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AbstrAct
Network functions virtualization and cloud-

based security services will become increasingly 
common in enterprise network systems to reduce 
the system operation costs and take advantage 
of the diverse network security functions (NSFs) 
developed by multiple vendors. In such a network 
environment, standardizing the interfaces to the 
NSFs of different vendors is essential to simplify 
the management of these heterogeneous NSFs. 
In addition, software-defined networking can be 
imposed to optimize the security service pro-
cess in such cloud-based service environments 
by enforcing some types of packet filtering rules 
at the SDN switches, instead of NSFs possibly 
placed in remote clouds. The Interface to Net-
work Security Functions (I2NSF) Working Group, 
which is part of the Internet Engineering Task 
Force, is currently developing a set of standard 
interfaces to such heterogeneous NSFs. In this 
article, we present the design and development of 
an I2NSF architecture and propose improving its 
efficiency by integrating it with SDN. In our work, 
we implement the SDN-integrated I2NSF architec-
ture and its security applications. This article also 
discusses several standardization and research 
challenges for I2NSF.

IntroductIon
Recent advances in cloud computing and network 
functions virtualization (NFV) technologies [1] 
have made it feasible to provide network services 
through virtual service functions running on cloud 
servers. It is also possible to outsource these virtu-
al service functions to third-party solution vendors 
[2]. This cloud-based service provisioning model 
offers several advantages such as cost saving and 
flexible and efficient resource utilization. This ser-
vice model is particularly useful for providing net-
work security services to the users. For example, 
in the scenario of a distributed denial of service 
(DDoS) attack, it is possible to rapidly and flexibly 
respond to the intensive attack traffic by dynam-
ically increasing the number of DDoS mitigation 
instances. Moreover, this cloud-based security ser-
vice model facilitates the deployment of various 
security functions developed by multiple security 
solution vendors. This is well suited to satisfy the 
growing requirement of enterprise network sys-
tems to integrate these security functions to build 
more secure systems. Consequently, the demand 
for cloud-based security services is increasing [3].

Network security functions (NSFs) developed 
by different vendors have different interfaces for 
their configuration and management because 
there is no industry standard of interfaces to NSFs. 
This heterogeneity introduces complexity in the 
management of the NSFs of multiple vendors, 
resulting in increased management costs. There-
fore, standardization is essential to successful-
ly deploy the NSFs offered by various vendors. 
Recently, some standardization activities have 
been in progress in the Internet Engineering Task 
Force Interface to Network Security Functions 
(IETF I2NSF) Working Group [4, 5] to satisfy these 
demands (i.e., to develop standard interfaces for 
the NSFs).

In this article, we present the design and devel-
opment of an I2NSF architecture that provides 
standard interfaces for the efficient control and 
management of the NSFs offered by diverse ven-
dors in cloud-based security service environments. 
Being active members of the IETF I2NSF Work-
ing Group, we are developing a set of standard 
information and data models that are the key 
to building the standard interfaces in the I2NSF 
architecture. Based on these standard information 
and data models, the I2NSF architecture is able to 
provide an efficient and flexible security service 
environment that is driven by the security policies 
expressed in the information and data models.

Software-defined networking (SDN) [6] allows 
dynamic and flexible changes in network behavior 
by controlling and managing the configurations 
of the network resources, such as switches and 
routers, programmatically. This capability makes it 
feasible to enforce some packet filtering rules at 
the switches by controlling their packet forward-
ing rules.

In this article, we propose to integrate an 
I2NSF architecture with SDN, and divide the appli-
cation of the security policy rules among the SDN 
switches and NSFs by taking advantage of the 
SDN technology. Specifically, switches enforce 
simple packet filtering rules that can be translated 
into their packet forwarding rules, whereas NSFs 
enforce NSF-related security rules requiring the 
security capabilities of the NSFs. Thus, if switches 
can make decisions on some received packets 
according to their packet forwarding rules pro-
grammed by a switch controller, we can avoid 
unnecessary latency for the packets taken by an 
NSF for a time-consuming inspection task. In addi-
tion, because all the packets do not necessarily 
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pass through an NSF, we can reduce the possi-
bility of congestion in an NSF. In this work, we 
implement an I2NSF architecture integrated with 
an SDN network.

