
Riemann Sums II1

MATLAB exercise for MATH263B

While working through this MATLAB assignment, keep a notepad handy to write down the answers
to the problems listed in the text. Be sure to include the problem number with each answer. These
answers may be collected and graded as part of a future quiz.

How can we easily compute in MATLAB sums of many terms, such as
���������� �
	�� ? The best way to do

this is by using vectors. A vector is an ordered list of numbers, such as ��
�������������� . The number 
 is
called the first term of the vector, the number ����� is the second term of the vector, and so on. Vectors
can be assigned as values to MATLAB variables as follows:

>> v = [3, 7.6, 4]

Now we can instruct MATLAB to compute the sum 
������������ by entering:

>> sum([3, 7.6, 4])

or

>> sum(v)

If we want MATLAB to compute 
 � ������� � ��� � , we can enter:

>> sum([3ˆ2, 7.6ˆ2, 4ˆ2])

Recall that an easy way to enter this command is to use the  key to recover the line

>> sum([3, 7.6, 4]) and then to add the missing ˆ2’s. You will want to use this trick a number
of times in this assignment.

A simpler way of getting the same answer is to enter

>> sum(v.ˆ2)

Note the period in front of the ˆ-symbol. This period instructs MATLAB to apply exponentiation to
each term of the vector v separately. To see that it cannot be omitted, enter

>> sum(vˆ2)

You will get an error message.

Now let us return to the problem of having MATLAB compute
� �������� �!	"� . The idea is to create a vector#%$ �'&��)(��)
��*�*�*���+&*,-,.� and then instruct MATLAB to compute sum(w.ˆ2). Here is how we can create

the vector with little effort:

>> w = 1:1:100;

The first number to the right of the = sign tells MATLAB that the first term of the vector # is & , the
second number tells MATLAB what that the terms of # increase in increments of & , and the last number
tells MATLAB that the last term of the vector # is &*,-, . The semicolon at the end teels MATLAB to
suppress output; you may want to try and see what happens if you leave out the semicolon. Now we
can compute

� ������/� �0	�� by entering

>> sum(w.ˆ2)
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Problem 1 How would you compute
� ��������������	� 	 in MATLAB? Record both the commands you type

and MATLAB’s answer. Hint: MATLAB’s command for computing ���	��
 is simply sin(x).

Now we are ready to explore Riemann sums with MATLAB. In order to compute a Riemann sum, we
need the following ingredients:

� A function 
�� 
�� that is defined on an interval � � ���)� .
� A partition � of � � ���)� into consecutive subintervals � 
 ��� � � 
 � � , where 	 ranges from & to a number� .

� Sample points 
��� for 	 $ &��*�*�*� � � , where 
��� is in the interval � 
 ��� � � 
 � � .

The Riemann sum defined by the above items is the number � $ ������ � 
�� 
��� � �!
 � , where �!
 � $

 ��" 
 ��� � is the length of the 	 -th interval.

Let us start with a simple example. Let 
�� 
�� $ 
 � , let � $ , , � $ � , � $$# , let 
��� be the left
endpoint of the 	 -th interval, and assume the intervals � 
 ��� � � 
 � � all have the same length. Then �!
 � $% �'&� $)( � �* $ ,!�,+ for all 	 . Thus the Riemann sum we are looking for will be given by the formula:� *�/� � � 
 �� � ��- ,!�,+ .

The left endpoint of the first interval is , ; the left endpoint of the last interval is ( " �!
 � $ 
��,+ , and
the left endpoints increase in increments of ,!�,+ . Thus we can define the vector of 
.�� ’s as follows:

>> xs = 0:0.5:3.5

This time you may want to omit the semicolon and look at the vector you just defined. Now you can
instruct MATLAB to compute the Riemann sum

� *�/� � � 
��� � � - ,!�,+ as follows:

>> sum(xs.ˆ2*0.5)

You should get the answer 17.5000. Now let us see what happens if we increase the number of intervals.
Let us try � $ (�, . While the left endpoint of the first interval remains at , , the length of each interval
will be �/
 � $ (

� �
$ ,!��( . Thus the left endpoint of the last interval will be � " ,!��( $ 
�� # , and the

left endpoints increase in increments of ,!��( . We can instruct MATLAB to calculate the corresponding
Riemann sum by entering

>> xs = 0:0.2:3.8;

>> sum(xs.ˆ2*0.2)

Problem 2 Compute the Riemann sum for the above example that corresponds to � $ � , . Record
both the commands you enter and MATLAB’s answer.

It would be interesting to see what happens if � gets larger and larger, but the typing of commands
may get a little tedious. So let us reflect upon what we have been doing, and then find an easier way of
instructing MATLAB to do the same thing. First we defined a vector xs whose first term was , , whose
terms increased in increments of �/
 � $ % �'&� $0(� , and whose last term was � " �!
 � $ � " (� . Then we
instructed MATLAB to calculate sum(xs.ˆ2*4/n). This could also be accomplished by entering a
single command. For example, for � $1# we could have entered

>> sum([0:4/8:4-4/8].ˆ2*4/8)



and for � $ (�, we could have entered

>> sum([0:4/20:4-4/20].ˆ2*4/20)

This gives the same results as before. Note that the above commands can be obtained by substituting
the appropriate value of � into the expression sum([0:4/n:4-4/n].ˆ2*4/n). Thus these com-
mands are a function of the number � of intervals in the partition. To create an inline function that will
do the same computations, enter

>> g = inline(’sum([0:4/n:4-4/n].ˆ2*(4/n))’)

If you leave out the single quotation marks, MATLAB will give you an error message.

