
IEEE Communications Magazine • January 20182 0163-6804/17/$25.00 © 2017 IEEE

AbstrAct
Network functions virtualization and cloud-

based security services will become increasingly
common in enterprise network systems to reduce
the system operation costs and take advantage
of the diverse network security functions (NSFs)
developed by multiple vendors. In such a network
environment, standardizing the interfaces to the
NSFs of different vendors is essential to simplify
the management of these heterogeneous NSFs.
In addition, software-defined networking can be
imposed to optimize the security service pro-
cess in such cloud-based service environments
by enforcing some types of packet filtering rules
at the SDN switches, instead of NSFs possibly
placed in remote clouds. The Interface to Net-
work Security Functions (I2NSF) Working Group,
which is part of the Internet Engineering Task
Force, is currently developing a set of standard
interfaces to such heterogeneous NSFs. In this
article, we present the design and development of
an I2NSF architecture and propose improving its
efficiency by integrating it with SDN. In our work,
we implement the SDN-integrated I2NSF architec-
ture and its security applications. This article also
discusses several standardization and research
challenges for I2NSF.

IntroductIon
Recent advances in cloud computing and network
functions virtualization (NFV) technologies [1]
have made it feasible to provide network services
through virtual service functions running on cloud
servers. It is also possible to outsource these virtu-
al service functions to third-party solution vendors
[2]. This cloud-based service provisioning model
offers several advantages such as cost saving and
flexible and efficient resource utilization. This ser-
vice model is particularly useful for providing net-
work security services to the users. For example,
in the scenario of a distributed denial of service
(DDoS) attack, it is possible to rapidly and flexibly
respond to the intensive attack traffic by dynam-
ically increasing the number of DDoS mitigation
instances. Moreover, this cloud-based security ser-
vice model facilitates the deployment of various
security functions developed by multiple security
solution vendors. This is well suited to satisfy the
growing requirement of enterprise network sys-
tems to integrate these security functions to build
more secure systems. Consequently, the demand
for cloud-based security services is increasing [3].

Network security functions (NSFs) developed
by different vendors have different interfaces for
their configuration and management because
there is no industry standard of interfaces to NSFs.
This heterogeneity introduces complexity in the
management of the NSFs of multiple vendors,
resulting in increased management costs. There-
fore, standardization is essential to successful-
ly deploy the NSFs offered by various vendors.
Recently, some standardization activities have
been in progress in the Internet Engineering Task
Force Interface to Network Security Functions
(IETF I2NSF) Working Group [4, 5] to satisfy these
demands (i.e., to develop standard interfaces for
the NSFs).

In this article, we present the design and devel-
opment of an I2NSF architecture that provides
standard interfaces for the efficient control and
management of the NSFs offered by diverse ven-
dors in cloud-based security service environments.
Being active members of the IETF I2NSF Work-
ing Group, we are developing a set of standard
information and data models that are the key
to building the standard interfaces in the I2NSF
architecture. Based on these standard information
and data models, the I2NSF architecture is able to
provide an efficient and flexible security service
environment that is driven by the security policies
expressed in the information and data models.

Software-defined networking (SDN) [6] allows
dynamic and flexible changes in network behavior
by controlling and managing the configurations
of the network resources, such as switches and
routers, programmatically. This capability makes it
feasible to enforce some packet filtering rules at
the switches by controlling their packet forward-
ing rules.

In this article, we propose to integrate an
I2NSF architecture with SDN, and divide the appli-
cation of the security policy rules among the SDN
switches and NSFs by taking advantage of the
SDN technology. Specifically, switches enforce
simple packet filtering rules that can be translated
into their packet forwarding rules, whereas NSFs
enforce NSF-related security rules requiring the
security capabilities of the NSFs. Thus, if switches
can make decisions on some received packets
according to their packet forwarding rules pro-
grammed by a switch controller, we can avoid
unnecessary latency for the packets taken by an
NSF for a time-consuming inspection task. In addi-
tion, because all the packets do not necessarily

Interface to Network Security Functions for
Cloud-Based Security Services

Sangwon Hyun, Jinyong Kim, Hyoungshick Kim, Jaehoon (Paul) Jeong, Susan Hares, Linda Dunbar, and Adrian Farrel

NETWORK AND SERVICE MANAGEMENT

The authors present the
design and development
of an I2NSF architecture
and propose improving
its efficiency by integrat-
ing it with SDN. In this
work, they implement the
SDN-integrated I2NSF
architecture and its secu-
rity applications. They
also discuss several stan-
dardization and research
challenges for I2NSF.

