  q~-k , (z ) ,  e p ~ o . - k ) ( z ) = ( k . + k ) q , ( - a , ( z  ) (316)  

The new local fields q~-a,, k2)wlth kl > 1 also belong to the conformal family [~ ]  
The variations 6~q~ ~-ax'-a~ are expressed m terms of the fields q~-~ ' -h~ q~ l~ and 

G 
Consldenng the operator products T(~)q~ *', - ~ ) ( z ) , .  etc., one can &scover an 

mfimte set of the secondary fields 

where k, > 1 
formula 

< - a . , - k e ,  - a ' ) ( Z ) ,  (3 17) 

and N =  1,2 . . . .  The fields (3 17) can be defined by the exphclt 

< - k ~ . . - a . , ( z ) = L  k~(z). L a , ( z ) e o . ( z ) ,  (3 18) 

where the operators L _ k ( z  ) are given by the contour integrals 

aU(j2 (3 19) 

The integration contours associated with each of the operators L _ ~ ( z )  m (3.18) 
enclose the point z as well as the points ~', + i, S', + z, , S'N, winch are the integration 
variables, corresponding to the operators L to the right of L_ a,* The d~menslons of 
the fields (3 17) are 

A{n'<l' ' h v J = A n + k l +  " + k  N (320)  

An lnfimte set of the fields (3 17) constitutes the conformal fan'nly [4n] These fields 
are not linearly independent (see below) In fact, in general the fields (3 17) with 
k 1 ~ k 2 <~ <~ k u form the basis** Note that 

< - l . - k l  -ae - a . ,=_~z  < al. a:. ,-a~) (3 21) 

Therefore the conformal family [~n] naturally includes all the derivatives of each 
field revolved It can be denved from (3.18) that the varlanons 6~q~! ~/, { k } =  
( - k  I, , - - k N )  are expressed in terms of the fields, belonging to the same confor- 
mal farmly [q,,], and therefore each conformal farmly corresponds to some represen- 
taUon of the conformal algebra. 

* One can easily verify that the operators (3 1% v~here = 0. _+ 1, _+ 2, , satlsf,, the Virasoro algebra 
(2 21) Obviously, the operators L,, introduced in sect 2 are no other than L,(0) 

** This statement does not hold for some special values of J,,, see sect 5 
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To describe the structure of the representation ~t xs convement to turn again to the 
operator formahsm. Let us introduce the vectors (primary states) 

In ) = ~ (0)105. (3.22) 

Using the propertms (2.23) of the vacuum and the commutaUon relaUons (3.9) one 
can get 

Lmln  ) = 0 ff m > O, 

Lo in  ) = A , l n  ) (3.23) 

It follows from (3.18) that 

~ - k , ,  .-k~)(0)[0) = L _ k ,  . L _ k ~ l n ) .  (3.24) 

So, the conformal family [fin] ~s isomorpbac to the space of states, generated from the 
primary state I n) by the negative components L,,, m < 0* In the representation 
theory this space is known as the Verma modulus V, (see, for example, [6]). Due to 
the relauons (2.21), there are hnear dependences between the vectors (3 24). As has 
been mentxoned above, m all cases, excluding certain speoal values of A (see sect 
5), the states (3 24) with k l  <~ k 2 <<. • • <~ k N form the basis m V~ Note that the 
vectors (3 24) are the elgenstates of the operator L 0, the elgenvalues being gwen by 
(3 20) 

So far we have dealt only w~th the subgroup F of the conformal group ~. Actually, 
more precise definitions are required. Since the complete conformal group is the 
direct product (1.10), the representations [qJn] are, in fact, the direct products of the 
representauons of F and 

[~,1 = 11, ® V,. (3 25) 

This means that it contains not only the vectors (3.24) but also all the states of the 
form 

~(k~{k}(0)10 ) = L _ k ,  .. L _ k N L _ ~ . .  Z - k M I n ) ,  (3.26) 

where 

( k } = ( - k l , - k 2  . . . .  - k N ) ,  (k}  = (-~cl,  - k 2 , .  , - k ~ t )  

k, and kj are independent positive integers. Remember that the operators L and 

* Thas statement is not precise because we neglected the ~ dependence of the fields, the correct 
defimtlon is gwen below 



A A Belavm et al / Infimte conforrnalsymmet~ 349 

are commutatwe. According to (1.16), the primary state In) satisfies, besides (3.23), 
the equatmns 

Lmln ) = 0, if m > 0, 

L0ln) = A . l n ) .  (3 27) 

Therefore each conformal farmly [0.] IS characterized by two parameters A and A.. 
Because of the conformal mvariance, the two-point functmns (0.(£I)¢,.(£1)) 

vamsh unless the fields 0. and 0m have the same dxmenslons (see appen&x A), 
Moreover, the system of the primary fields can always be chosen to be orthonormal 

(0n(Z1  ' ~ l ) 0 r n ( Z 2 '  Z'2)) = 8nm(Z'l -- Z2)-2An(Z1 -- Z'2) -2~n (3 .28 )  

Let us define the "out" primary states by the formula 

( n l =  hm 

These vectors saUsfy the equatmns 

(nJLm=O, 

(OJO~(Z,£)z2LO5 2Lo. 

af m < 0 ,  

(3 29) 

(nlLo = a  < hi, (3.30) 

and the same equation with the substitution L-~ ~., A ~ . .  L~ke m (3.26), we 
have 

hm (010,¢k}{k)(Z, ,~)Z2L°,~ 2~o = (nlLkNLk~ 1"'" LkIL~"" L-k1 (3 31) 
Z, Z-'-* O0 

The orthonormahty condmon (3.28) can be rewntten as 

(nlm) = 8.,. (3 32) 

The conformal Ward ldentltmS make it possible to express exphc~tly any corre- 
lation function as 

(T(~a).. T(~M)Ox(Zl)...ON(ZN)), (3 33) 

in terms of the correlator 

( 0 1 ( Z 1 )  ,. O N ( X N ) ) ,  (3 34) 

Here 01 . . . .  , ON are certain primary fields This can be done by successively applying 
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<r(~-)r(~',).. r(~'M),~,(z,).. ,~,,(z~)) 

,=1 ( ~ - - Z , )  2 ~- ~ - Z '  OZ, h-j= 1 
2 

(~-~)~ ~ ~ - ~  

X T(~I) .T(~M)~kl(Z1)..dON(ZN) ) 

M 

+ E c ( T ( ~ , ) . . T ( ~ j  1 ) T ( ~ j + , )  
j=1  (~" -  ~"j) 4 

• T(~M)d?I(Z1) . .~8(ZN) ) 

(3 35) 

The first term in (3 35) xs of the same ongm as (3 10), whereas the second term is due 
to the c-number term m the transformation law (2.12)* 

Using the correlation functions (3 33) one can also compute any correlators of the 
form 

(q,]A'I(zl) q~vk~ } (ZN)),  (3 36) 

where ¢}k,} are some secondaries of the field ¢,, since these secondary fields are no 
other than the coefficients in the operator product expansions like (3 12), (3 15), etc 
Actually m tins way the correlators (3 36) are expressed m terms of the correlauon 
funcuons (3 34) by means of hnear dlfferentxal operators. The general expression is 
rather cumbersome and we present the simplest example only** 

( ,~-~,,-~2,-~-)(2)¢,(z,) .  ,,,(2N)) 

where the dlfferenUal operators £_~ are given by the formula 

[(1 -k )a ,  1 0 
~ - ~ ( Z ' Z ' ) =  E [ ) h - 1 0 Z ,  

,=1 (Z--Zk)  ~ (Z--Z, 

(3 37) 

(3 38) 

* Obviously, the fields T(z) and T( ~ ) are not primary fields they belong to the conformal family [ I ] of 
the identity operator 

** To obtain (4 5) m the sxmplest way one can substitute the exphclt formula (3 18) and deform the 
integration contours so as to enclose them around the singularities 21, 22, ,2~ 
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Thus the conformal Ward identities enable one to express any correlation functions 
in terms of the correlators of the primary fields (3 34) Hence, all the reformation 
about the conformal quantum field theory is contained in these correlators 

4. Conformal properties of the operator algebra 

In the quantum field theory the correlation funcuons (2 1) should obey the 
operator algebra (1.6). The conformal symmetry imposes hard restncuons on 
the coefficients C,~(~) Consider the product of two primary fields ~(~)~m(0) The 
operator product expansion can be represented as 

