
Node.js Embedded Development on the Raspberry Pi
Created by Todd Treece

Last updated on 2018-10-09 05:45:35 PM UTC

2
3
3
3
3

5
5
5
6

9
9

10
10
12

15
15
16
17

19
19
20
21
21

Guide Contents

Guide Contents
Why node.js?

npm
Events
Streams

Connecting via SSH
Hardware Connections
Finding Your Raspberry Pi's IP Address
Connecting via SSH

Installing node.js
Adding the Package Repository

Events & Callbacks
Callbacks
Arduino & node.js Examples

Streams
Unix Pipeline
Node.js Streams
Chunked Transfer Stream

Wrapping Things Up
package.json
Dependencies
Example Package
Publishing Packages

© Adafruit Industries https://learn.adafruit.com/node-embedded-development Page 2 of 21

Why node.js?

Why is it worth exploring node.js (https://adafru.it/dIP) development in an embedded environment? JavaScript is a
widely known language that was designed to deal with user interaction in a browser. Thanks to node.js, we can now
use JavaScript outside of the browser, and even interact with hardware on devices such as the Raspberry Pi.

Here's a brief overview of some of the features that make node.js great for embedded development.

npm

npm (https://adafru.it/eht) is one of the best things to happen to node.js. npm is the package manager for node. It
makes managing third-party node dependencies a breeze, and makes it easy for mere mortals like myself to publish
node.js packages.

Why is this important? Community. Because npm is so great at managing dependencies, you can include open source
libraries in your project hassle-free. Since it's easy to include community libraries, the community has grown
exponentially, and the number of available packages is mesmerizing. Have you ever tried to install an Arduino library?
No offense to Arduino, but it's not the most user friendly experience. Thankfully, they are working on adding a package
manager (https://adafru.it/ehu) to the Arduino IDE.

Events

Events are a great way to deal with user interaction. What's an event? Maybe it would be easiest to give you a few
examples of events. Toggling a switch, clicking a mouse, and pressing a key on your keyboard are all examples of
events.

The great thing about using event listeners is that you can write a chunk of code that will be called whenever an event
happens. No longer do you have to constantly check the state of a button to see if the state has changed in a loop.
Instead, the button will let you know when it was pressed!

Streams

The node.js stream API combines the power of events, with the power of the Unix pipeline (https://adafru.it/ehv). If you
know how to pipe commands in Unix environments, you know it's a game changer. We'll dig deeper into streams after
taking a look at how to setup the node.js environment on a Raspberry Pi.

© Adafruit Industries https://learn.adafruit.com/node-embedded-development Page 3 of 21

http://nodejs.org/
https://www.npmjs.com/
https://github.com/arduino/Arduino/wiki/Arduino-IDE-1.5:-Library-specification
https://en.wikipedia.org/wiki/Pipeline_%28Unix%29

© Adafruit Industries https://learn.adafruit.com/node-embedded-development Page 4 of 21

Connecting via SSH

The Raspberry Pi was designed to make it very easy to get started by connecting a monitor, keyboard, and mouse.
 But, what if you don't have access to the necessary peripherals or don't want to disconnect them from your main
workstation? The answer? Secure Shell (https://adafru.it/ehw) (SSH). SSH is a network protocol that can be used
for secure remote command-line login, and thankfully it's enabled by default if you are using the Raspbian
Distro (https://adafru.it/d6i).

Hardware Connections

To connect via SSH, you only need connect your Raspberry Pi to power & to your network via an ethernet cable. For
this guide, I have loaded a fresh install of the 2014-09-09 release of Raspbian on my SD card, but if you have an older
release of Raspbian already installed, it should work as well.

Finding Your Raspberry Pi's IP Address

You can plug in an Ethernet cable and the Pi will automagically DHCP and connect to the internet. Then you have to
actually connect to the Pi. To find the IP address of your Raspberry Pi, there's a lot of options.

If you have an HDMI monitor, connect it to the Pi, on boot it will print out it's IP address right before the console
login: prompt
If you have a console cable, you can use our tutorial to watch the Pi boot and print out the IP
address (https://adafru.it/kgF)

If you have neither, you can find the device using your router's control panel, or you can
use nmap (https://adafru.it/ehy) to search for devices that are accepting connections on TCP port 22, which is the port
SSH uses. I am not going to assume that you have access to your router's control panel, so I will show you how to use
nmap to locate your Raspberry Pi's IP address.

