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Abstract 

Before readings this memory, the reader has to know that it was made over the premise 

that the reader doesn’t have any knowledge of tracking paths by robots. The personal 

objective is the use of this memory in the future in the practical classes for their study 

or expansion. 

The field of mobile robot control has been the focus of active research in the past 

decades. On this present project, we address the concept of path tracking based on the 

position and orientation of the robot, basically the mobile robot has to be able to move 

along lines on the floor and crossings. 

At the end of this present memory, I did a statistical study in order to compare two 

methods to work and determine which one is better.  
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1. INTRODUCTION 

1.1 Objectives 

Main objective: 

Design and implement a control algorithm for robot path tracking using computer 

vision as the position sensors. 

 

Partial objectives: 

1. Development of the motor model and identification of its parameters. Design 

and implementation of the wheel controller to operate the omnidirectional 

wheels. 

  

2. Development of a kinematic and dynamic model to control the robot. 

 

3. Design and implementation of the algorithm of trajectory tracking, in 

particular, straight lines and crosses. 

 

4. Determination of the robot position using computer vision. 

 

5. Control of the Robotino using the kinematic model, path tracking algorithm 

and the computer vision system. 

  

6. Design and implementation of the interface between the robot and the 

trajectory planner. 

 

7. Writing a memory to be used later in this university as an academic material. 
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1.2 State of the art 

1.2.1 State of the art of the path tracking 

In [1] three different controllers are presented for position control and path tracking: 

adaptive PID controller, adaptive control with reference model and a fuzzy controller, in 

order to compare them and to determine which one has better results on the control of 

the path tracking. 

 

As we see on the illustration 3. Control scheme for the mobile robot. If we want to 

achieve control and path tracking, we must obtain the position control of the mobile 

robot, starting from the desired references and considering their values in global 

reference. In this way, it establishes a control loop that provides as outputs the angular 

speed for each wheel, in order to get the desired position. 

 

The angular speeds are references for the second control loop (internal loop). 

Depending on the manipulation of the input voltage of the actuators (motors) that 

allows to change the speeds required for each wheel. 

 

 

Illustration 1. Control scheme for the mobile robot from [1] 
 

 

 Path tracking of mobile robot with Model Reference Adaptive Control (MRAC) 

The idea behind of the Model Reference Adaptive Control (MRAC) (Illustration 2. 

General scheme model reference adaptive control) is to create a closed loop controller 

with parameters that can be updated to change the response of the system. The output 

of the system is compared to a desired response from a reference model. The control 

parameters are updated based on this error. The goal of changing the parameters is to 

find a plant response that matches the response of the reference model. 
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Illustration 2. General scheme model reference adaptive control 
 

For the implementation of the MRAC, we have to transform the kinematic model into a 

kinematic model with the adaptive parameters of the controller. 

 

 Path tracking of mobile robot with PID Control with Parameter Adaptation (PID 

ADA). 

Like in the previous case, the kinematic model has to be transformed. Here, into a 

dynamic model which includes the PID with Parameter Adaptation, and the kinematic 

model for the mobile robot. 

 

 Path tracking of mobile robot with Fuzzy Controller (Illustration 3). 

For the implementation of a fuzzy controller for path tracking, they considered two 

inputs, corresponding to the distance error and the deviation angle between the mobile 

robot and the target point. This two outputs correspond to the linear speed and the 

angular speed in case of mobile robot. 

 

 

Illustration 3. Scheme used for the fuzzy controller 

 

In case of mobile robot the fuzzy controller works in the following way: when the 

distance between the mobile robot and the target point is large, it is necessary to 

increase the linear speed. On the other hand, the speed must be reduced if the distance 
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is short. There is a high dependence between the linear speed and the distance to be 

covered, but the adjustment of deviations of the mobile robot is mainly related to 

variations in the angular speed. The modification of the speed allows to give at internal 

control loop the adequate references for path tracking. 

 

The article [2] is a study of the trajectory tracking using a camera and controlled by a 

fuzzy controller. This paper presents an algorithm for autonomous path tracking of a 

mobile robot to track straight and curved paths traced in the environment. The 

algorithm uses a fuzzy logic based approach for path tracking so that human driving 

behavior can be emulated in the mobile robot. The method combines a fuzzy steering 

controller, which controls the steering angle of the mobile robot for path tracking, and 

fuzzy velocity controller which controls the forward linear velocity of the mobile robot 

for safe path tracking. A camera is used to capture images of the path ahead of the 

mobile robot and the vision system determines the lateral offset, heading error and the 

curvature of the path and performs experiments using a mobile robot platform. 

 

The article [3] is focused on the application of model-based predictive control (MPC) to 

the trajectory tracking problem of non-holonomic wheeled mobile robots (WMR). The 

trajectory tracking problem is solved using two approaches: nonlinear MPC and linear 

MPC. Simulation results are provided in order to show the effectiveness of both 

schemes. Considerations regarding the computational effort of the MPC are developed 

with the purpose of analysing the real-time implementation viability of the proposed 

techniques. 

 

The article [4] presents a solution for the path tracking problem of a mobile robot using 

a PID controller. The proposed method uses a linearized model of the mobile robot 

composed of an integrator and a delay. The PID controller has been tuned considering 

the nominal performance and the robustness as control specifications. Experimental 

results demonstrate the good performance and robustness of the proposed controller 

 

The article [6] develops methodologies and techniques for control architecture design, 

path tracking laws and posture estimation of a vision-based wheeled mobile robot 

(WMR). To solve the problem of position/orientation tracking control of the WMR, two 

kinematical predictive control laws are developed to manipulate the vehicle. Simulation 

and experimental results are included to illustrate the feasibility and effectiveness of the 

proposed control laws. 
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The article [7] develops a trajectory controller of 3-wheels omnidirectional mobile robot 

using fuzzy azimuth estimator. A trajectory controller for an omnidirectional mobile 

robot, which each motor is controlled by an individual PID law to follow the speed 

command from inverse kinematics, needs a precise sensing data of its azimuth and exact 

estimation of reference azimuth value. In this paper, they are solved by using fuzzy logic 

inference which can be used straight forward to perform the control of the mobile robot 

by means of the fuzzy behaviour based scheme already existent in literature. 

 

The article [8] develops a kinematic path tracking algorithm for a non-holonomic mobile 

robot using an improved iterative learning control (I-ILC) technique. The proposed 

algorithm produces a velocity command to the wheeled robot, in addition, the state 

disturbances and measurement noises are taken into consideration. The MATLAB 

software is used for simulation to verify the feasibility and validity of the proposed 

learning algorithm. 

 

1.2.2 Synthesis of the state of the art 

We have seen several articles with different methods of trajectory control, and different 

types of robots including the robots with omnidirectional wheels. There are many ways 

trajectory tracking, but let's focus on the articles [4] [2] [7]. In these articles, it used a 

camera for tracking trajectory, a robust PID to control the robot and the application of 

the fuzzy controller in a robot with omnidirectional wheels. 

 

According to the study [1], after testing the three models, the results indicate that the 

MRAC controller apparently is the best solution for the path tracking of the mobile 

robot. But, it also says the difference respect to the other controllers is not so significant 

as to discard them. MRAC is the best option because it is based on the results of the 

torque requirements that shows smooth curve which extends the life of the motors. 

  

That means it can be control lay for one of the three controllers and any one that we 

use doesn’t represent a big difference between them. 

  

In this project we are going to focus on two concepts that we saw in two articles, the 

use of a camera to track path will be used and control the wheels using a PID.  
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2. HARDWARE OF ROBOTINO 

2.1 About Robotino 

Robotino is a robot of the German company Festo whose main line of development is 

the automation and control production processes. 

 

Robotino is a product of the Didactic division from FESTO. It is an omnidirectional mobile 

robot usually used for the learning and improvement for control systems, it is also used 

for research and development at technical schools. The omnidirectional system allows 

to make movements forward, backward and sideways and turn on a particular point. All 

of this added to their analog/digital sensors, and a webcam for interaction through 

computer vision. 

 

All of this devices built into their control unit, which features computer performance 

industrial PC-104, compatible with MOPSlcdVE, 300 MHz, Linux operating system and a 

flash memory disk (1 GB) with C ++ API to control Robotino. Their three motors and her 

wheels are separated by 120° each other which allows the movement in different 

locations in a coordinate systems of two dimensions. 

 

Robotino can be controlled by several softwares. In this project we use Matlab Software 

to control the robot. One of the main advantages to use Matlab is use a wireless LAN 

which allows permanent and continuous connection with the robot computer, sensors 

and their webcam. 

 

Physical Features of Robotino: 

- Diameter: 370 mm  

- Height, including chassis: 210mm  

- Total weight: approx. 11 kg 

 

Based on the different components that make up the Robotino, the next paragraph 

gives a brief description of each part: 
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2.1.1 Chassis: 

The chassis consists of a stainless steel platform with laser welding. The chassis has two 

handles which are made specifically for times when we should raise or transport the 

Robotino because subjecting from the other components can cause significant damage 

to the robot (Illustration 4). Also, inside of the chassis there’s rechargeable batteries, 

drive units and the webcam. Besides, the chassis provides an additional mounting 

options to add others sensors and / or motors. The highly sensitive system components, 

such as the controller, the module I / O and interfaces are located on the bridge of the 

robot. 

 

 

Illustration 4. Chassis of the Robotino 
 

2.1.2 Battery System 

Robotino works with two Effekta batteries connected in series, each of 12 V (Volts), 5 

Ah (Ampere hour). (Illustration 5) 

 

Illustration 5. Localization of the battery of the Robotino 
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2.1.3 Battery Charger. 

For charging the battery uses an electric charger ANSMANN ALCT 24-2 with a conversion 

voltage 220 (V) to 24 (V)/2 (A) with a connector connecting adapter 2.4 [mm] of 

thickness. Robotino works while it is charging but this limits the mobility of the robot. 

 

2.1.4 Control unit. 

The control unit is which manages and distributes the instructions of the program to the 

different parts of the Robotino. Disposition in illustration 6. The information of the 

sensors and the webcam are sent it by the Unit Control.  

 

 

 

 

 

 

 

 

 

 

Illustration 6. Localization of the control unit parts of Robotino 
 

This control unit consists of the following elements:  

- PC/104 processor 

- EA09 

- Connectivity 

- Compact Flash card 

- Interfaces. 

- Keyboard and Display 

- Interface I / O 

 

 

 

 

A – Control Unit 

B – Keyboard and Display 

C –Interface I/O 

D – Compact Flash Card 

E – Interfaces 
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PC/104 processor 

The computer is PC/104 (MOPSlcdLX) with a processor AMDLX800 at 400 MHz. The 

computer has 1 GB of SDRAM memory and a Compact Flash 1 MB where the operating 

system is installed. In this case we can work on Linux and QNX: 

 

- Linux with Kernel in real time (RTAI) and all the necessaries libraries to run 

applications. 

 

- A QNX Neutrino real time operating system (RTOS: Real-Time Operating 

Systems) developed by QNX Software Systems Ltd which consists of a micro-

kernel surrounded by a set of optional modules (resource managers). 

 

EA09 

The mother board controls the inputs and outputs of the board EA09 which provides 

access to motors, sensors, analog and digital inputs, digital outputs and relays of the 

Robotino®.  

 

The illustration 7 is a representation of how the Robotino communicates with the 

computer: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Illustration 7. Scheme of the communication of the board EA09 
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In the illustration 7 we saw how Matlab communicates with the Robotino. As we see the 

communication between Matlab and the Robotino has to be through the 

intercommunication with the EA09 board. This part of the unit control adapts the orders 

in Matlab to the kind of orders that understands the Robotino. 

 

On the computer we use Matlab for data monitoring and hardware in the loop control. 

The board EA09 works as an interface between the computer and the drive motors, the 

nine distance sensors, I/O connector, battery management. In normal operation, the set 

point values are received through RS232 from the PC104.  

 

Ethernet of the board EA09 can be connected to Robotino by using their access point. 

Robotino communicates with the board EA09 through Wireless LAN. But that depends 

of the quality of the Wireless connection. This depends if there is hardware in the loop 

or high speed monitoring, among other things. 

 

The I/O board and PC / 104 have connected through one of two serial interfaces (RS-

232) of the interfaces from PC/104. A feature of this board allows a loop speed control 

on each of the actuators with a frequency of 1 kHz. It also incorporates a timer and even 

a counter of position for each encoder. 

 

The EA09 board firmware implements four PID controllers for the three motors. The PID 

controller equation (1) is: 

 

  

(1) 

 

 

 

 

 

 

 

 

Connectivity 
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The connectivity of robotino features two modes for data transmission: 

- LAN Ethernet, Cable RJ-45. 

- WLAN, WIFI 802.11 b/g. 

 

Lan Ethernet 

Using their Acces Point to adapt the TCP IP protocol, such as a LAN using a cable RJ - 45 

for connection. PC Ethernet access is configured using their AP incorporated in the 

robot. 

 

Wireless LAN access point 

The characteristics of the connection of Wireless LAN access point is WLAN Standard 

IEEE 802.11b (11 Mbit to 2.4 GHz) and 802.11g (54 Mbps at 2.4 Ghz), with a limit range 

up to 100 meters, with a WEP encryption or WPA-PSK secure network. 

 

Robotino has own access point: Wireless Access Point. This device can work as a mode 

of AP (Access Point) or as a client. In our case, Roboino is configured to work in Client 

mode. 

 

In this mode (Client), the Access Point works exactly as a wireless modem wifi, the Access 

Point tries to find an external modem with certain specifications. The PC can connect to 

the Access Point through external WLAN. 

 

In our case, the computers of the laboratories are connected through wireless modem, 

which is connected via WLAN with our Robotino (Illustration 8). The IP for the Robotino 

in our laboratory is 192.168.1.221. 
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Illustration 8. Scheme of the communication using Wireless 
 

Compact Flash card. 

The compact flash card contains the operating system of the computer, libraries of the 

functions it also can load a program with the instructions for the Robotino. The card 

used in this project has a capacity of 1 GB of memory. 

 

Interfaces. 

For the connectivity, Robotino brings to us these interfaces as it shows in the illustration 

9:  

 

 

 

 

 

 

 

Illustration 9. Interfaces to connect Robotino 
 

These interfaces are created for connecting a mouse, a keyboard and a screen to 

access the operating system, there is also an Ethernet input in case of failures in the 

WLAN communication, but this limits the mobility of the robot. 

 

- VGA connection. 

 

- 2 USB inputs.  

 

- Ethernet connection. 
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Keyboard and Display. 

We can see on top of the Robotino a keyboard and a display (Illustration 10), from this 

keyboard can observe and select options that we need to run a program manually. When 

it turns on the Robotino, we can see the computer name, IP address, version of software 

and the charge level of the battery in the display. 

 

 

 

 

 

 

 

 

Illustration 10. Touch control command of Robotino 
 

 

Interface I/O. 

It is an interface for connecting sensors and additional actuators, using: 

- 8 analog inputs (0-10 V) (AIN0 to AIN7). 

- 8 digital inputs (DI0 to DI7). 

- 8 digital outputs (DO0 to DO7). 

- 2 relays for additional actuators (REL0 and REL1). The relay contacts can be used 

as NO, NC or switched. 
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2.2 Sensors of the mobile robots 

The next part discusses the various sensors used in mobiles robots. We discuss and 

explain some of their features. 

 

2.2.1 Classification of the sensors: 

The classification of the sensors of the mobile robots is based on the characteristics of 

the sensors: reading speed, error rate and tolerance, but the sensors are mainly 

classified in internal receptors and external receptors. 

 

External receptors: 

Sensors for measuring distances based on ultrasound: 

Ultrasonic sensors emit an ultrasonic signal, subsequently the reflection is received. 

Ultrasonic sensors are formed by a capsule emitting and a receiving station or by a 

transducer that acts as transmitter and receiver. 

 

This type of sensor has some limitations when it applies on a mobile robot: 

 

 The speed of sound is variable: it can be affected by the density of air, humidity 

and dust concentration in the air.  

 

 The blank time (blanking time): it is necessary to save a little time from being 

emitted until the receiver prepares to receive, aiming that not be influenced by 

the wave leaving the issuer. 

 

 Attenuation: the ultrasonic wave leaves the sender, it will disperse, and the 

signal will be reduced depending on the environment. 

 

 

 The measuring angle (Illustration 11): 

The signal has a profile complex amplitudes. Therefore, the echo not calculates 

accurately the location of the object. 
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Illustration 11. Vision range in degrees 
 

 

 Reflections: It is a serious impediment to detect the position of an object as it 

shows in the illustration 12. It can't ensure that the echo received is a result of a 

series of complex reflections by the environment. 

 

Illustration 12. Representation of the reflections  
 

 Cross-Talk: This effect occurs if the echo generated is received by another 

receptor as it shows in the illustration 13. This problem can be avoided, if it 

leaves a time between the measurements of two ultrasonic sensors. 

 

Illustration 13. Representation of the Cross-Talk  
 

About all the restrictions mentioned, the most important are: variation of the speed of 

sound, reflections and the angle measurement. 
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Sensors for measuring distances operating in the infrared spectrum 

Through these sensors we can estimate the distances between the sensor and the 

objects in the environment. There are different methods to measure the distance from 

an object: 

 

 Triangulation: It uses geometric relationships between the output beam and the 

sensor position. As it shows in the illustration 14: 

 

Illustration 14. Representation of the triangulation  
 

 Flight time: Measures the time from the exit until is received the beam, after 

bounce off an object. 

 

The advantages of this type of sensor can be summarized as follows: 

 The laser can generates a million measurements in one second. 

 Sensors are ideal for depth measurements. 

 

On the other hand, there are a set of very important drawbacks: 

 In the case of laser the price is very high (3000-10000 euros). 

 The consumption of the laser. 

 It does not detects obstacles or above/below the horizontal plane of 

measurement therefore it is not good to avoid obstacles. 
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Artificial vision: 

It can be distinguished at least two types of cameras, working in the visible spectrum 

and working in the infrared spectrum. On this field, there are algorithms to filter noise, 

offset lighting problems, finding lines, matching lines with models, draw shapes and 

build three-dimensional representations. 

 

Video camera has the following advantages: 

 It offers much information on each image. 

 It is ideal for detecting colors, textures and objects. 

 

On the other hand, there are disadvantages such as: 

 High computational cost. Thus, the robots usually have several processors, some 

of them exclusively devoted to processing images. 

 The price is high. A machine vision system, usually consists of one or two video 

cameras. 

 The images depends on the lighting. 

 It is not the right sensor for measuring depth. 

  

Proximity sensors: 

Proximity sensors usually have a binary output indicating the presence of an object 

within a specified range of distance. Under normal conditions, the proximity sensors 

used in robotics for work in near field to catch or avoid an object. Any sensor to measure 

distance can be used as a proximity sensor. 

 

There are three types of typical proximity sensors in mobile robots. 

 

- Inductive sensors 

Sensors based on a change in inductance due to the presence of a metallic object are 

proximity sensors most commonly used on the industrial environment. An inductive 

sensor is essentially a coil next to a permanent magnet packaged in a simple and robust 

receptacle. The effect of bringing the sensor to the proximity of a ferromagnetic material 

produces a change in the position of the flux lines of the permanent magnet. In static 

conditions there is no movement in the flow lines and therefore it does not induce any 

current in the coil. 
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- Hall Effect sensors: 

The Hall Effect relates the tension between two points of a conductor or semiconductor 

material with a magnetic field through the material. The Hall Effect sensors only detects 

magnetized objects. 

 

- Capacitive sensors: 

Like with inductive and Hall Effect sensors, this sensor only detects ferromagnetic 

materials. Capacitive sensors are potentially capable (with varying degrees of sensitivity) 

to detect all solid and liquid materials. 

 

Lighting sensors: photo resistance, photodiodes and phototransistors  

- The light sensors allows to hide in the dark the robot and when a light shows up 

it moves toward that. The photoresistance depends of the resistance of the 

sensor. 

 

- The phototransistors have greater sensitivity to light than the photoresistance. 

The phototransistor is basically a transistor which has been generated by the 

base collector. 

 

- The photodiodes have high sensitivity, produces a linear output over a wide 

range of light levels, and responds quickly to changes in lighting. This makes them 

useful in communication systems in order to detect modulated lights; the remote 

control for almost all TV, stereos and CD players employ them. 

 

Other external receptors 

Other external receptors are of contact, touch, radar-based microwave, thermocouples, 

etc. 
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Internal receptors: 

This type of sensors give information of the position and orientation of the robot. 

The positioning sensors can be classified into two groups: 

 

 Absolute measurement sensors: They give a measure of the pose respect to a 

fixed reference environment. Absolute sensors make mistakes when it measures 

but these errors do not accumulate over time. 

 

 Incremental sensors: These sensors measures an incremental movement respect 

to a point, but it has the disadvantage that the measurement errors are 

cumulative. 

 

GPS: 

The GPS is a system that provides a measure of the position of the robot in open air, and 

therefore it is considered an absolute measurement sensor. 

The GPS has the following advantage: 

 It is the only sensor of absolute position which works on any external 

environment. 