Z Z cP2 
p {k} (~} 

_A.-,.l,--A,,,+Ztk =,..'lp--~l,--] +E~',a.{/, ×~ ~ ,; m 'Pb 1{7')(0'0)' (4 1) 

where ~p~k}~k} are the secondary fields, belonging to the conformal firmly [q~p] Both 
sides of (4 1) should exhibit the same conformal properues The transformation law 
of the left-hand side is determined by (3 8), the conformal propemes of each term m 
the right-hand side can be derived, in pnnciple, from (3 18) The reqmrement of the 
conformal invariance of (4.1) leads to the relations for the numerical constants 
Cf~ ~ }{k}wlth different { k }'s but with the same index (see appendix B) In prlnclple, 
these relanons can be solved recurrently, the soluuon being represented as 

CnPm{h){ k) = C P  i~P,{h)~P{  ~} 
-nrn,~nrn r'nrn , (4 2) 

where Cfm are the constants of the primary fields ~p themselves and the factors/3 
(fi) are expressed unambiguously in terms of the dimensions A Am" a p (,5~, A m, A p) 
only, the condmon/3~P~ °} = ~f~0} = 1 is implied The factorized (in terms of 13) form 
of (4 2) is a consequence of (3 25) The expansion (4 1) can be rewritten as 

e) m(0,0) '°'Z e)0,0), 
p 

(4 3) 

where 

q.p(z,  lo, o) = [:  (4 4) 
{~}(k} 

is the contribution of the conformal family [~,p] Let us stress that the conformal 
propernes of the "bllocal" operators (4.4) coincide wnh those of the product 
q~n(z, ~)q)m(0,0), all the coefficients in the power series (4 4) being unambiguously 
deterrmned by tbas requirement. Unfortunately, equations, deterrmnmg these coeffi- 
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clents are too comphcated to be solved exactly. The first few coefficients /3 are 
presented in appendix B for the particular case A n = A m. 

The constants C~P,, in (4.3) and the values of the dimensions A ,  ~n are not 
determined by the conformal symmetry itself. These numerical parameters are the 
most ~mportant dynanucal charactensncs of the conformal quantum field theory 
Note that under the orthonormahty condition (3.28) the c o e f f i c i e n t s  Clnm = Cnm l are 
symmetric funcnons of the indices n, m, l and coincide w~th the numerical factors m 
the three-point functaons. 

(nlCm(Z,~)ll)=C,,,lza. ~.. a,za. a .  a,, (4.5) 

where for sxmphclty we put two points equal to 0 and ~ .  To deternune the 
parameters C,t,, and A n xt is necessary to apply some dynarnlcal pnnciple. In the 
bootstrap approach described in the introduction, the assoclatwxty of the operator 
algebra (1.6) is taken as the main dynarmcal principle. As is shown in appendix C, 
the assocmnvaty condinon is eqmvalent to the crossing symmetry of the four-point 
correlation functions 

( A h ( ~ I ) A j 2 ( ~ z ) A j 3 ( ~ 3 ) A h ~ ( ~ 4 ) )  (4.6) 

Thanks to the relations d~scussed at the end of the prewous section, ~t ~s sufficient to 
consider the four-point funcnons of the primary fields 

(,~,, (~i),¢,, (~) , t ,n (~3)'¢'m (~, , ) )  • (4.7) 

Due to the projective invanance (see appendix A), the four-point funcUons essen- 
trolly depend only on two anharmomc quonents 

( z ,  - z 2 ) ( z 3  - z , )  ( e l  - ~ 2 ) ( e 3  - e.) (4 8) 
X =  ( Z 1 -  Z 3 ) ( Z 2 - -  Z4) ' (Z1- - 'Z3) ( 'Z2 -- Z4) " 

Therefore it ~s convenient to set z 1 = 51 = oo, z 2 = z,2 -~- 1, Z 3 ~- X,  7"3 ~--- ~ '  Z4 = Z'4 ~--- 0 

and to define the functions 

Ik G,m(X, X) = (k l • , (1 ,1 )* , (x .  ~ ) lm) .  (4.9) 

In terms of these functions the crossing symmetry condxnon ~s 

tk - ( ) (4.10) G~m(x,x)=G~k(1 - x, 1 - if) = ~"-2a"='-2ix °trnk'~"~ xl' xl 

Subsntutmg the expansion (4.3) for the product q,n(x, ~)q~m(0,0) one can rewnte 
(4.9) as 

lk o',.(~, ~) = F. C.~mC,.A~m(plx, ~), (4 11) 
p 
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where each of the "parnal waves" 

3 5 3  

A#m(pl ,x)= 

(4 12) 

represents the "s-channel" contribution of the conformal fanuly [@v] to the four-point 
function (4.9) It ~s convement to introduce the dmgrams assocmted w~th these 
amphtudes 

(o) (~) 

Alnk (P Ix' "~) = "x'~ p / ~ k  (413) 
(x) (oo) 

Then the "partml wave" decomposlnon (4.11) can be represented as 

n I n I 

Gn talk (x, .x) = = CnPrn Cik p 

m k 

(4.14) 

It IS clear from (4.4) that the amphtudes (4.12) have the following factorized form 

A~m(plx, ~) 6~,~ ~,~ = ~m(PIX)~Am(P[~), (4.15) 

where, for instance, the function ~ is gwen by the power series 

o v , k  x a , - a . - a ~  v{k} zk (kl@t(l'l)L-k," "L-kNIP> 
~t~m(plx)= {k}flj,, x ' (kl@,(1,1)lp > (4.16) 

The matnx elements m the right-hand side of (4.16) can be computed exactly wtth 
the use of the commutanon relanons (3.9) and eqs. (3.30). Therefore, the functions 
(4 16) are completely deterrmned by the conformal symmetry. These funcnons 
depend on SLX parameters, five dxmenslons A ,  A ,  elk, el/, ele and the central 
charge c. We shall call (4.16) the conformal blocks, because any correlanon funcnon 
(4.7) is built up of these funcUons °5 
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The crossing symmetry conditions for the four-point functions (4.9) can be 
represented as the following dlagramnuc equatmns 

" i n I n'. ,/ 

~;, = xp .~ CPnm Clk p / \ q Cqnl Cmk q q ( 4  1"7) 

m K k 

The analytic form of these equations is 

Ecf..c,~S.'~(plx)~/~(plX) = E Q C m k q g f f ~  (ql  1 - x ) ~ g k ( q l  1 - ~) 
P q 

(4.18) 

If the conformal blocks g are known, (4 18) yields a system of equations, deterrmn- 
mg the constants CJm and the dimensions A ,  An Therefore, the computation of the 
conformal blocks (4.16) for general values of An's is the problem of principle 
importance for the conformal quantum field theory. The first few terms of the power 
expansion for these functions are given in appendtx B, where the case A n = A m = A k 
= A~ = A is considered for the sake of slmphclty. Although the conformal blocks are 
not yet known for the general case, there are the special values of the dimensions A 
(associated with the degenerate representaUon of the Virasoro algebra, see sect 5) 
such that the corresponding conformal blocks can be computed exactly, being the 
solutions of certain linear differential equations The s~mplest example is the 
hypergeometnc function. In these special cases the bootstrap eq (4 18) can be solved 
completely. 