If you are running Windows, head over to nmap.org for their Windows installation instructions (https://adafru.it/ehz). If
you are running Mac OS X, you can install using the executable installer (https://adafru.it/ehA), or by using a package
manager like homebrew (https://adafru.it/df3).

brew install nmap

© Adafruit Industries https://learn.adafruit.com/node-embedded-development Page 5 of 21

https://en.wikipedia.org/wiki/Secure_Shell
http://www.raspbian.org/
file:///adafruits-raspberry-pi-lesson-5-using-a-console-cable
https://en.wikipedia.org/wiki/Nmap
http://nmap.org/book/inst-windows.html
http://nmap.org/book/inst-macosx.html
http://brew.sh/

If you are running a Linux distribution on your workstation, use your favorite package manager to install nmap, or visit
the nmap.org downloads page (https://adafru.it/ehB) for instructions on installing from source.

Once you have nmap installed, you are now ready to search for the IP address. Using the terminal on Linux & Mac OS,
or the command prompt on Windows, enter the following command.

If your local network is setup to use 192.168.1.* addresses, modify the command to match your network setup.

The output of nmap might seem intimidating, but here are a couple hints that should make it easier to identify your
Raspberry Pi. Look for a line that contains something like "OpenSSH 6.0p1 Debian". Once you find that, navigate your
way up a few lines to a line that starts with "Nmap scan report for...". The IP address that follows that statement should
be the IP of your Raspberry Pi! In the example below, you can see that the IP address I'm looking for is 10.0.1.10.

Connecting via SSH

If you are using Windows, you will need to install a SSH client like PuTTY (https://adafru.it/aUb) to connect to your
Raspberry Pi, but if you use Linux or Mac OS X, you are ready to connect. The default user for logging into a fresh
Raspbian install is pi, and the default password is raspberry. If you are using PuTTY on Windows, enter the connection
details into the session configuration window.

sudo apt-get install nmap

nmap -p 22 --open -sV 10.0.1.*

nmap -p 22 --open -sV 192.168.1.*

$ nmap -p 22 --open -sV 10.0.1.*

Starting Nmap 6.47 (http://nmap.org) at 2014-12-17 11:47 EST
Nmap scan report for 10.0.1.10
Host is up (0.0056s latency).
PORT STATE SERVICE VERSION
22/tcp open ssh OpenSSH 6.0p1 Debian 4+deb7u2 (protocol 2.0)
Service Info: OS: Linux; CPE: cpe:/o:linux:linux_kernel

Service detection performed. Please report any incorrect results at http://nmap.org/submit/ .
Nmap done: 255 IP addresses (3 hosts up) scanned in 3.39 seconds

© Adafruit Industries https://learn.adafruit.com/node-embedded-development Page 6 of 21

http://nmap.org/download.html
http://www.putty.org/

Replace the 10.0.1.10 address with the IP address of

your Raspberry Pi.

Under the Connection -> Data menu, enter pi into the

Auto-login username field, and click the Open button at

the bottom of the window.

If you are using Linux or Mac OS X, enter the following command into your terminal.

You will then be prompted to verify that you want to connect to the host. Type yes to confirm, and hit the Enter/Return
key on your keyboard. You should only be prompted to confirm that you want to connect the first time you try
connecting.

ssh pi@10.0.1.10

© Adafruit Industries https://learn.adafruit.com/node-embedded-development Page 7 of 21

https://learn.adafruit.com/assets/21818
https://learn.adafruit.com/assets/21819

After that, you will be prompted for the password for the pi user. Enter the default password of raspberry and hit the
Enter/Return key. If you have entered everything correctly, you should be logged into your Raspberry Pi via SSH!

Once you get this all working and you can connect to the Pi, its a good idea to install Zeroconf/Bonjour
 (https://adafru.it/lPE)so you can just ssh to raspberrypi.local

$ ssh pi@10.0.1.10
The authenticity of host '10.0.1.10 (10.0.1.10)' can't be established.
RSA key fingerprint is e8:e0:f0:09:7e:a4:81:42:44:30:65:f0:4f:b4:a6:a5.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '10.0.1.10' (RSA) to the list of known hosts.

pi@10.0.1.10's password:
Linux raspberrypi 3.12.28+ #709 PREEMPT Mon Sep 8 15:28:00 BST 2014 armv6l

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.
Last login: Wed Dec 17 14:01:23 2014 from 10.0.1.7
pi@raspberrypi ~ $

© Adafruit Industries https://learn.adafruit.com/node-embedded-development Page 8 of 21

file:///bonjour-zeroconf-networking-for-windows-and-linux

Installing node.js

Now that you are connected to your Pi via SSH, you can move on to installing the latest stable version of node.js.