 

On the other hand, it has several drawbacks: 

 It can’t be used in buildings, because that blocks the satellite signal. 

 It is expensive 

 

Sensors for measuring the orientation of the robot 

Inclinometer: 

An inclinometer is a device that measures orientation of the gravity vector. The most 

common inclinometer uses mercury as a liquid for equilibrate. To measure the 

inclination needs to be on a platform that is not subject to acceleration, otherwise the 

measure is flawed. It is very sensitive to vibration.  
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Gyroscope: 

The compass uses the earth's magnetic field to determine the orientation of the robot. 

The main advantage is: 

 It is the only absolute measurement sensor which measures the orientation of 

the robot anywhere in the world. 

 

It has important limitations: 

 It is sensitive to external magnetic fields and it is sensitive to metallic elements 

that are very close to the robot. If magnetic field distortion is caused by the 

robot, the problem can be corrected. This effect is called Soft Iron Distortion. 

 

Incremental encoder 

Optical encoders or incremental encoders consists of a transparent disk which includes 

a series of opaque markings placed radially, equidistant from a lighting system and a 

light receiving element as it shows in the illustration 15. The axis is coupled to the 

transparent disk. With this arrangement, the receiver pulses counts each time the light 

passes through each brand and taking account of these pulses is possible to know the 

position of the axis and the rotation speed. 

 

Main limitations are: 

 The information about the position is lost when the system is unpredictably 

switched off or when there are strong disturbances in the environment. 

 Devices are particularly sensitive to shock and vibration. 

 There is lack of information if the encoder changes the direction. 

 

One solution to the latter problem, it has another strip of marks offset from the 

previous, this extra pulse train (B) is generated displaced 90° electrical respect to 

generated by the first strip A. 

 

It is possible to obtain an additional signal in order to indicate the direction of rotation 

which acts on the corresponding counter indicating the increase or decrease of the 

direction. It is also necessary have a reference mark on the disk Z which indicates a full 

rotation, therefore it has to start counting again. This brand also serves to start counting 

after recovering from a power failure. 
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Illustration 15. Representation of the encoder disc  
 

The resolution of this type of sensor depends directly on the number of brands that are 

on the disc. A relatively simple method to increase resolution is counting the rising edges 

of the pulse trains and the pulse account down, with this solution it increases the 

resolution of the sensor. 

 

The unit of measurement to define the accuracy of an encoder is called electrical degree. 

 

To know how many mechanical degrees correspond to 360° electric, apply the following 

equation: 

360° electric =
360° mechanical

n° pulse
turn

                                           (2) 

 

 

Speed sensors 

The speed of movement of each actuator is normally fed to an analog control loop 

implemented in the motor driver element. Normally, the speed control loop is analog, 

the sensor uses a generatrix which provides the rotational speed of the axis (10 mV per 

rpm). 
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2.3 About the wheels of the mobile robots 

2.3.1 Wheels: 

The wheels are the most popular method to provide mobility on a robot and they are 

used to propel many different sized robots and platforms. There's multiple sizes of 

wheels, different types of tire and different numbers of wheels. The little robots tend to 

have the smallest wheels, usually less than 2 centimetres in diameter, 3 and 4 are the 

most common number of wheels. 

Usually, a robot with three wheels uses two of them as normal wheels for axis, and the 

last one is a caster wheel. 

The robot which uses a gyroscopic stabilization are a complex robot. A robot with four 

or six wheels have the advantage of using multiple drive motors (one connected to each 

wheel) which reduces the slip. 

But the wheels that use our Robotino are omnidirectional wheels. This omnidirectional 

wheels give the robot a significant mobility over the other types. Summary of the 

advantages and disadvantages in the table 1. 

 

Advantage: Disadvantages: 

– Usually low-cost – May lose traction (slip) 

– Simple design and construction – Small contact area 

– Six wheels replaces a track system  

– Diameter, width, material, weight, 

tread etc. can all be custom to your need 
 

– Excellent choice for beginners  

Table 1. Advantages and Disadvantages using wheels 
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2.3.2 Tracks: 

Track drives are similar to the wheels that tanks. Use track drives are the best option for 

robots used outdoors. Tracks do not provide an extra grip strength but can reduce slip 

and distribute the weight of the robot. Summary of the advantages and disadvantages 

in the table 2. Making them useful for surfaces such as sand and gravel. 

 

Advantage: Disadvantages: 

– Constant contact with the ground 

prevents slipping 

– There is a sideways force that acts on 

the ground; this causes damage to the 

surface the robot 

– Evenly distributed weight helps robot 

to tackle a variety of surfaces 
– Not many tracks are available. 

 
– Increases the mechanical complexity 

and connections 

Table 2. Advantages and Disadvantages using tracks 
 

2.3.3 Legs: 

An increasing number of robots use legs for mobility. Legs are often preferred for robots 

that must run on uneven terrain. Several of the amateur robots are designed with six 

legs which allows the balance of robot. Robots with fewer legs are harder to balance. 

Researchers made experiments with bipeds, quadrupeds and hexapods. Summary of the 

advantages and disadvantages in the table 3. 

 

Advantage: Disadvantages: 

– Closer to organic/natural motion 
– Increased mechanical, electronic and 

coding complexity 

– Can potentially overcome large 

obstacles and navigate through very 

rough terrain 

– Higher cost to build 

Table 3. Advantages and Disadvantages that using legs 
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2.4 Type of locomotion: 

2.4.1 Differential 

From the point view of programming and construction, the differential design is one of 

the least complicated systems of locomotion as it shows in the illustration 16. The robot 

can go straight, turn on itself or take a curve. Summary of the advantages and 

disadvantages in the table 4. 

 

 

Illustration 16. Disposition of the differential wheels  
 

Advantages: Drawbacks: 

- Inexpensive system - - Difficult to control 

- Easy to implement - Requires control precision and trajectories 

straight 

- Simple design  

Table 4. Advantages and Disadvantages using differential wheels 

 

2.4.2 Synchronous 

 In this design, all of the wheels (usually three, Illustration 17) are steering and driving, 

the wheels are locked so that always point in the same direction. To change the direction 

of the robot, it has to turn simultaneously all wheels around a vertical axis, but the 

chassis is still pointing in the same direction. Summary of the advantages and 

disadvantages in the table 5. 

 

 

 

 

 

 

Illustration 17. Disposition of the Synchronous wheels  
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Advantages: Drawbacks: 

- Each motor works independent 

to each other and the rotation is 

simplify to control 

- Design and implementation are 

complex 

- The straight-line control is 

guaranteed mechanically 

 

Table 5. Advantages and Disadvantages using Synchronous wheels 
 

2.4.3 Tricycle 

The tricycle has two wheels connected by a shaft and one steerable wheel. The steerable 

wheel, only serves to determine the direction of the robot. As it shows in the illustration 

18. 

 

 

 

Illustration 18. Disposition of the tricycle wheels 

 

Advantages and disadvantages of Synchronous locomotion (Table 6): 

Advantages:  Drawbacks: 

- - Easy construction 
- - Requires control precision trajectories  

- - Simple design - - Restriction of certain movements 

- - Reduced slip  

Table 6. Advantages and Disadvantages using Tricycle wheels 
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2.4.4 Ackerman 

Ackerman wheels are based on the Ackermann steering geometry. Disposition wheels 

in the illustration 19. It is a geometric solution to solve the problem of the wheels when 

it takes a curve from the inside or the outside which traces out circles of different radii 

in the curves. Summary of the advantages and disadvantages in the table 7. 

 

 

 

 

Illustration 19. Disposition of the Ackerman wheels 

 

Table 7. Advantages and Disadvantages using Ackerman wheels 

 

2.4.5. Omnidirectional (Wheels with rollers – Swedish Wheels) 

It is a wheel with small discs around the circumference which are perpendicular to the 

turning direction (Illustration 20). The wheels moves with full force, but it also can slide 

laterally with great easiness. Advantages and Disadvantages in the Table 8. 

 

 

 

 

 

 

 

Illustration 20. Disposition of the omnidirectional wheels 
 

 

Advantages:  Drawbacks: 

- - Easy construction -  The robot can move immediately forward or 

backward but not laterally by the wheel spin. 

- -  A system of 4 wheels controls 

the direction. 

-  
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Table 8. Advantages and Disadvantages using omnidirectional wheels 

 

 

 

2.4.6 Locomotion by sliding tapes 

Many robots use this method of travel, but most of them are oriented to dangerous or 

where the displacement is complex, as military purposes or space exploration 

environments. Robots with slip tapes are the least common for simple activities. Since 

they have higher costs, greater scuffing and be slower.  

 

 

 

Illustration 21. Disposition of the locomotion by sliding tapes 
 

Advantages and Disadvantages in the Table 9. 

 

 

 

 

 

Table 9. Advantages and Disadvantages using locomotion by sliding tapes 
 

 

 

 

Advantages:  Drawbacks: 

- Allows to do complicated 

movements 

- The straight-line motion is not guaranteed by 

mechanical constraints: it is necessary implement a 

control 

-  - - Complex implementation 

Advantages: Disadvantages: 

- System easy to 

control 

- It doesn't have an 

accurate model of rotation 

- Consumes much power 

and time to rotate. 
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2.4.7 Legs 

The human being is the model of bipedal locomotion, so the biped robots are mainly 

designed trying to emulate our legs, as it shows the illustration 22. But control of bipedal 

locomotion has two major problems: stability control, necessary to maintain an upright 

posture and motion control that enables a shift forward at various speeds. Despite this, 

bipedalism has several advantages, such as access to very difficult terrain. 

 

 

 

 

 

 

 

 

Illustration 22. Disposition of the locomotion by legs 
 

Advantages and Disadvantages in the Table 10. 

Table 10. Advantages and Disadvantages using locomotion by legs 
 

 

 

 

 

 

 

Advantages:  Drawbacks: 

- It can moves through any 

terrain. 

- Many degrees of freedom, it is very difficult to 

control. 

-  - Maintaining stability is complicated. 

-  - Consumes a lot of energy and time for movements 
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2.5 Sensors of Robotino 

2.5.1 Collision sensor or the sensor of the bumper. 

It is formed by a band surrounding the detection chassis (black band) and contains a 

chamber with two conductive surfaces, these surfaces maintain a distance from each 

other, and with them it can detect the minimum change of the pressure on the band. 

This allows the robot to be able to stop when it collides with an obstacle. 

 

2.5.2 Infrared sensors. 

Robotino is equipped with nine infrared sensors, SHARP brand, model GP2D12, which 

are mounted on the chassis all around the robot with a separation of 40 cm to each 

other which allowing to monitor obstacles or elements in their surrounding area. 

It is capable to measure distances between the sensor and the obstacle with a range 

between 4 and 30 cm. 

 

2.5.3 Camera (Webcam) 

The Robotino works in a programming environment that allows to work with images and 

video in real time, it is possible with a VGA CMOS color camera with an USB 1.1 

connection. Disposition of the camera in illustration 23. 

 

1. Bumper 

2. Infrared sensors 

3. Camera 

 

 

 

 

 

Illustration 23. Localization of the webcam 
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Determination of the robot position through camera  

In order to determine the position of the robot, we use a web camera to take the photos 

and obtain information from the line. We use two functions of Matlab already 

programed to obtain this information. 

 

First one, "pintaimatge.m" draws an image on a 3x2 grid, and the second one, 

"mesuraDistanciaARuta.m" gives us the distance and the angle between the robot and 

the line on the x axis. One of the objectives of this project is to find a way that the robot 

follows a line using vision camera. 

 

The "mesuraDistanciaARuta.m" has been modified slightly to be able to obtain the 

distance and the angle respect to a vertical line, but it also obtains the distance and the 

angle respect to a horizontal line, renamed to "XavmesuraDistanciaARuta.m". 

 

The complete program of the XavmesuraDistanciaARuta.m is on the Annex 9.1.1 

Programing code of the XavmesuraDistanciaARuta.m 

 

Camera 

In order to obtain the information from photo as accurate as possible and using this 

functions it is necessary to calibrate the parameters of the camera. There are two types 

of parameters: intrinsic and extrinsic. 

 

The intrinsic parameters are invariant since they depend on the camera, but the extrinsic 

parameters depend on the camera calibration. We have to make a calibration to obtain 

the rotation and translation matrices to represent a pixel of the captured image to a 

point in coordinates of robot every time that we start a test in the laboratory and the 

camera is on a new position. 
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Intrinsic parameters of the camera  

All intrinsic parameters can be collected in one matrix named camera matrix. This matrix 

allows to relate by a linear equation, the pixel on coordinate vector with the vector on 

normalized coordinates. 

 

The camera matrix is defined as: 

𝐾𝐾 = [
𝑓𝑥 𝑠 𝑐𝑥

0
0

𝑓𝑦

0

𝑐𝑦

1
]                                                      (3) 

 

The pixel is defined as: 

[cxcy] — Optical center (the principal point), in pixels. 

(fx,fy) — Focal length in pixels.  

fx=F/px 

fy=F/py 

F — Focal length in world units, typically expressed in millimetres. 

(px,py) — Size of the pixel in world units. 

s — Skew coefficient which is non-zero if the image axes are not perpendicular. 

s = fy · tan(α) 

 

The calibration of these intrinsic parameters have already been made previously, I am 

going to use their results because they use the same camera and the intrinsic 

parameters are invariant. 

 

The values of the camera matrix are as follows: 

 

𝐾𝐾 = [
404.8412 0 143.9544

0
0

408.8882
0

108.0107
1

]                             (4) 
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Extrinsic camera parameters 

Camera Calibration (Tc_ext, Rc_ext) 

I proceed to calibrate the extrinsic parameters and determine the rotation and 

translation matrices to represent one point in world coordinates to a point in camera 

coordinates. 

 

Before performing the calibration, at least we should take one photo of the grid of 

squares in black and white. Note that we should place the Robotino in the drawing 

where indicates in the illustration 24. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Illustration 24. Work area for calibration 

 

There is a toolbox in matlab previously installed that allows to obtain these matrices. 

Once the photo has been taken we will save it in the directory that we work with the 

name 'Quadricula' in "tif" format. Using the command: 

imwrite (img, 'Quadricula.tif') 
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The KK matrix along with others parameters such as their deviation of the error are in a 

file called Calib_Results.mat. We need to load this file using the command of Matlab: 

load Calib_Results.mat 

 

Once this has been done, we have to run on the main page of Matlab the command: 

extrinsic_computation 

 

Follow the next steps that indicates Matlab: 

The first indication from Matlab says: 

Computation of the extrinsic parameters from an image of a pattern. 

The intrinsic camera parameters are assumed to be known (previously 

computed) 

Image name (full name without extension):  

 

We write the name of the photo that we already take without the extension (in our 

case 'Quadricula'): 

Image name (full name without extension): Quadricula 

 

The next step asks the image format: 

In our case, we have to write the letter "t" as indicates the legend. 

Image format:([]='r'='ras','b'='bmp','t'='tif','p'='pgm','j'='jpg', 

'm'='ppm’) t 

Warning: The image format can only be in a format that indicates the legend. 

 

The program want’s to indicate the length (in pixels) of the window for extracting the 
vertices of the square, by default, 5 pixels for x and y. 
 
Extraction of the grid corners on the image 

Window size for corner finder (wintx and winty): 

wintx ([] = 5) = 5 

winty ([] = 5) = 5 

Window size = 11x11 

 

It now appears an interactive image where we have to indicate the vertices of a 

rectangular region (Illustration 25). The order of vertices doesn't matter, but the first 

one must be the upper left vertex. 
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Illustration 25. Interactive image once marked the rectangular region 

The next step is necessary and sometimes not, it depends on the size of the chosen 
region. Sometimes the program is not able to identify how many squares are on the x 
axis and the y axis, if it were the case we would have to indicate it manually: 
 
Could not count the number of squares in the grid. Enter manually. 

Number of squares along the X direction ([] = 10) = 3 

Number of squares along the Y direction ([] = 10) = 3 

 
Finally, the program requests the length of the squares on the x axis and y in mm. 

In the case of our grill in the lab, the length of the square is equal to 50mm  

DX size of each square along the X direction ([] = 30 mm) = 50 

DY size of each square along the Y direction ([] = 30 mm) = 50 

 

When we finished to introduce the orders, the program extracts the matrices of 
rotation, translation and the pixel error. This error is important to make sure that it is 
small to ensure accuracy, otherwise the calibration should be repeated until the error is 
acceptable. (Less than 0.5 is acceptable) 
 
Corner extraction... 

Extrinsic parameters: 

Translation vector: Tc_ext = [-74.543326  -53.266620   401.815736] 

Rotation vector:   omc_ext = [ 1.798734   1.667851   -0.787365] 

Rotation matrix:    Rc_ext = [ 0.054699   0.997407   -0.046763 

                               0.669964   -0.071387   -0.738953 

                               -0.740375   0.009090   -0.672132] 

Pixel error:           err = [ 0.33049   0.31560 ] 

O

X

Y

Image points (+) and reprojected grid points (o)

50 100 150 200 250 300

50

100

150

200
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Step to convert coordinates of robot into coordinates calibration 

The illustration 26 shows the distance from a known point on the grid and the center of 

the robot. From this image of calibration we can determine the translation and rotation 

that have to done to convert the coordinate system of the robot into a calibration 

coordinates with a point that we know. The upper left point of the rectangular region in 

illustration 27 is located two square above the point showed in the illustration 26,              

(-62.7,277.9). Thus the translation matrix is the reverse of [-62.7, 377.9, 0] and the 

rotation is -90°. The axes is what we want to change that is why we must take the 

opposite sign of the angle, 90°.  

I transform the matrices homogeneously to operate with them: 

Rotation:     Translation:   

𝑅𝑟𝑐 = [

0 −1 0 0
1 0 0 0
0
0

0
0

1 0
0 1

] 5.1.a  𝑡𝑟𝑐 = [

1 0 0
0 1 0
0 0 1

−(−62.7)
−(377.9)

0
0 0 0 1

]             5.1. 𝑏 

 

 

Step to convert coordinates of robot into coordinates camera 

We proceed with two steps in order to convert the coordinates: first the translation and 

then the rotation. Secondly: the calibration coordinates into a camera coordinates. 

Following this equation: 

𝑀 = 𝑡𝑐𝑎𝑙→𝑐𝑎𝑚 ∗ 𝑅𝑐𝑎𝑙→𝑐𝑎𝑚 ∗ 𝑅𝑟𝑜𝑏→𝑐𝑎𝑙 ∗ 𝑡𝑟𝑜𝑏→𝑐𝑎𝑙                        (5.2) 

This gives to us an array called "M" which includes the matrix of rotation and translation 

(R, t): 

𝑀 = [
𝑅3𝑥3 𝑡3𝑥1

01𝑥3 1
]                                                      (5.3) 

 
Command Execution: 
Rrc=[0,-1,0,0;1,0,0,0;0,0,1,0;0,0,0,1]; 

Trc=[1,0,0,-(-62.7);0,1,0,-(377.9);0,0,1,0;0,0,0,1]; 

 

Tc_ext_homo=[1,0,0,Tc_ext(1);0,1,0,Tc_ext(2);0,0,1,Tc_ext(3);0,0,0,1]; 

Rc_ext_homo=[Rc_ext(1,1),Rc_ext(1,2),Rc_ext(1,3),0;Rc_ext(2,1),Rc_ext(

2,2),Rc_ext(2,3),0;Rc_ext(3,1),Rc_ext(3,2),Rc_ext(3,3),0;0,0,0,1]; 

 

M=Tc_ext_homo*Rc_ext_homo*Rrc*Trc; 

 

t=[M(1,4);M(2,4);M(3,4)] 

R=[M(1,1),M(1,2),M(1,3);M(2,1),M(2,2),M(2,3);M(3,1),M(3,2),M(3,3)] 
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𝑡 = [
8.6647

195.7370
122.5978

]                                                      (5.4. 𝑎) 

 

𝑅 = [
0.9974 −0.0547 −0.0468

−0.0714 −0.6700 −0.7390
0.0091 0.7404 −0.6721

]                               (5.4. 𝑏) 

Remember that we must perform calibration every time that the camera is moved. 

 

Method to binarization of image 

The two functions that provide us the information regarding the position of the robot 

line were already programmed. 

 

The first function is "pintaimatge.m ". This function is used within the 

XavmesuraDistanciaARuta.m function to draw the images binarized in the 3x2 grid. 

The second function "XavmesuraDistanciaARuta.m" is the function that really provides 

the distance and angle that we want. We below discuss more deeply about this function. 

 

pintaimatge.m  

This function draws an image on a grid of 3x2 which binarizes the image in three matrices 

of 320x240. Each matrix is defined on the colour plane R G B. From that matrix, we 

obtain an image in black and white (the background in black and the line in white). 

 

XavmesuraDistanciaARuta.m  

[D1, theta] = XavmesuraDistanciaARuta (img, R, t, KK, []) is the Matlab command that 

calls the script with the same name "XavmesuraDistanciaARuta". This function returns 

the distance and angle from the axis y. 

 

This script has 4 outputs:  

d1_ver, theta_ver: The distance and angle of the robot respect of the vertical line. 

d1_hor, theta_hor: The distance and angle of the robot respect of the horizontal line. 
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Criteria of signs: 

Respect to a vertical line: 

If the orientation is to the left, the distance and angle are positive. 