Sangwon Hyun, Jinyong Kim, Hyoungshick Kim, and Jaehoon (Paul) Jeong (corresponding author) are with Sungkyunkwan University;
Susan Hares and Linda Dunbar are with Huawei; Adrian Farrel is with Juniper Networks.

Digital Object Identifier:
10.1109/MCOM.2018.1700662

IEEE Communications Magazine • January 2018 3

pass through an NSF, we can reduce the possi-
bility of congestion in an NSF. In this work, we
implement an I2NSF architecture integrated with
an SDN network.

The contributions of this article are as fol-
lows. First, we develop an I2NSF architecture
and a set of standard interfaces in that architec-
ture to enable efficient and flexible security ser-
vice provisioning in cloud-based security service
environments. Second, we propose a seamless
integration of the I2NSF architecture and SDN
to improve the efficiency of the security service
enforcement process. Third, we implement the
SDN-integrated I2NSF architecture of two exam-
ple security service scenarios. Finally, we discuss
several standardization and research challenges
of I2NSF.

The remainder of this article is organized as
follows. The next section describes the I2NSF
architecture and its integration with SDN. Then
we present the proof-of-concept implementation
of the SDN-integrated I2NSF architecture and its
security applications. Following that, we discuss
several standardization and research challenges
for I2NSF. Finally, we conclude the article.

I2nsF ArchItecture
components

Figure 1 shows the I2NSF architecture consist-
ing of the following five components: I2NSF user,
security controller, vendor’s management system
(VMS), NSF forwarder (NSFF), and NSF.

I2NSF User: The I2NSF user in the figure rep-
resents the administrator of the enterprise net-
work where a security policy should be enforced.
The I2NSF user describes a high-level security pol-
icy without considering the underlying NSFs, and
sends a request for the high-level security policy

to the security controller.
Network Operator Management Security

Controller (Security Controller): The network
operator management security controller is the
most critical component, which orchestrates and
manages the NSFs so that they cooperatively
enforce the security policy requested by an I2NSF
user. After receiving a high-level security policy
request from an I2NSF user, the security control-
ler determines the types of NSFs that are required
to enforce the security policy, generates low-lev-
el security policy rules for each of the required
NSFs, and finally updates the configuration of
each NSF with the generated policy rules. In addi-
tion, the security controller monitors the NSFs
running in the system and maintains various infor-
mation related to each NSF (e.g., network access
information and workload status).

Vendor’s Management System (VMS): The
VMS is managed by a third-party security vendor
offering NSFs. The VMS performs the dynamic
life cycle management of its NSF instances in
response to the requests of the security controller.
As depicted in Fig. 1, there can be multiple VMSs
(e.g., VMS A and B) for different security vendors,
and this enables an I2NSF user to take advantage
of the various security functions offered by multi-
ple vendors.

NSF and NSF Forwarder (NSFF): An NSF,
such as a firewall, deep packet inspection (DPI),
or DDoS attack mitigator, performs the securi-
ty inspection of the network traffic according to
the security policy rules provided by the securi-
ty controller. A basic NSF (e.g., firewall) within
the I2NSF architecture can trigger an advanced
security inspection (e.g., DPI and DDoS attack
mitigation) with a different type of NSF based on
its own security inspection result; for example,
a firewall triggers a further inspection of suspi-

The major objective of

the NSF-Facing interface

is to provide standard

interfaces to control

and manage the NSFs

of various vendors. For

this objective, we devel-

oped generic standard

information and data

models specifying ven-

dor-neutral syntax rules

and data structures

to comprehensively

express the security pol-

icy rules for the NSFs of

different vendors that

have similar security

capabilities.

Figure 1. I2NSF architecture.

Security controller

Consumer-facing
interface

Registration
interface

I2NSF user

NSF-facing
interface

Vendor's management system A

NSFAnNSFA1

. . .

NSFB1 NSFBn

. . .

Vendor's management system B

. . .

NSFF

Vendor's Management
System

Vendor's Management
SystemVendor's management system

IEEE Communications Magazine • January 20184

cious traffic with a DPI. In such cases, the NSFF
forwards the suspicious traffic from the current
NSF (e.g., firewall) to the successor NSF (e.g., DPI
or DDoS attack mitigator) to realize an advanced
and composite inspection. The NSFF is a logical
component in that it can coexist with either the
security controller or the NSF.

InterFAces

This section describes the three interfaces of the
I2NSF architecture shown in Fig. 1, namely, con-
sumer-facing interface, NSF-facing interface, and
registration interface.