Adding the Package Repository

The first step will be to add the NodeSource package repository to your Pi's /etc/apt/sources.list file. You can do this by
running the following command.

Next, we will install the latest version of node.js using apt-get.

If everything went as expected, we can check the installed version of node.js by running node -v. At the time of this
writing, the latest stable version of node.js was v10.11.0.

Now that we have node.js installed, we can look at the strengths of node.js development on a Raspberry Pi.

curl -sL https://deb.nodesource.com/setup_10.x > nodesetup.sh

It's a good idea to inspect scripts before you run them:
nano nodesetup.sh

sudo bash nodesetup.sh
sudo apt-get install -y nodejs

sudo apt-get install -y nodejs

pi@raspberrypi ~ $ node -v
v10.11.0

© Adafruit Industries https://learn.adafruit.com/node-embedded-development Page 9 of 21

Events & Callbacks

If you are used to programming hardware in an Arduino environment, this section might seem a bit foreign to you.
Unless you are using interrupts, code execution happens in logical order. When dealing with events & callbacks,
specific chunks of code gets called as events happen. If you are used to developing with Javascript, then you should
feel right at home.

Callbacks

We've already discussed events earlier in the guide, but what's a callback? A callback is a function that is passed as a
parameter to another function so it can be used at any point in the future.

What on earth does this have to do with events & event listeners? When dealing with asynchronous events, your
callback function defines the actions that happen in response to events. If you want a LED to light up when a button
press happens, then you would write the code that turns on the LED inside of a callback. Let's take a look at an
example using the Adafruit T-Cobbler to connect the button and LED.

We will show you how to download and run the example code in the last section of the guide, but if you would like to
follow along and create the example files yourself, you will need to install the onoff (https://adafru.it/elV) npm package.

Next, you can use nano text editor to create the test file. If you need help getting started with nano, check out this
handy guide (https://adafru.it/obp).

Next, paste the following example into nano, and save the file.

npm install onoff

nano test.js

© Adafruit Industries https://learn.adafruit.com/node-embedded-development Page 10 of 21

https://www.npmjs.com/package/onoff
file:///an-illustrated-shell-command-primer/editing-files-nano

From there, you can run the example file using the node command. Go ahead run the test file and press the button to
make sure that your LED lights up.

Let's break down what is happening in the example code. button.watch(callback) is a function that you can call if you
would like to watch a button for changes in state. When a change event happens, the watch() function calls the
callback function that was passed to it as its only parameter. In this case, the watch function will call the light() function
when the button changes state.

When watch() notices that the button state changed, the light() function is called with two parameters. The first
parameter has any errors that may have occurred, and the second parameter gives the current button state. When I
wrote the function definition for the light method, I called the first parameter err, and the second parameter state, but
you could name them whatever you would like. It's best to name them after what they represent if possible.

How did I know that the callback would be called with those two parameters? The documentation for the onoff GPIO
library's watch() function (https://adafru.it/ehI) demonstrates that it will call the callback with errors as the first parameter
and the button value/state as the second.

Callbacks don't have to be defined separately, and then passed to the functions that will call them. You can define the
callback and pass it to the watch function all in the same step. The only drawback to this method is that your callback
can't be used by any other buttons. Here's an example of defining your callback & passing it to watch() in the same
step.

// button is attached to pin 17, led to 18
var GPIO = require('onoff').Gpio,
 led = new GPIO(18, 'out'),
 button = new GPIO(17, 'in', 'both');

// define the callback function
function light(err, state) {

 // check the state of the button
 // 1 == pressed, 0 == not pressed
 if(state == 1) {
 // turn LED on
 led.writeSync(1);
 } else {
 // turn LED off
 led.writeSync(0);
 }

}

// pass the callback function to the
// as the first argument to watch()
button.watch(light);

node test.js

© Adafruit Industries https://learn.adafruit.com/node-embedded-development Page 11 of 21

https://github.com/fivdi/onoff/blob/master/README.md#usage

Now that you have a handle on events & callbacks, let's compare how you would approach things in node.js vs how
you would approach things in Arduino.

