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Abstract 

Objective: This study was designed to estimate the percentage of non‑malignant skin tumours (papillomas) pro‑
gressing to malignant squamous cell carcinomas (SCCs) in a carcinogenesis study using established transgenic mouse 
models. In our skin cancer model, we conditionally induced oncogenic point mutant alleles of p53 and k‑ras in undif‑
ferentiated, basal cells of the epidermis.

Results: Upon activation of the transgenes through administration of tamoxifen, the vast majority of mice (> 80%) 
developed skin papillomas, yet primarily around the mouth. Since these tumours hindered the mice eating, they 
rapidly lost weight and needed to be culled before the papillomas progressed to SCCs. The mouth papillomas formed 
regardless of the route of application, including intraperitoneal injections, local application to the back skin, or sub‑
cutaneous insertion of a tamoxifen pellet. Implantation of a slow releasing tamoxifen pellet into 18 mice consistently 
led to papilloma formation, of which only one progressed to a malignant SCC. Thus, the challenges for skin carcino‑
genesis studies using this particular cancer mouse model are low conversion rates of papillomas to SCCs and high 
frequencies of mouth papilloma formation.

Keywords: Skin carcinogenesis, Mouse model, Papilloma, SCC, p53, k‑ras

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Introduction
The most common human cancers arise from epithe-
lia including skin, colon, breast, prostate, or lung, and 
together cause several million deaths per year [1]. Squa-
mous cell carcinoma (SCC) is the second most common 
form of skin cancer and predominantly occurs in sun-
exposed regions of skin [2]. In other epithelia such as 
lung and oesophagus, SCCs are often induced by muta-
gens including tobacco and alcohol or the human papil-
lomavirus (HPV) [3, 4].

Genetic alterations in the RAS and P53 genes are com-
monly identified as driver genes in aggressive SCCs [5]. 
To model the human disease, many transgenic mouse 
cancer models have been generated that accurately reca-
pitulate the genetic alterations found in human tumours. 

Due to the high frequency of RAS mutations in human 
epithelial cancers, investigations into the role of onco-
genes in tumourigenesis commonly induce endogenous 
ras mutations in mice [6]. Endogenous oncogenic ras 
is sufficient to initiate transformation by stimulating 
proliferation, yet further genetic lesions are required to 
progress to a malignant tumour [6]. Inactivation of the 
p53 tumour suppressor is an additional frequent event 
in tumorigenesis [7]. Activation of both cancer-causing 
genetic mutations in an inducible fashion in particular 
cell types of the epidermis is often used to study the cel-
lular and molecular origins of SCCs [8–13].

By applying cancer-inducing genetic alterations to 
mice, they provide valuable in  vivo tumour models to 
study skin cancer origin, progression, metastasis and 
chemotherapy resistance. Here, we discuss practical con-
siderations for skin carcinogenesis experiments using 
inducible transgenic mouse models.
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Main text
Methods
All transgenic mouse lines in this study are routinely used 
in carcinogenesis studies and have been described previ-
ously: K14-CreER [14], K-rasLSL-G12D [6], and  p53LSL-R172H 
[15]. The lines were obtained from The Jackson Labora-
tory (https://www.jax.org/). All mice were on a mixed 
genetic background and age-matched males and females 
were used. All mice were housed in individually venti-
lated cages (IVC). The experiments were not performed 
blinded as the genotype was known to the investigators. 
However, all mice for breeding and the experiments were 
chosen randomly.

Tamoxifen was either applied as solution or in form of 
tamoxifen (free base) pellets (5 or 7.5 mg/pellet) (Innova-
tive Research of America, cat. nr. E-361) were implanted 
subcutaneously into the neck area of mice. 13 mice were 
implanted with 5 mg pellets (5 males, 8 females), and 5 
mice were implanted with 7.5  mg pellets (4 males, 1 
female). The mice were anaesthetised with isofluorane. 
Caprofen (Caprieve Small Animal Solution for Injection, 
Norbrook, National Veterinary Services, Code 219129) 
was administered pre-operatively at 8.3  mg/kg via sub-
cutaneous injection as analgesic. The wound at the pel-
let insertion site was closed with GLUture topical tissue 
adhesive (Zoetis, National Veterinary Services, Code 
288615). Tumour development and appearance were 
monitored and recorded daily.