Consumer-Facing Interface: As shown in
Fig. 1, the consumer-Facing interface is the only
interface of the I2NSF user to the I2NSF system.
Such a design hides the underlying NSFs from the
users and allows them to specify a user-friendly
high-level security policy without considering the
details of the NSFs. The following is an example
of a high-level security policy of time-dependent
web access control: Block the access of company
employees to Facebook from 9am to 6pm [7]. This
high-level security policy does not require specific
information about network resources and pro-
tocols, and thus allows the users to define their
security requirements in a user-friendly manner.

The major purpose of this interface is to allow
the users to request security services from the
I2NSF system by sending a high-level security pol-
icy to the security controller. In addition, the secu-
rity controller notifies the users of critical security
alerts received from the NSFs via this interface.
By analyzing the received alerts, the users can
identify new attacks and update (or generate) a
high-level security policy to respond to the new
attacks. We developed standard information and
data models of the consumer-facing interface to
enable these functionalities (draft-jeong-i2nsf-con-
sumer-facing-interface-dm-05).

NSF-Facing Interface: The major objective of
the NSF-facing interface is to provide standard
interfaces to control and manage the NSFs of var-
ious vendors. For this objective, we developed
generic standard information and data models
specifying vendor-neutral syntax rules and data
structures to comprehensively express the security
policy rules for the NSFs of different vendors that
have similar security capabilities. (See below for
more details of the information and data models.)
In addition, the security policy rules described
according to the standard are delivered using a
standard protocol such as Network Configura-
tion Protocol (NETCONF) [8]). Consequently, the

Figure 2. Standardizing interfaces to the NSFs based on a generic standard information model and a data model: a) condition subtree
of the information model for the network security group of NSFs; this subtree describes inspection rules of various header fields
and payloads of packets; b) action subtree of the information model for the network security group of NSFs; this subtree describes
an action to be taken when a given packet meets the specified conditions; c) standard interfaces to the NSFs of multiple vendors
using the YANG data model.

Condition

(a)

(c)

(b)

Packet-
header-sec-
condition

mac-condition

ipv4-condition

ipv6-condition

tcp-condition

udp-condition

icmp-condition...

Packet-
payload-sec-

condition

Payload-content

Payload-nocase

Payload-dsize

Payload-offset

...

. . .

Action

Ingress-action

Egress-action

Apply-profile-
action

Pass

Drop

Mirror

Invoke-
signaling

Tunnel-
encapsulation

Forwarding

Anti-virus

ids

Mail-filtering...

Security controller

NSF of
vendor A

Standard DM

Translator A

NSF of
vendor B

Standard DM

Translator B

NSF of
vendor C

Standard DM

Translator C

NSF of
vendor D

Standard DM

Translator D

NETCONF

IEEE Communications Magazine • January 2018 5

security controller does not have to consider ven-
dor-specific differences between the NSFs when
configuring them.

Each NSF also uses this interface to periodi-
cally notify the security controller of its current
status (e.g., workload level and congestion) and
of the suspicious security events/alerts detected
by it. In addition, the security controller delivers
the forwarding configuration information of the
NSFs running in the system to the NSFF via this
interface.

Registration Interface: The main purpose
of the registration interface between the secu-
rity controller and VMS is to perform dynamic
life cycle management of the NSF instances and
register new NSF instances into the system. We
developed standard information and data mod-
els for introducing these functionalities. If a new
NSF instance is required by the system, the secu-
rity controller requests the VMS to create it. Such
a request from the security controller contains
the description of the security capability and
service capacity that should be provided by the
requested NSF instance. After creating it, the VMS
informs the security controller of its identifying
information (IP address, port number, etc.). In
contrast with the above case, if some existing NSF
instance is underutilized, the security controller
may request the VMS to remove it via this inter-
face.

nsF-trIggered trAFFIc steerIng

In the I2NSF architecture, an NSF can trigger an
advanced security action (e.g., DPI and DDoS
attack mitigation) on a packet based on the result
of its own security inspection of the packet. For
example, a firewall triggers further inspection of
a suspicious packet with DPI. For this advanced
security action to be realized, the suspicious pack-
et should be forwarded from the current NSF
to the successor NSF. Service function chaining
(SFC) [9] is a technology that enables this trig-
gering by steering a packet with multiple service
functions (e.g., NSFs). The I2NSF architecture can
adopt similar approaches to support the advanced
security action. To trigger an advanced security
action, the current NSF appends the metadata
describing the security capability required for the
advanced action to the suspicious packet and
sends the packet to the NSFF.