If the orientation is to the right, the distance and the angle are negative. 

 

Respect to a horizontal line: 

If the orientation is to the right, the distance and angle are positive. 

If the orientation is to the left, the distance and the angle are negative. 

 

Requirements: 

The program needs that the far side of the line corresponds to the positive direction of 

the axis of the world. 

 

Required parameters: 

Img: This variable is the photo that takes while the robot is following the line. Therefore, 

it takes photos at sampling time that indicates the camera (30 fps). Although this value 

can vary and be lower between 15-20 fps for unknown reasons. 

 

  R: rotation matrix.    KK: Matrix of the camera.  

 

Warning: 

D1: The units of the distance is in millimeter. 

Theta: The margin of the angle are [-180.180] and the units is in degrees. 
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2.6 Robotino wheels 

Robotino uses omnidirectional wheels, there are three motors and three wheels 

separated by 120° each one, each drive unit contains the following elements: 

 

- DC Motor. 

 - Incremental Encoder. 

 - Omnidirectional rollers. 

 - Reductor with a reduction ratio of 16: 1. 

 - Timing Belt. 

 

In the case of omnidirectional rollers are directed in one direction by their own axis. 

But it can move in any direction, this is because the work of two rolls together can create 

a different direction to the established. For example, if it moves two of the three wheels 

in the opposite direction, the robot will move forward. But if the direction is the same, 

the robot will move backward.  

 

Disposition of the elements in the Illustration 26: 

  

  

  

  

  

  

  

  

  

  

  

 

 

 

 
Illustration 26. Localization of the different parts of the omnidirectional wheels 
 

 

 

 

 

1 - Incremental Encoder. 

2 - DC Motor. 

3 - Omnidirectional wheels. 

4 - Reductor with a reduction ratio of 16: 1. 

5 – Timing Belt. 
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3. IDENTIFICATION AND CONTROL OF THE PROPULSION WHEELS 

3.1 Introduction 

In this present chapter I find how to control the Robotino’s omnidirectional wheels. First, 

we have to find a model for each wheel, also identify their parameters, and then design 

a PI controller (with corresponding parameters) for each wheel of the Robotino. 

 

The second part of the chapter includes the disturbances from the captured data. We 

are going to check using Matlab tool "Simulink" if these disturbances affect the 

performance of the PI controller. 

 

To obtain the model for each wheel we used experimental data which have been 

collected by professors of ESEIAAT. 

 

3.2 Design the model for the wheels 

In the board EA09 of the Robotino there are controllers (Kp and Ki) to control the wheels 

of the robot. From the data experiments performed by others, we to tune these 

parameters. This tuning relates the tension send to the motor and the measured speed 

of the wheels when the Robotino is on the floor. 

 

3.3 Identification experiments 

I explain below the procedure for the wheel 0 and the same procedure repeats for the 

other two wheels. At the end of this chapter, we are going to show the results for each 

wheel. The next illustrations (27), (28) are the response for the three wheels when wheel 

0 is the only one which receives input signal. (Sample time equal to 0.001). 
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Illustration 27. Experimental results (realized by professors) 

 

Illustration 28. Experimental results (realized by professors) 

 

I focus on the response of the wheel 0. I show a better image of the response of the 

wheel 0. 
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3.4 First-order model  

I have two transient regimes and two permanent regimes. In order to work better with 

this data, I find a first-order model high frequency noise observed in next illustration 29. 

 

 

Illustration 29. Data variations between samples time 

 

The values after the 1000 samples of the sampling period have been taken as zero 

reference, the delay time are consider it equal to 1 (N = 1). 

In order to obtain this reference, I make the average of the values for the first steady 

state regime and subtract it the values. I repeat the process with the control signal, but 

the average was not necessary because it was a fix value. I use the Matlab function “oe” 

to find a model. 

The transfer function obtained is: 

 

𝐺(𝑧) =
0.1553 𝑧−1

1 − 0.9907 · 𝑧−1
                                                      (6.1) 
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The comparison between the experimental data and the model in the illustration 30:

 

Illustration 30. Model representation for the wheel 0 

 

3.5 Parameters of the controller 

Desired plant: 

𝐺(𝑧) =
(1 − 𝑎𝑖𝑑𝑒𝑎𝑙) · 𝑧−1

1 − 𝑎𝑖𝑑𝑒𝑎𝑙𝑧−1
                                                      (6.2. a) 

 

Next step is to calculate Kp and Ki controller parameters that is why I calculate a first 

order desired model in discrete time introducing into a controller. This is the desired 

model if we want to reduce the error: 
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1 − 𝑎𝑖𝑑𝑒𝑎𝑙𝑧−1

=
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·
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=
1 − 𝑎𝑧−1

𝑏 · 𝑧−1
·

(1 − 𝑎𝑖𝑑𝑒𝑎𝑙) · 𝑧−1

1 − 𝑧−1
=

(1 − 𝑎𝑧−1) · (1 − 𝑎𝑖𝑑𝑒𝑎𝑙) · 𝑧−1

𝑏 · 𝑧−1 · (1 − 𝑧−1)
= 

 

=
(1 − 𝑎𝑖𝑑𝑒𝑎𝑙) · 𝑧−1 − 𝑎(1 − 𝑎𝑖𝑑𝑒𝑎𝑙) · 𝑧−2

𝑏 · 𝑧−1 · (1 − 𝑧−1)
= 

 

=
1

𝑏 · 𝑧−1
·

(1 − 𝑎𝑖𝑑𝑒𝑎𝑙) · 𝑧−1 − 𝑎(1 − 𝑎𝑖𝑑𝑒𝑎𝑙) · 𝑧−2

(1 − 𝑧−1)
= 

 

=

(1 − 𝑎𝑖𝑑𝑒𝑎𝑙)
𝑏

−
𝑎(1 − 𝑎𝑖𝑑𝑒𝑎𝑙)

𝑏
· 𝑧−1

(1 − 𝑧−1)
                                   (6.2. b) 

 

PI control discretization: 

𝐻𝑃𝐼 (𝑧) = 𝑘𝑝 + 𝑘𝑖
1

1 − 𝑧−1
                                         (6.2. c) 

 

I have to compare the model with the function for a PI controller in discrete-time, and 

then determine the equation for Kp and Ki, this is the solution: 

 

𝑘𝑝 =
𝑎(1 − 𝑎𝑖𝑑𝑒𝑎𝑙)

𝑏
              𝑘𝑖 =

(1 − 𝑎𝑖𝑑𝑒𝑎𝑙)

𝑏
− 𝑘𝑝                    (6.3) 

 

I want a controller that makes the error zero in steady state fast, I adjust the pole not 

too close to 1, in a first case I choose the pole equal to 0.998.  

For a = 0.9907, b = 0.1553, aideal = 0.998 

 

𝑘𝑝 =
𝑎(1 − 𝑎𝑖𝑑𝑒𝑎𝑙)

𝑏
=

0.9907 · (1 − 0.998)

0.1553
= 31.89633 · 10−3                    (6.4. a) 

 

𝑘𝑖 =
(1 − 𝑎𝑖𝑑𝑒𝑎𝑙)

𝑏
− 𝑘𝑝 =  

(1 − 0.998)

0.1553
− 31.89633 · 10−3 = 2.9942 · 10−4     (6.4. b) 
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The following illustrations (31, 32) are the simulation result:  

Illustration 31. Simulation of the system with the controlled signal and the PI controller 

that we calculated 

 

 

 

 

 

 

 

 

 

 

 

 

 

Illustration 32. Graph of the controlled output and the input speed for the wheel 0 

 

The step comes with a signal of 567 rpm and it ends in a permanent regime of 900 rpm 

for the wheel 0. 

 

The simulation model provides a response without overshoot which means that our 

model is correct. But according to the specifications of the Robotino there are certain 

conversions to be performed on the parameters of Kp and Ki controller. 

 

 



Trajectory control design of a mobile robot with computer vision 

Escola Superior d’Enginyeries Industrial, Aeroespacial I Audiovisual de Terrrassa (ESEIAAT)    55 

First, the units of the control signal are revolutions per minute (rpm) while the variable 

that reads the EA09 board has their own units, this relationship is as follows: 

   27 rpm = 1 controller unit 

 

Second, the instruction of Matlab introduces the values of the PI controller of Robotino 

but it needs the following conversion: 

    kp = kp’ · 0.01 

    ki = ki’ · 0.001 

 

kp and ki are the values of the controller without the conversion.                    

kp' and ki' are the values that we put into the controller of the Robotino. 

These conversions are extracted from the website of the bibliography [7]. 

 

I proceeded then to make these changes on the simulation in the driver but adding a 

gain of 1/27 in the model of Simulink to simulate the conversion that will do the EA09 

board in the reality. 

 

PI Wheel 0: 

We apply the conversion in order to obtain the new PI parameters to identify each 

controller for each wheel: 

𝑘𝑝′0 = 𝑘𝑝0 ·
27

0.01
= 31.89633 · 10−3 ·

27

0.01
= 86.12                  (6.5. a) 

 𝑘𝑖′0 = 𝑘𝑖0 ·
27

0.001
= 2.9942 · 10−4 ·

27

0.001
= 8.08435              (6.5. b) 

 

The new plant for simulation in Simulink in the illustration 33: 

Illustration 33. Plant used in Simulink to simulate the response 
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The response of the output in the illustration 34: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Illustration 34. Graph of the controlled output and the input speed 

The simulation response is exactly the same after the conversion. This changes that I do 

in the plant Simulink are correct to implement these parameters in to the real robot. 

Perhaps this seems a not necessary step. But an error was detected in the calculation of 

PI controller with this testing. 

 

Results for each wheel in the table 11 and table 12: 

Model for the wheel 0 Model for the wheel 1 Model for the wheel 2 

a0 = 0.9907 

b0 = 0.1553 

a1 = 0.9893 

b1 = 0.1596 

a2 = 0.9879 

b2 = 0.1702 

Table 11. Parameters of the first-order model for each wheel 
 

Controller parameters for 

the wheel 0 (PI) 

Controller parameters for 

the wheel 1 (PI) 

Controller parameters 

for the wheel 2 (PI) 

kp′0 = 86.12 

ki′0 = 8.0843528 

kp′1 = 83.681391 

ki′1 = 9.05075 

kp′2 = 78.3587 

ki′2 = 9.5975 

Table 12. Parameters of the PI controller after the conversion 
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3.6 Methodology and of Simulink model to validate the controller 

I used the Simulink tool to find the error between the model and the experimental data 

of the speed. The same scheme serves to repeat with the wheel 1 and 2, but we have to 

change the data of 'from workspace' for the corresponding data for each wheel 

(actual_speed, control_value). The scheme proceeds as follows in the illustration 35: 

 

Illustration 35. Simulink scheme to find the error 

 

The value of the block "Constant" of the Simulink model is the average value of the 

speed that we have used to change the zero reference (Table 13). 

Constant for the wheel 0 Constant for the wheel 1 Constant for the wheel 2 

Constant = 567  Constant = 675  Constant = 560  

Table 13. Parameters for the simulation (Input step for each wheel) 
 

The value of the block "Step" of the plant of Simulink is the average value of the sign of 

control that in case of all wheels was 70. 

 

The values of ‘a’ and ‘b’ for this plant was the values that we found with the 

approximation to 0.998. So that the values for each wheel are the following table (Table 

14): 

Model for the wheel 0 Model for the wheel 1 Model for the wheel 2 

a0 = 0.9907 

b0 = 0.1553 

a1 = 0.9893 

b1 = 0.1596 

a2 = 0.9879 

b2 = 0.1702 

Table 14. Parameters of the first-order model for each wheel 
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Results graphics for the wheel 0 (Illustration 36):  

 

 

 

 

 

 

 

 

 

 

 

 

Illustration 36. Above figure: Compare actual speed with the theoretical model 

                           Below figure: The error of the comparison 

 

I get the error that gets in the permanent regime of captured data to implement the 

error in our plant of simulation (Last 1000 points). 

 

The Simulink model for the test in the illustration 37: 

Illustration 37. Plant used in Simulink to simulate the response with the error 
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This is how response the Simulink model of the illustration 37: 

 

Illustration 38. Simulink plant response with the error 
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3.7 Study of the Error 

This is the procedure: 

We have to make the pole nearest to 1 fails to mitigate the error. Therefore, we studied 

the error to corroborate if the noise can be filtered or not. 

 

The error of the wheel 0: 

Illustration 39. Error for the permanent region  

The error signal has a sinusoidal shape that it repeated approximately every 300 points. 

We use the Fourier transform to express the temporal frequency domain and the 

sinusoidal harmonics which compose it. 

 

The problem happens when the signal is decomposed in harmonics, we were not sure if 

that signal includes integer multiples of each harmonic that decompose it. In order to 

solve this problem we proceeds to work with a window. 

 

A window is used to limit the length of a real signal captured. The basic idea of the 

process of window, it is extracts the average value of the signal and delimitates the 

window as broad as the number of points of the signal, then it multiplies each point of 

the signal without the average for the corresponding coefficient of the window and it 

finally performs Fourier transform. 
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Illustration 40. Representation of the Fourier transform  

 

We saw that in the illustration 40 there is a fundamental harmonic of 3.2 Hz. The noise 

is constant across the spectrum, so we can say that it was a white noise. The noise will 

not be filtered in order to be attenuated because the signal will be so low that robot will 

remain immobile. 
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4. KINEMATIC MODEL  

4.1 Introduction 

In this chapter, different kinematic models for different types of robots are exposed. For 

more information see [9] [10] of the bibliography. 

 

Dynamic Model: The study of motion which models the forces. 

– Includes the energies and speeds associated with these motions (Gravity, etc..). 

 

Kinematic Model: The study of the mathematics of motion without considering the 
forces that affect the motion. 

– It deals with the geometric relationships that govern the system 

– It deals with the relationship between control parameters and the behaviour 
of a system in the space. 

 

Notation: 

Idealized model of wheel: 

 If the wheels are free to rotate about its axis (x axis), the robot exhibits 
preferential rolling motion in one direction (y axis) and a certain amount of 
lateral slip as it shows the illustration 41. 
 

 

 

 

 

 

 

Illustration 41. Theoretical representation of the axis   
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Robot and World reference in illustration 42: 

 

 

 

 

 

 

 

 

 

 

Illustration 42. Scheme representation of the axis   

 

 {Xr, Yr} – robot reference 

 {Xm, Ym} – world reference 

 

 

Kinematic Model in robot reference  [

�̇�(𝑡)
�̇�(𝑡)

𝜃(𝑡)̇
] 

 

 

Rotation matrix expressing the orientation of the world reference with respect to the 
robot reference 
 

[

cos(𝜃(𝑡)) − sin(𝜃(𝑡)) 0

sin(𝜃(𝑡)) cos(𝜃(𝑡)) 0

0 0 1

] 

 

 

 

x
m

 

y
m
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4.2 Kinematic Model for each locomotion type: 

4.2.1 Differential Drive 

 
 
 
 
 
 
 
 
 
 

Illustration 43. Theoretical representation of the axis for differential drive   

 

Vr(t):   Linear speed of right wheel. 

Vl(t):    Linear speed of left wheel. 

r:          Nominal radius of each wheel. 

R:      Instantaneous curvature radius of the robot trajectory, relative to the mid-point 
axis. 

𝑅 −
𝐿

2
 : Curvature radius of trajectory described by left wheel. 

𝑅 +
𝐿

2
 : Curvature radius of trajectory described by right wheel. 

 

𝑤(𝑡) =
𝑉𝑟

𝑅 +
𝐿
2

 

𝑤(𝑡) =
𝑉𝑙

𝑅 −
𝐿
2

    →    

 𝑤(𝑡) =
𝑉𝑟(𝑡) − 𝑉𝑙(𝑡)

𝐿

𝑅 =
𝐿

2
·

(𝑉𝑙(𝑡) + 𝑉𝑟(𝑡))

(𝑉𝑙(𝑡) − 𝑉𝑟(𝑡))

  →   𝑣(𝑡) = 𝑤(𝑡) · 𝑅 =
1

2
(𝑉𝑟(𝑡) + 𝑉𝑙(𝑡)) 

(6.6) 

Kinematic Model in robot reference: 

[

𝑉𝑥(𝑡)

𝑉𝑦(𝑡)

�̇�(𝑡)

] = [
𝑟/2 𝑟/2

0 0
−𝑟/𝐿 𝑟 − 𝐿

] · [
𝑤𝑙(𝑡)

𝑤𝑟(𝑡)
]                                   (6.7) 
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Kinematic Model in world reference: 

𝑣(𝑡) = 𝑤(𝑡) · 𝑅 =
1

2
(𝑉𝑟(𝑡) + 𝑉𝑙(𝑡))                                (6.8. 𝑎) 

𝑤(𝑡) =
𝑉𝑟(𝑡) − 𝑉𝑙(𝑡)

𝐿
                                                 (6.8. 𝑏) 

↓                                                                                

�̇�(𝑡) = 𝑣(𝑡) · cos(𝜃) (𝑡)                                               (6.8. 𝑐) 

�̇�(𝑡) = 𝑣(𝑡) · sin (𝜃)(𝑡)                                              (6.8. 𝑑) 

�̇�(𝑡) = 𝑤(𝑡)                                                        (6.8. 𝑒) 

↓                                                                                 

[

�̇�(𝑡)
�̇�(𝑡)

𝜃(𝑡)̇
] = [

cos(𝜃) (𝑡) 0
sin(𝜃) (𝑡) 0

0 1

] · [
𝑣(𝑡)

𝑤(𝑡)
]                                   (6.8. 𝑓) 

 

4.2.2 Synchronous drive 

 In a synchronous drive robot (synchro drive), each wheel is capable of being 

driven and steered. 

 Typical configurations: 

- Three steered wheels arranged as vertices of an equilateral triangle by a 

cylindrical platform. 

- All the wheels turn and drive it in unison. 

Steered wheel dispose in the illustration 44: 

– The orientation of the rotation axis can be controlled 

 

 

 

 

 

 

Illustration 44. Theoretical representation of the axis for steered wheel 
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 The three wheels point in the same direction and turns at the same rate. 

 The vehicle controls the direction of the wheels and their speed. 

 Because all wheels remain parallel, the synchro drive rotates always about the 

center of the robot. 

 The synchro drive robot has the ability to control the orientation θ. 

𝑥(𝑡) = ∫ 𝑣(𝜎) · cos(𝜃(𝜎)) 𝑑𝜎
𝑡

0

                                          (6.9. 𝑎) 

𝑦(𝑡) = ∫ 𝑣(𝜎) · sin(𝜃(𝜎)) 𝑑𝜎
𝑡

0

                                          (6.9. 𝑏) 

𝜃(𝑡) = ∫ 𝑤(𝜎) 𝑑𝜎
𝑡

0

                                                   (6.9. 𝑐) 

 

4.2.3 Tricycle 

 It has three wheels and two odometers on the two rear wheels (Illustration 45). 

 Steering and power are provided through the front wheel. 
 

Control variables: 

– Steering direction α(t) 

– Angular velocity of steering wheel ws(t) 

– r = steering wheel radius 

 

 

 

 

 

 

 

Illustration 45. Theoretical representation of the axis tricycle 

 

 



Trajectory control design of a mobile robot with computer vision 

Escola Superior d’Enginyeries Industrial, Aeroespacial I Audiovisual de Terrrassa (ESEIAAT)    67 

𝑉𝑠(𝑡) = 𝑤𝑠(𝑡) · 𝑟                                                        6.10. 𝑎 

𝑅(𝑡) = 𝑑 · 𝑡𝑔 (
𝜋

2
− 𝛼(𝑡))                                                 6.10. 𝑏 

𝑤(𝑡) =
𝑤𝑠(𝑡) · 𝑟

√𝑑2 + 𝑅(𝑡)2
                                                       6.10. 𝑐 

𝑤(𝑡) =
𝑣𝑠(𝑡)

𝑑
· sin(𝛼) (𝑡)                                                6.10. 𝑑 

 

Kinematic model in robot reference: 

𝑣𝑥(𝑡) = 𝑣𝑠(𝑡) · cos(𝛼) (𝑡)                                               6.11𝑎 

𝑣𝑦(𝑡) = 0                                                                 6.11. 𝑏 

�̇�(𝑡) =
𝑣𝑠(𝑡)

𝑑
· sin(𝛼) (𝑡)                                              6.11. 𝑐 

 

Kinematic model in world reference: 

�̇�(𝑡) = 𝑣𝑠(𝑡) · cos(𝛼) (𝑡) · cos(𝜃) (𝑡)                                   6.12. 𝑎 

�̇�(𝑡) = 𝑣𝑠(𝑡) · cos(𝛼) (𝑡) · sin(𝜃) (𝑡)                                    6.12. 𝑏 

�̇�(𝑡) =
𝑣𝑠(𝑡)

𝑑
· sin(𝛼) (𝑡)                                              6.12. 𝑐 

↓ 

[

�̇�(𝑡)
�̇�(𝑡)

𝜃(𝑡)̇
] = [

cos(𝜃) (𝑡) 0
sin(𝜃) (𝑡) 0

0 1

] · [
𝑣(𝑡)

𝑤(𝑡)
]                

𝑣(𝑡) = 𝑣𝑠(𝑡) · cos(𝛼) (𝑡)

𝑤(𝑡) =
𝑣𝑠(𝑡)

𝑑
· sin(𝛼) (𝑡)

 

6.12. 𝑑 
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4.2.4 Omnidirectional wheels 

Robotino has three omnidirectional wheels with these constraints as it shows the 

illustration 46: 

 Omnidirectional wheels: No kinematic restrictions on the wheel axis. 