For histological analyses, the tumours were fixed over-
night with 4% paraformaldehyde (Santa Cruz, cat nr 
sc-281692), transferred to 70% EtOH (Ethanol absolute, 
Sigma cat nr 32205 diluted to 70% in water) and embed-
ded in paraffin. Samples were then cut at 8  µm. Hema-
toxylin and Eosin staining of paraffin-embedded tumours 
were performed as described previously [16].

Results
K14CreER driven activation of K‑rasG12D and  p53LSL‑R172H 
in the epidermis
To trigger the formation of SCCs in the mouse back skin 
we used a Cre-recombinase inducible transgenic mouse 
line that carried oncogenic point mutations in the alleles 
of p53  (p53LSL-R172H) and K-ras (K-rasLSL-G12D) (Fig.  1a, 
b) [6, 15]. Skin tumour formation is initiated by activa-
tion of the endogenous K-rasLSL-G12D and  p53R172H alleles 
(Fig.  1a) [13]. We activated the oncogenic alleles in the 
epidermis by conditionally inducing Cre-recombinase 
under the control of the keratin 14 (K14) promoter by 
administering tamoxifen (Fig.  1b) [14]. K14 (together 
with K5) forms the main keratin in keratinocytes in the 
basal, undifferentiated layer of stratified squamous epi-
thelia that includes the skin and the inner lining of the 
mouth and the esophagus [17–19]. K14-driven activation 

of the oncogenes lead to the development of skin papil-
lomas, a proportion of which were expected to undergo 
malignant conversion into invasive SCCs (Fig. 1c, d) [20].

To maintain the transgenic lines and generate experi-
mental cohorts, the mice have to be kept as heterozygous 
for both K-rasLSL-G12D and  p53LSL-R172H alleles. K-RasLSL-

G12D homozygous animals lack functional K-Ras and show 
early embryonic lethality, and no embryos survive past 
E11.5 [6]. Mice homozygous for the  p53LSL-R172H alleles 
are prone to develop a variety of internal tumours within 
5–6 months [21]. Thus, only K14-CreER+::K-rasLSL-G12D/

wt::p53LSL-R172H/wt were used for this study. Untreated 
control animals with this genotype showed very low lev-
els of leakiness for the transgenes. Around 13% (2 out of 
15 animals) of untreated  CreER+::K-rasLSL-G12D/wt::p53LSL-

R172H/wt mice developed spontaneous papillomas after 
16 weeks of age.

Intraperitoneal injections and topical application 
of tamoxifen to activate K‑rasG12D and  p53LSL‑R172H in the 
epidermis
In pilot experiments, we first administered tamoxifen 
via intraperitoneal (IP) injection or topical application 
directly to a shaved area of the back skin in two small 
cohorts of mice (4 mice for IP and 17 mice for topical). 
Both methods are standard methods to apply tamox-
ifen and as expected, resulted in the development of 
skin papillomas. However, in response to both methods 
of tamoxifen application, all mice developed papillomas 
around the mouth area, which hindered them from eat-
ing. Due to weight loss, all mice in our experiments had 
to be culled before they developed malignant carcinomas 
(data not shown).

Using tamoxifen pellets to activate K‑rasG12D and  p53LSL‑R172H 
in the epidermis
In order to minimise mouth papilloma formation, we 
aimed to induce the transgenes more locally and used 
tamoxifen pellets that can be subcutaneously inserted 
using a trochar (Fig.  1e). Subcutaneous pellet insertion 
has the advantage that it continuously releases tamoxifen 
over a prolonged period of time. Here, we used pellets that 
release a total dose of 5 or 7.5 mg of the drug over 21 days.