The NSFF maintains a forwarding information
table of the NSF instances available in the sys-
tem. Each entry of the table contains the network
access information and security capability descrip-
tion of the NSF. When receiving a packet to be
forwarded for an advanced security action, the
NSFF searches its local table for a matching NSF
instance that can perform the required security
action on the packet. If the NSFF cannot locate
any matching entry in its local table, it asks the
security controller of an NSF instance with the
required security capability, and the security con-
troller responds to the NSFF with the information
of a matching NSF instance. Finally, the NSFF for-
wards the packet to the discovered NSF instance
using the forwarding information either from its
local table or from the security controller.

InFormAtIon model And dAtA model For
stAndArd InterFAces to nsFs

Standardizing interfaces to the heterogeneous
NSFs developed by different security vendors is
highly essential for reducing management costs
and improving system interoperability. To stan-
dardize the interfaces, first of all, the NSFs of the
various vendors are classified into three groups
according to their security capabilities: network
security (e.g., firewall filter), content security (e.g.,
anti-malware scanner), and attack mitigation (e.g.,
DDoS mitigator). The network security group of
NSFs performs the inspection of layer 2-4 (L2–
L4) headers and payloads of packets, whereas
the content security group of NSFs performs the
inspection of packet contents in the application
layer, for example, to detect malware and mali-
cious URLs. The attack mitigation group of NSFs
performs detecting and mitigating DDoS attacks.

We define a generic standard information
model (IM) for each group of NSFs that can com-
prehensively express security policy rules of the
NSFs. Figures 2a and 2b show the key parts of the
information model defined for the network secu-
rity group of NSFs that performs the inspection
of various header fields and payloads of packets.
The information model defines information items
and a link to them to express the core semantics
of the security policy rules of the NSFs (of the
various vendors) belonging to the same security
capability group. For example, the different ven-
dors’ NSFs in the same network security group are
expected to use different formats of the security
policy rules. However, these security policy rules
in diverse formats can be generalized to provide
the same security services with the description
of a set of conditions to be evaluated for various
headers and payloads of a packet and a set of
actions to be taken when the conditions are satis-
fied for the packet. Such an abstraction and gen-
eralization result in a generic information model
for the same security capability group of NSFs.

Figure 2a shows the condition subtree of the
IM for the network security group of NSFs, and
this condition subtree is used to define a set of
conditions that specify attributes and/or values
that are to be compared to the headers and pay-
loads of a given packet. The action subtree in Fig.
2b is used to define the action (i.e., ingress and
egress actions) to be taken when a given packet
satisfies the specified conditions. In particular, we
can specify an advanced security action that trig-
gers a further in-depth analysis using another type
of NSF, such as an anti-virus and intrusion detec-
tion system (IDS), in addition to simple actions
such as pass and drop.

The next step is to implement the IM using a
data modeling language (e.g., YANG [10]), and
the resulting implementation is referred to as a
data model (DM). Our implementation of the IM
using the YANG data modeling language (i.e.,
the YANG data model) is described in an Inter-
net-Draft (draft-kim-i2nsf-nsf-facing-interface-data-
model-04). As illustrated in Fig. 2c, each vendor
(represented in a different color) implements the
standard DM for its NSF(s) and pre-configures
the relevant NSF(s) with the DM implementation.
Then the NSFs can understand the security policy
rules described according to their DM.

In the I2NSF architec-

ture, an NSF can trigger

an advanced security

action (e.g., DPI and

DDoS attack mitigation)

on a packet based on

the result of its own

security inspection of

the packet. For example,

a firewall triggers a

further inspection of a

suspicious packet with a

DPI. For this advanced

security action to be

realized, the suspicious

packet should be

forwarded from the

current NSF to the

successor NSF.

IEEE Communications Magazine • January 20186

When the security controller is required to
configure an NSF with a new security policy rule,
it first describes the security policy rule using XML
according to the syntax definition in the corre-
sponding DM. The XML-encoded security policy
rule is delivered to the NSF using NETCONF pro-
tocol [8]. The NSF decodes the received policy
rule based on the pre-configured matching DM
and extracts the rule data from it. Optionally, the
NSF can perform an additional process (denoted
as Translator in Fig. 2c) of translating the received
rule data into its vendor-specific format if neces-
sary. Finally, the NSF registers the new security
policy rule in its own policy rule table to perform
the required security service.

IntegrAtIng sdn wIth I2nsF ArchItecture

SDN enables some packet filtering rules to be
enforced in the network switches by controlling
their packet forwarding rules [11–13]. This sec-
tion presents how we can take advantage of this
capability of SDN to optimize the process of
security service enforcement in the I2NSF system.

Figure 3 shows the system configuration in
which the I2NSF architecture is integrated into
the SDN network.