Now you can compute the Riemann sum for � $ # and � $ (�, simply by entering

>> g(8)

>> g(20)

You should get the same results as before.

Problem 3 Experiment with larger and larger values of � . What happens? Does � � � � appear to
approach a fixed number? What appears to be its value? How large needs � to get so that � � � � differs
from the apparent limit of the Riemann sums by no more than ,!� ,-,0& ?

Now let us redo the problem for the same function, but with the sample points 
 �� taken as the midpoint
of the 	 -th interval. If there are � intervals, the midpoint of the first interval will be

�����
�

$ % �'&
� �

$
(
� �

$ �� . The midpoint of the last interval will be � " �����
�

$ � " �� . The sequence of midpoints will
increase in increments of �!
 � $ (� . Thus the corresponding Riemann sums are represented by a new
inline function. Be sure to use a new function name here, because re-using the letter g would destroy
the old definition of g, but you will need to use the function g again in a later part of this assignment.

>> h = inline(’sum([2/n:4/n:4-2/n].ˆ2*(4/n))’)

Problem 4 Experiment with computing 	 � � � for larger and larger values of � . What happens? Does
	 � � � appear to approach the same number that � � � � approaches? If so, which functions approaches
this limit faster? How large needs � to get so that 	 � � � differs from the apparent limit of the Riemann
sums by no more than ,!� ,-,0& ? Try to guess the reason why � � � � and 	 � � � approach the limit at different
speeds and explain it.

Problem 5 Suppose you want to to calculate Riemann sums for the above example, but with making
��� the right endpoint of the 	 -th interval. How would you define the corresponding inline function?

Now let us investigate Riemann sums for a different function. Let 
 � 
�� $�� ��
 , let � $ & , � $ ( , and
let the sample points 
 �� be the left endpoints of the partition of the interval � � ��� � into � subintervals
of length

�� each. MATLAB’s command for the � � -function is log(x). If x is a vector, then this
command instructs MATLAB to calculate logarithms of each term separately. Thus our Riemann sum
will be given by the inline function

>> r = inline(’sum(log([1:1/n:2-1/n])*(1/n))’)



Problem 6 Experiment with larger and larger values of � . What happens? Does � � � � appear to
approach a fixed number? What appears to be its value? How large needs � to get so that � � � � differs
from the apparent limit of the Riemann sums by no more than ,!� ,-,0& ?

Now let us work with the same function 
�� 
�� $ � ��
 and take again left endpoints as our sample points
��� , but let us change the interval to ��(�,!�)(!& � (thus � $ (�, , � $ (!& ).

Problem 7 Define an inline function � � � � for computing the corresponding Riemann sums. Experi-
ment with calculating � � � � for larger and larger values of � . Does � � � � appear to approach a fixed
number? What appears to be its? How large needs � to get so that � � � � differs from the apparent
limit of the Riemann sums by no more than ,!� ,-,0& ? Try to guess the reason why one of the functions
� � � � , � � � � appears to approach its limit faster than the other one and explain it. Hint: It may help
you to look at a graph of � ��
 on the interval �'&��)(!& � . To quickly produce one in MATLAB, use the
ezplot-function that was introduced in the previous assignment.

For convergence of Riemann sums, it is not necessary that all intervals in the partition have equal
length. Sometimes partitions with unequal length work even better. However, such partitions are
more difficult to handle in MATLAB. For example, consider our first function 
�� 
�� $ 
 � on the

interval � ,!����� . Let us partition this interval into � subintervals � 
 ��� � � 
 � � so that 
 � $ � ��� �� , and let


��� $ � ����� ��� ���� be the left endpoint of the 	 -th interval, where 	 $ &��*�*�*� � � . Then the length of the

	 -th interval is � � $ � ��� �� " � ����� ��� ���� $ (� � �	� 	 " � 	 " & � , and these lengths are no longer equal.
Thus the distances between the sample points 
 �� are no longer equal, and we cannot conveniently
define the vector of 
 �� ’s by specifying an increment. One way to overcome the problem is to specify
the vector of indices �'&��)(��)
��*�*�*��� � � and define everything else in terms of this vector. Notice that


�� 
��� � $ �
� ����� ��� ���� � � $ ����� ��� ���� . This leads to the following inline function

>> t = inline(’sum((16/n)*[0:1:n-1]*sqrt(16/n).*(sqrt([1:1:n])-

sqrt([0:1:n-1])))’)

Be sure to enter this function exactly as above. In particular, don’t forget to enter the symbols on the
second line of this definition as it appears in the handout, and make sure all your brackets and quotation
marks are in the right place. The whole formula should be entered as one line in the Command Window.

Note the period in front of the last multiplication sign. It instructs MATLAB to multiply two vectors
term by term.

Problem 8 Experiment with computing both 
 � � � and � � � � for larger and larger values of � . Describe
the behaviour of these two functions.