Arduino & node.js Examples

Let's take a look at how you would approach a couple simple tasks in Arduino, and then compare that with how you
would tackle the same tasks using node.js.

Let's start with a classic example. Blinking a LED! First up, Arduino.

What's going on here? As the sketch runs the main loop, it flips the LED on and off separated by delays of one second.
Now, let's look at the same example using node.js on a Raspberry PI.

// button is attached to pin 17, LED to 18
var GPIO = require('onoff').Gpio,
 led = new GPIO(18, 'out'),
 button = new GPIO(17, 'in', 'both');

// pass the callback function to the
// as the first argument to watch() and define
// it all in one step
button.watch(function(err, state) {

 // check the state of the button
 // 1 == pressed, 0 == not pressed
 if(state == 1) {
 // turn LED on
 led.writeSync(1);
 } else {
 // turn LED off
 led.writeSync(0);
 }

});

// LED pin
int led = 13;

void setup() {
 // initialize the LED pin as an output
 pinMode(led, OUTPUT);
}

void loop() {
 // turn the LED on
 digitalWrite(led, HIGH);
 // delay for one second
 delay(1000);
 // turn the LED off
 digitalWrite(led, LOW);
 // delay for one second
 delay(1000);
}

© Adafruit Industries https://learn.adafruit.com/node-embedded-development Page 12 of 21

What's going on here? The same thing, but the difference is that the Arduino delay (https://adafru.it/ehJ) function
blocks all other code from executing for one second for each call to delay(1000), and the node.js
setInterval (https://adafru.it/ehK) timer does not.

Why does this matter? Let's say you wanted to blink a green LED on and off every second, and you wanted to control
the state of a red LED with a momentary button. Let's take a look at another Arduino example sketch.

Since we are using Arduino's delay function, the button presses could be missed because the loop has to make it
through both calls to delay(1000) before checking the button state.

Note: I know some of the more experienced Arduino users can think of a ways to avoid using delay(), and solve this

// export GPIO 18 as an output.
var GPIO = require('onoff').Gpio,
 led = new GPIO(18, 'out');

// start a timer that runs the callback
// function every second (1000 ms)
setInterval(function() {
 // get the current state of the LED
 var state = led.readSync();
 // write the opposite of the current state to the LED pin
 led.writeSync(Number(!state));
}, 1000);

const int buttonPin = 2;
const int redPin = 10;
const int greenPin = 11;

void setup() {
 // initialize the LED pins as outputs
 pinMode(redPin, OUTPUT);
 pinMode(greenPin, OUTPUT);
 // initialize the button pin as an input:
 pinMode(buttonPin, INPUT);
}

void loop() {

 // read the state of the pushbutton value
 int buttonState = digitalRead(buttonPin);
 // turn the red LED on or off depending on
 // the button state.
 digitalWrite(redPin, buttonState);

 // turn the green LED on
 digitalWrite(greenPin, HIGH);
 // delay for one second
 delay(1000);
 // turn the green LED off
 digitalWrite(greenPin, LOW);
 // delay for one second
 delay(1000);

}

© Adafruit Industries https://learn.adafruit.com/node-embedded-development Page 13 of 21

http://arduino.cc/en/reference/delay
http://nodejs.org/api/timers.html#timers_setinterval_callback_delay_arg

problem with interrupts or by checking the current millis() against previous millis() + 1000. This is just a simple example
designed to highlight how things can easily get a lot more complicated when you don't have a way to call
code asynchronously.

Now let's look at the same thing on a Raspberry Pi using node.js.

Next, let's look at how to make things even simpler with node.js streams!

// export GPIO 17 as the red LED output, GPIO 18 as
// the button input, and GPIO green as the button input.
var GPIO = require('onoff').Gpio,
 green = new GPIO(21, 'out'),
 red = new GPIO(17, 'out'),
 button = new GPIO(18, 'in', 'both');

// watch the button for changes, and pass
// the button state (1 or 0) to the red LED
button.watch(function(err, state) {
 red.writeSync(state);
});

// start a timer that runs the callback every second
setInterval(function() {
 // get the current state of the LED
 var state = green.readSync();
 // write the opposite of the current
 // green LED state to the green LED pin
 green.writeSync(Number(!state));
}, 1000);

© Adafruit Industries https://learn.adafruit.com/node-embedded-development Page 14 of 21

Streams

Now that we know how to use events, we can dig into one of my favorite parts of the node.js core: readable &
writeable streams.