To start a carcinogenesis experiment we set up 15 
breeding pairs and obtained a total of 144 offspring, of 
which 12.5% carried the right combination of transgenes 
(Fig.  1f ). We surgically inserted the pellet into the 
neck area, yet in around 20% of animals, the pellet was 
extruded from the skin (Fig. 1g, h). Pellet extrusion was 
independent of the sex of the animal, but seemed to be 
linked to the age (size) of the animal. While it occurred 
in a fraction on animals with a body weight below 20 g, it 
never occurred in mice heavier than 20 g (Fig. 1i).

https://www.jax.org/
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Mouth papilloma formation is the bottleneck 
of carcinogenesis experiments
15 out of the 18 experimental animals, which underwent 
pellet insertion surgery developed tumours (Fig.  2a). 
With the exception of one animal, 14 developed mouth 
papillomas (Fig. 2b, c). Only 6 out of the 15 animals also 

developed papillomas on the back skin. The back papil-
loma of only one mouse progressed to a SCC (Fig. 2d).

Over the course of our experiment, back skin pap-
illomas formed first, on average on day 16 post pellet 
implantation (Fig. 2e). Mouth papillomas formed later, 
on average on day 27 post pellet implantation. Mice 

Fig. 1 a Schematic representation of the keratin‑14 (K14)‑driven inducible Cre‑recominase (Cre) and the  KrasG12D and  p53R172H transgenes prior 
the excision of lox‑STOP‑lox cassette. ßg int: Beta‑globin 5’ untranslated region (UTR) and an intronic sequence.  ERtam: tamoxifen inducible estrogen 
receptor. PolyA: polyadenylation signal. b K14‑driven (red) expression in skin. c, d Transgenes after recombination (c) and schematic of tumour 
development and progression. e A 10 Gauge (g) trochar and tamoxifen pellet used for the surgeries. f Number of mice with a correct (red) and 
incorrect (grey) genotype after breeding to generate experimental cohorts. g Site of pellet insertion (left hand panel) and examples of successful 
pellet insertion (upper right hand panel) and a partially extruded pellet (lower right hand panel). h Number of mice showing pellet extrusion (red) 
in the experiment. i Weight of mice with extruded pellets and not extruded pellets (no complications). Lines indicate mean values
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were maintained on average for 17 days from the first 
appearance of the papillomas. Then, they lost weight 
and needed to be culled. A standard measurement in 
UK home office licences is that a mouse that lost more 
than 15% of body weight compared to wild-type lit-
termates must be culled. This leads to the termination 
of the experiment in average on day 44 post-surgery 
(Fig. 2e; see ‘mice sacrificed’). The single SCC conver-
sion occurred in our model on day 42 post-surgery. 
Thus, the development of mouth papillomas is the bot-
tleneck for the experimental protocol. Our experiment 
illustrates that due to the development of mouth papil-
lomas, it is very challenging to maintain this particular 
mouse model long enough to allow for conversion to 
malignant SCCs.

The high incidence of mouth papilloma formation 
might be due small wounds caused by abrasion inside the 
mouth induced by solid food pellets [22]. To refine the 
procedure, we fed the mice with a non-solid diet. While 
the use of non-solid food failed to reduce mouth papil-
loma formation, it improved the well-being of the mice 
by for instance reducing bleeding from the papillomas.

Finally, we tested whether higher doses of tamox-
ifen enhanced formation of SCC. We used two types of 
tamoxifen pellets: a total dose of 5 mg or 7.5 mg released 
over 21  days. The increase of tamoxifen dose from 5 
to 7.5  mg slightly sped up the formation of all types of 
tumours, yet the difference was not statistically signifi-
cant. The higher dose of tamoxifen did not affect the for-
mation of mouth papillomas (Fig. 2f ).