In this system, we divide the enforcement of
security policy rules into the SDN switches and
NSFs. In particular, SDN switches enforce sim-
ple packet filtering rules that can be translated
into their packet forwarding rules, whereas NSFs
enforce NSF-related security rules requiring the
security capabilities of the NSFs.

As an example, let us consider two different
types of security rules: Rule 1 is a simple packet
filtering rule that checks only the IP address and
port number of a given packet, whereas rule 2 is a
time-consuming packet inspection rule for deter-
mining whether an attached file delivered through
a flow of packets contains malware. Rule 1 can
be translated into packet forwarding rules of SDN
switches and thus be enforced by the switches. In
contrast, rule 2 cannot be enforced by switches,
but it can be enforced by NSFs with anti-malware
capability. Specifically, a flow of packets is for-
warded to and reassembled by an NSF to recon-
struct the attached file stored in the packets. Then
the NSF scans the file to check the existence of
malware. If the file contains malware, the NSF

drops the packets.
In this way, if the switches can make deci-

sions on some received packets according to
their packet forwarding rules programmed by the
switch controller, we can avoid unnecessary laten-
cy for the packets taken by an NSF for a time-con-
suming task, which may be placed in a remote
cloud system. In addition, we can reduce the pos-
sibility of congestion in an NSF because all the
packets do not necessarily pass through an NSF.

prooF-oF-concept ImplementAtIon
This section describes our proof-of-concept (PoC)
implementation of the proposed architecture
using various open source software, and two
security service scenarios using the implementa-
tion: VoIP security service and time-dependent
web access control service. (The details of these
two scenarios will be presented below.) To set up
an SDN network of our system components, we
used OpenDaylight (https://www.opendaylight.
org) and Mininet (http://mininet.org). Figure 4
shows the network configuration of our system
and the VoIP security service procedure. Although
the current PoC includes only two types of NSFs
(i.e., firewall and a VoIP intrusion prevention sys-
tem, IPS), it can be extended with other types of
NSFs (depicted by the dashed rectangles in Fig. 4)
according to security service requirements. When
various types of NSFs exist, the firewall initially
performs a basic security inspection of a packet
and triggers a further inspection of a suspicious
packet with other types of NSFs (e.g., VoIP IPS,
anti-malware scanner).

The summary of our implementation is as fol-
lows. We implemented a web application for an
I2NSF user that provides a user interface to con-
figure and generate a high-level security policy.
We implemented the security controller to trans-
late the received high-level security policy into
low-level security rules for the NSFs (e.g., firewall
and VoIP IPS). We implemented the consum-
er-facing interface based on the RESTCONF pro-
tocol [14] using Express.js (https://expressjs.com)
and the NSF-facing interface based on the NET-
CONF protocol [8] using ConfD (https://develop-
er.cisco.com/site/confD). We also implemented
the YANG data model that defines the syntax
rules to express the low-level rules in XML, and
the low-level rules expressed in XML are sent to
the NSFs through the NETCONF-based NSF-fac-
ing interface.

Our source codes and documents of the
above implementation are available at https://
github.com/kimjinyong/i2nsf-framework, and
a video demo is also available at https://youtu.
be/5iflpVt4l6U.

VoIp securIty serVIce

This service scenario assumes that the admin-
istrators of mobile telecommunications service
providers want to block malicious VoIP calls to
their customers. The following is a hypotheti-
cal example of a high-level security policy rule
that the administrator (i.e., I2NSF user) requests:
Inspect suspicious VoIP calls of unusual patterns
(e.g., incoming calls from unusual foreign coun-
tries at unusual times of a day), and block the calls
identified as malicious ones. The administrator
sends this high-level security policy to the security

Figure 3. Integrating the I2NSF system into an SDN
network.

Security controller

Anti-malware

Simple packet
filtering rules

SDN controller

Install new packet forwarding rules

In this system, we divide

the enforcement of

security policy rules into

the SDN switches and

NSFs. In particular, SDN

switches enforce simple

packet filtering rules that

can be translated into

their packet forwarding

rules, whereas NSFs

enforce NSF-related

security rules requiring

the security capabilities

of the NSFs.

IEEE Communications Magazine • January 2018 7

controller through the consumer-facing interface,
and the security controller translates the received
high-level security policy into low-level security
rules for both the firewall and the VoIP IPS. In this
scenario, the firewall is configured with security
rules to identify VoIP packets of suspicious pat-
terns, and if the firewall detects such a packet, it
calls the VoIP IPS for a further inspection of the
packet. Then the VoIP IPS analyzes the suspicious
packet based on pre-configured security rules to
determine whether or not it is malicious.

