
Solutions Chapters 1–5

Section 1.1

1. Under multiplication, the positive integers form a monoid but not a group, and the
positive even integers form a semigroup but not a monoid.

2. With |a| denoting the order of a, we have |0| = 1, |1| = 6, |2| = 3, |3| = 2, |4| = 3,
and |5| = 6.

3. There is a subgroup of order 6/d for each divisor d of 6. We have Z6 itself (d = 1),
{0}(d = 6), {0, 2, 4}(d = 2), and {0, 3}(d = 3).

4. S forms a group under addition. The inverse operation is subtraction, and the zero
matrix is the additive identity.

5. S∗ does not form a group under multiplication, since a nonzero matrix whose deter-
minant is 0 does not have a multiplicative inverse.

6. If d is the smallest positive integer in H, then H consists of all multiples of d. For if
x ∈ H we have x = qd + r where 0 ≤ r < d. But then r = x− qd ∈ H, so r must be
0.

7. Consider the rationals with addition mod 1, in other words identify rational numbers
that differ by an integer. Thus, for example, 1/3 = 4/3 = 7/3, etc. The group is
infinite, but every element generates a finite subgroup. For example, the subgroup
generated by 1/3 is {1/3, 2/3, 0}.

8. (ab)mn = (am)n (bn)m = 1, so the order of ab divides mn. Thus |ab| = m1n1 where
m1 divides m and n1 divides n. Consequently,

am1n1 bm1n1 = 1 (1)

If m = m1m2, raise both sides of (1) to the power m2 to get bmn1 = 1. The order of b,
namely n, must divide mn1, and since m and n are relatively prime, n must divide
n1. But n1 divides n, hence n = n1. Similarly, if n = n1n2 we raise both sides of (1)
to the power n2 and conclude as above that m = m1. But then |ab| = m1n1 = mn,
as asserted.

If c belongs to both 〈a〉 and 〈b〉 then since c is a power of a and also a power of b, we
have cm = cn = 1. But then the order of c divides both m and n, and since m and n are
relatively prime, c has order 1, i.e., c = 1.
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9. Let |a| = m, |b| = n. If [m, n] is the least common multiple, and (m, n) the greatest
common divisor, of m and n, then [m, n] = mn/(m, n). Examine the prime factoriza-
tions of m and n:

m = (pt1
1 · · · pti

i )(pti+1
i+1 · · · p

tj

j ) = r r′

n = (pu1
1 · · · pui

i )(pui+1
i+1 · · · p

uj

j ) = s′ s

where tk ≤ uk for 1 ≤ k ≤ i, and tk ≥ uk for i + 1 ≤ k ≤ j.
Now ar has order m/r and bs has order n/s, with m/r (= r′) and n/s (= s′) relatively
prime. By Problem 8, arbs has order mn/rs = mn/(m, n) = [m, n]. Thus given
elements of orders m and n, we can construct another element whose order is the
least common multiple of m and n. Since the least common multiple of m, n and
q is [[m, n], q], we can inductively find an element whose order is the least common
multiple of the orders of all elements of G.

10. Choose an element a that belongs to H but not K, and an element b that belongs to
K but not H, where H and K are subgroups whose union is G. Then ab must belong
to either H or K, say ab = h ∈ H. But then b = a−1h ∈ H, a contradiction. If
ab = k ∈ K, then a = kb−1 ∈ K, again a contradiction. To prove the last statement,
note that if H ∪K is a subgroup, the first result with G replaced by H ∪K implies
that H = H ∪K or K = H ∪K, in other words, K ⊆ H or H ⊆ K.

11. akm = 1 if and only if km is a multiple of n, and the smallest such multiple occurs
when km is the least common multiple of n and k. Thus the order of ak is [n, k]/k.
Examination of the prime factorizations of n and k shows that [n, k]/k = n/(n, k).