The contributions of this article are as fol-
lows. First, we develop an I2NSF architecture 
and a set of standard interfaces in that architec-
ture to enable efficient and flexible security ser-
vice provisioning in cloud-based security service 
environments. Second, we propose a seamless 
integration of the I2NSF architecture and SDN 
to improve the efficiency of the security service 
enforcement process. Third, we implement the 
SDN-integrated I2NSF architecture of two exam-
ple security service scenarios. Finally, we discuss 
several standardization and research challenges 
of I2NSF.

The remainder of this article is organized as 
follows. The next section describes the I2NSF 
architecture and its integration with SDN. Then 
we present the proof-of-concept implementation 
of the SDN-integrated I2NSF architecture and its 
security applications. Following that, we discuss 
several standardization and research challenges 
for I2NSF. Finally, we conclude the article.

I2nsF ArchItecture
components

Figure 1 shows the I2NSF architecture consist-
ing of the following five components: I2NSF user, 
security controller, vendor’s management system 
(VMS), NSF forwarder (NSFF), and NSF.

I2NSF User: The I2NSF user in the figure rep-
resents the administrator of the enterprise net-
work where a security policy should be enforced. 
The I2NSF user describes a high-level security pol-
icy without considering the underlying NSFs, and 
sends a request for the high-level security policy 

to the security controller.
Network Operator Management Security 

Controller (Security Controller): The network 
operator management security controller is the 
most critical component, which orchestrates and 
manages the NSFs so that they cooperatively 
enforce the security policy requested by an I2NSF 
user. After receiving a high-level security policy 
request from an I2NSF user, the security control-
ler determines the types of NSFs that are required 
to enforce the security policy, generates low-lev-
el security policy rules for each of the required 
NSFs, and finally updates the configuration of 
each NSF with the generated policy rules. In addi-
tion, the security controller monitors the NSFs 
running in the system and maintains various infor-
mation related to each NSF (e.g., network access 
information and workload status).

Vendor’s Management System (VMS): The 
VMS is managed by a third-party security vendor 
offering NSFs. The VMS performs the dynamic 
life cycle management of its NSF instances in 
response to the requests of the security controller. 
As depicted in Fig. 1, there can be multiple VMSs 
(e.g., VMS A and B) for different security vendors, 
and this enables an I2NSF user to take advantage 
of the various security functions offered by multi-
ple vendors.

NSF and NSF Forwarder (NSFF): An NSF, 
such as a firewall, deep packet inspection (DPI), 
or DDoS attack mitigator, performs the securi-
ty inspection of the network traffic according to 
the security policy rules provided by the securi-
ty controller. A basic NSF (e.g., firewall) within 
the I2NSF architecture can trigger an advanced 
security inspection (e.g., DPI and DDoS attack 
mitigation) with a different type of NSF based on 
its own security inspection result; for example, 
a firewall triggers a further inspection of suspi-
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Figure 1. I2NSF architecture.
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cious traffic with a DPI. In such cases, the NSFF 
forwards the suspicious traffic from the current 
NSF (e.g., firewall) to the successor NSF (e.g., DPI 
or DDoS attack mitigator) to realize an advanced 
and composite inspection. The NSFF is a logical 
component in that it can coexist with either the 
security controller or the NSF.

InterFAces

This section describes the three interfaces of the 
I2NSF architecture shown in Fig. 1, namely, con-
sumer-facing interface, NSF-facing interface, and 
registration interface.

Consumer-Facing Interface: As shown in 
Fig. 1, the consumer-Facing interface is the only 
interface of the I2NSF user to the I2NSF system. 
Such a design hides the underlying NSFs from the 
users and allows them to specify a user-friendly 
high-level security policy without considering the 
details of the NSFs. The following is an example 
of a high-level security policy of time-dependent 
web access control: Block the access of company 
employees to Facebook from 9am to 6pm [7]. This 
high-level security policy does not require specific 
information about network resources and pro-
tocols, and thus allows the users to define their 
security requirements in a user-friendly manner.

The major purpose of this interface is to allow 
the users to request security services from the 
I2NSF system by sending a high-level security pol-
icy to the security controller. In addition, the secu-
rity controller notifies the users of critical security 
alerts received from the NSFs via this interface. 
By analyzing the received alerts, the users can 
identify new attacks and update (or generate) a 
high-level security policy to respond to the new 
attacks. We developed standard information and 
data models of the consumer-facing interface to 
enable these functionalities (draft-jeong-i2nsf-con-
sumer-facing-interface-dm-05).