Figure 4 illustrates the following procedure of
the VoIP security service:
1. An unknown flow’s packet is received by the

switch (SW) 1.
2. SW1 forwards the received packet to the

firewall via the switch controller for basic
security inspection.

3. The firewall checks the basic header fields
(IP address, port number, etc.) of the packet,
and identifies that this packet is a VoIP signal
packet (e.g., Session Initiation Protocol, SIP,
packet) of a suspicious pattern.

4. The firewall requests of the VoIP IPS more
in-depth analysis of the suspicious VoIP
packet, and the NSFF forwards the packet to
the VoIP IPS.

5. The VoIP IPS analyzes the headers and con-
tents of the SIP packet such as the caller’s
ID and session description headers, and if it
identifies the packet as a malicious call pack-
et, it consequently drops the packet.

6. The VoIP IPS also notifies the security con-
troller of the detected malicious call packet.

7. The security controller requests that the
switch controller block the subsequent
packets from the malicious source (i.e., the
attacker).

8. The switch controller installs new forwarding
rules into the switches accordingly.

tIme-dependent web Access control serVIce

This service scenario assumes that an enter-
prise network administrator wants to regulate
the access of staff members to Facebook during
business hours. The following is a hypothetical
example of a high-level security policy rule the
administrator requests: Block access of staff mem-
bers to Facebook from 9am to 6pm. The admin-
istrator sends the high-level security policy to the
security controller, which in turn translates it into
low-level packet filtering rules for both the fire-
wall and the switch controller. For this translation,
the security controller can interoperate with the
enterprise network access control server in order
to retrieve the information (e.g., IP address in use,
company ID, role) of each employee that is cur-
rently using the network. Based on the retrieved
information, the security controller generates
low-level packet filtering rules to block the access
to Facebook from the IP addresses being used by
the staff members during the business hours.

This service scenario requires the dynamic
update of security rules. To achieve this, the secu-
rity controller monitors events that require securi-
ty rule changes, and can automatically update or
generate an appropriate rule if any event occurs.
For example, if a new staff member joins the
enterprise network, the security controller detects
this event through the enterprise network access
control server, and generates and installs a new
rule to enforce the same policy to the new staff
member.

chAllenges
This section discusses several standardization and
research challenges for I2NSF, which are summa-
rized in Table 1.
Standardization Challenges: It is important to
monitor the execution status of the NSFs to
ensure that the security policies requested by the
I2NSF users are being properly enforced and to
detect any failure of the NSFs. Thus, a standard

Figure 4. Proof-of-concept implementation and VoIP security service procedure.

Attacker

Internet

SW3SW1

SW2

Switch controller

Security
controller

I2NSF User

Victim

Anti-malware

Mail filter

DDoS mitigator

Web filter

...

�

�

Suspicious!!
�

�

Malicious!!
�

�

�

�
�

Malicious VoIP
NSF

NSFF

Firewall VoIP IPS

NSFs This service scenario

requires the dynamic

update of security rules.

To achieve this, the

security controller mon-

itors events that require

security rule changes,

and can automatically

update or generate an

appropriate rule if any

event occurs.

IEEE Communications Magazine • January 20188

protocol should be defined for such monitoring.
Capability negotiation and discovery is also fun-
damental to the I2NSF system, where each NSF
has different security capabilities. Therefore, a
standard method to describe the capabilities of
an NSF is required for such capability negotia-
tion and discovery. For example, when trigger-
ing an advanced security action, the NSF should
describe the security capability required for that
advanced action to discover an NSF with that
capability. In addition, most NSFs rely on the
attack signatures and profiles for their operations;
therefore, it is important to maintain the NSFs
with extensive and up-to-date attack profiles to
ensure their effectiveness. Open-source-provided
databases of attack profiles (e.g., by Snort, Suri-
cata, and Kismet) are useful in this regard. Thus,
a standard is required for simplifying the process
of importing open-source-provided attack profiles
into the I2NSF system.

Research Challenges: Based on the standard
interfaces discussed above, it is possible to auto-
mate various control and management tasks in
the I2NSF system. Thus, further research of task
automation is essential for the success of the
I2NSF. In particular, the security controller should
be able to automatically select a proper set of
NSFs required to enforce a high-level security
policy requested by the user in a cooperative
manner, and also automatically generate low-lev-
el security policy rules for each of the selected
NSFs [15]. Moreover, when the security controller
investigates the security events and alerts report-
ed by the NSFs, it should be able to intelligently
identify unknown malicious activities through the
investigation and to automatically update the net-
work configuration and security rules to deal with
the attacks in a timely manner. It is also crucial to
prevent and resolve conflicts between a variety of
security policy rules by both proactive and reac-

tive approaches. Dynamic life cycle management
of the NSF instances and traffic load balancing is
also important for efficient and flexible resource
utilization.