12. We have x ∈ Ai iff x is a multiple of pi, and there are exactly n/pi multiples of pi

between 1 and n. Similarly, x belongs to Ai ∩ Aj iff x is divisible by pipj , and there
are exactly n

pipj
multiples of pipj between 1 and n. The same technique works for all

other terms.
13. The set of positive integers in {1, 2, . . . , n} and not relatively prime to n is ∪r

i=1Ai,
so ϕ(n) = n − | ∪r

i=1 Ai|. By the principle of inclusion and exclusion from basic
combinatorics,
∣∣∣

r⋃
i=1

Ai

∣∣∣ =
r∑

i=1

|Ai| −
∑
i<j

|Ai ∩Aj |+
∑

i<j<k

|Ai ∩Aj ∩Ak| − · · ·+ (−1)r−1|A1 ∩A2 ∩ · · ·Ar|.

By Problem 12,

ϕ(n) = n
[
1−

r∑
i=1

1
pi

+
∑
i<j

1
pipj

−
∑

i<j<k

1
pipjpk

+ · · ·+ (−1)r1p1p2 · · · pr

]
.

Thus ϕ(n) = n
(
1− 1

p1

)(
1− 1

p2

)
· · ·

(
1− 1

pr

)
.

14. Let G be cyclic of prime order p. Since the only positive divisors of p are 1 and p, the
only subgroups of G are G and {1}.

15. No. Any non-identity element of G generates a cyclic subgroup H. If H ⊂ G, we
are finished. If H = G, then G is isomorphic to the integers, and therefore has many
nontrivial proper subgroups. (See (1.1.4) and Problem 6 above.)
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Section 1.2

1. The cycle decomposition is (1, 4)(2, 6, 5); there is one cycle of even length, so the
permutation is odd.

2. The elements are I, R = (A, B, C, D), R2 = (A, C)(B, D), R3 = (A, D, C, B),
F = (B, D), RF = (A, B)(C, D), R2F = (A, C), R3F = (A, D)(B, C).

3. Such a permutation can be written as (1, a1, a2, a3, a4) where (a1, a2, a3, a4) is a per-
mutation of {2, 3, 4, 5}. Thus the number of permutations is 4! = 24.

4. Select two symbols from 5, then two symbols from the remaining 3, and divide by 2
since, for example, (1, 4)(3, 5) is the same as (3, 5)(1, 4). The number of permutations
is 10(3)/2 = 15.

5. For example, (1, 2, 3)(1, 2) = (1, 3) but (1, 2)(1, 2, 3) = (2, 3).

6. We have V = {I, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)}. Thus V = {I, a, b, c} where
the product of any two distinct elements from {a, b, c} (in either order) is the third
element, and the square of each element is I. It follows that V is an abelian group.

7. This follows because the inverse of the cycle (a1, a2, . . . , ak) is (ak, . . . , a2, a1).

8. Pick 3 symbols out of 4 to be moved, then pick one of two possible orientations, e.g.,
(1, 2, 3) or (1, 3, 2). The number of 3-cycles in S4 is therefore 4(2) = 8.

9. If π is a 3-cycle, then π3 = I, so π4 = π. But π4 = (π2)2, and π2 ∈ H by hypothesis,
so (π2)2 ∈ H because H is a group. Thus π ∈ H.

10. There are 5 inversions, 21, 41, 51, 43 and 53. Thus we have an odd number of
inversions and the permutation π = (1, 2, 4)(3, 5) is also odd.