5. Degenerate conformal families 

The representation V a of the Vlrasoro algebra is irreducible unless the dimension 
A takes some special values [6, 7]. For these values the vector space V a proves to 
contain a special vector (the null vector) IX) ~ V~ satisfying the equations 

L,,]X) = 0, If n > 0, 

LolX ) = (a  + K ) I x ) ,  (5 1) 

characteristic of the pnmary fields Here K is some posmve integer. For example, 
one can easdy venfy that the vector 

[ 3 ] 
IX)=  L - 2 + 2 ( 2 ~ + 1 )  L2-~ IA) '  (5 2) 
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(where IA) denotes the primary state of the dimension A) saUsfies (5 1) with K = 2, 
provided A takes any of the two values 

A =~[5-c4- ¢(c- 1)(c- 25)]. (5 3) 

In general, the jessenull vector IX) can be considered as the primary state of its own 
Verma modulus Va+ K Therefore the representation V a proves to be reducible One 
obtains the irreducible representation Va('r) If the null vector IX) (together with all 
the states belonging to Va+K) is formally put equal to zero 

IX> = 0 (5 4) 

Note that eq (5.4) does not lead to contradictions since due to (5 1) the null vector is 
orthogonal to any state of Vj and, in particular, has the zero norm 

<¢ lx>=0 ,  Iq'> 

<xlx> = 0 (5 5) 

In the conformal quantum field theory the meaning of tins phenomenon is the 
following. If the dimension A of some primary field 0j happens to take one of the 
special values menuoned above, then the conformal fatmly [ffa], formally computed 
according to (3 18) proves to contain the special secondary field Xa + h r ~ [~a], winch 
possesses the conformal propemes of a primary field, ~ e. satisfies the commutauon 
relations of the type (3 9). Tins field corresponds to the null vector IX) ~ Va and we 
call It the null f ield For example, if A is given by (5.3) the operator 

3 0 2 

a + 2 - Y a  - 2 ( 2 A + 1 )  Oz 2 

~S the null field. 
Formally, the extra primary field XJ+K originates from the conformal family 

[Xa+,r] winch is imbedded into [~a] Note, however, that any correlation functions 
of the form 

vamshes So, the null field Xa + K can be self-consistently regarded as zero 

XA+K=0.  (5.7) 

Tins condmon obviously hl ls  all the secondary fields of the null field 

(5.8) 
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If  eq. (5.7) is applied, one gets the true irreducible conformal  famaly [<pz] of the 
o n g m a l  p r imary  field q~a. In ttus case the conformal  farmly contains  " less"  fields 

than usual and we call it a degenerate conformalfamlly.  We shall also call degenerate  
the corresponding p n m a r y  field q~a 

All the specml values of  A, corresponding to the reducible represen ta tmns  V~, have 
been hsted by  K a c  [7] (see also [6]) These values, which can be labelled by  two 
p o s m v e  integers n and m, are given by  the formula  

! 2 
A(.,m ) = a  o + ( ~ o t + n  + 7a_ m )  , (5 9) 

where 

ao = 1 ( c  - a),  (5 ao) 

a+= 2v/ _ (5 11) 

If  A = A(..  m), then the corresponding null vector  has the d lmensmn 

A(,,,.,) + rim. (5 12) 

Let  us denote  the degenerate  p r imary  field ~a., .,~ having the d lmensmn A(n,m ) as 
~(.,,~)* No te  that  

A(1.1 ) = 0 (5 13) 

I t  can be shown that  the field ~(1,~) is z- independent ,  i.e.** 

0 
0---~6(1,1 ) = 0.  (5 14) 

The  dimensions  5(1,2 ) and A(2,1 ) are just  the two values given by (5.3). 
Consider  the correlat ion functions of the fo rm 

t5.15) 

* Tins notation is not complete because it says nothing about the second dlmensmn /~ of the pnmary 
field Tins fact, winch should be always kept m mind, does not wolate the conclusxons we make 
below 

** If both dlmensaons A and ~ of the field ~ are zero tins field does not depend on the coordinates at all 
and coincides with the identity operator I 
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An Important property of these correlation functions 1s that they satisfy the linear 
partial dlfferentlal equations, the maximal order of denvatlves being nm* To make 
this evident let us recall that the correlation functions of any secondary fields 

(pb > 
(n3m) -kLYd~l(S1) *- MM) (5.16) 

can be expressed m terms of the correlation function (5 15) by means of the linear 
differential operators (see (3 37)). The null field x*+,,,,, 1s a certain linear combma- 
tlon of the secondary fields !4$;2j ,-k~) Therefore, the differential equation for 
(5.15) follows directly from eq. (5 7). For example, taking mto account (5.6) and 
(3 37), for the degenerate field J/C1,2j(z) one gets 

3 a2 f A, -- 
WS+O a2 ,+ (z-z2,)2 

X(~1.2)(4~&1) hkv)) = 09 (5.17) 

where 6 = A(,,,, and A,, . , A, are the dlmenslons of the pnmary fields &, . , $I~, 

respectively. The correlation function, mvolvmg the field I+(~,~), satlsfles the same 
differential equation, the only difference bemg 6 = A,, 1j** The dlfferentlal equa- 
tion, satisfied by the degenerate fields $J(~,~) and $J(~, 1j, 1s presented m appendix D as 
another example 

In the case of the four-point functions 

%z,m,(~lZl. 229 3) = (~,,.,,(Z)91(Z1)92(Z2)~3(Z3))’ (5 18) 

the partial differential equations can be reduced to ordinary ones. Actually m this 

* The simplest example of these equations 1s (5 14) 
**The followmg mterpretatlon of eq (5 17) IS worth noting Let q(z) stand for one of the fields $,1 ?) 

or GCZ lj, 6 bemg the correspondmg dlmenslon AC, 2j or do 1j Then the field 4(z) satLsfles the 
operator equdtlon 

$Ji(z) =y T(z)+(z) 3 (*I 

where y = +(26 + I), whereas the smgular operator product IS regulanzed by means of the subtrac- 
tlons 

The classical hmlt of eq (*) (which corresponds to the choice 4 = GCI 2) and c + 03) 1s an essential 
part of classical theory of the Llouvllle equation (see, for example, [13]) We suppose that eq ( *) 
plays the analogous role m the quantum theory of this equation, which IS apparently associated with 
the stnng theory [14] We intend to discuss ths pomt m another paper 
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case the relatmns (A. ) can be solved for the derivatives o~/Oz,, l =  1, 2, 3 For 
example substRutmg these denvatwes into (5 17) one gets the Rmmann ordinary 
differential equatmn 

3 d 2 
+ 

2(26 + 1) d 2  2 ,=1 

1 d A,  ] 

z - z ,  dz ( z _  zi) 2 ] 

8+a,j }q,(zlz~, z2, z3) = 0, + E (z -z , ) (~-z , )  j < l  
(5 19) 

where A12 = A 1 + A 2 - /~3 ,  etc., 6 = A{,,2 }, '/" = g'o,2} or 6 = A(e,1 ), q* = q*(21} So, for 
the cases (n, m ) =  (1,2) or (2,1) the four-point functmn (5 18) can be expressed m 
terms of the hypergeometrlc functmn 

Consider the operator algebra containing the degenerate fields. Some ~mportant 
mformatmn about this operator algebra can be obtained from the differential 
equations discussed above. For example, consider the product ~p (z)q~a(zl) where ~j 
is some pnmary  field of the dlmensmn A whereas ~ (z )  temporarily stands for one of 
the degenerate fields ~(1,2)(e) or ~(2,1)(z) Let us substitute the expansmn 

~p(z)eoa(& ) = const( z - zl) ~ [ dOa,(zl) + j8(-1)( z - 21)~(71)(Z1) q- 

(5 20) 

into the differential eq. (5.17) In (5.20) ~a' denotes some primary field of the 
dimension A', K = A" - k -- 6 where 8 is the dimension of the field ~p, 1.e one of the 

values gwen by (5 3). Considering the most singular term at z --, z 1, one ~mmedlately 
obtmns the characteristic equanon, determining the exponent 

3K(~ - 1) 
2 ( 2 6 + 1 )  A + ~ = 0  (5 21) 

To describe the solutmns of thas equauon it ~s convement to introduce the following 
parametnzat lon of the dimensions 

1 ") 6 ( a )  = A 0 + ~a- ,  (5.22) 

where A 0 is defined by (5 10). If A = A ( a ) ,  the two solutxons of (5 21) are given by 
the formulae 

/v{1) = a0 + -~(~ + ~ +)2, 

A'(z ) = A o + ¼(a - a ± )  2, (5 23) 
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where a+ are given by (5.11) and a+ ( a_ )  lS chosen If 1]~ =1p(1,2) (@=1~(2,1)) Let 
q~(z) be the pr imary field with the d~mensmn (5.22) The result of the above 

calculataon can be represented by the following symbohc formulae 

+. 2,0,o,= [.,o o.,] 

(5 24) 

Here the square brackets denote the contnbunons of the corresponding conformal 
fanuhes to the operator product expansion of 4' (z)q%~ (z a). In (5 24) overall factors. 
standing an front of these contnbuuons are omitted These factors cannot certainly 
be determined by simple calculauons hke the one performed above* As we shall see 
m the next sectmn, some of these coefficaents could vamsh 