The security controller performs several criti-
cal roles in the I2NSF system, and a failure of the
security controller can result in the service disrup-
tion of the entire system. Thus, preventing unex-
pected failures of the security controller is crucial.
For example, application isolation to protect the
security controller from buggy applications run-
ning inside is an important research issue in this
regard. Dynamic key management and distribu-
tion is important to establish secure and authenti-
cated interfaces between the system components.
Secure binding between an NSF and its capability
description is also important to ensure the trust-
worthiness of the capability description.

In cloud-based security service environments, a
packet can be delivered to an NSF placed in the
cloud system of an external security vendor. In
this situation, if the external NSF is compromised
by the attacker, the packet would be exposed to
various types of attacks such as sniffing and forg-
ery. To prevent these attacks, the user can peri-
odically examine the integrity of the NSF instance
through remote attestation. In addition, the user
can sign the packet data before sending it to
the external NSF to prevent unauthorized modi-
fication of the packet. Every access to the NSFs
should be carefully authorized to prevent illegal
changes in the critical configuration of the NSFs.

conclusIon
This article presents an I2NSF architecture that
enables an efficient and flexible security service
in cloud-based security service environments.
The key contribution of the I2NSF architecture
is standardizing the interfaces to the NSFs of dif-
ferent vendors to simplify the management of
these NSFs. In addition, we seamlessly integrate
the I2NSF architecture and SDN to optimize the
process of security service enforcement by the
I2NSF system in the cloud-based security service
environments. We implement the I2NSF archi-
tecture integrated with SDN using various open
source software to demonstrate its feasibility and
effectiveness. We finally discuss the standardiza-
tion and research challenges for the I2NSF archi-
tecture.

Acknowledgment

This work was supported by the Institute for
Information & Communications Technology Pro-
motion (IITP) grant funded by the Korean govern-
ment, Ministry of Science and ICT (MSIT) (Grant
R-20160222-002755) and by the MSIT under the
Information Technology Research Center (ITRC)
support program (Grant IITP-2017-2017-0-01633)
supervised by the IITP.

reFerences
[1] R. Mijumbi et al., “Network Function Virtualization: State-of-

the-Art and Research Challenges,” IEEE Commun. Surveys &
Tutorials, vol. 18, no. 1, 2016, pp. 236–62.

[2] J. Sherry et al., “Making Middleboxes Someone Else’s Prob-
lem: Network Processing as a Cloud Service,” ACM SIG-
COMM Computer Commun. Review, vol. 42, no. 4, 2012,
pp. 13–24.

[3] E. Messmer, “Gartner: Cloud-Based Security as a Service
Set to Take Off,” Network World, Oct. 2013; https://www.
networkworld.com/article/2171424/data-breach/gart-

Table 1. Challenges for the I2NSF system.

Category Issue

Standardization challenges

 • Standard interfaces to manage the security rule sets of the
 NSFs
• Standard message formats and protocols for monitoring the
 execution status of the NSFs
• Standard method to describe the capabilities of the NSFs
• Standard interfaces to import open-source-provided attack
 profiles into the NSFs

Research
challenges

Usability and
efficiency

• Automatic selection of the NSFs and rule generation to enforce
 the user requested security policies
• Automatic update of the network configuration and security
 policies to deal with network attacks
• Preventing and resolving conflicts between the security policy
 rules
• Dynamic life cycle management of the NSFs and traffic load
 balancing

Security

• Remote attestation to validate the authenticity of the NSFs of
 third-party vendors
• Traffic authentication to prevent unauthorized modification
• Fault tolerance of the security controller
• Access control to prevent unauthorized access to the NSFs
• Key management and distribution of the I2NSF system
 components

IEEE Communications Magazine • January 2018 9

ner--cloud-based-security-as-a-service-set-to-take-off.html,
accessed Oct. 14, 2017.

[4] IETF, “Interface to Network Security Functions (I2NSF) Work-
ing Group”; https://datatracker.ietf.org/wg/i2nsf/charter/,
accessed Oct. 14, 2017.

[5] S. Hares et al., “Interface to Network Security Functions
(I2NSF): Problem Statement and Use Cases,” IETF RFC
8192, July 2017.

[6] ONF, “Software-Defined Networking: The New Norm for
Networks,” ONF White Paper, vol. 2, 2012, pp. 2–6.

[7] S. Oh et al., “A Flexible Architecture for Orchestrating Net-
work Security Functions to Support High-Level Security
Policies,” Proc. 11th ACM Int’l. Conf. Ubiquitous Info. Man-
agement and Commun., Jan. 2017, pp. 44–48.