Fig. 2 a, b Reasons for culling (a) and types of tumours developed after tamoxifen pellet implantation (b) with numbers of mice per category indi‑
cated on the graph. c, d Macroscopic appearance of a mouth papilloma (c) and a SCC located on back skin (d). e Timing (days post pellet insertion) 
of first appearance of back and mouth papillomas, conversion of one back papilloma to SCC, and the timing of tissue collection (mice sacrificed). 
Error bars: standard deviation of the mean. f The timing of first appearance of back and mouth papillomas and the timing of tissue collection (mice 
sacrificed) using differently dosed tamoxifen pellets. Error bars: standard deviation of the mean



Page 5 of 7Popis et al. BMC Res Notes  (2018) 11:67 

Conversion rate of papillomas to SCCs is low
Histological section of typical papillomas and the SCC 
are shown in Fig.  3A–C, E–H. A common phenotype 
in response to the oncogenic activation in mouse epi-
dermis is hyperplasia of cells in the stratum basale and 
the sebaceous glands (Fig. 3D), which can be explained 
by the activation of a single mutant KrasG12D allele 
[23]. The carcinoma showed neoplastic regions with 
an invasive front towards the deeper tissues, which are 
common characteristics of a SCC (Fig. 3E–H). In addi-
tion, we detected inflammation and dermal fibroblast 
proliferation (desmoplasia) (Fig.  3E; arrows). Neoplas-
tic keratinocytes are polygonal, lack polarity and show 
anisocytosis and anisokaryosis (Fig. 3H). Together, one 

out of 15 (7%) papillomas progressed to a malignant 
SCC.

Limitations
In this study we highlight some limitations when using 
the K14-CreER::K-rasLSL-G12D::p53LSL-R172H genetic mouse 
model to study the progression from benign papillomas 
to malignant carcinomas in skin.

Generating the mice by crossing requires in average 
1 year, given that experimental mice carry at least the fol-
lowing alleles:  p53LSL-R172H, K-rasLSL-G12D, an inducible 
Cre-recombinase, and often an additional transgene of 
interest. Breeding the mice to generate the experimental 
cohorts required a large number of mice. Here, we bred 

Fig. 3 A–C Representative examples of Hematoxylin and Eosin stained sections of skin papillomas. D Hematoxylin and Eosin stained sections 
of back skin showing enlarged sebaceous glands. E–H Histology of sectioned malignant SCC from back skin. F, G and H show magnified areas as 
highlighted in E by the black boxes. Scale bar (A–C, E–H): 500 µm; Scale bar (D): 200 µm
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144 animals to generate 18 experimental mice carry-
ing the required transgenes. Due to the genetic crossing 
strategy and low tumour progression frequencies, less 
than 1% of mice originally set up for the experiment were 
used for further studies.

Combining the point mutant alleles  p53LSL-R172H and 
K-rasLSL-G12D has been shown to increase skin tumour 
formation, accelerate tumour progression, and induce 
metastasis when compared with single deletion of 
p53 or over-expression of K-ras [13]. Given that both 
 p53LSL-R172H and K-rasLSL-G12D alleles need to be hete-
rozygous, the yield of experimental animals with correct 
genotype is low. A possible solution might be using dif-
ferent conditional alleles of oncogenic H-Ras or N-Ras 
and p53 that can be maintained as homozygous [24, 25]. 
Using these alleles would increase the number of study 
animals and the number of malignant SCCs. However, 
whether the use of different alleles enhances the progres-
sion rate to malignant SCCs after activation with tamox-
ifen remains to be determined.

The main limitation for our study was however, that 
K14 promoter-driven expression of oncogenic K-Ras 
and p53 leads to the formation of mouth papillomas in 
the vast majority of experimental animals. These benign 
tumours interfere with food intake and animal health, 
resulting in culling the animals before the onset of SCC 
formation on the back skin. The use of alternative pro-
moters to drive oncogenic driver mutations in different 
cell lineages might be a solution to induce the tumour 
formation at a different location.
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