It can be shown that the " fusmn rule" (5.24) is generalized to the cases of 
arbatrary degenerate fields ~k~, ,,~ as follows. 

l+m l+n 

l= l -m /~=l-n 

where the variable k runs through the even (odd) values provided the index n is odd 
(even), the same is vahd for the variable l and the index m So in the general case 
the sum in (5 25) contains n m  terms in agreement with the fact that the degenerate 

field ~P(n m) satisfies the nm-order &fferentml equation. 
We see that the differential equations satisfied by the degenerate fields ampose 

hard constraints on the operator algebra Certainly, m the general case these 
dlfferentml equatmns do not prowde enough lnformauon to deternune the correla- 
tion functions (5.15) completely Even in the cases of the four-point functaons (5 18) 
one has to take into account the ~-dependence of the fields and local propemes  In 
the next section we shall study the "mlmmal  models" of the conformal quantum 
field theory an which all pr imary fields mvolved are degenerate 

6. Minimal theories 

Consider the "fusion rule" (5.24) The substitution q~(~)= ~(1,2) yields 

~P,1,2,~(1,2)= [1~(1,1,] q-[~(1 3)1 (6 1) 

Here (5 9) is taken into account. Slrmlarly, one gets for m > 1 

4(1 2,~P(1,m) = [lP(1,m-1)] q- [lP(1,rn+l)] (6 2) 

* To deterrmne these factors in the quantum field theory, one should take into account the as~oclauvlty 
condmon for the operator algebra and local properties of the fields 
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So, if the degenerate field q'0,2~ is involved m the operator algebra, in the general 
case tins algebra includes also all the degenerate fields ff~i. m). Moreover, assuming 
that the operator algebra also includes the degenerate field +a,1) and using (5.24), 
one can obtain all the degenerate fields ~p~. m~" In the "fusion rule" (5.24) the fields 
~0,2~ and ~2,1) act as the "shaft operators" 

tP(1,2)~(n.m) = [tP(n.m-1)] "+- [l~(n.m+ I , ] ,  (6.3a) 

~P,Z,I?P(.,m, = [~P(.-1,m)] + [~b,.+,.m,] " (6.38) 

The following remark is necessary Using the rules (8.3) formally, one would get as 
a result all the fields of dxmenslon A(., m) given by (5.9) where the integers n, m take 
the zero and negative values as well as positive values In fact, the fields of 
dimension A (., m)with the zero and negative n, m drop out from the algebra, ue the 
operator algebra developed by "fusmg" the fields q'(1.2) and +(2,1)" IP(2,1) proves to 
contain the degenerate fields ~P{.,m) (n, m > 0) only To understand the nature of 
tins phenomenon, consider, for instance, the product ~(1,2)~(2,1) Analyzing the 
dlfferennal equation for the degenerate field ~{1,2)' one gets, according to (6 3a), 

lp(i,2)tP(2,,) = C , [  ~(2 0)] -~- C2 [ 'kit(2,2)], (6 4) 

where ~¢2,0)denotes the primary field of the dimension A~2,0 ) = al 0 + (a+) -~ In (6 4) 
we have exphcltly written out the numerical coefficmnts C 1 and C. of the correspond- 
mg primary fields in the operator product expansion. In the above symbohc 
formulae like (6.1)-(6.3) such coefficients are omitted On the other hand, the field 
~P(2 1). also being degenerate, satisfies the differential eq (5 17) which leads to the 
expansion 

t/J(1.2,~(2,1) ~---C{[ ~b(0.2)] -t- C~[ ~(2 2)],  (6 5) 

where the field q'(0,2) has the dxmenslon Am.2)=3o+ ( a )  2 and C~.C2 are some 
numerical coefficients The comparison of tins formula with (6 4) ymlds that C 1 = C 1' 
= 0 and C 2 = C2'. Hence, the expansion of the product ~1,2)4~2,1) contains the 
contnbutmn of only one conformal famaly 

~(1,2)q)(Z,1) = [+(2.2)] (6 6) 

We shall call the phenomenon described above the truncaUon of the operator 
algebra* It can be shown that for the degenerate fields ~b{. m) tins is the general 

* It is interesting to understand the connection of the truncahon phenomenon with the monodromy 
propertms of the differential equahons satisfied by the correlatmn functions This problem can be 
most easily Investigated for the four-point differential equations If all the fields involved are 
degenerate, the space of solutions of the differential equations proves to contain the subspace 
mvanant under the monodromy transformations The solutions, belonging to this subspace, corre- 
spond to the degenerate fields +~ Ii (k , l>  0) m (6 7) and these very solutions contribute to the 
correlation functmn 
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situation, the degenerate conformal  families [~p(., m>] wlth n, m > 0 actually appear  
only  in the " fu smn  rules" hke (6.3) The general " fus ion rules" for the degenerate 

fields have the form* 

nl+n2--1 ml+m2--1 

#(.,.,~0q~(.2,,~2) = E E [~b(k,y,], ( 6 7 )  
k= In 1 n2[ +1 /= Iml-rnz[ +1 

where the variable k ( l )  runs over the even integers, provided n 1 + rt 2 (m 1 + m2) lS 

odd and vice versa 
So, the degenerate fields (more precisely, the degenerate conformal  famlhes) form 

the closed operator  algebra. Tins observanon gives rise to the idea of  conformal  

quan tum field theory m winch all the pr imary fields are degenerate To examine this 
possibility let us concentrate  once again on the Kac formula (5 9) It is clear that 

there are three distract domains  of  the parameter  c. If  c >/25 the second term in (5 9) 

~s negative and the dlmensxons ~(,,m) become negative for sufficiently large n and 

m. If  25 > c > 1, the d lmensmns A(,,,,7 are, in general, complex Neither  poss~blllty 

is acceptable m the quan tum field theory**  Therefore m what follows we shall 

consider the domain  

0 < c ~ < l  ( 6 8 )  

To unders tand the propernes  of the spectrum (5 9) clearly, let us consider the 
"d iagram of  &mens lons"  shown m fig 1. The verncal and horizontal  axes m tins 

figure correspond to the values of  the parameters  n and m m (5 9). The "phys ica l"  
0 e. the postnve integer) values of  these parameters  are shown by dots. The dot ted 

hne has the slope. 

tg 0 = - a -z -+  = V ~  - c - ~ / 1  - c 

 3-c + ( f - c  
(6 9) 

The value (5.22) of  the dimension is associated with each point  of  the plane m fig. 1, 

the parameter  a being propor t ional  to the distance between the point  and the dot ted 
hne 

* The "fusion rule" (67) can be obtained from the following formula 

m- i n I 

m ,  = 2 , )  1 , )  , 

for the degenerate field ~p(,, ,,,> Although this formula scarcely has a precise mathematical meamng, 
one can use it to derive (6 7) assuming the associanvIty and taking into account the truncation 
phenomenon 

** To avoid misunderstanding let us stress that these statements by no means exclude the possibility of 
quantum field theory erastlng at ~ > 1, but rather prevent from including the degenerate fields in the 
operator algebra 
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q p - m  

1 2 Fig 1 "Dmgram of dtmensaons" The dimension /~=A0+ aa is assocmted w~th each point of the 
plane, a being propornonal to the distance between the point and the dotted hne The dots ~lth 

coordinates (n, m) corresponds to the dimensions A (,, m) descnbed by Kac formula (5 9) 

If  the slope (6.9) takes an arbitrary irrational value, the dotted line in fig 1 passes 

arbitrarily close to some of the dots. Since at c < 1, ~ 0 ~s negative, we meet again 
with the problem of negative dimensions. Let us consider, however, the cases of the 

ranonal  slope 

tg  0 = - e ~ _ / a  + = p / q ,  (6.10) 

where p and q are positive integers. The characteristic feature of the corresponding 
values of  c is that  each degenerate representanon Vj,,, ,., contains not  only one but  
lnflmtely many  null vectors of different dimension This is evident f rom (5 9) and 