First, we'll walk through some examples of piping in Unix-like environments, since it would be good to know what
node.js streams are emulating.

Unix Pipeline

Let's look at the contexts of an example text file by using the cat (https://adafru.it/ehL) command to output the contents
of the file to stdout (https://adafru.it/ehM).

Now, let's assume we want to reduce the list of names to names with less than four characters. We can pipe the
output of cat to sed (https://adafru.it/ehN) (with a simple regex (https://adafru.it/ehO)) to accomplish this.

Now that we have filtered the list to get the names we were looking for, let's sort the names in reverse dictonary order
by piping the output of sed to sort (https://adafru.it/ehP).

Pretty neat, huh? By piping the output of one simple program to the input of another simple program, you can
accomplish complex tasks easily & quickly without having to have one behemoth program that reads files, filters, sorts,

$ cat names.txt
Gordon
Mike
Brennen
Casey
Toni
Pamela
Nick
Joe
Randy
Ben
Jenny
Tyler
Pete
Chris
Rob
Dave
Jeff
Erik
Paul

$ cat names.txt | sed '/.\{4\}/d'
Joe
Ben
Rob

$ cat names.txt | sed '/.\{4\}/d' | sort --dictionary-order --reverse
Rob
Joe
Ben

© Adafruit Industries https://learn.adafruit.com/node-embedded-development Page 15 of 21

https://en.wikipedia.org/wiki/Cat_%28Unix%29
https://en.wikipedia.org/wiki/Standard_streams#Standard_output_.28stdout.29
https://en.wikipedia.org/wiki/Sed
https://en.wikipedia.org/wiki/Regular_expression
https://en.wikipedia.org/wiki/Sort_(Unix)

etc. If you'd like to learn more specifically about piping in Unix environments, check out the standard IO
section (https://adafru.it/ehQ) of Brennen Bearnes' userland book (https://adafru.it/ehR).

Node.js Streams

Now that you have an idea what inspired the stream API, let's try something similar using the node.js stream pipe()
command.

Let's say we want to view the state of the button from our SSH connection. Since stdout (https://adafru.it/ehM) is a
writable stream, we can pipe the output of the button directly to stdout. Let's assume we have a tactile button
attached to pin 17 on our Raspberry Pi.

First, install the gpio-stream package with npm :

Next, save the following code in a file called stdout.js :

That was pretty simple. What if we wanted to redirect the output of our button to light up a LED on pin 18?

$ npm install gpio-stream

var GpioStream = require('gpio-stream'),
 button = GpioStream.readable(17);

// pipe the button presses to stdout
button.pipe(process.stdout);

var GpioStream = require('gpio-stream'),
 button = GpioStream.readable(17),
 led = GpioStream.writable(18);

// pipe the button presses to the LED
button.pipe(led);

© Adafruit Industries https://learn.adafruit.com/node-embedded-development Page 16 of 21

https://p1k3.com/userland-book/#standard-IO
https://p1k3.com/userland-book
https://en.wikipedia.org/wiki/Standard_streams#Standard_output_.28stdout.29

Chunked Transfer Stream

Now that you have a couple simple examples under your belt, let's try something a bit more interesting. What if we
wanted to output our button presses to the LED & a web browser? Since the node.js HTTP server response is a
writable stream, we can pipe the button presses to the LED, and then to the HTTP response object. Your browser can
receive the presses on the fly using chunked transfer encoding (https://adafru.it/ehS). All of that with ~10 lines of code!

var GpioStream = require('gpio-stream'),
 http = require('http'),
 button = GpioStream.readable(17),
 led = GpioStream.writable(18);

var stream = button.pipe(led);

http.createServer(function (req, res) {
 res.setHeader('Content-Type', 'text/html');
 res.write('<pre>logging button presses:\n');
 stream.pipe(res);
}).listen(8080);

© Adafruit Industries https://learn.adafruit.com/node-embedded-development Page 17 of 21

https://en.wikipedia.org/wiki/Chunked_transfer_encoding

You could pipe the button presses to a file, a web service, or pretty much anything you can think of thanks to the
endless number of stream packages available in npm (https://adafru.it/ehT). The button example is a simple one, but
this same concept can be applied to a wide range of sensors.