NSF-Facing Interface: The major objective of 
the NSF-facing interface is to provide standard 
interfaces to control and manage the NSFs of var-
ious vendors. For this objective, we developed 
generic standard information and data models 
specifying vendor-neutral syntax rules and data 
structures to comprehensively express the security 
policy rules for the NSFs of different vendors that 
have similar security capabilities. (See below for 
more details of the information and data models.) 
In addition, the security policy rules described 
according to the standard are delivered using a 
standard protocol such as Network Configura-
tion Protocol (NETCONF) [8]). Consequently, the 

Figure 2. Standardizing interfaces to the NSFs based on a generic standard information model and a data model: a) condition subtree 
of the information model for the network security group of NSFs; this subtree describes inspection rules of various header fields 
and payloads of packets; b) action subtree of the information model for the network security group of NSFs; this subtree describes 
an action to be taken when a given packet meets the specified conditions; c) standard interfaces to the NSFs of multiple vendors 
using the YANG data model.
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security controller does not have to consider ven-
dor-specific differences between the NSFs when 
configuring them.

Each NSF also uses this interface to periodi-
cally notify the security controller of its current 
status (e.g., workload level and congestion) and 
of the suspicious security events/alerts detected 
by it. In addition, the security controller delivers 
the forwarding configuration information of the 
NSFs running in the system to the NSFF via this 
interface.

Registration Interface: The main purpose 
of the registration interface between the secu-
rity controller and VMS is to perform dynamic 
life cycle management of the NSF instances and 
register new NSF instances into the system. We 
developed standard information and data mod-
els for introducing these functionalities. If a new 
NSF instance is required by the system, the secu-
rity controller requests the VMS to create it. Such 
a request from the security controller contains 
the description of the security capability and 
service capacity that should be provided by the 
requested NSF instance. After creating it, the VMS 
informs the security controller of its identifying 
information (IP address, port number, etc.). In 
contrast with the above case, if some existing NSF 
instance is underutilized, the security controller 
may request the VMS to remove it via this inter-
face.

nsF-trIggered trAFFIc steerIng

In the I2NSF architecture, an NSF can trigger an 
advanced security action (e.g., DPI and DDoS 
attack mitigation) on a packet based on the result 
of its own security inspection of the packet. For 
example, a firewall triggers further inspection of 
a suspicious packet with DPI. For this advanced 
security action to be realized, the suspicious pack-
et should be forwarded from the current NSF 
to the successor NSF. Service function chaining 
(SFC) [9] is a technology that enables this trig-
gering by steering a packet with multiple service 
functions (e.g., NSFs). The I2NSF architecture can 
adopt similar approaches to support the advanced 
security action. To trigger an advanced security 
action, the current NSF appends the metadata 
describing the security capability required for the 
advanced action to the suspicious packet and 
sends the packet to the NSFF.

The NSFF maintains a forwarding information 
table of the NSF instances available in the sys-
tem. Each entry of the table contains the network 
access information and security capability descrip-
tion of the NSF. When receiving a packet to be 
forwarded for an advanced security action, the 
NSFF searches its local table for a matching NSF 
instance that can perform the required security 
action on the packet. If the NSFF cannot locate 
any matching entry in its local table, it asks the 
security controller of an NSF instance with the 
required security capability, and the security con-
troller responds to the NSFF with the information 
of a matching NSF instance. Finally, the NSFF for-
wards the packet to the discovered NSF instance 
using the forwarding information either from its 
local table or from the security controller.

InFormAtIon model And dAtA model For 
stAndArd InterFAces to nsFs

Standardizing interfaces to the heterogeneous 
NSFs developed by different security vendors is 
highly essential for reducing management costs 
and improving system interoperability. To stan-
dardize the interfaces, first of all, the NSFs of the 
various vendors are classified into three groups 
according to their security capabilities: network 
security (e.g., firewall filter), content security (e.g., 
anti-malware scanner), and attack mitigation (e.g., 
DDoS mitigator). The network security group of 
NSFs performs the inspection of layer 2-4 (L2–
L4) headers and payloads of packets, whereas 
the content security group of NSFs performs the 
inspection of packet contents in the application 
layer, for example, to detect malware and mali-
cious URLs. The attack mitigation group of NSFs 
performs detecting and mitigating DDoS attacks.