(6.10) In  these cases the irreducible conformal  families [~(~,m)] obtained by 
nulhfication of all the null fields, contain considerably fewer fields than the usual 
farmhes and we call the conformal  quan tum field theones, corresponding to (6 10) 
and involving these degenerate fields if(., ,~), minimal theories. It is impor tant  that in 
the mmlmal  theories the corre lanon functions satisfy infinitely many  dlfferennal 

equations, obtained by nulhf icanon of all the corresponding null fields* This fact 
enables one to prove that the operator  algebra of degenerate fields m the nunlmal  
theories possesses not  only " t runca t ion  from below", descnbed in the beginning of 
the section, but  also the " t runca t ion  from above". Namely,  if one starts with the 
fields ff(n,m) with 0 < n < p ,  0 < rn < q, the degenerate fields with n >~p or m >/q 

drop out f rom the " fus ion  rules" (6 7) (like the fields ~t2 0~ and ~(o.2) in (6 4), (6.5)) 
In other words, the conformal  fanuhes [q~(n,m)] with 0 < n < p ,  0 < rn < q form the 

* In fact, these differential equauons are not all independent they follow from two "basic" equations 
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31 
(2,1) 

(1,1) o /  
/ 

/ 

(2,2) / (2,3) 
/ 

/ 
/ 

/ 

/ /  (1,2) (1,3) 

/ 
/ 

1 2 3 4 

Fig "~ Diagram of dimensions corresponding to the case tg 0 = ~ The degenerate conformal 
famlhes associated with the dots inside the rectangle form the closed operator algebra 

c losed a lgebra  which can be t rea ted  as the opera to r  a lgebra  of the qua n tum field 

theory  Note  that  (under  the cond i t ion  (6 10)) n = p, m = q are the coord ina tes  of  

the neares t  dot  in fig. 1 which the do t t ed  line passes through The degenera te  fields 

wi th  the d imens ions  associa ted  with  the dots  inside the rectangle  0 < n < p ,  0 < m < q,  

shown m figs 2 and  3, form the closed ope ra to r  a lgebra  Due  to the dmgonal  

s y m m e t r y  of  this rec tangle  there are ½( p - 1)(q - 1) different  d imens ions  

Cons ide r  in more  detai l  the s implest  nontr lv la l  example  of  the min imal  theory 

co r re spond ing  to the case 

p / q =  ¼, (6 11) 

whach occurs if 

c = ~ (6 12) 

n~ 

4 

(3,1) (3,2) 

(2,1) (2,2) 
/ 

/ 

JJl 
(3,3) / / ' ( 3 ,  4) 

/ 
/ 

j (2,3) (2,4) 

(1.1)//(1.2) (1,3) (1,4) 
/ 

.Jr rrl  

Fig 3 Diagram of dmlenslons for the case tg 0 = ~ ( ~ = ~0 ) 
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The "diagram of dimensions" for this 
the "truncation from above", using this 
the dots in fig 2 are 

A(L1) = 

A(2,1 ) = 

A A Belat,m et al / lnfimte conformalsymmet O, 

case IS shown m fig 2 Let us demonstrate 
example. The dimensions corresponding to 

A(2,3 ) = 0 ,  

_ 1  
/$(1,3) - -  2 ' 

I e = [ e ] ,  e - e = [ I ] ,  

I o = [ o 1 ,  e - o = [ o ] ,  

I I = [ I ] ,  o o = [11 + [el .  (6.18) 

* Certainly, the analysis of the dimensions (6 13) does not prove that the operator algebra contams only 
three pnmary  fields To elucadate the structure of the fields consututang the operator algebra one 
should take into account the ~-dependence and the local properUes of the fields For the model under  
consaderauon tbas ts done m appendtx E 

obtamed. 

A(1,2) = A2.2 ) = 1 (6.13) 

Respectively, there are three degenerate fields* which we shall denote by 

O = ~ ( 1 , 2 ) =  ~(2.2)" (6.14) 

Consider, for instance, the product e e. The field e, being equal to '1'(2,1), satisfies 
the second order dxfferenUal eq. (5 17). Therefore, according to (6.36), one gets 

e-e  = ~P¢2,1?P(2.1)= cl [ I ]  + c 2 [ '/'0,')] ' (6 15) 

where the field ~Po,1) has the dimension AO,1)= ~. On the other hand, since 
e = ~b(t,3), this field satisfies the third order differential equation (D.8) and hence 

e e ~- xlP(1,3)+(1,3)=¢~[I]+c~[~(I,3) ] + C ; [ + F ( 1 , 5 ) ]  , (6 16) 

where the field +(t,5) has the dimension A(Ls)= ~. Comparing (6 16) and (6.15), one 
concludes that in fact 

e - e =  [ I ] .  (6.17) 

By similar considerations the following "fus~on rules" for the fields (6.14) can be 
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It is shown in appendix E that tlus minimal theory describes the critical point of the 
two-dimensional Islng model, the primary fields o, e and I being identified with the 
local spin, energy density and identity operators, respectively 

In fig 3 the "diagram of dimensions" for the rmmmal theory characterized by the 
values 

p / q = ~ ,  c = ~ ,  (6 19) 

is presented as another example The correspondmg numerical values of the dimen- 
sions are 

A(1,1)=A(3,4) = 0,  

AI1,2)=A(3.3)=i~0,  

A(1,3 ) =  At3,2 )=  g ,  

m A(1,4)= A(3 1)-- ~" 

A(2,2I=A(2,3) = ~0), 

A(2,4) = A(2,1) = ?6 (6 20) 

Note that due to the lnequalltms (6 8) the integers p and q m (6 10) are restricted as 
follows 

3 < p / q <  1 (6 21) 

Nevertheless, there are infinitely many rational numbers, satisfying (6 21) and each 
of them corresponds to some minimal model of the conformal quantum field theory. 
We suppose that the rmnlmal theories describe second order phase transitions in 
two-dimensional systems with discrete symmetry groups* In any case each of the 
minimal models seems to deserve a most detailed investigation. Note that the 
anomalous dimensions associated with each of the minimal model are known exactly 
(they are given by the Kac formula (5.9)), whereas the correlation functions can be 
computed in the following way. At first one has to derive the corresponding 
conformal blocks as solutions of the respective differential equations with the 

* V Dotzenko has noticed that the spectrum of dimensions assocmted with the nnmmal model 

4 

contains some dimensions charactenstlc of the three-state Potts model 
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appropriate initial conditmns. Then, substituting these conformal blocks into the 
bootstrap eq (4 18) and taking into account the local properties of the fields, one 
should calculate the structure constants C~,, of the operator algebra, winch provide 
enough information to construct the correlation functions. For the mlmmal theory 
(6.11) this computation is presented in appendix E. In the general case xt has not yet 
been performed. 

We are obhged to B Felgm for numerous consultations about the representations 
of the Vlrasoro algebra and to A.A Mlgdal for useful discussions The two of us (AB 
and AZ) are very grateful to D Makagonenko and A A. Anselm for the kind 
hospitality in the Scientific Center m Komarovo during January 1983 where ttus 
work was completed. 

Appendix A 

Let L I, L o, L+I and L 1, L0, L+I be generators of the lnfimteslmal projective 
transformations 

z ~ z + e _  1 + eoz + el Z2, 

- ~ - ~ +  ~-1 + ~o 5 + ~152, (A 1) 

where e and ~ are infinitesimal parameters. The operators L,, s = 0, +_ 1 satisfy the 
commutation relations 

[Lo, L ± I ]  = ± L ± I ,  

[ L 1 , L  1]=2Lo . (A 2 )  

The same relations are satisfied by the L,'s, the L 's  and L 's  being commutative The 
operators p0 = L 1 + L'-I and p1 = - t ( L  1 -  ~, 1) are components of the total 
momentum, whereas M = t (L  o - L o )  and D = L 0 + L'0 are generators of the rota- 
tions (Lorentz boosts in the Mmkowskl space-time) and dilatations, respectively The 
operators L 1 and L,1 correspond to the special conformal transformations The 
vacuum of the conformal quantum field theory satisfies the relations 

(OIL,= L, IO)=O, s = O , + l ,  (A3 )  

wluch are equivalent to the asymptotlc condition (2 14). 
We shall call the local field Oi(z, Z) quaslprtmary, provlded it satlsfles the 

commutauon relatlons. 