Speaking of npm, let's examine how to use npm to manage third party packages. We'll even look at how you can
create your own npm package and publish it for everyone to use!

© Adafruit Industries https://learn.adafruit.com/node-embedded-development Page 18 of 21

https://npmjs.com

Wrapping Things Up

As I described earlier, npm (https://adafru.it/ehT) is one of the best things about developing in a node.js environment.
Because we used a few third party dependencies in the examples, let's take a look at how you would wrap up all
of the dependencies and include them in your project by creating a package.json file.

package.json

The package.json file is what npm uses as a guide when downloading and installing dependencies for your project.
The project title, description, version, authors, and third party dependencies are all pieces of information you would
find in a standard package file.

Let's start by creating a folder for our project.

Now, we can use npm init to create our package.json file.

mkdir ~/pi_streams_example && cd ~/pi_streams_example

© Adafruit Industries https://learn.adafruit.com/node-embedded-development Page 19 of 21

https://npmjs.com

Dependencies

That took care of creating the basics, but what about adding dependencies? We have a couple of third party
dependencies to add to our package: onoff and gpio-stream.

By using npm install with the --save flag, npm will automatically install & save the dependencies to the package.json
file that we just created. All of your dependencies will now be installed in a folder called node_modules inside your
project folder. The best part is that you do not have to worry about including dependencies when you share your code.
All someone has to has to do is run npm install, and all of the dependencies you listed in your package.json file will
automatically be installed via npm for them!

pi@raspberrypi ~/pi_streams_example $ npm init
This utility will walk you through creating a package.json file.
It only covers the most common items, and tries to guess sane defaults.

See `npm help json` for definitive documentation on these fields
and exactly what they do.

Use `npm install <pkg> --save` afterwards to install a package and
save it as a dependency in the package.json file.

Press ^C at any time to quit.
name: (pi_streams_example)
version: (1.0.0)
description: An example that demonstrates how to use streams with GPIO on a Raspberry Pi
entry point: (index.js)
test command:
git repository:
keywords: raspberry, pi, streams, gpio
author: Todd Treece <todd@uniontownlabs.org>
license: (ISC)
About to write to /home/pi/pi_streams_example/package.json:

{
 "name": "pi_streams_example",
 "version": "1.0.0",
 "description": "An example that demonstrates how to use streams with GPIO on a Raspberry Pi",
 "main": "index.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "keywords": [
 "raspberry",
 "pi",
 "streams",
 "gpio"
],
 "author": "Todd Treece <todd@uniontownlabs.org>",
 "license": "ISC"
}

Is this ok? (yes) yes

npm install --save onoff gpio-stream

© Adafruit Industries https://learn.adafruit.com/node-embedded-development Page 20 of 21

Example Package

Now that we have looked at how to create a package, let's look at an example package. I have created a git repository
 (https://adafru.it/eia)that contains examples from this guide. Run the following command to clone the repo to your Pi.

Now, to install the dependencies, all you have to do is run npm install.

To run the examples, you can type node followed by the name of the example file.

Publishing Packages

When you create your own package, and decide you want to publish your package to npm, it's as simple as
running npm publish, and your code will be available for the world to enjoy!

git clone https://github.com/adafruit/Pi_Node_Example.git ~/pi_examples && cd ~/pi_examples

npm install

node stream_stdout.js

npm publish

© Adafruit Industries Last Updated: 2018-10-09 05:45:35 PM UTC Page 21 of 21

https://github.com/adafruit/Pi_Node_Example

	Guide Contents
	Why node.js?
	npm
	Events
	Streams

	Connecting via SSH
	Hardware Connections
	Finding Your Raspberry Pi's IP Address
	Connecting via SSH

	Installing node.js
	Adding the Package Repository

	Events & Callbacks
	Callbacks
	Arduino & node.js Examples

	Streams
	Unix Pipeline
	Node.js Streams
	Chunked Transfer Stream

	Wrapping Things Up
	package.json
	Dependencies
	Example Package
	Publishing Packages