We define a generic standard information 
model (IM) for each group of NSFs that can com-
prehensively express security policy rules of the 
NSFs. Figures 2a and 2b show the key parts of the 
information model defined for the network secu-
rity group of NSFs that performs the inspection 
of various header fields and payloads of packets. 
The information model defines information items 
and a link to them to express the core semantics 
of the security policy rules of the NSFs (of the 
various vendors) belonging to the same security 
capability group. For example, the different ven-
dors’ NSFs in the same network security group are 
expected to use different formats of the security 
policy rules. However, these security policy rules 
in diverse formats can be generalized to provide 
the same security services with the description 
of a set of conditions to be evaluated for various 
headers and payloads of a packet and a set of 
actions to be taken when the conditions are satis-
fied for the packet. Such an abstraction and gen-
eralization result in a generic information model 
for the same security capability group of NSFs.

Figure 2a shows the condition subtree of the 
IM for the network security group of NSFs, and 
this condition subtree is used to define a set of 
conditions that specify attributes and/or values 
that are to be compared to the headers and pay-
loads of a given packet. The action subtree in Fig. 
2b is used to define the action (i.e., ingress and 
egress actions) to be taken when a given packet 
satisfies the specified conditions. In particular, we 
can specify an advanced security action that trig-
gers a further in-depth analysis using another type 
of NSF, such as an anti-virus and intrusion detec-
tion system (IDS), in addition to simple actions 
such as pass and drop.

The next step is to implement the IM using a 
data modeling language (e.g., YANG [10]), and 
the resulting implementation is referred to as a 
data model (DM). Our implementation of the IM 
using the YANG data modeling language (i.e., 
the YANG data model) is described in an Inter-
net-Draft (draft-kim-i2nsf-nsf-facing-interface-data-
model-04). As illustrated in Fig. 2c, each vendor 
(represented in a different color) implements the 
standard DM for its NSF(s) and pre-configures 
the relevant NSF(s) with the DM implementation. 
Then the NSFs can understand the security policy 
rules described according to their DM.
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When the security controller is required to 
configure an NSF with a new security policy rule, 
it first describes the security policy rule using XML 
according to the syntax definition in the corre-
sponding DM. The XML-encoded security policy 
rule is delivered to the NSF using NETCONF pro-
tocol [8]. The NSF decodes the received policy 
rule based on the pre-configured matching DM 
and extracts the rule data from it. Optionally, the 
NSF can perform an additional process (denoted 
as Translator in Fig. 2c) of translating the received 
rule data into its vendor-specific format if neces-
sary. Finally, the NSF registers the new security 
policy rule in its own policy rule table to perform 
the required security service.

IntegrAtIng sdn wIth I2nsF ArchItecture

SDN enables some packet filtering rules to be 
enforced in the network switches by controlling 
their packet forwarding rules [11–13]. This sec-
tion presents how we can take advantage of this 
capability of SDN to optimize the process of 
security service enforcement in the I2NSF system.

Figure 3 shows the system configuration in 
which the I2NSF architecture is integrated into 
the SDN network.

In this system, we divide the enforcement of 
security policy rules into the SDN switches and 
NSFs. In particular, SDN switches enforce sim-
ple packet filtering rules that can be translated 
into their packet forwarding rules, whereas NSFs 
enforce NSF-related security rules requiring the 
security capabilities of the NSFs.

As an example, let us consider two different 
types of security rules: Rule 1 is a simple packet 
filtering rule that checks only the IP address and 
port number of a given packet, whereas rule 2 is a 
time-consuming packet inspection rule for deter-
mining whether an attached file delivered through 
a flow of packets contains malware. Rule 1 can 
be translated into packet forwarding rules of SDN 
switches and thus be enforced by the switches. In 
contrast, rule 2 cannot be enforced by switches, 
but it can be enforced by NSFs with anti-malware 
capability. Specifically, a flow of packets is for-
warded to and reassembled by an NSF to recon-
struct the attached file stored in the packets. Then 
the NSF scans the file to check the existence of 
malware. If the file contains malware, the NSF 

drops the packets.
In this way, if the switches can make deci-

sions on some received packets according to 
their packet forwarding rules programmed by the 
switch controller, we can avoid unnecessary laten-
cy for the packets taken by an NSF for a time-con-
suming task, which may be placed in a remote 
cloud system. In addition, we can reduce the pos-
sibility of congestion in an NSF because all the 
packets do not necessarily pass through an NSF.