" O z  

[Z~,Ol(z,~.)] = [,U+I-O~ ~ + ( s +  1)-A/2~]@(z,~),  (A 4) 
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where s = 0, + 1. The constants A t and A~ are dlmensmns of the field Ot These 
relatmns mean that the fields Ol(z,  ~) transform according to formula (1 16) under 
the projective transformations (1 15) Tlus d~stmgulshes them from the primary 
fields q~, winch transform according to (1.16) with respect to all conformal transfor- 
mations (1 9)*. In the conformal quantum field theory the complete set of local 
fields A s, forming the algebra (1 6), can be constituted by an infinite number of 
quaslprlmary fields and their coordinate derivatives of all orders 

z 8~ t, Oz 2or,  . ) .  (A 5 )  

Consider an N-point correlation functmn of the quaslpnmary fields It follows 
from (A.3) and (A.4) that this correlation function satisfies the equations 

. o . ( - . N .  = 0. (A 6) 

where s = 0, +_ 1 and A, are the differential operators 

N 0 

t '=] 

N 

N 

where AI, A 2, , A N are dimensions of the fields Oll,. O&, respectively Eqs (A 6) 
are the projective Ward identities. Note that these Ward identities follow &rectly 
from the general relation (2 9) For the mflmteslmal projective transformations the 
functmn e(z )  is regular in the finite part of the z-plane and due to the asymptotic 
condition (2.14) the contour integral in (2.9) vanishes. Let us stress that for the 
general conformal transformations the analytic funcuon e(z )  has slngularmes 
Therefore the corresponding Ward identities cannot be reduced to the closed 
equations for the correlation functions hke (A.6) The general solution of eqs (A.6) 
(and the analogous equations obtained by the substitution z~ ---, ~,, A, ~ A, ) ~s 

(Oil(Zl ,~l) .  OI~I(ZN,ZN))=H(ZI--~ . j )  (ZI--Zj)T'/Y(x~tjI, x~lll ) , ( A S )  
t <j 

* Ob 'v lous ly ,  any pnmary Ileld is quaslpnmary whereas there are infRmtel) many quasipnma~ fields 
which are secondaries 
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where ~,,j and ~,j are arbitrary solutmns of the equations 

Y'. 3',j = 2A, ,  ~-~ ~u = 2A, ,  (A.9) 
~at j e t  

whereas Y is an arbitrary functmn of 2 ( N -  3) anharmomc quotients 

(A.10) (z, z , ) (z~-~ '  (~, ~ , ) ( ~ - - ~  

In the parttcular cases N = 2 and N = 3 the correlation functmns are determined by 
formulae (A 8)-(A 10) completely up to the numerical factor Namely, 

0 ff A/, 4= Ate or Ah =~ A/: 

( 0 1 , ( 2 1  e l ) O l e ( Z  2 e2))~--- ( 2 1 - -  ] -2 ,3q(7  - ~-2-t", r' ,f (A 11) ' ' "~1 "1 -- 221 ~ l l  

AI, = A/: and A/~ = At , 

for N = 2 and 

{o,,(:~, ~)o,:(=~. ~e)o,,(..,~, ~ ) )  = h,,:,~l-I ( - - , -  .5) -'" (~ , -  ~, ) ~'' 
t <  I 

for N = 3 where D t and Y/,12n are constants and 

A12=Al+A2- -A3  etc., 

(A 12) 

Note that the functions (A 11) and (A 12) are single-valued m the euchdean space 
(obtained by the substitution 5, = z*), provided the spins St= A t -  3z of all the 
fields revolved take integer or half-integer values 

In the conformal quantum field theory the expansion (1.6) can be represented m 
the form 

O,,(z,~_)@,_(O, O) = ,~__., £ Yt't,z21'"~ .J,+ t , -J l . . .x ,~S,+/ ,_ . .x ,  -S ,. 
l~ /, /,=0 

x 0;~0~ o,,(;,?)] , 
J~',f=o 

(A 14) 

where yl3, k.i ht: are constants, k and } being integers The transformation propertms 

~12 = ~ l  -~ ~2 -- ~3 etc (A 13) 
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of the both s~des of this equation with respect to the projective transformations (A 1) 
must coincide Commuting both s~des of (A 14) with the projective generators L~, 
s = 0, + l and using (A 4)~ one gets equations relating the coefficients E/' '  ~ x with 

- -  I l l  2 

different values of k. Solving these equations, one can rewrite (A 14) as 

o,( : ,  ~ ) o,(o, o ) = Z G/;: ~'- ~ ' -  ~ 
l '  

where the case I 1 = l 2 is considered for the sake of slmphclty, gl~ = A/~ = A A l, = g '  
In (A 15) G[t are the constants, coinciding with Yt~ ' ' °°  in (A 14) and F(a, c,~x) 
denotes the degenerate hypergeometric function 

Obwously, each conformal family [ ~ ]  = V,, × V,,, (see sect 3) contains infinitely 
many  quaslprlmary fields These fields correspond to the states satisfying the 
equauons 

L~[l) = Z l l l )  = 0 ,  

Lol l )  = zatll),  golZ) = 7~A15 tA 16) 

It can be shown that the basis in [q~,,] can be constituted by the states 

(L 1)"(~ ~)~jl), (A 17) 

where n, ff = O, 1,2, . and I/) are the quaslprlmary states, belonging to [4~,,]. This 
statement is eqmvalent to (A 5) because the operators L ~ and I. i are associated 
with the derivatives O/Oz and 0 /0Z 

Appendix B 

Here we shall demonstrate that the coefficients B/{~  in (4.2) are determined l - / 1  rt l  

completely by the reqmrement of the conformal symmetry of the expansion (4 1), 
considering the particular case A = A = A for the sake of simplicity. Applying 
both sides of (4 1) to the vacuum state, one gets the equation 

qa.~(z, ~)[A) = ~C~.~z'a'-2a5 "a' 2"a~a(z)~a(.7)[A,), (B 1) 
/ 

where IA) is the pnm ary  state of the dimensions A. ~ and the operator 9~a(z) is 
glven by the ser~es 

q~a(z) = Z zEX'~.~ '{~}L A, L ~ ,  (B 2) 
{A} 
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The same formula with the substitution z --* ~,/3 --* fi, L --* L holds for ~ ( 2 )  Let us 
consider the state 

Iz, a ' )  = ~ ( z ) l a ' ) .  (B 3) 

It can be represented as the power series 

oo 

Iz,A'> = ~_, zNIN, A'>, (B 4) 
N=0 

where the vectors IN, A'> satisfy the equations 

LoiN , A'> = ( A t+ N)[N, A'>. (B 5) 

To compute these vectors let us apply the operators L,  to both sides of (B 1) This 
leads to the equations 

zn+l-d-7+ A(n+ l)zn Iz, A ' ) = e ,  lz, A') (Be)  

Substituting the power series (B 4) one gets 

Ln[N + n ,A ' )  = I N +  ( n -  1)A + A']IN, A') (B 7) 

Actually, one can consider eqs. (B 7) with n = 1, 2 only because m virtue of (2 21) the 
remaining equaUons follow from these two Solving these equatmns one can com- 
pute the power series (B.4) order by order In the first three orders the result xs 

[ A '+  11 L~ 2At( A t -  1)+  2A(2A' + 1) 
Iz, A'} = 1 + ½zL_ 1 + ¼z" 2a '  + 1 + z c(2A' + 1) + 2a'(8A' - 5) 

X L 2 + 2(2A' + 1) L21 + "" IA') (B 8) 

This formula gwes the first three coefficmnts fl in (B 2) 
Obviously the conformal block o;(a,a', x)-= oGJ{a'lx) is given by the scalar 

product 

q(a, a', a'). (B 9) 

The first few terms of the power expansion of this function can he directly obtained 
from (B 8) 

A'(a' + 1)2 
l+ a'x+ 4(2a'+ 1) a" 

[A'(1 - A') - 2A (2a'  + 1)] 2 

+ 2 ( 2 A ' + l ) [ c ( 2 A ' + l ) + 2 A ' ( 8 A ' - - 5 ) ]  ~2+ f" 
(B.aO) 
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Appendix C 

Consider the associative algebra determined by the relauons 

371 

Also introduce the diagram 

C i j  K = 

Eq (1 6) IS just (C 1) where each of the indices, say I, combines the space coordinate 
and the index t, labelhng the fields. Let the algebra (C 1) be supphed with the 

symmetric blhnear form 

DIj = { A ~ A j ) ,  (C 2) 

winch is no other than a set of all two-point correlation functions Let us introduce 
the form 

c .K = E (C 3) 
K' 

and assume that tins is a symmetric function of the indices I, J,  K Evidently, (C 3) 
coincides with the three-point correlation funcnon 