[8] R. Enns et al., “Network Configuration Protocol (NET-
CONF),” IETF RFC 6241, June 2011.

[9] J. M. Halpern and C. Pignataro, “Service Function Chaining
(SFC) Architecture,” IETF RFC 7665, Oct. 2015.

[10] M. Bjorklund, “YANG — A Data Modeling Language for
the Network Configuration Protocol (NETCONF),” IETF RFC
6020, Oct. 2010.

[11] J. Kim et al., “SDN-Based Security Services Using Interface
to Network Security Functions,” Proc. 6th IEEE Int’l. Conf.
Info. and Commun. Technology Convergence, 2015, pp.
526–29.

[12] J. Collings and J. Liu, “An OpenFlow-Based Prototype of
SDN-Oriented Stateful Hardware Firewalls,” Proc. 22nd IEEE
Int’l. Conf. Network Protocols, 2014, pp. 525–28.

[13] S. Kim et al., “Preventing DNS Amplification Attacks Using
the History of DNS Queries with SDN,” Proc. Euro. Symp.
Research in Computer Security, Springer, 2017, pp. 135–52.

[14] A. Bierman, M. Bjorklund, and K. Watsen, “RESTCONF
Protocol,” IETF RFC 8040, Jan. 2017.

[15] X. Liu, B. Holden, and D. Wu, “Automated Synthesis of
Access Control Lists,” Proc. 3rd Int’l. Conf. Software Security
and Assurance, July 2017.

 bIogrAphIes
Sangwon Hyun is a research fellow at Sungkyunkwan Univer-
sity, South Korea. He received his Ph.D. in computer science
from North Carolina State University in 2011. Prior to his Ph.D.
study, he received an M.S. in electrical engineering and com-
puter science from Seoul National University, South Korea, in
2004, and a B.S. in electrical and computer engineering from
Sungkyunkwan University in 2002. His research focuses on net-
work and system security.

Jinyong (Tim) Kim is a graduate student in the Department of
Computer Science and Engineering at Sungkyunkwan Univer-
sity. He received a B.S. degree from the Department of Com-
puter Engineering at Kumoh National Institute of Technology in
2015. His research interests include SDN/NFV-based network
security and drone battery charging scheduling.

HyoungSHicK Kim received his B.S. degree from the Depart-
ment of Information Engineering, Sungkyunkwan University, his
M.S. degree from the Department of Computer Science, Korea
Advanced Institute of Science and Technology, Daejeon, South
Korea, and his Ph.D. degree from the Computer Laboratory,
University of Cambridge, United Kingdom, in 1999, 2001, and
2012, respectively. He is currently an assistant professor with
the Department of Software, Sungkyunkwan University. His
research interests include usable security and security engineer-
ing.

JaeHoon (Paul) Jeong received his B.S. degree from the
Department of Information Engineering, Sungkyunkwan Uni-
versity, in 1999, his M.S. degree from the School of Comput-
er Science and Engineering, Seoul National University, South
Korea, in 2001, and his Ph.D degree from the Department of
Computer Science and Engineering, University of Minnesota, in
2009. He is currently an assistant professor with the Department
of Software, Sungkyunkwan University. His research interests
include the Internet of Things, vehicular networks, and SDN/
NFV-based network security.

SuSan HareS has over 30 years of experience in international
standards organizations for Internet and IT technology (IETF,
IEEE, BBF, MEF, and MAP/TOP). She chairs the following IETF
Working Groups: IDR (BGP), I2RS, and TRILL. She has also
founded companies and managed teams developing network
hypervisors and secure routing/switching software suites. She
is a Ph.D. student at Regent University Business and Leadership
School in global leadership.

linda dunbar has an M.S. in computer science from the Uni-
versity of Maryland. She has been working in networking indus-

try for over 20 years. Prior to Huawei she worked for Cisco,
Fujitsu, and Nortel. Her recent work includes technologies for
optimally and securely interconnecting enterprises’ branch offic-
es with dynamic workloads and applications. She is very actively
in the networking and security industry, has published many IETF
RFCs, and co-chairs the I2NSF WG.

adrian Farrel is an innovator and standards-maker at the IETF
where he has co-authored more than 60 RFCs and served as
Routing Area Director for six years. With a background in com-
munications software design and implementation, he now runs
Old Dog Consulting, specializing in SDN, NFV, traffic engineer-
ing, and path computation. He works closely with Juniper Net-
works on the design of new protocols, and has written many
books, including three volumes of fairy tales.