prooF-oF-concept ImplementAtIon
This section describes our proof-of-concept (PoC) 
implementation of the proposed architecture 
using various open source software, and two 
security service scenarios using the implementa-
tion: VoIP security service and time-dependent 
web access control service. (The details of these 
two scenarios will be presented below.) To set up 
an SDN network of our system components, we 
used OpenDaylight (https://www.opendaylight.
org) and Mininet (http://mininet.org). Figure 4 
shows the network configuration of our system 
and the VoIP security service procedure. Although 
the current PoC includes only two types of NSFs 
(i.e., firewall and a VoIP intrusion prevention sys-
tem, IPS), it can be extended with other types of 
NSFs (depicted by the dashed rectangles in Fig. 4) 
according to security service requirements. When 
various types of NSFs exist, the firewall initially 
performs a basic security inspection of a packet 
and triggers a further inspection of a suspicious 
packet with other types of NSFs (e.g., VoIP IPS, 
anti-malware scanner).

The summary of our implementation is as fol-
lows. We implemented a web application for an 
I2NSF user that provides a user interface to con-
figure and generate a high-level security policy. 
We implemented the security controller to trans-
late the received high-level security policy into 
low-level security rules for the NSFs (e.g., firewall 
and VoIP IPS). We implemented the consum-
er-facing interface based on the RESTCONF pro-
tocol [14] using Express.js (https://expressjs.com) 
and the NSF-facing interface based on the NET-
CONF protocol [8] using ConfD (https://develop-
er.cisco.com/site/confD). We also implemented 
the YANG data model that defines the syntax 
rules to express the low-level rules in XML, and 
the low-level rules expressed in XML are sent to 
the NSFs through the NETCONF-based NSF-fac-
ing interface.

Our source codes and documents of the 
above implementation are available at https://
github.com/kimjinyong/i2nsf-framework, and 
a video demo is also available at https://youtu.
be/5iflpVt4l6U.

VoIp securIty serVIce

This service scenario assumes that the admin-
istrators of mobile telecommunications service 
providers want to block malicious VoIP calls to 
their customers. The following is a hypotheti-
cal example of a high-level security policy rule 
that the administrator (i.e., I2NSF user) requests: 
Inspect suspicious VoIP calls of unusual patterns 
(e.g., incoming calls from unusual foreign coun-
tries at unusual times of a day), and block the calls 
identified as malicious ones. The administrator 
sends this high-level security policy to the security 

Figure 3. Integrating the I2NSF system into an SDN 
network.
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controller through the consumer-facing interface, 
and the security controller translates the received 
high-level security policy into low-level security 
rules for both the firewall and the VoIP IPS. In this 
scenario, the firewall is configured with security 
rules to identify VoIP packets of suspicious pat-
terns, and if the firewall detects such a packet, it 
calls the VoIP IPS for a further inspection of the 
packet. Then the VoIP IPS analyzes the suspicious 
packet based on pre-configured security rules to 
determine whether or not it is malicious.

Figure 4 illustrates the following procedure of 
the VoIP security service:
1. An unknown flow’s packet is received by the 

switch (SW) 1.
2. SW1 forwards the received packet to the 

firewall via the switch controller for basic 
security inspection.

3.  The firewall checks the basic header fields 
(IP address, port number, etc.) of the packet, 
and identifies that this packet is a VoIP signal 
packet (e.g., Session Initiation Protocol, SIP, 
packet) of a suspicious pattern.

4. The firewall requests of the VoIP IPS more 
in-depth analysis of the suspicious VoIP 
packet, and the NSFF forwards the packet to 
the VoIP IPS.

5.  The VoIP IPS analyzes the headers and con-
tents of the SIP packet such as the caller’s 
ID and session description headers, and if it 
identifies the packet as a malicious call pack-
et, it consequently drops the packet.

6.  The VoIP IPS also notifies the security con-
troller of the detected malicious call packet.

7.  The security controller requests that the 
switch controller block the subsequent 
packets from the malicious source (i.e., the 
attacker).

8.  The switch controller installs new forwarding 
rules into the switches accordingly.

tIme-dependent web Access control serVIce

This service scenario assumes that an enter-
prise network administrator wants to regulate 
the access of staff members to Facebook during 
business hours. The following is a hypothetical 
example of a high-level security policy rule the 
administrator requests: Block access of staff mem-
bers to Facebook from 9am to 6pm. The admin-
istrator sends the high-level security policy to the 
security controller, which in turn translates it into 
low-level packet filtering rules for both the fire-
wall and the switch controller. For this translation, 
the security controller can interoperate with the 
enterprise network access control server in order 
to retrieve the information (e.g., IP address in use, 
company ID, role) of each employee that is cur-
rently using the network. Based on the retrieved 
information, the security controller generates 
low-level packet filtering rules to block the access 
to Facebook from the IP addresses being used by 
the staff members during the business hours.