 In the perpendicular axis, there is no sliding: there is a univocal relationship 

between the angular speed and the speed of the chassis. 

 Robot reference system has an independent relationship with the time. 

 

 

 

 

 

Illustration 46. Theoretical representation of the omnidirectional wheels 

Kinematic equation of the omnidirectional wheels: 

𝑟 · 𝑤(𝑡) = −𝑣𝑥(𝑡) · sin(𝛿) + 𝑣𝑦(𝑡) · cos(𝛿) + 𝑅 · �̇�                (6.13. 𝑎) 

 

Kinematic matrix for each wheel from the Kinematic equation in robot reference: 

[

𝑤0(𝑡)
𝑤1(𝑡)
𝑤2(𝑡)

] =
1

𝑟
· [

− sin(𝛿0) cos(𝛿0) 𝑅

− sin(𝛿1) cos(𝛿1) 𝑅

− sin(𝛿2) cos(𝛿2) 𝑅

] · [

�̇�𝑟(𝑡)
�̇�𝑟(𝑡)

�̇�𝑟(𝑡)

]                 (6.13. 𝑏) 

 

𝛿0 = 150°       𝛿1 = 270°       𝛿2 = 30°       𝑅 = 0.15       𝑟 = 0.05 

 

[

𝑤0(𝑡)
𝑤1(𝑡)
𝑤2(𝑡)

] =
1

0.05
· [

−0.5 −0.87 0.15
1 0 0.15

−0.5 0.87 0.15
] · [

�̇�𝑟(𝑡)
�̇�𝑟(𝑡)

�̇�𝑟(𝑡)

]                 (6.13. 𝑐) 

 

This equation is used to find the speed of the robot based on the world speed reference, 

but what we want to find is the speed and the position of the robot based of the setpoint 

speed which is the inverse of the kinematic matrix that we calculated. 
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The equation after the inverse: 

[

�̇�𝑟(𝑡)
�̇�𝑟(𝑡)

�̇�𝑟(𝑡)

] = 0.05 · [
−0.5 −0.87 0.15

1 0 0.15
−0.5 0.87 0.15

]

−1

· [

𝑤0(𝑡)
𝑤1(𝑡)
𝑤2(𝑡)

]                (6.13. 𝑑) 

 

Kinematic model in world reference: 

[

�̇�𝑚

�̇�𝑚

�̇�𝑚

] = [

cos(𝜃(𝑡)) − sin(𝜃(𝑡)) 0

sin(𝜃(𝑡)) cos(𝜃(𝑡)) 0

0 0 1

] · 0.05 · [
−0.5 −0.87 0.15

1 0 0.15
−0.5 0.87 0.15

]

−1

· [

𝑤0(𝑡)
𝑤1(𝑡)
𝑤2(𝑡)

] 

(6.13. 𝑒) 

 

The implementation of this equation using Simulink tool allows the simulation of the 

behaviour in function of the input step that we introduce on wheels. 
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4.3 Simulation of the kinematic model on world reference 

The illustration 47 is the application of the equation 25. Matrix of the Kinematic Model for Omnidirectional wheels in world reference. The 

dynamic model designed in chapter (the first order models for each wheel and the PI controller) is included in the model. 

 

Illustration 47. General scheme of simulation 
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4.3.1 Breakdown of each part of the general scheme: 

The first part of the general scheme is setpoint input. We use the Simulink block "Step" 

to enter setpoint speed at every time. We use the block "add" to add all steps that we 

need for each wheel in one signal. The illustration 50 is just a representation of how it 

looks the Simulink once we introduces several "Steps. Note that the red arrow from this 

setpoint input (illustration 48) is connected to the red arrow to the left of the illustration 

47. 

 

 

 

 

 

 

 

 

 

Illustration 48. Scheme of the input steps 

The second part is a discrete model of the wheels from chapter 4 which also includes 

their controller PI as it shows in the illustration 49:  

 

Illustration 49. Scheme of the model reference 

We have the angular speed of each wheel once overcomes this part. 
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In the third part (Illustration 50), there is a matrix of the direct kinematic model that 

calculates the speed of the robot from the wheel speeds in the robot reference . 

 T is kinematic model robot reference: 

𝑇 = [

− sin(𝛿0) cos(𝛿0) 𝑅

− sin(𝛿1) cos(𝛿1) 𝑅

− sin(𝛿2) cos(𝛿2) 𝑅

] 

 

 

Illustration 50. Scheme of the matrix kinematic model in the robot reference 

 

Finally, the rotation matrix (Illustration 51)to move from robot reference into world 

reference:   

Illustration 51. Outputs of the simulation: 

 

The outputs of this system are the speed on XY components. If we integrate these results 

we have the position of robot in XY components which allows to visualize the robot path 

throughout the simulation. The three red arrows that we see on the illustration 51 are 

connected to the outputs of the block "demux" (Illustration 50). It is interesting the 

highlight that no integration has sense in the robot reference as it moves with the robot. 
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It is recommended put every part inside a subsystem block to make a better file of Simulink which is easy to work with and easy to understand 

Like the illustration 52.

 

Illustration 52. General scheme structured in subsystems 
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4.4 Practical Cases 

4.4.1 Case 1 

The kinetic model that relates the wheel speeds and considering that the radius of the 

wheel is r = 0.05m and the chassis R = 0.15, is as follows: 

 

 

The Robotino is following a straight line with a speed of V = 0.2m / s and detects a 

crossing to 40cm (calculated over their center). Then enters in open loop control mode 

to turn on itself just on the crossing. 

 

Calculate the setpoints speed of the wheel to reach this point and turn right (East).  

 

Resolution of the problem 1: 

Introduce a signal (-3.46) for the wheel 0, (3.46) for the wheel 2 and (0) for the wheel 1. 

After 2 seconds reaches 40cm and send a contrary signal to the wheel 0 and 2, (3.46) 

and (-3.46), respectively. 

The simulation stops right at the point and rotates, apply the same signal (-4.71) to the 

three wheels for 1 second. Then the robot returns to the same signal as the first time,  

(-3.46) for the wheel 0, (3.46) and for the wheel 2 (0) for the wheel 1. 

 

If we want to move the robot to up: 

𝑤1 =
1

0.05
· [

−0.5 −0.87 0.15
1 0 0.15

−0.5 0.87 0.15
] · [

0
0.2
0

] = [
−3.46

0
3.46

] 

 

If we want to rotate: 

𝑤1 =
1

0.05
· [

−0.5 −0.87 0.15
1 0 0.15

−0.5 0.87 0.15
] · [

0
0

−1.57
] = [

−4.71
−4.71
−4.71

] 
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Steps to introduce in the setpoint input with the Simulink block (Step): 

Wheel 0: 

Step Time 0 2 2.5 3.5 4 

Set point - 3.46 3.46 - 4.71 4.71 - 3.46 

 

Wheel 1: 

Step Time 2.5 3.5 

Set point - 4.71 4.71 

 

Wheel 2: 

Step Time 0 2 2.5 3.5 4 

Set point 3.46 - 3.46 - 4.71 4.71 3.46 

 

Response of the simulation: 

This is the representation of the behaviour of a real robot with wheels model that have 

found in world reference: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Illustration 53. Response of the simulation for the case 1 (units are in meters) 
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4.4.2 Case 2 

Given the kinematic model in the robot system reference: 

 

We want the Robotino to go to the goal point of the scheme Figure 1 where the squares 

are 30cm side. 

 

Fig. 1: Scheme of the environment 

 

a. Find the wheel speed of the Robotino to do this path and stops. Give these 

signal in function of time (taking as u (t) a unitary step) 

 

Resolution of the problem 2: 

As case 2 does not establish a predetermined speed, I use the same values of case 1. The 

only difference is that when we want to rotate left the sign is positive. 

Steps to introduce in the setpoint input: 

Wheel 0: 

Step Time 0 1 1.5 3 3.5 4.5 5 11 11.5 12.5 

Set point 4.71 - 4.71 - 3.46 3.46 - 4.71 4.71 - 3.46 3.46 - 4.71 4.71 
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Step Time 13 20.5 21 22 22.5 25.5 

Set point - 3.46 3.46 - 4.71 4.71 - 3.46 3.46 
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Wheel 1: 

Step Time 0 1 3.5 4.5 11.5 12.5 21 22 

Set point 4.71 - 4.71 - 4.71 4.71 - 4.71 4.71 - 4.71 4.71 

 

Wheel 2: 

Step Time 0 1 1.5 3 3.5 4.5 5 11 11.5 12.5 

Set point 4.71 - 4.71 3.46 - 3.46 - 4.71 4.71 3.46 - 3.46 - 4.71 4.71 

 

Step Time 13 20.5 21 22 22.5 25.5 

Set point 3.46 - 3.46 - 4.71 4.71 3.46 - 3.46 

 

Simulation of the trajectory of the robot: 

 

 

 

 

 

 

 

 

 

 

 

 

Illustration 54. Response of the simulation for the case 2 (units are in meters) 

b. Which orientation will have the Robotino to stop? 

Looking to the south 

Initial position of the robot Final position of the robot 
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4.4.3 Case 3 

The Robotino has in front of it an object 10 meters away. We want to take photos of the 

object from all angles. Given the kinematic model of the robot in the robot system 

reference:  

 
 

3.1 Find the speeds of the wheels which will move Robotino to 1 meter from the 

object and stops it. Give these signal in function of time (taking as u (t) a 

unitary step) 

 

As case 3 does not establish a predetermined speed, I use the same speed calculated 

values for case 1 and 2. 

 

Steps to introduce in the set point input: 

Wheel 0: 

Step Time 0 45 

Set point - 3.46 3.46 

 

Wheel 1: 

Step Time 0 

Set point 0 

 

Wheel 2: 

Step Time 0 45 

Set point 3.46 - 3.46 
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Representation of how will response the robot: 

Illustration 55. Response of the simulation for the case 3.1 (units are in meters) 

 

3.2 Find the wheel speed that turns the robot 360º around the object at 1 meter 

away. Remember that the angular velocity of circular motion (w), the 

tangential velocity (Vy) and radius (r) are related by w*r = Vy 

 

𝑤 =
𝑉𝑦

𝑟
=

0.2

1
= 0.2 

 

We assume that the robot starts at a distance of 1 meter from the object because it has 

already travelled 9 meters in the last paragraph “3.1”. 

 

[

𝑤3

𝑤2

𝑤3

] =
1

0.05
· [

−0.5 −0.87 0.15
1 0 0.15

−0.5 0.87 0.15
] · [

0.2
0

0.2
] = [

−1.4
4.6

−1.4
] 
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Steps to introduce in the setpoint input: 

Wheel 0: 

Step Time 0 

Set point - 1.4 

 

Wheel 1: 

Step Time 0 

Set point 4.6 

 

Wheel 2: 

Step Time 0 

Set point - 1.4 

 

 

Representation of how the robot behaves: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Illustration 56. Response of the simulation for the case 3.2 (units are in meters) 
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5. TRAJECTORY CONTROL 

5.1 Introduction 

This chapter presents the trajectory control algorithm and some simulations to show its 

effectiveness. But now we are going to introduce the trajectory control which allows the 

robot to follow a linear path. 

 

Path tracking is a tracking algorithm which works by calculating the curvature that will 

move a vehicle, from its current position to some goal position. The point of the 

algorithm is to choose a position some distance ahead of the vehicle. 

 

5.2 Theory of the trajectory algorithm 

 Pure pursuit is a geometrical method which determines the curvature that drives the 

robot to a chosen point on the path (P). The robot and this point form an arc as shown 

in illustration 57. The chord length of this arc acts as the third constraint in determining 

a unique arc that joins these two points.  

 

 

Illustration 57. Theoretical scheme of the robot position when is out of line  

 

The point (P) has to be on the path and the robot is located on the origin point (0,0). 
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5.2.1 Development 

Applying the Pythagorean Theorem on illustration 57 and adding up the distances on 

the x axe. We get the following equations: 

x2 + y2 = 𝐿2                d2 + y2 = 𝑟2                𝑥 + 𝑑 = 𝑟                    (7) 

 

In order to develop the path control, it is necessary the length of the red arc (1/r) which 

is the path the robot follows to reach the point of the path (P). I calculate the arc radius 

(r) with the above equations and apply the inverse of the result. 

Development: 

d2 + y2 = 𝑟2                                                    (7.1. 𝑎) 

(r − x)2 + y2 = 𝑟2                                                (7.1. 𝑏) 

r2 − 2 · r · x + x2 + y2 = 𝑟2                                        (7.1. 𝑐) 

x2 + y2 = 2 · 𝑟 · 𝑥                                                 (7.1. 𝑑) 

𝐿2 = 2 · 𝑟 · 𝑥                                                      (7.1. 𝑒) 

 

𝑟 =
𝐿2

2𝑥
                                                            (7.1. 𝑓) 

 

1

𝑟
=

2

𝐿2
· 𝑋𝐿                                                       (7.1. 𝑔) 

 

 

- Calculation of the distance between the point of the line which the robotino should 

follow and the imaginary line formed in the direction of Robotino facing forward: 

 

In order to find the distance between the point of the line which should follow the 

Robotino and the imaginary line formed in the direction of Robotino facing forward (XL), 

we need the distance “d” that we see on the next illustration (Illustration 58, (7.3.c)). 

But it is also necessary to find the distance “b” (Illustration 58,(7.3.d)). 
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Illustration 58. Scheme of the robot position when is out of line 

 

From the illustration 58: 

Applying the Pythagorean Theorem to find "a". The tangent of the angle "𝜃1" to obtain 

"b". Subtracting "x - b" to obtain "d". Finally, it’s applying the cosine of "𝜃2" to obtain XL 

 

Development: 

𝑎 = √𝐿2 − 𝑥2                                                      (7.2. 𝑎) 

𝑏 = √𝐿2 − 𝑥2 · 𝑡𝑔(𝜃1)                                               (7.2. 𝑏) 

𝑑 = 𝑥 − √𝐿2 − 𝑥2 · 𝑡𝑔(𝜃1)                                           (7.2. 𝑐) 

𝑋𝐿 = (𝑥 − √𝐿2 − 𝑥2 · 𝑡𝑔(𝜃1)) · cos (𝜃2)                            (7.2. 𝑑) 

𝑋𝐿 = (𝑥 · cos (𝜃2) − √𝐿2 − 𝑥2 · 𝑠𝑖𝑛(𝜃1))                           (7.2. 𝑒) 

 

 

This is the final equation for the trajectory control: 

�̇�𝑟 = 𝑉 ·
2

𝐿2
· (𝑥 · cos (𝜃2) − √𝐿2 − 𝑥2 · 𝑠𝑖𝑛(𝜃1))                         (7.3) 

Where:  

- V is the Speed of the robot in m/s. 
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5.3 Implementation of the trajectory control algorithm 

We have to implement equation at the beginning in our model of Simulink if we want to 

obtain the set point speed as we saw in chapter 4. 
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                               (7.4) 

 

In the block "Gain" is implemented equation 7.4 of the illustration 59. 

 

We get the setpoint speed of wheel doing th.is conversion which is the reverse process 

that we did before.  

From that model of Simulink we can get �̇�𝑟 and �̇�𝑟 but to get �̇�𝑟, we need to implement 

the equation of the trajectory control. 

As �̇�𝑟  is equal to 𝛾 from the equation, we show the illustration of the Simulink blocks 

needed to calculate �̇�𝑟: 

 

Illustration 59. Scheme of Simulink model to simulate the behaviour when the robot is 

out of line  

 

This is just one example of how to implement the control path in the following 

example. 
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5.3.1 Simulation of the trajectory control 

If we locate the robot outside of the origin point (0,0), it will be redirected towards the 

vertical axis.  

 

The initial conditions of the scheme of Illustration 59: 

𝑉𝑥 = 0 

𝑉𝑦 = 0.4 𝑚/𝑠 

𝐿 = 0.7𝑚 

 

The blue line represents the position of the robot on world reference: 

 

−      𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑜𝑏𝑜𝑡 𝑜𝑛 𝑤𝑜𝑟𝑙𝑑 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 

  

 

 

 

 

 

 

 

 

 

 

 

 

Illustration 60. Robot behaviour simulation for redirection, when placed 0.4 m from 

point of origin of coordinates 

 

This procedure gives the order to move forward following the line with the trajectory 

control.  
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5.4 Simulation for any path with trajectory control 

So far we studied how to follow a straight trajectory. Now we are interested in following 

this kind of trajectory in an imaginary grid. This section deals with the problem of 

switching from a horizontal to a vertical line and viceversa. 

 

We will to study two methods of path tracking: 

- Closed loop switching, the robot is continuously moving without stopping. 

- Open loop switching, the robot stops when arrives on the rotation point, turn on 

itself and it follows the new line. 

 

We have to apply a translation and a rotation to coordinates x and y in both methods. 

These new coordinates are in world references on a 2D plane. The robot have to know 

its position and orientation throughout the simulation and how it changes during that 

time. 

 

The simulation scheme consists of several parts that have to be explained separately, at 

the end of this chapter, we will show the scheme and the response for both methods 

that were mentioned following the same path. Each part of the scheme are separated 

by subsystem blocks: 

 

5.4.1 Rotation Model 

We obtain the speed of the robot in robot coordinates as we saw in the chapter 4 and 

must apply a transformation to the speeds in order to become in world reference. 

 

[

�̇�𝑚

�̇�𝑚

�̇�𝑚

] = [

cos(𝜃(𝑡)) − sin(𝜃(𝑡)) 0

sin(𝜃(𝑡)) cos(𝜃(𝑡)) 0

0 0 1

] · [

�̇�𝑟

�̇�𝑟

�̇�𝑟

]                           (7.5) 
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Implementation of the Rotation model (Illustration 61)  

The inputs of this subsystem block are: 

- XY speeds in robot reference. 

- Orientation in degrees (theta).  

 

The outputs are: 

- The speeds XY in world reference. 

- The position in axes XY. 

 

 

Illustration 61. Rotation model in Simulink 
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5.4.2 Kinematic Model 

The equation for the robot speeds is given by the following formula: 

[

�̇�𝑟(𝑡)
�̇�𝑟(𝑡)

�̇�𝑟(𝑡)

] = 𝑟 · [

− sin(𝛿0) cos(𝛿0) 𝑅

− sin(𝛿1) cos(𝛿1) 𝑅

− sin(𝛿2) cos(𝛿2) 𝑅

]

−1

· [

𝑤0(𝑡)
𝑤1(𝑡)
𝑤2(𝑡)

]                   (7.6) 

Where: 

- r is the radius of the omnidirectional wheels. 

- R is the radius of the robot. 

- 𝜹 are the angle of the wheels. 

 

Then, replacing the values of equation in the chapter 4: 

[

�̇�𝑟(𝑡)
�̇�𝑟(𝑡)

�̇�𝑟(𝑡)

] = 0.05 · [
−0.5 −0.87 0.15

1 0 0.15
−0.5 0.87 0.15

]

−1

· [

𝑤0(𝑡)

𝑤1(𝑡)
𝑤2(𝑡)

]                     (7.7) 

 

Implementation of the Kinematic model (Illustration 62) 

The inputs of this block are the speed of the robot. The outputs are speeds XY (Vx, Vy) 

and gamma (r) in robot reference. 

 

 

Illustration 62. Kinematic model in Simulink 

 

- T is the array of the Kinematic formula 

- r is the radius of the omnidirectional wheels. 
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5.4.3 Wheels Model 

In Chapter 3 we obtained the discrete transfer function for each wheel and their own PI 

controller. Summary of the results in the table 15 and table 16: 

Model for the wheel 0 Model for the wheel 1 Model for the wheel 2 

a0 = 0.9907 

b0 = 0.1553 

a1 = 0.9893 

b1 = 0.1596 

a2 = 0.9879 

b2 = 0.1702 

Table 15. Parameters of the first-order model for each wheel 
 

Controller parameters for 

the wheel 0 (PI) 

Controller parameters for 

the wheel 1 (PI) 

Controller parameters 

for the wheel 2 (PI) 

kp′0 = 86.12 

ki′0 = 8.0843528 

kp′1 = 83.681391 

ki′1 = 9.05075 

kp′2 = 78.3587 

ki′2 = 9.5975 

Table 16. Parameters of the PI controller after the conversion 
 

Implementation of the Wheels Model (Illustration 63) 

The inputs of this block are: 

- Setpoint speed for each wheel 

 

The outputs of this block are:  

- Speed for each wheel. 