CIj K = ( A : A j A K ) ,  (C 4) 

and it can be conveniently represented by the "vertex" dmgram 

I 

/ 
K 

, \  

J 

f d DIJ = 

for the "reverse propagator" Dladefined by the equation 

E D 1 %  = ~J. 
K 

The assoclatlvlty condmon of the algebra (C 1) 

Z c,Sc = Z 
K K 

(c 5) 

(c 6) 

(c 7) 

(c8) 

A , A j  = Y~ C ~ A  K (C.I) 
R 
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can be represented by the diagrammatic equation 

\ 
\ , , /  

\ 

K = " K . . . .  , < (C9)  
- ( 

/ ',, 

wtuch coincides with the "crossing symmetry" condmon by the four-point functions 

( A , A j A t A M }  (C 10) 

Appendix D 

In this appendix we shall derive the differential equation satisfied by the correla- 
tion function 

where q;(:) denotes any of the degenerate fields +¢1.3)(z) and q'~3 l>(z) , whereas 
0,(z) are arbitrary primary fields with the dimensions/X,, t = 1,2, , N First of all, 
note that the state 

IX3) = ( A + 2 ) L  3 - 2 L  1L 2+(A+l----~L3 I IA}, (D2)  

(where IA) is the primary state with the dimension A) is the null vector (with the 
dimension /X + 3). provided /X takes any of the values A(1 3)or/xt3 ip i.e 

n--~*[7-c_+ V ' ( 1 - ~ 1 ( 2 5 - ~ ) ]  (D 3) 

The equivalent statement is that the operator 

O 1 03 
X ' ~ + 3 ( z ) = ( A + 2 ) ~ - 3 ) ( z ) - 2  ~(-m(z)-¢ A + I  c3z 3 ~ ( z )  (D4)  

is the null field of the dimension /~ + 3 In (D.4) are the secondaries of the 
degenerate field 6 (z )  (=  6(1.3) or ~3 ll) and /X is given by (D 3) The differential 
equat,on for the correlation function (D 1) follows from the condition 

Xa+3=0 .  (D.5) 
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It follows that 

(@(-2)(Z)~l (Z1) ~)N(ZN)) 

,=1 (Z--Z,)  2 + t= Z-- Z, OZ, (~(Z)~I(Z1)  ~V(2N))" (D.6) 

(~(-3)(Z)d~I(Z1). ~N(2N)) 

. . . .  + - (+(2)~l (Z1)  .d~N(ZN)) 
1=1 (Z--Z/) 3 /=1 (Z--Z,)  2 ~ l  

(D 7) 

Subsntutmg (D 4) into (D 5) and taking into account (D.6) and (D 7), one gets the 
third order differential equanon 

1 0 3 N 2 k k ,  N k 0 

A + 1 0 Z  3 t~=l ( ;777)3  t_~l ( 2 _ 2 , )  2 0z, 

a' 2A, 0 x 2 02 1 

In the particular case N = 3, the derlvatwes can be excluded by means of the 
projective Ward ldentltmS (A 7) Simple calculations lead to the following ordinary 
dlfferentml equation 

1 d 3 3 1 , d 2 -~1 A - 2 A ,  d 5" +- -- - -  " F "  - -  - -  - -  

A + 1 dz3 "" z d z  2 dz  ,=l ,= (~__ )2 

3 2AA 3 2A + 2 + A,j  
E - - + E  
,=1 ( z - z , )  3 ( : - : , ) ( ~ - ~ , )  

+ Z (z-Z-i~(S~-z,) (z z,~-~ + I---z,)  (,~(-)<(:1)<(:2)~,~(-,3)> =o, l<] 

(D 9) 

where 

A12 =A1 + A 2 - / " 3  etc 
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Appendix E 

As IS well known (see, for instance, [15] and references thereto), the two-dimen- 
sional Ismg model is eqmvalent to the theory of free Majorana fermlons In the 
continuous limit tins theory IS described by the lagranglan density 

1 0 
= ~ b - ~  ~b + ½07-~z ~ + m ~ .  (E.1) 

where m is the mass parameter, proporuonal to T - T  c, and (~p, {)  is the two- 
component Majorana field* In what follows we shall consider the crmcal point 
only, where tins field is massless. 

m = 0 (E.2) 

According to (E.1), m tins case the fields q~, ~/ satisfy the equation of motion 

o __a 7 = Oz o, (E3) 

and therefore these fields are analytic functions of the vanables z and ~, respec- 
tively We shall write 

~ =  q~(z), ~b = ~p(5) ( E 4 )  

The stress-energy tensor corresponding to tins theory can be computed directly In 
the case (E 2) at is traceless and the components (2.5) are given by the formulae 

0 
T ( z ) = - ~ 2  +(z )~Tz~P(z ) .  

(ES) 

It can be easily verified that the fields (E 5) satisfy the Vlrasoro algebra (2 21), the 
central charge c being 

c = 1 (E 6) 

The fundamental fields + and ~7 satisfy the relations (1 16), 1 e these fields are 
primary. The dimensions of the field qJ(z) (~(Z)) are A = ~, ~ = 0 (A = 0, ~ = ½) It 
can be shown that four conformal families [I], [+],[~/],[ ~p  ] contltute a complete 
set of fields (Aj }, forming the operator algebra (1.6) 

* The field ~p is an independent component but m general it is not the complex conjugated value of tht. 
field qJ 



A A Belavm et a l /  lnfmtte eonformalo'mmetry 375 

Let us take, for Instance, the field q, (z) This primary field proves to coincide with 
the degenerate field 4,(2.i)(z) (see (6.13)) Actually, the operator product expansmn 
for T(f )~(z )  (winch is easily computed ff (E.5) is employed) is given (up to the first 
three terms) by the formula 

1 1 1 0 3 0 2 . 

T(~)q,(z) 2 ( ~ _ z )  2~(z )q  f - z  O z L P ( z ) + 4 ~ z Z ~ P ( z ) + O ( ~ - z ) '  ( E 7 )  

winch shows that the secondary field (5.2) vamshes. Therefore, the correlation 
functions, involving the degenerate field ~b(z), satisfy the differential equation 

40Z 2 t= (Z--Z,)- ,= --Z, Og, / tP(Z)~l(Z1) ~)N(Z~)) =0,  (E8 )  

where O,(z) are arbitrary primary fields (which are local themselves but not 
necessarily local with respect to ~ (z)) In particular, the correlation functions 

.. 4 ( : N ) ) ,  ( E 9 )  

(which can be computed If the Wick rules are used) satisfy (E 6) 
On the other hand, the critical Islng model can be described in terms of either the 

order-parameter field o(z, Z) or the disorder-parameter field /,(z, ~)* Obviously, 
the fields o and ~ are primary. These fields have zero spins, i e Zlo = ~ ,  Au = 7{ 
and In virtue of the Krammers-Wanler symmetry, have the same scale dimensions 

A o = A  = A .  ( E l 0 )  

The fields o(z, ~) and t,(z, ~) are neither local with respect to the fields ~(z )  and 
~(~)  nor mutually local. In fact, the correlation function 

(~(Z)O(~I )  * O(~2~-1)/~(~2~¢) • //'(~2M)) ( E l l )  

~s a double-valued analytm function of z winch acquires the phase factor ( -  1) after 
the analytical commutation around any of the singular points .:k = ~ + t~ .  k = 
1, , 2 M  It follows from the definition that the products ~(~)o(z.=.) and 
~(~')#(z, 5) can be expanded as 

~ ( ~ " ) a (Z ,Z )=  (~ ' - -Z)1/2{~(Z,~)-~-  O(~--Z)} ,  

e ) =  + o ( ; -  (E 12) 

* The fields o and /* are the scahng hmlt of the lattice spin % m and the dual ~pm #,,. 1 ~, ,, ~ ~ 2. 
re~pecUvely See ret [15] for the detatled defimtmn 
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Substituting these expansions Into the differential eq (E.8), one gets the characteris- 
tic equaUon, determining the parameter a 

A = ~  (E.13) 

in agreement with the known value of the scale dimension of the spin field 
d o = 2A = ~ [15] So, the differential eq. (E 8) together with the quahtatIve properties 
(E 12) of the operator algebra enables one to compute exactly the dlmensmn of the 
field o(z. ~) 

Now we are to compute the correlation functions of the order and disorder fields 

(E14) 