This service scenario requires the dynamic 
update of security rules. To achieve this, the secu-
rity controller monitors events that require securi-
ty rule changes, and can automatically update or 
generate an appropriate rule if any event occurs. 
For example, if a new staff member joins the 
enterprise network, the security controller detects 
this event through the enterprise network access 
control server, and generates and installs a new 
rule to enforce the same policy to the new staff 
member.

chAllenges
This section discusses several standardization and 
research challenges for I2NSF, which are summa-
rized in Table 1.
Standardization Challenges: It is important to 
monitor the execution status of the NSFs to 
ensure that the security policies requested by the 
I2NSF users are being properly enforced and to 
detect any failure of the NSFs. Thus, a standard 

Figure 4. Proof-of-concept implementation and VoIP security service procedure.
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protocol should be defined for such monitoring. 
Capability negotiation and discovery is also fun-
damental to the I2NSF system, where each NSF 
has different security capabilities. Therefore, a 
standard method to describe the capabilities of 
an NSF is required for such capability negotia-
tion and discovery. For example, when trigger-
ing an advanced security action, the NSF should 
describe the security capability required for that 
advanced action to discover an NSF with that 
capability. In addition, most NSFs rely on the 
attack signatures and profiles for their operations; 
therefore, it is important to maintain the NSFs 
with extensive and up-to-date attack profiles to 
ensure their effectiveness. Open-source-provided 
databases of attack profiles (e.g., by Snort, Suri-
cata, and Kismet) are useful in this regard. Thus, 
a standard is required for simplifying the process 
of importing open-source-provided attack profiles 
into the I2NSF system.

Research Challenges: Based on the standard 
interfaces discussed above, it is possible to auto-
mate various control and management tasks in 
the I2NSF system. Thus, further research of task 
automation is essential for the success of the 
I2NSF. In particular, the security controller should 
be able to automatically select a proper set of 
NSFs required to enforce a high-level security 
policy requested by the user in a cooperative 
manner, and also automatically generate low-lev-
el security policy rules for each of the selected 
NSFs [15]. Moreover, when the security controller 
investigates the security events and alerts report-
ed by the NSFs, it should be able to intelligently 
identify unknown malicious activities through the 
investigation and to automatically update the net-
work configuration and security rules to deal with 
the attacks in a timely manner. It is also crucial to 
prevent and resolve conflicts between a variety of 
security policy rules by both proactive and reac-

tive approaches. Dynamic life cycle management 
of the NSF instances and traffic load balancing is 
also important for efficient and flexible resource 
utilization.

The security controller performs several criti-
cal roles in the I2NSF system, and a failure of the 
security controller can result in the service disrup-
tion of the entire system. Thus, preventing unex-
pected failures of the security controller is crucial. 
For example, application isolation to protect the 
security controller from buggy applications run-
ning inside is an important research issue in this 
regard. Dynamic key management and distribu-
tion is important to establish secure and authenti-
cated interfaces between the system components. 
Secure binding between an NSF and its capability 
description is also important to ensure the trust-
worthiness of the capability description.

In cloud-based security service environments, a 
packet can be delivered to an NSF placed in the 
cloud system of an external security vendor. In 
this situation, if the external NSF is compromised 
by the attacker, the packet would be exposed to 
various types of attacks such as sniffing and forg-
ery. To prevent these attacks, the user can peri-
odically examine the integrity of the NSF instance 
through remote attestation. In addition, the user 
can sign the packet data before sending it to 
the external NSF to prevent unauthorized modi-
fication of the packet. Every access to the NSFs 
should be carefully authorized to prevent illegal 
changes in the critical configuration of the NSFs.

conclusIon
This article presents an I2NSF architecture that 
enables an efficient and flexible security service 
in cloud-based security service environments. 
The key contribution of the I2NSF architecture 
is standardizing the interfaces to the NSFs of dif-
ferent vendors to simplify the management of 
these NSFs. In addition, we seamlessly integrate 
the I2NSF architecture and SDN to optimize the 
process of security service enforcement by the 
I2NSF system in the cloud-based security service 
environments. We implement the I2NSF archi-
tecture integrated with SDN using various open 
source software to demonstrate its feasibility and 
effectiveness. We finally discuss the standardiza-
tion and research challenges for the I2NSF archi-
tecture.
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