 

 

Illustration 63. Wheels model in Simulink 
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5.4.4 Trajectory Control Algorithm 

We need to apply two calculations in this Subsystem block. The first one is an array to 

get the setpoint speed for the robot, these outputs feed subsystem block "Wheels 

Model". Using the XY robot speeds and gamma (r). 

 

𝑇 = [

𝑤𝑠𝑝0

𝑤𝑠𝑝1

𝑤𝑠𝑝2

] =
1

0.05
· [

−0.5 −0.87 0.15
1 0 0.15

−0.5 0.87 0.15
] · [

�̇�𝑟(𝑡)
�̇�𝑟(𝑡)

�̇�𝑟(𝑡)

]                        (7.8) 

 

The second one is �̇�𝑟  which depends on the control algorithm. The result was the 

following formula (7.9): 

 

�̇�𝑟 = 𝑉 ·
2

𝐿2
· (𝑥 · cos (𝜃) − √𝐿2 − 𝑥2 · 𝑠𝑖𝑛(𝜃))                     (7.9) 

 

- V is the Speed of the robot in m/s. 

- L is the distance between the centre of the robot and one point of the path line. 

- x is the position of the robot in the axes X. 

- 𝜽 is the orientation of the robot in degrees. 
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 Implementation of the Trajectory Control  

The inputs of this subsystem block are the x coordinates of the robot, orientation (theta), XY speeds and the variable called “ControlTray” which 

can activate or deactivate the trajectory control. xm and theta are the result of the change of coordinates applied in another subsystem block.  

 

Illustration 64. Scheme of Simulink model to simulate the behaviour when the robot is out of line  

 

The Vx speed is 0 because what we want is the robot to move forward and the Vy speed is equal to the speed in m/s. 

The variables Vy and theta have to be multiplied by the variable “ControlTray” which can only have two values 0 and 1 (to activate or deactivate 

block “Trajectory Control Algorithm”). 
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5.4.5 Change axes of coordinate 

The previous case was a simple case where the robot has to be redirected and continue 

straight. But if we want turn right or left, we must apply the inverse of rotation matrix 

to the coordinate system of the robot. We show below calculations of the rotation 

matrix and translation matrix. 

 

 

 Rotation matrix  

 

 

 

 

 

 

Illustration 65. Rotation on the axis Z 

 

𝑥 = ℎ · cos(𝛼)            𝑥′ = ℎ · cos(𝛼 − 𝜃)                        (7.10. 𝑎) 

𝑦 = ℎ · sin(𝛼)            𝑦′ = ℎ · sin(𝛼 − 𝜃)                         (7.10. 𝑏) 

 

𝑥′ = ℎ · cos(𝛼 − 𝜃) = ℎ · (cos(𝛼) · cos(𝜃) + sin(𝛼) · 𝑠𝑖𝑛(𝜃)) =           (7.10. 𝑐) 

= ℎ · cos(𝛼) · cos(𝜃) + ℎ · sin(𝛼) · sin(𝜃) =                 (7.10. 𝑑) 

𝑥′ = 𝑥 · cos(𝜃) + 𝑦 · sin(𝜃)                                (7.10. 𝑒) 

 

𝑦′ = ℎ · sin(𝛼 − 𝜃) = ℎ · (sin(𝛼) · cos(𝜃) − cos(𝛼) · 𝑠𝑖𝑛(𝜃)) =         (7.10. 𝑓) 

= ℎ · sin(𝛼) · cos(𝜃) − ℎ · cos(𝛼) · sin(𝜃) =                   (7.10𝑔) 

𝑦′ = −𝑥 · sin(𝜃) + 𝑦 · cos(𝜃)                              (7.10. ℎ) 

 

𝑥′ = 𝑥 · cos(𝜃) + 𝑦 · sin(𝜃)                                  (7.10. 𝑖) 

𝑦′ = −𝑥 · sin(𝜃) + 𝑦 · cos(𝜃)                                (7.10. 𝑗) 
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The equations can be written in matrix form: 

𝑅 = [
cos(𝜃(𝑡)) −sin(𝜃(𝑡))

sin(𝜃(𝑡)) cos(𝜃(𝑡))
]                                        (7.11) 

 

The sign criteria is positive if the angle rotates counter clockwise and it is negative if 

rotates clockwise. Where the reference 0 is on the axis Y. 

 

 

 

 

 

 

 

Illustration 66. Sign criteria 

 

We want to express a point in another reference system when the robot rotated, 

therefore, we have to rotate the angle and change the sign. For example, in case it 

rotates clockwise an angle = - 90°, we use 90°. 

 

𝑅𝑓𝑜𝑟𝑤𝑎𝑟𝑑 = [
cos(𝜃(𝑡)) −sin(𝜃(𝑡))

sin(𝜃(𝑡)) cos(𝜃(𝑡))
] = [

1 0
0 1

]                    (7.12. 𝑎) 

 

𝑅𝑅𝑖𝑔ℎ𝑡 = [
cos(90) −sin(90)

sin(90) cos(90)
] = [

0 −1
1 0

]                    (7.12. 𝑏) 

 

𝑅𝑑𝑜𝑤𝑛 = [
cos(180) − sin(180)

sin(180) cos(180)
] = [

−1 0
0 −1

]                    (7.12. 𝑐) 

 

𝑅𝐿𝑒𝑓𝑡 = [
cos(−90) − sin(−90)

sin(−90) cos(−90)
] = [

0 1
−1 0

]                    (7.12. 𝑑) 
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𝜃 has to be increased depending on its direction when the robot turns. We follow the 

same sign criteria but the units are in radians as we see in the table 17: 

Increments of theta Direction 

0 Up 

- π/2 Right 

- π Down 

π/2 Left 

Table 17. Increments of theta 

 Translation matrix 

The translation matrix is a 2x1 matrix with the position in XY axes. 

𝑇 = [
𝑡𝑥

𝑡𝑦
]                                                                   (7.13) 

 

The input variables are xm and ym in XY coordinates. This matrix changes the position of 

the robot. It takes the last point and it becomes as origin point for the next position in 

the simulation. This action will take place each sampling time (Sample time = 0.001). 

𝑝𝑥𝑦𝑧 = 𝑝𝑢𝑣𝑤 · 𝑡                                                       (7.14. 𝑎) 

𝑇𝑝𝑢𝑣𝑤 = 𝑝𝑥𝑦𝑧 · (−𝑇)                                             (7.14. 𝑏) 

 

We use the reverse to obtain new coordinates because the inputs are in XY 

coordinates. 

 

Properties of the translation in a vector space: 

- The composition of two translations switches in another translation. 

- Identity is a translation. 

- Every translation is bijective and the inverse of other translation. 

 

∀ 𝑢, 𝑣 ∈ 𝑉 →  𝑡𝑣 ∘ 𝑡𝑢 = 𝑡𝑢+𝑣,  𝐼 = 𝑡0,      (𝑡𝑢)−1 = 𝑡−𝑢                        (7.15. 𝑎) 

𝑡−1 = −𝑡 = [
−𝑡𝑥
−𝑡𝑦]                                                (7.15. 𝑏) 
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Translation and Rotation of the coordinates  

The next matrix represents the transformation of a vector in homogeneous coordinates 

about the transformations. 

 

[
Rotation Translation

Persperctive Scale
]                                    (7.16) 

 

In robotics, the perspective transformation is void and the scale is equal to the unit (1). 

 

[
Rotation 0

0 1
]                           [

0 Translation
0 1

]                        (7.17) 

 

We applied a translation before a rotation to the coordinates. Multiply the matrices to 

obtain this equation that have to be implemented in the simulation: 

 

[
R 0
0 1

] · [
1 −𝑡
0 1

] · [
𝑥
𝑦] = [

R −𝑅 · t
0 1

] · [
𝑥
𝑦] = 𝑅′ · [

𝑥
𝑦] − 𝑅 · 𝑡                   (7.18) 
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Implementation of the change of coordinates in Simulink (Illustration 67) 

 

 

Illustration 67. Implementation of change of coordinates in Simulink 

 

- “R” is the rotation matrix that change according if we want to turn left or right. 

- “t” is the transfer matrix that also change depending on the orders that we 

introduce. 

- “Delta0” is the increment of theta (𝜃). 

- Theta (𝜃) the orientation of the robot 

- xm the position of the robot in coordinates XY 

- ym the position of the robot in coordinates XY 

  



Trajectory control design of a mobile robot with computer vision 

University of Industrial Engineering, Aerospace and Audiovisual of Terrassa  97 

5.4.6 Implementation of the trajectory of the Robot in Simulink 

I build do a subsystem block with multiple inputs and multiple outputs. The number of 

inputs and outputs depends on the MATLAB Function (Illustration 68). 

  

 

 

 

 

Illustration 68. Block MATLAB Function 

 

How to implement the trajectory in the simulation 

I use a different function Simulink model for each method. But in both methods, I use 

the same sign criteria to introduce the path tracking, at least in the simulation. 

 

The Matlab function has an input variable called "ListWaypoints" consisting of a matrix 

of 3 columns and as many rows as rotation points it has. 

- The first column is the position on the x axis of the turning point. 

- The second column is the position on the y axis of the rotation point. 

- The third column is the direction to be followed by the robot to reach that point. 

Note that the last row of this matrix is 0 by requisites of the program. 

 

How interpret the orders of the third column:       Example: 

 

 

 

Table 18. Criteria of directions 

 

 

 

 

x y Direction 

0 2 0 

-2 2 3 

-2 3 0 

3 3 1 

3 0 2 

Direction 

↑ 0 Up 

→ 1 Right 

↓ 2 Down 

← 3 Left 



Trajectory control design of a mobile robot with computer vision 

University of Industrial Engineering, Aerospace and Audiovisual of Terrassa  98 

 Method 1. 

The inputs of the matlab function are the position of the robot in world reference and 

the variable called "ListWaypoints". The outputs are the rotation matrix, the matrix of 

translation, the increment of theta and the variable called "ControlTray", which is equal 

to 1, because the robot is in constant motion. 

 

 

 

 

 

 

 

Illustration 69. Matlab function method 1 

 

 Description of the programming code: 

The complete program is in the Annex 9.1.2 Programming code for the simulation of the 

method 1 and its main parts are explained here. 

1st Variable statement: 

persistent waypoint 
persistent Vector 

  
if (isempty(waypoint)) 
    waypoint=1; 
    Vector=[0 0]; 
end;    

 
- waypoint: 

This variable is the row of the array "ListWaypoints". For the first case: waypoint = 1. 

 

- Vector: 

This variable indicates the direction to be followed by the robot. The value [0 0] is not 

used. 

 

Both variables are persistent variables which keeps the last value that have been given 
what is essential for the simulation throughout of time. 
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2nd. Path tracking 

if (norm([ListWaypoints(waypoint,1)-xm,ListWaypoints(waypoint,2)-

ym])<0.7) 
    waypoint=waypoint+1; 
    if waypoint==size(ListWaypoints,1) 
        waypoint=waypoint-1; 
    end 
end 

 

These lines of code adds 1 to the variable called “waypoint” and goes to the second line 

of the array called "ListWaypoints" when the robot is at distance less than 0.7m from 

the rotation. Then goes to the next rotation point. 

But when the variable "waypoint" reaches the maximum value (the row where all values 

are 0) the code subtract 1 to the variable, and the robot moves permanently in the last 

direction. 

 
3rd. Conversion of criteria address 
 
if  ListWaypoints(waypoint,3)==0 
    Vector=[0 1];     
elseif  ListWaypoints(waypoint,3)==1 
    Vector=[1 0];   
elseif  ListWaypoints(waypoint,3)==2 
    Vector=[0 -1];    
elseif  ListWaypoints(waypoint,3)==3 
    Vector=[-1 0];   
end; 

  

These lines of code convert the values 0, 1, 2, 3 of the third column of the variable called 
"ListWaypoints" in a binary value that applies to the equation of the rotation matrix and 
the increased 𝜃. 

 

4th. ControlTray and Change of coordinates 
 
ControlTray=1; 
R=Vector(1,1)*[0 -1;1 0]+Vector(1,2)*[1 0;0 1]; 
t=[ListWaypoints(waypoint,1);ListWaypoints(waypoint,2)]; 
Delta0=Vector(1,1)*pi/2+Vector(1,2)*(1-Vector(1,2))*pi/2; 

 

Remember that variable called "ControlTray" is always 1 because it is in constant 

motion. 

 

The second line (“R” equation) depends on the values of the variable called "Vector": 

The result will be [1 0; 0 1] if the values are [0 1] which correspond to the robot going 

forward. 
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If the values are [1 0], the resulting matrix is [0 -1; 1 0] which correspond to the matrix 

of rotation to the right, and successively for the values to the down and left ([-1 0; 0 -1] 

and [0 1; -1 0] respectively). 

 

The third line (“t” equation) is the translation matrix, it takes the values of the first and 

second column of the variable called "ListWaypoints" which corresponds to the 

location of the rotation point in XY coordinates. 

 

The last line (“Delta0” equation) depends on the values of the variable called "Vector": 

If the values are [0 1], the result is zero. 

If the values are [1 0], the result is (pi/2) which allows turn to the left and successively 

for the values to the right and down (-pi/2 and -pi respectively). 

 

Method 2. 

We have to add a new subsystem block called: Open Loop and modifying the inputs and 

outputs of the block Micro-Controller Subsystem and the code of the MATLAB function. 

 

New Block: Open Loop 

This block acts when the robot stops at the rotation point and it begins to turn on left or 

right. (The direction depends on the next waypoint) 

 

 

Illustration 70. Kinematic Matrix 

 

This block has one input and three outputs. The input is the variable called "AllWheels", 

this value depends on the speed of robot (V). The three outputs are the setpoint speed 

for each wheel, this outputs are the inputs of the subsystem block called "Model 

Wheels". 
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Robot has to turn left or right with no linear speed, which is why the speed of the three 

wheels must be the same, so the Vx and Vy are 0. The only different value is the third 

input on the Simulink block called “mux”. 

Once the kinematic matrix applied, the result is a 3x1 matrix with the same setpoint 

speed in the three rows of the matrix. 

 

Microcontroller Block: method 2 (Illustration 71) 

 

Illustration 71. Matlab function method 2 

 

The inputs of this block are the position in coordinates XY of the robot, the variable 

called "ListWaypoints" same as in method 1, but now we have to add a clock to have the 

simulation time, the wheel speed 0 (Omega0), and two new variables: “StepOP” and 

“Periode”. 

 

The outputs are the same as we saw on the method 1: The rotation matrix, the 

translation matrix, increment of theta, the variable “ControlTray” which enables and 

disables the control trajectory and the new variable called "AllWheels" that we 

discussed before in the section block Open Loop. 
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First, we explain the new inputs on Matlab function before explaining the code: 

- The Simulink block "Clock" is the output of current simulation time. It is a way to 

introduce the simulation time as a variable to use it in the code (Name: Temps). 

- Omega 0 is the wheel speed 0, the first output of the subsystem block called 

"Wheels Model". 

- StepOp is the speed of the robot when it has to turn left or right with no linear 

speed. 

- The Periode variable is the time it takes the robot to do 1/4 turn. 

 

How to find the values: "StepOP" and "Periode".  

Assuming that the robot is facing to the Y axis, the robot has to rotate 1/4 turn to the 

left if we want to move to the left, and the same thing if it have to move to the right.  It 

needs to rotate 1/2 of turn if we want to go in the opposite direction. 

 

Therefore, if we want to know how long needs the robot to rotate 1/4 turn with the 

same speed, we carry out the following calculations: 

 

Pas1=((1/0.05)*T*[0;0.2;0]); 

Pas2=0.05*T^-1*[Pas1(3,1);Pas1(3,1);Pas1(3,1)]; 

StepOP=Pas2(3,1) 

 

Where: 

T is the matrix of the Kinematic transformation 

 

The result of “Pas1” are the setpoint speed for each wheel if we want to move forward 

straight. 

The Pas2 is to get the speeds (Vx, Vy) and theta for the robot to turn on itself, 

maintaining the same speed. The setpoint speed of the wheels must be equal for each 

wheel (Pas1 (3.1)). The final result is Vx and Vy equal to 0 and theta equal to the variable 

called “StepOP”. 

 

The variable called "StepOP" must be positive, the sign of the variable called "StepOP" 

will change in the Matlab function. The sign depends on the rotation direction that 

have to rotate, the value is positive or negative depending if it have to rotate to left or 
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right positive for left turns and negative for right turns. If it have to go in the opposite 

direction that was following, the sign it is irrelevant. 

If we want to know how long it takes the robot to rotate 1/4 turn, we use the next 

formula: 

Periode =(pi/2)/StepOP 

 

Programing code  

- Description of the code: 

This program works with three possible states for the robot: 

State 0: The simulation enables the trajectory control (ControlTray = 1) and it disables 

the subsystem block “Open loop” (AllWheels = 0), the path simulation goes to the 

rotation point that marks the variable called "ListWaypoints" and "waypoint". When the 

simulation have reache the rotation point it goes to State 1. 

State 1: When the simulation enters this state, the path simulation stops (ControlTray = 

0 and AllWheels = 0). Once stopped (Omega0 ∼ 0), the variable "ListWaypoints" changes 

to the next rotation point (waypoint = waypoint + 1) and then changes to the State 2. 

State 2: The simulation disables the trajectory control (ControlTray = 0) and it activates 

the subsystem block Open loop (AllWheels = StepOP). Then, it begins to rotate to one 

direction depending on the previous direction and the actual direction. There are 4 

possibilities: left, right, going to the opposite direction to the previous or keep the same 

direction to the previous. 

 

Summary in the table 19: 

POSSIBLE DIRECTIONS OF THE ROBOT 

Direction To turn right To turn left 
To turn 

opposite 
direction 

Not turn 

↑ 0 1: ←  2: ↑ 1: → 2: ↑ 1: ↓ 2: ↑ 1: ↑  2: ↑ 

→ 1 1: ↑  2: → 1: ↓ 2: → 1: ← 2: → 1: → 2: → 

↓ 2 1: →  2: ↓ 1: ← 2: ↓ 1: ↑ 2: ↓ 1: ← 2: ←  

← 3 1: ↓  2: ← 1: ↑ 2: ← 1: → 2: ← 1: ↓ 2: ↓ 

      1: (Direction that the robot has been following before it stops) 

      2: (New direction after rotating) 

Table 19. Possible directions of the robot 
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In case that it goes to the opposite direction, the time of rotation is double (Periode · 2). 

If the simulation follows the same direction, the system goes to the state 0 without 

performing any rotation. 

 

If the path simulation has to rotate, when it passes the time of the variable "Periode", 

the system returns to state 0.  We use this code for the three cases of rotation to know 

when it has reached the rotation time: 

 

        if time0==0 
            time0=Temps; 
        end 

  
         if Temps-time0<2*Periode 
            ControlTray=0; 
            AllWheels=StepOP; 
         else 
            State=0; 
            time0=0; 
         end 

 

The complete program is in the Annex 9.1.3 Programming code for the simulation of the 

method 2. 
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5.5. Scheme of simulations 

5.5.1 Method 1: 

 

Illustration 72. Scheme: Method 1 

 

In this scheme we can see the distribution of the subsystem blocks which were explained before and how their inputs and outputs are connected 

to the right of the scheme there are two scopes that allow us to know the position and speed of the robot during the simulation. The third block 

XY Graph gives us a graphical representation of the trajectory the robot was following. 
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5.5.2 Method 2: 

 

Illustration 73. Scheme: Method 2 

 

In this scheme we can see the distribution of the subsystem blocks which were explained before and how their inputs and outputs are connected 

to the right of the scheme there are two scopes that allow us to know the position and speed of the robot during the simulation. The third block 

XY Graph gives us a graphical representation of the trajectory the robot was following. 

In this second method, the outputs of the subsystem block called "Trajectory Control Algorithm" and the subsystem block called "Open loop" are 

summed before entering the subsystem block called "Wheels Model" because only one of them will be active.
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5.6. Simulation of the trajectory control methods 

5.6.1 Workspace for both methods: 

Discrete Model of the wheels PI Parameters 

a0 = 0.9907 b0 = 0.1553 kp0 = 0.0319 ki0 = 2.9942e-04 

a1 = 0.9893 b1 = 0.1596 kp1 = 0.0310 ki1 = 3.3521e-04 

a2 = 0.9879 b2 = 0.1702 kp2 = 0.0290 ki2 = 3.5546e-04 

 

Variables in the simulation 

L = 0.7 Periode = 1.3603 r = 0.05 StepOP = 1.1547 V = 0.2 

 

Robot path desired Kinematic Matrix 

ListWaypoints : 

     0     3     0 

     2     3     1 

     2     5     0 

     0     5     3 

     0     3     2 

     0     0     0 

 

T: 

   -0.5000   -0.8660    0.1500 

    1.0000   -0.0000    0.1500 

   -0.5000    0.8660    0.1500 

 

Table 20. Variables of the Workspace 
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5.6.2 Results of the simulation method 1: 

Scope: Position World: 

 

Illustration 74. Method 1, Position 

 

Scope: Speed in world reference and robot reference: 

Illustration 75. Method 1, Speed in axes XY 
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XY Graph: method 1 

 

Illustration 76. Method 1, Path Tracking 
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5.6.3 Results of the simulation method 2: 

Scope: Position World: 

 

Illustration 77. Method 2, Position 

Scope: Speed World: 

 

 

 

 

 

 

 

 

 

 

 

 

Illustration 78. Method 2, Speed in axes XY 
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XY Graph: method 2 

 

Illustration 79. Method 2, Path Tracking 
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5.6.4 Conclusion of the simulation 

Both simulations have followed the same route without problems, but we are going to 

discuss the differences between one method and another: 

 

Method 1: The simulation reaches to the first rotation point (0,3) but exactly when it is 

at 0.7m of the rotation point, the robot starts to turn and it heads to the second rotation 

point (2,3). Once pass for all points, it follows the last direction until the end of the 

simulation. 