Note that the double-valued funcUon (E 11) can be represented by 

2 M  
1/2 r,l , = H (=- =,)  tZlZ,,5,), (E15) 

t=l 

where P(z l z  ,, 2~) is a polynormal m z: 

2 M - 1  

r ( z ] z , , ~ , ) =  ~ ( z - z a v ) ~ G A ( z , . 5 , )  (E16) 
/ , = 0  

The order 2 M -  1 of this polynonnal is determined by the asymptotic condmon 

~ b ( z ) -  z - '  z--) ~ (E17) 

The coefficients G~ are some funcUons of z 1, , Z2M, ~ ,  ,5: ~t In virtue of (E 12), 
the coefficient G0(z,, 5,) coincides with the correlauon function (E 14) SubsUtutlng 
(E 15) into the differential eq (E.8), one gets the dlfferentml equations for the 
coefficients Gt (z z, 5,) which enables one to compute the correlaUon funcUon (E 14) 

In fact, the dffferenUal equaUons for the correlation functions (E 14) can be 
obtained m a simpler way Note that comparing (E 13) with (6 13), the field o(z, 5) 
is the degenerate field ~P(1 2)with respect to the both variables z and ~ The same is 
vahd for the field ~(z, ~) Therefore, the correlation functions (E 14) saUsfy the 
differential equations 

( 4 0 2 2~,I 1 2g I  
E E ! o 

X (o'(21, ~1) O{Z2N,Z2N)~(Z2N+I,~2N+I ) /~(22M,.g2~l) ) = 0 ,  (E ]8) 

(where t=  1, 2. ,2M) and the differential equaUons obtained from (E 18) by the 
substltuUon., 
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Let us consider, for example, the four-point correlation funcuon 

G(~I,  ~ 2 , ' ~ 3 ,  '~a)  = ( a ( ' ~ t ) ° ( ' ~ 2 ) ° ( ' ~ 3 ) ° ( ~ 4 ) )  

= [ (21  --  2 3 ) ( 2 2  --  Z 4 ) ( ~ 1  --  : 3 ) ( : 2 - -  : 4 ) ]  - 1 / S y ( x , ~ ) ,  

where Y(x, X) 1s some funcnon of the anharmonlc quotients 
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(E 19) 

4d2 , [1+  1 ] 1  1 
3 dx  2 16 x 2 ( X  --  1) 2 8 X(X -- 1) ~- -- + x x - 1  

The change of variables 

reduces (E 23) to 

The same equation with respect to ~ is also vahd Subsututmg 

Y(x, .~) = [ x.~(1 - x)(1 - x) l  -1/*u( x, E),  

one gets the following equation for 

( 0 } 

X ----- sin20, X = sin20, (E 24) 

02 ~+~)u(O,O)=O (E25)  

The equation obtained from (E 25) by the substitution 0 ~ 0 is also vahd Therefore, 
the general solution of these &fferentlal equations has the form 

u(O, 0) = uucos½0cos½0 + Ul2COsl0 sin½0 

+ u21sln½0cos½# + u22sm~0 sin½0, (E 26) 

where u~# (a,  fl = 1, 2) are arbitrary constants 

d }Y(x,X)=O 

(E 21) 

(E 22) 

(E 23) 

(we took into account (A.8)). In this case the dlfferenual eq (E 18) is reduced to the 
following form. 

( Z l  - z 2 ) ( : 3  - z 4 )  ( : 1  - ~ 2 ) ( : 3  - ~ 4 )  
:~ = 2 = ( E 2 0 )  

( z l - - ' 3 ) ( z ~ 0 - - ' 4 )  " (~i - e 3 } ( ~ 2 -  ~ 4 )  " 
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Note that two independent solutmns of (E.21) coincide wxth the conformal blocks 
(see (B 9)) 

~ ( ~ , 0 ,  x) = [x(1 - x)] - i /Scosl0 ,  

~-(~, I ,  x)  = [x(1 - x)] -1/Ssm½0, (E 27) 

and therefore the formula (E.26) can be considered as the decomposmon (4.11), the 
coeffioents u~¢ being the structure constants 

Since the field o(z, ~) is local, the correlation function (E 20) should be single-val- 
ued m the euchdean domain 

= x*, (E.28) 

where the asterisk denotes complex conjugation. As it 1s clear from (E 24), the 
analytical contmuauon of the variables x and ~ around the singular point x = ~ = 0 
corresponds to the subsututIon 

0--+ -0 ,  O~ -0  (E29) 

The function (E 26) is unchanged under tins transformation provided 

U12 = U21 = O. (E.30) 

The same mvesugatlon of the singular point x = ~ = 1 (or, equivalently, imposing 
the crossing-symmetry condmon) leads to the relation 

Ull  ~- U22 (E 31) 

The overall factor in (E 26) depends on the o-field normahzatton We shall normal- 
lze tins field so that 

Then 

< o ( z ,  = (E 32) 

u(O,O) = cos (0- 0) (E 33) 

The four-point function gwen by the formulae (E.20), (E.22) and (E 33) 1s m 
agreement with the prevmus result (see ref. [16]) obtained by a different method 

Note that in virtue of (E.27) the four-point function (E 20) can be represented as 

G=°Y(~,O,x)~(l~,O,~)+U(~,~,x)~(~,½,~) (E34) 



4 A Belavm et al / I n f m t t e  conformala~mmetr~ 379 

It is evident from this formula that only two conformal famlhes contribute to the 
operator product expansion of o(~)o(0) The corresponding primary fields have the 
&menslons zi = ~ = 0 and zi = ~ = ½ The first of them is obviously ldennfled with 
the identity operator I whereas the second is known as the energy density field 

= (E 35) 

The four-point correlation function 

H(~I ,  ~2, ~3, ~4) = (o(~1)/1 (~2)°(~3)~(~4)> (E.36) 

can be represented in the form 

H = [ ( z 1 - z 3 ) ( z z - z 4 ) ( 2 1 - , ~ 3 ) ( S z - e 4 ) ]  1/Sy(x, ff), (E37)  

where the function }" satisfies the same differential equation (E 21) The investiga- 
tion similar to the one performed above leads to the result 

l~(x, ~) = [xff(1 - x)(1 - if)] ~/Ssml(O + t)) (E 38) 

Therefore the function (E 36) is 

v-; 1 ~, x )~:~( ~ , O, Y; ) (E39)  F 5 , 7 ,  

Tins formula corresponds to the following operator product expansion 

(E 40) 

which is in accordance with the idea of the field ~p as the regulanzed product o/~ 
To avoid misunderstanding, let us stress that there are three different sets of fields 

{A~)= {[1],[q '] ,[~],[~]) ,  

{ C j } =  {[I],[l~],[e]}, (E41)  

Each of these sets forms the closed operator algebra and it is appropriate to describe 
the cnucal Ismg field theory All the fields entering the same set are mutually local 
whereas the fields entering different sets are in general nonlocal with respect to each 
other 



380 d A Belavm et a l /  Inflmte eonformal svmmetr~ 

References 

[1] A Z Patasl'unskal and V L Pokrovskn, Fluctuation theory of phase tranbltlons (Pergamon, Oxford, 
1979) 

[2] A M Polyakov, ZhETF Iett  12 (1970) 538 
[3] A A Mlgdal, Phys Lett 44B (1972) 112 
[4] A M Polyako',, ZhETF, 66 (1974) 23 
[5] K G  Wilson, Phys Rev 179 (1969) 1499 
[6] B k Fetgcn and D B Fuks, Funktz Anahz 16 (1982) 47 
[7] V G Kac, Lecture notes in phys 94 (I979) 441 
[8] S Mandelstam, Phys Reports 12C (1975) 1441 
[9] J H Schwarz, Phys Reports 8C (1973) 269 

[10] I M Gelfand and D B Fuks, Funktz Anahz 2 (1968) 92 
[11] M Vlrasoro, Phys Rev D1 (1969)2933 
[12] H Bateman and A Erdelyl, Itagher transcendental functions (McGraw-Hill, 1953) 
[13] A Polncare, Selected works, vol 3 (Nauka, Moscow, 1974) 
[14] A M Polyako~, Phys Lett 103B (1981) 207 
[15] B McKoy and T T Wu, The two-dimensional Ismg model (Harvard Umv Press, 1973) 
[16] A Luther and I Peschel, Phys Rev B12 (1975) 3908 