 

Method 2: The simulation stops right at the rotation point (0,3), then the robot turns to 

one side and it continues on line until reach the next point (2,3). It follows the same 

procedure for all points of the route but when it reaches the last point ((0,3), for the 

second time) stops until ends the simulation . 

 

Conclusions: 

Method 1 offers the advantage that it does not need to stop and thus it is faster than 

method 2. But, it have the disadvantage that needs a space free of obstacles when it 

has to rotate. 

 

Method 2 is more precise, because it pursues the trajectory perfectly without leaving 

the line, but it is slower because the robot has to stop and rotates at every rotation 

point. 

 

In order to implement one method or the other, we must take into account the space 

available to move. The simulation was very slow during the procedure but this can be 

arranged by simplifying the code or using a more powerful computer. 
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6. IMPLEMENTATION OF TRAJECTORY CONTROL, VISION AND TRAJECTORY PLANNER. 

In this chapter, I described the experimental results of applying the methodology to the 

Robotino, the methodology has been presented in Chapters 3, 4 and 5. 

 

I this section, I describe the variables used which include the variables of the trajectory 

control, vision camera, PI controller of the wheels and the inclusion of the trajectory 

planner. The variable that determines the path is different from the one used in the 

simulation block, therefore, it has to be explained in more details. 

 

It also describes the input variables on the workspace of Matlab and the programming 

code which includes both methods that was used in the laboratory for the statistical 

study. 

 

6.1 Implementation of the interface for the communication between the robot and 

the trajectory planner. 

The simulation program works with an input variable that indicates the direction of the 

robot when it arrives at a crossroad. Now, the variable of the simulation is no longer 

useful for the implementation of trajectory planner, the variables of the planner is a 

matrix of two columns which indicates in XY coordinates of the path to be followed (The 

first point is always (0,0)). 

The planner works with a grid that indicates the points where the robot must pass until 

the last point of the trajectory. 

For example, the illustration 80 shows a grid and a marked route in red. Therefore, the 

variable of the planner is like the table 21: 

 

 

 

 

 

 

Table 21. Example of the route 

 

 

Illustration 80. Representation of a route in a 3x3 grid 

X Y 

0 0 

1 0 

1 1 

2 1 

2 2 

2 3 

3 3 
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As I said, the variable that interprets the program and the variable that uses the planner 

are different. Therefore, it is necessary to apply several transformations. 

 

First of all, subtracting the actual row to the previous row allows to transform the 

absolute variable called "Planificador" into an incremental variable called 

"ListWaypoints". (This is not the same variable as in simulation). 

 

We must do a final transformation which takes the previous and the present direction 

of the robot based on the variable called "Ordenes". The variable was called 

"Trayectoria". (In the last row, it adds the number 4 which is used to stop and disconnect 

the robot once the trajectory is completed). 

 

The criterion of directions that has been followed this time for the both second and the 

third transformation are the multiple of the angles being 0 = 0° it turns right, 1 = 90° it 

moves backwards, 2 = 2 · 90° = 180° it turns left and 3 = 3 · 90° = 270°  it moves forwards. 

 

Input variable: 1r Transformation: 

Planificador = 
0     0 
0     1 
1     1 
1     2 
1     3 

ListWaypoints = 
0     1 
1     0 
0     1 
0     1 

2n Transformation: 3r Transformation: 

Ordenes = 
1 
0 
1 
1 

Trajectoria = 
0 
2 
1 
4 

 

Table 22. Transformations of the route 
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6.2 Programming code for implementing the trajectory control, vision by camera, 

controller PI of the wheels and trajectory planner 

6.2.1 Input Parameters 

The parameters related to camera calibration: 

- The rotation matrix (R), the translation matrix (t) and the intrinsic parameters 

of the camera (KK). 

 

The parameters related to each motor for each wheel: 

- kp, ki are the values of the PI controller associated for each wheel (kp0, kp1, 

kp2, ki0, ki1, ki2). “StepOP” are the rotational speeds applied to each wheel 

for the robot to turn over and the variable "Periode" is the time it takes to 

make a quarter turn at that speed. 

Example: 

V=0.15;  
Pas1=((1/0.05)*T*[0;V;0]); 
Pas2=0.05*T^-1*[Pas1(3,1);Pas1(3,1);Pas1(3,1)]; 
StepOP=Pas2(3,1) 

 
Periode=(pi/2)/StepOP 

 

The parameters related to the trajectory control: 

- The transformation matrix (T), speed in cm/s of the robot (V) and the distance 

from the robot to a point on the line (L). 

 

The variables related to the robot path: 

- The input variable from the trajectory planner. (Planificador) 

 

6.2.2 Matlab instructions for Robotino 

In the reference [11] of the bibliography, there's a summary and an explanation of each 

instruction of Matlab that has been used to control Robotino in the programming code. 

These are the reference for instructions used: 

- Com  -     Motor  -     Bumper  -     Camera 

 

You will find the program used in the Annex 9.1.4 Programming code for both methods 
on the real robot 

6.3 Test methodology 
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6.3.1 Introduction 

Before starting the experiment we must do the camera calibration following the method 

explained in the section (2.5.3 Camera (Webcam)). Remember the parameters R, t and 

KK are extracted from that methodology and then we introduce the rest of initial 

variables. 

 

Once this is done, we can run the program in the Command Window of Matlab. After 

that, we must to set the method to be used. 

 

- 1 for the closed loop (First method). 

- 2 for the open loop (Second method). 

- The program stops if another number is inserted. 

 

Method 1 is in continuous movement without pause during the rotation, and method 2 

is in slow movement, because it stops every time that it has to rotate. 

 

After entering the control method number, the bumper has to be pressed. The robot 

takes approximately 5 seconds after pressing the bumper to start moving. The reason 

for this delay was not clarified. 

 

The second method is called open loop because at the time of rotation, the robot stops 

on the line crossing and rotates over itself ignoring its position on the line. But the first 

method follows the line even when the robot rotates. Except, when there is a moment 

when the robot does not recognize the line as a vertical or horizontal. The robot works 

in an open loop in that moment for a few seconds, but just enough time to recognize 

the line and get the distance and the angle of the robot about the line, essential to keep 

moving. 
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6.3.2 Tests performed 

Introduction 

The experiment runs along the same route that contains all possible directions using the 

two methods developed. The same experiment was performed twice for each method 

at the same speed of cruise. In the end, we are going to determine which one of both 

methods is better by comparing the results of the statistical study with the data from 

angle, distance, time, and speed of the experiment. 

 

Robot path and input variables 

 Robot path 

The route that has been chosen for the experiment contains all possible directions that 

can take the robot, also it includes a path without change of direction to obtain the 

speed of cruise. 

 

The following illustration shows the path of the experiment: 

 

 

 

 

 

 

 

 

 

 

Table 23. Path of the experiment 

Illustration 81. Representation of the path of the experiment in a 3x4 grid 

 

The grid in the laboratory is formed by squares of 80 cm of side. 

The robot is going straight to the point (0,1), followed by rotations of right / left until 

the point (3,4), half turn on itself and then continues down on the same vertical line until 

reaches the point (3,0). 

 

X Y 

0 0 

0 1 

1 1 

1 2 

2 2 

2 3 

3 3 

3 4 

3 3 

3 2 

3 1 

3 0 
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 Input Parameters 

 This are the input values for the experiments: 

 

Kp0 = 86.1201 

Kp1 = 83.6814 

Kp2 = 78.3587 

Ki0 = 8.0844 

Ki1 = 9.0508 

Ki2 = 9.5975 

StepOP = 1.1547 

Periode = 1.3604 

L = 0.65 m 

V = 0.15 m/s 

 

 

Table 24. Summary of all input values 

  

KK = 
  404.8412         0            143.9544 
         0          408.8882    108.0107 
         0                0               1.0000 

t = 
9.4529 

179.1836 
112.7092 

R = 
0.9975   -0.0574   -0.0414 
-0.0695   -0.6872   -0.7231 
0.0130    0.7242   -0.6895 

T = 
-0.5000   -0.8660    0.1500 

1.0000         0    0.1500 
-0.5000    0.8660    0.1500 
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6.4 Laboratory experiments 

In this section, the result of the comparison with the data that were collected is shown.  

 

6.4.1 Comparison between both methods 

Working time (Seconds) 

Method 1: Time Elapsed Method 2 Time Elapsed 

1r Test 61,4525 s 1r Test 69,8954 s 

2n Test 62,9192 s 2n Test 70,8882 s 

Table 25. Working time for each method 

 

Method 1 is faster than the method 2 because the robot is in constant motion at method 

1 and it stops at each rotation point at method 2. Below the mean, variance and 

standard deviation of the distance and angle of the robot to the line marked on the floor 

of the laboratory for both methods are presented. To check the accuracy of the 

trajectory control. 

 

Distance of the robot to the vertical line (centimetres) 

Method1: 

Test 1 Test 2 

Mean 3.265 cm Mean 3.5712 cm 

Variance 2.9413 cm Variance 1.7697 cm 

Standard Deviation 1.715 cm Standard Deviation 1.3303 cm 

Table 26. Results of the distance of the robot to the vertical line, Method 1 

 

Method 2: 

Test 1 Test 2 

Mean 4.1300 cm Mean 3.1096 cm 

Variance 1.4247 cm Variance 1.3887 cm 

Standard Deviation 1.1936 cm Standard Deviation 1.1784 cm 

Table 27. Results of the distance of the robot to the vertical line, Method 2 

 

From the data obtained of the distance of the robot to the vertical line we can see how 

the first method had little variation between the tests, contrary to the tests with method 

2. 

The mean is similar for both methods (about 3-4 cm from the line). But the standard 

deviation for the method 2 is smaller than for method 1. Therefore, it is more reliable 

to use method 2 to follow the vertical line using the distance. 
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Distance of the robot to the horizontal line (centimetres) 

Method 1: 

Test 1 Test 2 

Mean 15.7581 cm Mean 15.9576 cm 

Variance 1.6423 cm Variance 3.4283 cm 

Standard Deviation 1.2815 cm Standard Deviation 1.8516 cm 

Table 28. Results of the distance of the robot to the horizontal line, Method 1 

 

 Method 2: 

Test 1 Test 2 

Media 12.6833 cm Media 12.6455 cm 

Variance 1.4852 cm Variance 0.7689 cm 

Standard Deviation 1.2187 cm Standard Deviation 0.8769 cm 

Table 29. Results of the distance of the robot to the horizontal line, Method 2 

 

From the data obtained on the distance of the robot to the horizontal line we can see 

how the two tests for both methods have not variations appreciable between them. 

 

This data has a different meaning for each method: 

- For method 1 means that robot starts to rotate at a distance of 15 cm from 

the rotation point. 

- For method 2 means that robot begins to stop at 12 cm from the rotation 

point. 

But the most important thing is that the standard deviation for the method 2 is smaller 

than for method 1. Therefore, it is more reliable to use method 2 to redirect it to the 

horizontal line. 
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Angle of the robot to the vertical line (Degrees): 

Method 1: 

Test 1 Test 2 

Media 2.3734° Media 2.1736° 

Variance 1.7329° Variance 2.8253° 

Standard Deviation 1.3164° Standard Deviation 1.6809° 

Table 30. Results of the angle of the robot to the vertical line, Method 1 

 

Method 2: 

Test 1 Test 2 

Media 3.2636° Media 2.2089° 

Variance 4.0586° Variance 2.0627° 

Standard Deviation 2.0146° Standard Deviation 1.4362° 

Table 31. Results of the angle of the robot to the vertical line, Method 2 

 

From the data obtained of the angle of the robot to the vertical line we can see how the 

first method had little variation between the tests, contrary to the tests with the method 

2. 

 

The mean is similar for both methods (about 2-3 degrees from the line). But the standard 

deviation for the method 1 is smaller than for method 2. Therefore, it is more reliable 

to use method 1 to follow the vertical line using the angle. 
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Angle of the robot to the horizontal line (Degrees): 

 Method 1: 

Test 1 Test 2 

Media 87.4654° Media 87.8504° 

Variance 1.5161° Variance 2.7767° 

Standard Deviation 1.2313° Standard Deviation 1.6663° 

Table 32. Results of the angle of the robot to the horizontal line, Method 1 

 

 Method 2: 

Test 1 Test 2 

Media 85.9520° Media 86.7986° 

Variance 2.9330° Variance 1.7944° 

Standard Deviation 1.7126° Standard Deviation 1.3396° 

Table 33. Results of the angle of the robot to the horizontal line, Method 2 

 

From the data obtained of the angle of the robot to the horizontal line we can see how 

the first method had little variation between the tests, same as the tests with the 

method 2. 

 

The mean is similar for both methods (about 86-87 degrees from the rotation point). 

 

These values mean and the little standard deviation suggest that the robot had been 

following the straight line without problem because the horizontal line is almost 

perpendicular from the point of view of the robot before to reach the rotation point. 
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Robot path during the experiment: 

From the speed of each wheel we can see the rotation moment at each point along the 

path, it is easily noticeable in the wheel 1. There are seven changes of value in wheel 0, 

three to turn right, three to turn left and one last change (half turn). The same for the 

wheel 0 and 2 but it is not much appreciable as we see on the wheel 1. 

Method 1: 

Illustration 82. Speed of the wheels during the experiment, Method 1 

 
Method 2: 

Illustration 83. Speed of the wheels during the experiment, Method 2 
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There is a difference between the first and the second method, the robot went straight 

from the point (3,4) to the point (3,0) without stopping by using method 1, but with the 

second method it moves from the point (3,4) to the point (3,1) and stops for a moment 

at this point, but then reaches to the point (3,0). 

As is shown it in the Illustration 83. Method 2 can follow straight line without stopping 

as its proves when it goes from the point (3, 4) until the point (3, 1), but the robot stops 

at the point penultimate (3, 1) before to finish the path at the point (3, 0). 

I apply the kinematic matrix to the speed for each wheel in order to find the Vx, Vy and �̇�. 
But first we have to convert the rpm into rad/s. 

𝑾𝒉𝒆𝒆𝒍 (
𝒓𝒂𝒅

𝒔
) =

𝝅 · 𝑾𝒉𝒆𝒆𝒍 (𝒓𝒑𝒎)

𝟑𝟎
                                        (𝟖. 𝟏) 

[

𝑽𝒙(𝒕)
𝑽𝒚(𝒕)

�̇�(𝒕)

]  = 𝟎. 𝟎𝟓 · [
−𝟎. 𝟓 −𝟎. 𝟖𝟕 𝟎. 𝟏𝟓

𝟏 𝟎 𝟎. 𝟏𝟓
−𝟎. 𝟓 𝟎. 𝟖𝟕 𝟎. 𝟏𝟓

]

−𝟏

· [
𝑾𝒉𝒆𝒆𝒍 𝟎
𝑾𝒉𝒆𝒆𝒍 𝟏
𝑾𝒉𝒆𝒆𝒍 𝟐

]               (𝟖. 𝟐) 

 

By integrating of �̇� I can obtain theta (𝜽) throughout the experiment, finally with the 

application of the rotation matrix that we used in the simulation section in a Simulink 

Model. 

𝑅 = [

cos(𝜃(𝑡)) − sin(𝜃(𝑡)) 0

sin(𝜃(𝑡)) cos(𝜃(𝑡)) 0

0 0 1

]                                       (9) 

 

 

 

 

 

 

 

 

 

 

Illustration 84. Representation of the desired path of the experiment 

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3

3.5

Position x (m)

P
o
s
it
io

n
 y

 (
m

)

Position



Trajectory control design of a mobile robot with computer vision 

University of Industrial Engineering, Aerospace and Audiovisual of Terrassa          125 

We should have obtained a similar path to the 84 illustration with steps that we made 

before but the result was as follows: 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Illustration 85. Path of the experiment 

 

The result of using the speed of each wheel to obtain the position of the robot at all 

times during the experiment it has not been possible. This justifies the tracking line.  
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6.4.2 Speed of each wheel for both methods: 

In this section we compare the speeds but as we have no data speed, we do from rpm 

data. 

Average cruise rpm for each wheel and each test, Method 1 (rpm): 

Test 1 Test 2 

Wheel 0 -632.6234 rpm Wheel 0 -678.2932 rpm 

Wheel 1 0.2730 rpm Wheel 1 0.0211 rpm 

Wheel 2 626.8231 rpm Wheel 2 675.7811 rpm 

Table 34. Results of the speed, Method 1 

 

Average cruise rpm for each wheel and each test, Method 2 (rpm): 

Test 1 Test 2 

Wheel 0 -620.5032 rpm Wheel 0 -683.5093 rpm 

Wheel 1 0 rpm Wheel 1 -2.7959 rpm 

Wheel 2 616.0617 rpm Wheel 2 683.2121 rpm 

Table 35. Results of the speed, Method 2 

 

The average cruise rpm of the robot for the method 1 is 677 rpm and for method 2 is 

683 rpm when the robot follows the straight line. (The speed what I want is 0.15 m/s) 

 

Using the kinematic array that we saw in previous chapters, the formula is as follows: 

𝑣 = 0.05 · [
−0.5 −0.87 0.15

1 0 0.15
−0.5 0.87 0.15

]

−1

· [
𝑊ℎ𝑒𝑒𝑙 0
𝑊ℎ𝑒𝑒𝑙 1
𝑊ℎ𝑒𝑒𝑙 2

] · (
0.1

27
) 

            (10) 

The actual speed has not reached the theoretical speed: 

Method 1:   𝑣 = 0.1448 𝑚/𝑠                                                              (11.1) 

Method 2:   𝑣 = 0.1461 𝑚/𝑠                                                              (11.2) 

 

The difference between the actual speed and the desired speed was only 4% for method 

1 and 3% for the method 2. Therefore, we should correct this difference at the time to 

introduce the value of the variable V in the workspace of Matlab, for example in this 

case the correction for both methods is as follows: 

Method 1:            𝑣 = 0.156 𝑚/𝑠                                                                    (12.1) 

Method 2:            𝑣 = 0.1545 𝑚/𝑠                                                                 (12.2) 
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6.4.3 Final comparison 

Once done the individual analysis of the data and the comparison between both 

methods we can conclude that Method 1 completes the path with a 14.28% less of time 

than method 2. Moreover, from data obtained of the angles and the distances have been 

determined that obtaining distances by using the method 2 is more reliable than the 

method 1, but the method 1 is better to obtain the angles than the method 2.  

 

When the experiment was performed the robot followed the path, but it has not been 

possible to obtain the odometry robot from the wheel speeds (applying the kinematics 

matrix and the matrix of rotation), this justifies the tracking line.  

 

It must be noticed that the open loop experiment is not always successful.  

It has not been changed one single line or value of the program between each repetition 

of the experiment. The reason of these repetitions is because it works in an open loop 

and there are many external and unpredictable factors in the wheels: loss 

communication between the robot and the PC or the state of the line drawn on the floor, 

among other possible factors. 

 

Regarding desired speed and the speed obtained, we found that the difference for both 

methods is very small, but the method that has the smallest percentage is method 2. 

 

As we saw, the difference between using a method or another for tracking path is not 

significant. Both methods are equally reliable but from the data captured by the camera 

we can say that the method 2 has a slight advantage over the method 1 in trajectory 

tracking. 

 

We conclude from the data obtained of the tests that method 1 is a faster method, but 

the method 2 is more stable for trajectory tracking. Ultimately, if we have to choose 

between one method or another, it is a matter of priorities. 

Method 1: If we want a faster system 

Method 2: If we want to reliable trajectory tracking. 

 

But from the view as laboratory work, the reliability in trajectory tracking is more 

important than the speed of work time. That is why is recommended to use Method 2 

to perform the experiments with the Robotino.  
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7. Conclusions of the project 

It has achieved the main goal of this project: The development of a trajectory control by 

use a camera of Robotino. At below, it details the different points that has this project: 

 

 Model and controller of the wheels 

It was been extracted the model and controller for each wheel from the speed data. 

 

 Kinematic Model   

We studied the kinematic model for our robot with omnidirectional wheels and it was 

implemented in Simulink. (Including the PI controller and the first-order model for 

practical exercises of mobile robots) 

 

 Trayectory control   

The trajectory control equation was developed following a mathematical model to be 

implemented later in the simulation file. 

 

 Simulates the path tracking 

It reviews all parts of the project and it has implemented in the simulation, but it was 

added the development of the rotation and translation in the simulation. It has built two 

different methods of simulation to work with two different ways of trajectory tracking. 

Two methods that served as a reference at the time of working with the real robot. 

 

Finally, we implemented a trajectory planner with a script to enter a variable that 

contains all directions of the path. Once both methods have been simulated under the 

same conditions, it has been compared the differences between using a model or 

another. The result has been that the method 1 is faster than the method 2, but the 

room for maneuver during the rotation is greater on method 2. 

 

 Implementaton of the vision camera 

We obtained the distance and the angle of the robot thanks to the program of 

processing image and we also found the intrinsic and extrinsic parameters of the 

camera. 
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 Build the trajectory tracking program 

I have developed a program which implements two methods of tracking lines from 

simulation and the vision camera. It also has been added the lines of code needed to 

obtain experimental data during the tests following the indications of the professor. 

 

 Conduct experiments in the laboratory 

Once done the final program, we have been able to perform four tests. Two repetitions 

for method in order to perform a statistic study. 

 

 Statistic study to determine the best method from laboratory data 

We concluded that Method 1 is faster than method 2 as happened in simulation, but 

method 2 has been more stable to path tracking and closer to the assigned speed of 

cruise. 

 

From the view of laboratory, it has determined that data collection is most important 

and the time difference between using one method or other was not significant. So the 

best way to continue working in the future with the Robotino was the method 2. 
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 FUTURE PROJECTS 
 
This project has mainly an educational purpose, it is a good starting point for initiation 

in control of mobile robots. This project can be expanded and improved in many ways, 

these are some of them: 

 

- Obstacle detection. If an obstacle appears along the route, the vision system 

should detect it and issue an alarm to the planner. 

 

- The trajectory tracking algorithm developed have both an open loop part which 

brings uncertainty and imprecise to the process. That could be enhanced. 

 

This project will be used in classes of the school ESEIAAT by teachers and students to 

be improved and extended, that is why this project is only the first step of more that 

will come.  
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9. ANNEX 
9.1 Programs designed 

9.1.1 Programing code of XavmesuraDistanciaARuta.m 
 

function [d1_ver, theta_ver, d1_hor, theta_hor] = avmesuraDistanciaARuta( img, R, t, KK, metode ) 
switch metode(1) 
    case 1 

        w=fspecial('disk',5); 
        im=imfilter(img(:,:,1),w,'corr','symmetric'); 
        nivellMax = max(max(im)); 
        nivellMin = min(min(im)); 
        ibw = im2bw(im,double(nivellMax-(nivellMax-nivellMin)*0.40)/255); 
    case 2 
        im= rgb2ycbcr(img); 
        im=im(:,:,3); 
        ibw = im2bw(im,150/255); 
        pintaimatge(im,1,'component Cr de crominancia'); 
        pintaimatge(ibw,2,'binaritzat fix a nivell 150') 
    otherwise 
              disp('Metode no implementat, pas 1') 
end 

  
switch metode(2) 
    case 1 
        se=strel('line',50,90); 
        ibww1=imopen(ibw,se); 
        pintaimatge(ibww1,3,'open amb linia vertical de 50'); 
        se=strel('line',50,0); 
        ibww2=imopen(ibw,se); 
        pintaimatge(ibww2,4,'open amb linia horitzontal de 50'); 
    case 2 
        w=fspecial('sobel')'; 
        ibww1=imfilter(ibw,w,'corr','symmetric'); 
        ibww2=imfilter(ibw,-w,'corr','symmetric'); 
        ibww=ibww1+ibww2; 
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        se=strel('line',6,90); 
        ibwww1=imopen(ibww,se); 
        pintaimatge(ibwww1,3,'sobel doble + open amb linia vertical de 6'); 
        w=fspecial('sobel'); 
        ibww1=imfilter(ibw,w,'corr','symmetric'); 
        ibww2=imfilter(ibw,-w,'corr','symmetric'); 
        ibww=ibww1+ibww2; 
        se=strel('line',6,0); 
        ibwww2=imopen(ibww,se); 
        pintaimatge(ibwww2,4,'sobel doble + open amb linia horitzontal de 6'); 
        ibww1 = ibwww1; 
        ibww2 = ibwww2; 
    otherwise 
              disp('Metode no implementat, pas 2') 
end 

 
switch metode(3) 
    case 1 
    case 2                 
         ibwlv=bwmorph(ibww1,'thin',Inf); 
         pintaimatge(img,5) 
         pintaimatge(ibwlv,5,'',1)    
         [i,j] = find(ibwlv(30:60,1:320)); 
         p1 = [mean(j);30+mean(i)]; 
         [i,j] = find(ibwlv(170:200,1:320)); 
         p2 = [mean(j);170+mean(i)]; 
         pintaimatge(ibwlv,5,'op. morfologica d''aprimat vertical',1) 
         ibwlh=bwmorph(ibww2,'thin',Inf); 
hold on        
        plot(p1(1),p1(2),'bo','MarkerSize',7,'LineWidth',3) 
        plot(p2(1),p2(2),'yo','MarkerSize',7,'LineWidth',3) 
hold off          
         pintaimatge(img,6) 
         pintaimatge(ibwlh,6,'',1)    
         [k,q] = find(ibwlh(1:240,170:200)); 
         p3 = [170+mean(q);mean(k)]; 
         [k,q] = find(ibwlh(1:240,20:50)); 
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         p4 = [20+mean(q);mean(k)];                 
         pintaimatge(ibwlh,6,'op. morfologica d''aprimat horitzontal',1)                   
hold on 
        plot(p3(1),p3(2),'bo','MarkerSize',7,'LineWidth',3) 
        plot(p4(1),p4(2),'yo','MarkerSize',7,'LineWidth',3) 
hold off 
    case 3 
        cc1=bwconncomp(ibww1); 
        numPixels = cellfun(@numel,cc1.PixelIdxList); 
        [y,i] = max(numPixels); 
    otherwise 
              disp('Metode no implementat, pas 3') 
end 

  
pr1 = R'*inv(KK)*[p1;1]; 
lambda = 0-t(3)/pr1(3); 
p1r = t + lambda*pr1;  

 
pr2 = R'*inv(KK)*[p2;1]; 
lambda = 0-t(3)/pr2(3); 
p2r = t + lambda*pr2; 

  
pr3 = R'*inv(KK)*[p3;1]; 
lambda = 0-t(3)/pr3(3); 
p3r = t + lambda*pr3; 

  
pr4 = R'*inv(KK)*[p4;1]; 
lambda = 0-t(3)/pr4(3); 
p4r = t + lambda*pr4; 

  
    subplot(3,2,5) 
hold on 
text('Position',[p1(1)+20,p1(2)],'String',['(',num2str(p1r(1)),',',num2str(p1r(2)),')'],'BackgroundColor','blue','Co

lor','white') 
text('Interpreter','latex','Position',[p2(1)+20,p2(2)],'String',['(',num2str(p2r(1)),',',num2str(p2r(2)),')'],'Backg

roundColor','blue','Color','white') 
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hold off 

     subplot(3,2,6) 
hold on 

    text('Position',[p3(1),p3(2)-20],'String',['(',num2str(p3r(1)),',',num2str(p3r(2)),')'],'BackgroundColor', 

'blue','Color','white') 
text('Interpreter','latex','Position',[p4(1),p4(2)+80],'String',['(',num2str(p4r(1)),',',num2str(p4r(2)),')'],'Backg

roundColor','blue','Color','white') 
hold off 

  
p1r = [p1r(1:2);1]; 
p2r = [p2r(1:2);1]; 
p3r = [p3r(1:2);1]; 
p4r = [p4r(1:2);1]; 

  
if (p1r(2)<p2r(2)) 
    ppppv=p1r; 
    p1r=p2r; 
    p2r=ppppv; 
    disp('p2 esta mes lluny que p1, s''intercanvien') 
end 

  
linia_ver = cross(p1r,p2r); 
linia_ver = linia_ver./sqrt(linia_ver(1)^2 + linia_ver(2)^2); 
theta_ver = -atan(linia_ver(2)/linia_ver(1))*180/pi; 
d1_ver = linia_ver(3); 

  
if (p3r(2)<p4r(2)) 
    pppph=p3r; 
    p3r=p4r; 
    p4r=pppph; 
    disp('p3 esta mes lluny que p4, s''intercanvien') 
end 
linia_hor = cross(p3r,p4r); 
linia_hor = linia_hor./sqrt(linia_hor(1)^2 + linia_hor(2)^2); 
theta_hor = -atan(linia_hor(2)/linia_hor(1))*180/pi; 
d1_hor = linia_hor(3);  
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9.1.2 Programming code for the simulation of the method 1 
 

function [t,R,Delta0,cambio,ControlTray]= fcn(xm,ym,ListWaypoints) 

persistent waypoint 
persistent Vector 

  
if (isempty(waypoint)) 
    waypoint=1; 
    Vector=[0 0]; 
end;    

 
if (norm([ListWaypoints(waypoint,1)-xm,ListWaypoints(waypoint,2)-ym])<0.7) 
    waypoint=waypoint+1; 
    if waypoint==size(ListWaypoints,1) 
        waypoint=waypoint-1; 
    end 
end 

  
if  ListWaypoints(waypoint,3)==0 
    Vector=[0 1];     
elseif  ListWaypoints(waypoint,3)==1 
    Vector=[1 0];   
elseif  ListWaypoints(waypoint,3)==2 
    Vector=[0 -1];    
elseif  ListWaypoints(waypoint,3)==3 
    Vector=[-1 0];   
end; 

  
ControlTray=1; 
R=Vector(1,1)*[0 -1;1 0]+Vector(1,2)*[1 0;0 1]; 
t=[ListWaypoints(waypoint,1);ListWaypoints(waypoint,2)]; 
Delta0=Vector(1,1)*pi/2+Vector(1,2)*(1-Vector(1,2))*pi/2; 
end; 
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9.1.3 Programming code for the simulation of the method 2 
 

function [t,R,Delta0,Canvi_del_waypoint,ControlTray,AllWheels,Status]= 

fcn(xm,ym,ListWaypoints,Temps,Omega0,StepOP,Periode) 
persistent waypoint 
persistent State 
persistent Vector 
persistent time0 

  
if (isempty(waypoint)) 
    waypoint=1; 
    State=0; 
    Vector=[0 0]; 
    time0=0; 
end;   

  
if  ListWaypoints(waypoint,3)==0 
    Vector=[0 1]; 
elseif  ListWaypoints(waypoint,3)==1 
    Vector=[1 0]; 
elseif  ListWaypoints(waypoint,3)==2 
    Vector=[0 -1]; 
elseif  ListWaypoints(waypoint,3)==3 
    Vector=[-1 0]; 
end;       

  
R=Vector(1,1)*[0 -1;1 0]+Vector(1,2)*[1 0;0 1]; 
t=[ListWaypoints(waypoint,1);ListWaypoints(waypoint,2)]; 
Delta0=Vector(1,1)*pi/2+Vector(1,2)*(1-Vector(1,2))*pi/2;       
 

if State==0 
        ControlTray=1; 
        AllWheels=0; 

  if (norm([ListWaypoints(waypoint,1)-xm, ListWaypoints(waypoint,2)-ym])<0.05) 
            State=1; 
        end      
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elseif State==1 
        ControlTray=0; 
        AllWheels=0;   
        if Omega0>-0.01&&waypoint~=(size(ListWaypoints,1)-1) 
            waypoint=waypoint+1;  
            State=2; 
        end 

         
elseif State==2 
        ControlTray=0; 
        AllWheels=0;     
if (ListWaypoints(waypoint-1,3)==3&&ListWaypoints(waypoint,3)==0) || 

(ListWaypoints(waypoint-1,3)==0&&ListWaypoints(waypoint,3)==1)|| (ListWaypoints(waypoint-

1,3)==1&&ListWaypoints(waypoint,3)==2)|| (ListWaypoints(waypoint-1,3)==2&&ListWaypoints(waypoint,3)==3) 
        if time0==0 
            time0=Temps; 
        end 

  
         if Temps-time0<Periode 
            ControlTray=0; 
            AllWheels=-StepOP; 
         else 
            State=0; 
            time0=0; 
         end          

   
elseif (ListWaypoints(waypoint-1,3)==0&&ListWaypoints(waypoint,3)==3) || (ListWaypoints(waypoint-

1,3)==1&&ListWaypoints(waypoint,3)==0)|| (ListWaypoints(waypoint-1,3)==2&&ListWaypoints(waypoint,3)==1)|| 

(ListWaypoints(waypoint-1,3)==3&&ListWaypoints(waypoint,3)==2) 
        if time0==0 
            time0=Temps; 
        end 

  
         if Temps-time0<Periode 
            ControlTray=0; 
            AllWheels=StepOP; 
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         else 
            State=0; 
            time0=0; 
         end 

      
elseif (ListWaypoints(waypoint-1,3)==2&&ListWaypoints(waypoint,3)==0) ||(ListWaypoints(waypoint-

1,3)==0&&ListWaypoints(waypoint,3)==2)|| (ListWaypoints(waypoint-1,3)==1&&ListWaypoints(waypoint,3)==3)|| 

(ListWaypoints(waypoint-1,3)==3&&ListWaypoints(waypoint,3)==1) 
        if time0==0 
            time0=Temps; 
        end 

  
         if Temps-time0<2*Periode 
            ControlTray=0; 
            AllWheels=StepOP; 
         else 
            State=0; 
            time0=0; 
         end 

  
elseif (ListWaypoints(waypoint-1,3)==0&&ListWaypoints(waypoint,3)==0) ||(ListWaypoints(waypoint-

1,3)==1&&ListWaypoints(waypoint,3)==1)|| (ListWaypoints(waypoint-1,3)==2&&ListWaypoints(waypoint,3)==2)|| 

(ListWaypoints(waypoint-1,3)==3&&ListWaypoints(waypoint,3)==3)         
        State=0; 

                 
    else 
        ControlTray=0; 
        AllWheels=0; 
        disp('Error en ListWaypoints') 
    end 
else 
        ControlTray=0; 
        AllWheels=0; 
        disp('Error en canvio de State') 
end 
end 
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9.1.4 Programming code for both methods on the real robot 
ComId = Com_construct; 
MotorId0 = Motor_construct( 0 ); 
MotorId1 = Motor_construct( 1 ); 
MotorId2 = Motor_construct( 2 ); 
BumperId = Bumper_construct; 
CameraId = Camera_construct; 

  
Com_setAddress(ComId, '192.168.1.219'); 
Com_connect(ComId); 

  
Motor_setComId( MotorId0, ComId ); 
Motor_setComId( MotorId1, ComId ); 
Motor_setComId( MotorId2, ComId ); 
Bumper_setComId(BumperId, ComId); 
Camera_setComId(CameraId, ComId); 

  
Motor_setPID( MotorId0, kp0, ki0, 25 ); 
Motor_setPID( MotorId1, kp1, ki1, 25 ); 
Motor_setPID( MotorId2, kp2, ki2, 25 ); 

  
WorkTime=[]; 
d_ver_exp=[]; 
theta_ver_exp=[]; 
d_hor_exp=[]; 
theta_hor_exp=[]; 
Speed_Motor0=[]; 
Speed_Motor1=[]; 
Speed_Motor2=[]; 
Estado=[]; 

  
clear fila i n ListWaypoints Ordenes ListWaypoints Trajectoria     

     
    for i=1:1:(length(Planificador)-1), 
        ListWaypoints(i,:)=(Planificador(i+1,:)-Planificador(i,:)); 
    end 
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    for fila=1:1:length(ListWaypoints), 
         if ListWaypoints(fila,:)==[0 1] 
                    Ordenes(fila,1)=1; 
         elseif ListWaypoints(fila,:)==[1 0] 
                    Ordenes(fila,1)=0; 
         elseif ListWaypoints(fila,:)==[0 -1] 
                    Ordenes(fila,1)=3; 
         elseif ListWaypoints(fila,:)==[-1 0] 
                    Ordenes(fila,1)=2; 
         end 
    end 

  
    for n=1:1:(length(Ordenes)-1), 
        %dreta 
        if 

(Ordenes(n,1)==2&&Ordenes(n+1,1)==1)||(Ordenes(n,1)==1&&Ordenes(n+1,1)==0)||(Ordenes(n,1)==0&&Ordenes(n+1,1)==3)||(O

rdenes(n,1)==3&&Ordenes(n+1,1)==2) 
        Trajectoria(n,1)=0; 
        %%esquerra 
        elseif 

(Ordenes(n,1)==1&&Ordenes(n+1,1)==2)||(Ordenes(n,1)==0&&Ordenes(n+1,1)==1)||(Ordenes(n,1)==3&&Ordenes(n+1,1)==0)||(O

rdenes(n,1)==2&&Ordenes(n+1,1)==3) 
        Trajectoria(n,1)=2; 
        %Reves 
        elseif 

(Ordenes(n,1)==3&&Ordenes(n+1,1)==1)||(Ordenes(n,1)==1&&Ordenes(n+1,1)==3)||(Ordenes(n,1)==0&&Ordenes(n+1,1)==2)||(O

rdenes(n,1)==2&&Ordenes(n+1,1)==0) 
        Trajectoria(n,1)=3; 
        %Seguir 
        elseif 

(Ordenes(n,1)==0&&Ordenes(n+1,1)==0)||(Ordenes(n,1)==1&&Ordenes(n+1,1)==1)||(Ordenes(n,1)==2&&Ordenes(n+1,1)==2)||(O

rdenes(n,1)==3&&Ordenes(n+1,1)==3) 
        Trajectoria(n,1)=1; 
        end 
    end 
    Trajectoria(n+1,1)=4; 
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clear fila i n ListWaypoints Ordenes    

  
disp('Choose the method that would you like to use:') 
disp('1  ->  Closed Loop   In constant movement') 
disp('2  ->  Open Loop    In pause movement') 
Metodo=input(''); 

  
if Metodo==1 
while (Bumper_value(BumperId) ~= 1) 
end; 

  
while (Bumper_value(BumperId) == 1) 
    State=0; 
    waypoint=1; 
    tStart=tic; 
    L=0.6;  
end; 

  
while (Bumper_value(BumperId) ~= 1) 
    if ~(Camera_setStreaming(CameraId, 1) == 1) 
        disp('Camera_setStreaming failed'); 
    end; 

  
    if (Camera_grab(CameraId) == 1) 
            img = Camera_getImage( CameraId ); 
            [d_ver,theta_ver,d_hor,theta_hor]  = XavmesuraDistanciaARuta( img, R, t, KK, [2 1 2] );             

             
        if isnan(d_hor)==1&&isnan(theta_hor)==1&&State==0 
            d_ver=str2double(num2str(d_ver)); 
            theta_ver=str2double(num2str(theta_ver)); 
            gamma=V*(2/L^2)*(d_ver*0.001)*cosd(theta_ver)-sqrt(L^2-(d_ver*0.001)^2)*sind(theta_ver); 
            Step=((1/0.05)*T*[0;V;gamma])*(27/0.1); 
            Motor_setSetPointSpeed( MotorId0, Step(1,1)); 
            Motor_setSetPointSpeed( MotorId1, Step(2,1)); 
            Motor_setSetPointSpeed( MotorId2, Step(3,1)); 
            d_ver_exp=[d_ver_exp;d_ver]; 
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            d_hor_exp=[d_hor_exp;d_hor]; 
            theta_ver_exp=[theta_ver_exp;theta_ver]; 
            theta_hor_exp=[theta_hor_exp;theta_hor]; 
            tElapsed=toc(tStart); 
            WorkTime=[WorkTime;tElapsed]; 
            Speed_Motor0=[Speed_Motor0;Motor_actualSpeed(MotorId0)]; 
            Speed_Motor1=[Speed_Motor1;Motor_actualSpeed(MotorId1)]; 
            Speed_Motor2=[Speed_Motor2;Motor_actualSpeed(MotorId2)];           
            Estado=[Estado;State]; 

             
        elseif Trajectoria(waypoint,1)==4 
            time=tic; 
            Temps=toc(time); 
            while Temps<1 
                    gamma=V*(2/L^2)*(d_ver*0.001)*cosd(theta_ver)-sqrt(L^2-(d_ver*0.001)^2)*sind(theta_ver); 
                    Step=((1/0.05)*T*[0;V;gamma])*(27/0.1); 
                    Motor_setSetPointSpeed( MotorId0, Step(1,1)); 
                    Motor_setSetPointSpeed( MotorId1, Step(2,1)); 
                    Motor_setSetPointSpeed( MotorId2, Step(3,1));                                   
                    d_ver_exp=[d_ver_exp;d_ver]; 
                    d_hor_exp=[d_hor_exp;d_hor]; 
                    theta_ver_exp=[theta_ver_exp;theta_ver]; 
                    theta_hor_exp=[theta_hor_exp;theta_hor]; 
                    tElapsed=toc(tStart); 
                    WorkTime=[WorkTime;tElapsed]; 
                    Speed_Motor0=[Speed_Motor0;Motor_actualSpeed(MotorId0)]; 
                    Speed_Motor1=[Speed_Motor1;Motor_actualSpeed(MotorId1)]; 
                    Speed_Motor2=[Speed_Motor2;Motor_actualSpeed(MotorId2)]; 
                    Estado=[Estado;State]; 
                    Temps=toc(time); 
            end 
            break 

  
        elseif isnan(d_hor)==0&&isnan(theta_hor)==0&&State==0                       
            State=1; 
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        elseif State==1 
            %Dreta 
                    if Trajectoria(waypoint,1)==0 
                        if d_hor>0&&theta_hor>0 
                            V=0.05;                           
                            d_hor=str2double(num2str(d_hor)); 
                            theta_hor=str2double(num2str(theta_hor));                               
                            if isnan(d_hor)==0&&isnan(theta_hor)==0 
                                time=tic; 
                                Temps=toc(time); 
                                while Temps<Periode/1.2 
                                            gamma=V*(2/L^2)*(d_hor*0.001)*cosd(theta_hor)-sqrt(L^2-

(d_hor*0.001)^2)*sind(theta_hor); 
                                            Step=((1/0.05)*T*[0;V;gamma])*(27/0.1); 
                                            Motor_setSetPointSpeed( MotorId0, Step(1,1)); 
                                            Motor_setSetPointSpeed( MotorId1, Step(2,1)); 
                                            Motor_setSetPointSpeed( MotorId2, Step(3,1)); 
                                            Speed_Motor0=[Speed_Motor0;Motor_actualSpeed(MotorId0)]; 
                                            Speed_Motor1=[Speed_Motor1;Motor_actualSpeed(MotorId1)]; 
                                            Speed_Motor2=[Speed_Motor2;Motor_actualSpeed(MotorId2)];                                                                 
                                            tElapsed=toc(tStart); 
                                            WorkTime=[WorkTime;tElapsed]; 
                                            d_ver_exp=[d_ver_exp;d_ver]; 
                                            d_hor_exp=[d_hor_exp;d_hor]; 
                                            theta_ver_exp=[theta_ver_exp;theta_ver]; 
                                            theta_hor_exp=[theta_hor_exp;theta_hor];                                     
                                            Estado=[Estado;State];                                             
                                            Temps=toc(time); 
                                end                        
                            end 
                            V=0.15;                              
                            State=0; 
                            waypoint=waypoint+1; 
                        else 
                            V=0.05;                             
                            d_hor=-1*str2double(num2str(d_hor)); 
                            theta_hor=-1*str2double(num2str(theta_hor));                             
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                            if isnan(d_hor)==0&&isnan(theta_hor)==0 
                                time=tic; 
                                Temps=toc(time); 
                                while Temps<Periode/1.2 
                                            gamma=V*(2/L^2)*(d_hor*0.001)*cosd(theta_hor)-sqrt(L^2-

(d_hor*0.001)^2)*sind(theta_hor); 
                                            Step=((1/0.05)*T*[0;V;gamma])*(27/0.1); 
                                            Motor_setSetPointSpeed( MotorId0, Step(1,1)); 
                                            Motor_setSetPointSpeed( MotorId1, Step(2,1)); 
                                            Motor_setSetPointSpeed( MotorId2, Step(3,1));                             
                                            Speed_Motor0=[Speed_Motor0;Motor_actualSpeed(MotorId0)]; 
                                            Speed_Motor1=[Speed_Motor1;Motor_actualSpeed(MotorId1)]; 
                                            Speed_Motor2=[Speed_Motor2;Motor_actualSpeed(MotorId2)];                                 
                                            tElapsed=toc(tStart); 
                                            WorkTime=[WorkTime;tElapsed];                                     
                                            d_ver_exp=[d_ver_exp;d_ver]; 
                                            d_hor_exp=[d_hor_exp;d_hor]; 
                                            theta_ver_exp=[theta_ver_exp;theta_ver]; 
                                            theta_hor_exp=[theta_hor_exp;theta_hor]; 
                                            Estado=[Estado;State];                                      
                                            Temps=toc(time); 
                                end 
                            end 
                            V=0.15;                              
                            State=0; 
                            waypoint=waypoint+1; 
                        end 
            %Esquerra 
                    elseif Trajectoria(waypoint,1)==2 
                        if d_hor<0&&theta_hor<0 
                            V=0.05;                             
                            d_hor=str2double(num2str(d_hor)); 
                            theta_hor=str2double(num2str(theta_hor));                            
                            if isnan(d_hor)==0&&isnan(theta_hor)==0                              
                                time=tic; 
                                Temps=toc(time); 
                                while Temps<Periode/1.15 
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                                            gamma=V*(2/L^2)*(d_hor*0.001)*cosd(theta_hor)-sqrt(L^2-

(d_hor*0.001)^2)*sind(theta_hor); 
                                            Step=((1/0.05)*T*[0;V;gamma])*(27/0.1); 
                                            Motor_setSetPointSpeed( MotorId0, Step(1,1)); 
                                            Motor_setSetPointSpeed( MotorId1, Step(2,1)); 
                                            Motor_setSetPointSpeed( MotorId2, Step(3,1)); 
                                            Speed_Motor0=[Speed_Motor0;Motor_actualSpeed(MotorId0)]; 
                                            Speed_Motor1=[Speed_Motor1;Motor_actualSpeed(MotorId1)]; 
                                            Speed_Motor2=[Speed_Motor2;Motor_actualSpeed(MotorId2)];                                 
                                            tElapsed=toc(tStart); 
                                            WorkTime=[WorkTime;tElapsed]; 
                                            d_ver_exp=[d_ver_exp;d_ver]; 
                                            d_hor_exp=[d_hor_exp;d_hor]; 
                                            theta_ver_exp=[theta_ver_exp;theta_ver]; 
                                            theta_hor_exp=[theta_hor_exp;theta_hor];                                      
                                            Estado=[Estado;State];                                          
                                            Temps=toc(time); 
                                end 
                            end 
                            V=0.15;                              
                            State=0;       
                            waypoint=waypoint+1;                                   
                        else 
                            V=0.05;                             
                            d_hor=-1*str2double(num2str(d_hor)); 
                            theta_hor=-1*str2double(num2str(theta_hor)); 
                            if isnan(d_hor)==0&&isnan(theta_hor)==0 
                                time=tic; 
                                Temps=toc(time); 
                                while Temps<Periode/1.15 
                                            gamma=V*(2/L^2)*(d_hor*0.001)*cosd(theta_hor)-sqrt(L^2-

(d_hor*0.001)^2)*sind(theta_hor); 
                                            Step=((1/0.05)*T*[0;V;gamma])*(27/0.1); 
                                            Motor_setSetPointSpeed( MotorId0, Step(1,1)); 
                                            Motor_setSetPointSpeed( MotorId1, Step(2,1)); 
                                            Motor_setSetPointSpeed( MotorId2, Step(3,1)); 
                                            Speed_Motor0=[Speed_Motor0;Motor_actualSpeed(MotorId0)]; 
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                                            Speed_Motor1=[Speed_Motor1;Motor_actualSpeed(MotorId1)]; 
                                            Speed_Motor2=[Speed_Motor2;Motor_actualSpeed(MotorId2)];                                 
                                            tElapsed=toc(tStart); 
                                            WorkTime=[WorkTime;tElapsed];                                 
                                            d_ver_exp=[d_ver_exp;d_ver]; 
                                            d_hor_exp=[d_hor_exp;d_hor]; 
                                            theta_ver_exp=[theta_ver_exp;theta_ver]; 
                                            theta_hor_exp=[theta_hor_exp;theta_hor]; 
                                            Estado=[Estado;State];                                          
                                            Temps=toc(time); 
                                end 
                            end 
                            V=0.15; 
                            State=0; 
                            waypoint=waypoint+1; 
                        end 
            %Reves                             
                        elseif Trajectoria(waypoint,1)==3 
                            time=tic; 
                            Temps=toc(time); 
                            while Temps<Periode/2.35 
                                Speed_Motor0=[Speed_Motor0;Motor_actualSpeed(MotorId0)]; 
                                Speed_Motor1=[Speed_Motor1;Motor_actualSpeed(MotorId1)]; 
                                Speed_Motor2=[Speed_Motor2;Motor_actualSpeed(MotorId2)];   
                                tElapsed=toc(tStart); 
                                WorkTime=[WorkTime;tElapsed]; 
                                Estado=[Estado;State];                                      
                                Temps=toc(time);                                 
                            end                             
                            time=tic; 
                            Temps=toc(time); 
                            while Temps<Periode 
                                Step=((1/0.05)*T*[0;0;StepOP])*(27/0.1); 
                                Motor_setSetPointSpeed( MotorId0, Step(1,1)); 
                                Motor_setSetPointSpeed( MotorId1, Step(2,1)); 
                                Motor_setSetPointSpeed( MotorId2, Step(3,1)); 
                                Speed_Motor0=[Speed_Motor0;Motor_actualSpeed(MotorId0)]; 
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                                Speed_Motor1=[Speed_Motor1;Motor_actualSpeed(MotorId1)]; 
                                Speed_Motor2=[Speed_Motor2;Motor_actualSpeed(MotorId2)];   
                                tElapsed=toc(tStart); 
                                WorkTime=[WorkTime;tElapsed]; 
                                Estado=[Estado;State];                                      
                                Temps=toc(time);                                 
                            end 
                                State=0; 
                                waypoint=waypoint+1;   
            %Seguir 
                        elseif Trajectoria(waypoint,1)==1                           
                            time=tic; 
                            Temps=toc(time); 
                            while Temps<Periode/2.6 
                                Speed_Motor0=[Speed_Motor0;Motor_actualSpeed(MotorId0)]; 
                                Speed_Motor1=[Speed_Motor1;Motor_actualSpeed(MotorId1)]; 
                                Speed_Motor2=[Speed_Motor2;Motor_actualSpeed(MotorId2)];   
                                tElapsed=toc(tStart); 
                                WorkTime=[WorkTime;tElapsed]; 
                                Estado=[Estado;State]; 
                                d_ver_exp=[d_ver_exp;d_ver]; 
                                d_hor_exp=[d_hor_exp;d_hor]; 
                                theta_ver_exp=[theta_ver_exp;theta_ver]; 
                                theta_hor_exp=[theta_hor_exp;theta_hor];                                 
                                Temps=toc(time);                                 
                            end 
                            State=0; 
                            waypoint=waypoint+1; 
                    end                      
        end 
    end 
end 

  
elseif Metodo==2 
while (Bumper_value(BumperId) ~= 1) 
end; 
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while (Bumper_value(BumperId) == 1) 
    State=0; 
    waypoint=1; 
    tStart=tic; 
    L=0.65; 
end 

  
while (Bumper_value(BumperId) ~= 1)                  
    if ~(Camera_setStreaming(CameraId, 1) == 1) 
        disp('Camera_setStreaming failed.'); 
    end; 

  
    if (Camera_grab(CameraId) == 1) 
            img = Camera_getImage( CameraId ); 
            [d_ver,theta_ver,d_hor,theta_hor]  = XavmesuraDistanciaARuta( img, R, t, KK, [2 1 2] );            

             
        if isnan(d_hor)==1&&isnan(theta_hor)==1&&State==0 
            d_ver=str2double(num2str(d_ver)); 
            theta_ver=str2double(num2str(theta_ver)); 
            gamma=V*(2/L^2)*(d_ver*0.001)*cosd(theta_ver)-sqrt(L^2-(d_ver*0.001)^2)*sind(theta_ver); 
            Step=((1/0.05)*T*[0;V;gamma])*(27/0.1); 
            Motor_setSetPointSpeed( MotorId0, Step(1,1)); 
            Motor_setSetPointSpeed( MotorId1, Step(2,1)); 
            Motor_setSetPointSpeed( MotorId2, Step(3,1));             
            d_ver_exp=[d_ver_exp;d_ver]; 
            d_hor_exp=[d_hor_exp;d_hor]; 
            theta_ver_exp=[theta_ver_exp;theta_ver]; 
            theta_hor_exp=[theta_hor_exp;theta_hor]; 
            tElapsed=toc(tStart); 
            WorkTime=[WorkTime;tElapsed]; 
            Speed_Motor0=[Speed_Motor0;Motor_actualSpeed(MotorId0)]; 
            Speed_Motor1=[Speed_Motor1;Motor_actualSpeed(MotorId1)]; 
            Speed_Motor2=[Speed_Motor2;Motor_actualSpeed(MotorId2)];    
            Estado=[Estado;State]; 

             
        elseif Trajectoria(waypoint)==4 
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            time=tic; 
            Temps=toc(time); 
            while Temps<Periode                 
                        gamma=V*(2/L^2)*(d_ver*0.001)*cosd(theta_ver)-sqrt(L^2-(d_ver*0.001)^2)*sind(theta_ver); 
                        Step=((1/0.05)*T*[0;V;gamma])*(27/0.1); 
                        Motor_setSetPointSpeed( MotorId0, Step(1,1)); 
                        Motor_setSetPointSpeed( MotorId1, Step(2,1)); 
                        Motor_setSetPointSpeed( MotorId2, Step(3,1));                         
                        d_ver_exp=[d_ver_exp;d_ver]; 
                        d_hor_exp=[d_hor_exp;d_hor]; 
                        theta_ver_exp=[theta_ver_exp;theta_ver]; 
                        theta_hor_exp=[theta_hor_exp;theta_hor];         
                        Speed_Motor0=[Speed_Motor0;Motor_actualSpeed(MotorId0)]; 
                        Speed_Motor1=[Speed_Motor1;Motor_actualSpeed(MotorId1)]; 
                        Speed_Motor2=[Speed_Motor2;Motor_actualSpeed(MotorId2)]; 
                        tElapsed=toc(tStart); 
                        WorkTime=[WorkTime;tElapsed]; 
                        Estado=[Estado;State]; 
                        Temps=toc(time); 
            end 
            break 

            
        elseif isnan(d_hor)==0&&isnan(theta_hor)==0&&State==0 
            if Trajectoria(waypoint+1)==Trajectoria(waypoint) 
                    State=1;             
            else 
                time=tic; 
                Temps=toc(time); 
                while Temps<Periode/1.35 
                            gamma=V*(2/L^2)*(d_ver*0.001)*cosd(theta_ver)-sqrt(L^2-(d_ver*0.001)^2)*sind(theta_ver); 
                            Step=((1/0.05)*T*[0;V;gamma])*(27/0.1); 
                            Motor_setSetPointSpeed( MotorId0, Step(1,1)); 
                            Motor_setSetPointSpeed( MotorId1, Step(2,1)); 
                            Motor_setSetPointSpeed( MotorId2, Step(3,1));                             
                            d_ver_exp=[d_ver_exp;d_ver]; 
                            d_hor_exp=[d_hor_exp;d_hor]; 
                            theta_ver_exp=[theta_ver_exp;theta_ver]; 
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                            theta_hor_exp=[theta_hor_exp;theta_hor];         
                            Speed_Motor0=[Speed_Motor0;Motor_actualSpeed(MotorId0)]; 
                            Speed_Motor1=[Speed_Motor1;Motor_actualSpeed(MotorId1)]; 
                            Speed_Motor2=[Speed_Motor2;Motor_actualSpeed(MotorId2)]; 
                            tElapsed=toc(tStart); 
                            WorkTime=[WorkTime;tElapsed]; 
                            Estado=[Estado;State]; 
                            Temps=toc(time); 
                end 

                 
                time=tic; 
                Temps=toc(time); 
                while Temps<1 
                    Motor_setSetPointSpeed( MotorId0, 0); 
                    Motor_setSetPointSpeed( MotorId1, 0); 
                    Motor_setSetPointSpeed( MotorId2, 0);                     
                    Speed_Motor0=[Speed_Motor0;Motor_actualSpeed(MotorId0)]; 
                    Speed_Motor1=[Speed_Motor1;Motor_actualSpeed(MotorId1)]; 
                    Speed_Motor2=[Speed_Motor2;Motor_actualSpeed(MotorId2)]; 
                    tElapsed=toc(tStart); 
                    WorkTime=[WorkTime;tElapsed]; 
                    Estado=[Estado;State];                     
                    Temps=toc(time); 
                end 
                    State=1; 
            end 

             
            if State==1 
                    %Dreta 
                    if Trajectoria(waypoint)==0 
                        time=tic; 
                        Temps=toc(time);                     
                        while Temps<Periode/4.7 
                            Step=((1/0.05)*T*[0;0;-StepOP])*(27/0.1); 
                            Motor_setSetPointSpeed( MotorId0, Step(1,1)); 
                            Motor_setSetPointSpeed( MotorId1, Step(2,1)); 
                            Motor_setSetPointSpeed( MotorId2, Step(3,1)); 
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                            Speed_Motor0=[Speed_Motor0;Motor_actualSpeed(MotorId0)]; 
                            Speed_Motor1=[Speed_Motor1;Motor_actualSpeed(MotorId1)]; 
                            Speed_Motor2=[Speed_Motor2;Motor_actualSpeed(MotorId2)]; 
                            tElapsed=toc(tStart); 
                            WorkTime=[WorkTime;tElapsed]; 
                            Estado=[Estado;State];                             
                            Temps=toc(time);                          
                        end 
                            State=0;       
                            waypoint=waypoint+1; 

                             
                    %Seguir 
                        elseif Trajectoria(waypoint)==1 
                            time=tic; 
                            Temps=toc(time); 
                            while Temps<Periode/2 
                                Speed_Motor0=[Speed_Motor0;Motor_actualSpeed(MotorId0)]; 
                                Speed_Motor1=[Speed_Motor1;Motor_actualSpeed(MotorId1)]; 
                                Speed_Motor2=[Speed_Motor2;Motor_actualSpeed(MotorId2)];   
                                tElapsed=toc(tStart); 
                                WorkTime=[WorkTime;tElapsed]; 
                                Estado=[Estado;State];                                      
                                Temps=toc(time);                                 
                            end 
                            State=0; 
                            waypoint=waypoint+1; 

                             
                    %Esquerra 
                        elseif Trajectoria(waypoint,1)==2 
                            time=tic; 
                            Temps=toc(time); 
                            while Temps<Periode/4.7 
                                Step=((1/0.05)*T*[0;0;StepOP])*(27/0.1); 
                                Motor_setSetPointSpeed( MotorId0, Step(1,1)); 
                                Motor_setSetPointSpeed( MotorId1, Step(2,1)); 
                                Motor_setSetPointSpeed( MotorId2, Step(3,1)); 
                                Speed_Motor0=[Speed_Motor0;Motor_actualSpeed(MotorId0)]; 
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                                Speed_Motor1=[Speed_Motor1;Motor_actualSpeed(MotorId1)]; 
                                Speed_Motor2=[Speed_Motor2;Motor_actualSpeed(MotorId2)]; 
                                tElapsed=toc(tStart); 
                                WorkTime=[WorkTime;tElapsed]; 
                                Estado=[Estado;State];                                 
                                Temps=toc(time);                          
                            end 
                                State=0; 
                                waypoint=waypoint+1; 
                    %Reves 
                        elseif Trajectoria(waypoint)==3 
                            time=tic; 
                            Temps=toc(time); 
                            while Temps<Periode/2.4 
                                Speed_Motor0=[Speed_Motor0;Motor_actualSpeed(MotorId0)]; 
                                Speed_Motor1=[Speed_Motor1;Motor_actualSpeed(MotorId1)]; 
                                Speed_Motor2=[Speed_Motor2;Motor_actualSpeed(MotorId2)];   
                                tElapsed=toc(tStart); 
                                WorkTime=[WorkTime;tElapsed]; 
                                Estado=[Estado;State];                                      
                                Temps=toc(time);                                 
                            end                                        
                            time=tic; 
                            Temps=toc(time); 
                            while Temps<Periode 
                                Step=((1/0.05)*T*[0;0;StepOP])*(27/0.1); 
                                Motor_setSetPointSpeed( MotorId0, Step(1,1)); 
                                Motor_setSetPointSpeed( MotorId1, Step(2,1)); 
                                Motor_setSetPointSpeed( MotorId2, Step(3,1)); 
                                Speed_Motor0=[Speed_Motor0;Motor_actualSpeed(MotorId0)]; 
                                Speed_Motor1=[Speed_Motor1;Motor_actualSpeed(MotorId1)]; 
                                Speed_Motor2=[Speed_Motor2;Motor_actualSpeed(MotorId2)]; 
                                tElapsed=toc(tStart); 
                                WorkTime=[WorkTime;tElapsed]; 
                                Estado=[Estado;State];                                  
                                Temps=toc(time);                         
                            end 
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                                State=0; 
                                waypoint=waypoint+1;                                                          
                    end 
            end 
        end 
    end 
end 

  
else 
    disp('This method does not exist') 
end 

  
    d_ver_exp=d_ver_exp*0.1; 
    d_hor_exp=d_hor_exp*0.1;          
    Motor_setSetPointSpeed( MotorId0, 0 ); 
    Motor_setSetPointSpeed( MotorId1, 0 ); 
    Motor_setSetPointSpeed( MotorId2, 0 ); 
    tElapsed=toc(tStart); 

     
Com_disconnect(ComId); 

  
Bumper_destroy(BumperId); 
Com_destroy(ComId); 
Motor_destroy(MotorId0); 
Motor_destroy(MotorId1); 
Motor_destroy(MotorId2); 
Camera_destroy(CameraId); 

 