11. This follows because a transposition of two adjacent symbols in the second row changes
the number of inversions by exactly 1. Therefore such a transposition changes the
parity of the number of inversions. Thus the parity of π coincides with the parity of the
number of inversions. In the given example, it takes 5 transpositions of adjacent digits
to bring 24513 into natural order 12345. It also takes 5 transpositions to create π:

π = (1, 5)(1, 4)(1, 2)(3, 5)(3, 4)

Section 1.3

1. If Ha = Hb then a = 1a = hb for some h ∈ H, so ab−1 = h ∈ H. Conversely, if
ab−1 = h ∈ H then Ha = Hhb = Hb.

2. Reflexivity: aa−1 = 1 ∈ H.
Symmetry: If ab−1 ∈ H then (ab−1)−1 = ba−1 ∈ H.
Transitivity: If ab−1 ∈ H and bc−1 ∈ H then (ab−1)(bc−1) = ac−1 ∈ H.

3. ab−1 ∈ H iff (ab−1)−1 = ba−1 ∈ H iff b ∈ Ha.

4. Ha−1 = Hb−1 iff a−1(b−1)−1 = a−1b ∈ H iff aH = bH.

5. Since a1 belongs to both aH and a1H, we have a1H = aH because the left cosets
partition G.
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6. There are only two left cosets of H in G; one is H itself, and the other is, say, aH.
Similarly, there are only two right cosets, H and Hb. Since the left cosets partition G,
as do the right cosets, aH must coincide with Hb, so that every left coset if a right
coset.

7. The permutations on the list are e, (1, 2, 3), (1, 3, 2), (1, 2), (1, 3), and (2, 3), which
are in fact the 6 distinct permutations of {1, 2, 3}.

8. The left cosets of H are H = {e, b}, aH = {a, ab}, and a2H = {a2, a2b}. The right
cosets of H are H = {e, b}, Ha = {a, ba} = {a, a2b}, and Ha2 = {a2, ba2} = {a2, ab}.

9. The computation of Problem 8 shows that the left cosets of H do not coincide with
the right cosets. Explicitly, aH and a2H are not right cosets (and similarly, Ha and
Ha2 are not left cosets).

10. f(n) = f(1 + 1 + · · · 1) = f(1) + f(1) + · · · f(1) = r + r + · · · r = rn.
11. In Problem 10, the image f(Z) must coincide with Z. But f(Z) consists of all multiples

of r, and the only way f(Z) can equal Z is for r to be ±1.
12. The automorphism group of Z is {I,−I} where (−I)2 = I. Thus the automorphisms

of Z form a cyclic group of order 2. (There is only one such group, up to isomorphism.)
13. Reflexivity: x = 1x1. Symmetry: If x = hyk, then y = h−1xk−1. Transitivity: if

x = h1yk1 and y = h2zk2, then x = h1h2zk2k1.
14. HxK is the union over all k ∈ K of the right cosets H(xk), and also the union over

all h ∈ H of the left cosets (hx)K.

Section 1.4

1. Define f : Z→ Zn by f(x) = the residue class of x mod n. Then f is an epimorphism
with kernel nZ, and the result follows from the first isomorphism theorem.

2. Define f : Zn → Zn/m by f(x) = x mod n/m. Then f is an epimorphism with
kernel Zm, and the result follows from the first isomorphism theorem. (In the concrete
example with n = 12, m = 4, we have f(0) = 0, f(1) = 1, f(2) = 2, f(3) = 0, f(4) = 1,
f(5) = 2, f(6) = 0, etc.)

3. f(xy) = axya−1 = axa−1aya−1 = f(x)f(y), so f is a homomorphism. If b ∈ G, we
can solve axa−1 = b for x, namely x = a−1ba, so f is surjective. If axa−1 = 1 then
ax = a, so x = 1 and f is injective. Thus f is an automorphism.

4. Note that fab(x) = abx(ab)−1 = a(bxb−1)a−1 = fa(fb(x)), and y = fa(x) iff x =
fa−1(y), so that (fa)−1 = fa−1 .

5. Define Ψ: G → Inn G, the group of inner automorphisms of G, by Ψ(a) = fa. Then
Ψ(ab) = fab = fa ◦ fb = Ψ(a)Ψ(b), so Ψ is a homomorphism (see the solution to
Problem 4). Since a is arbitrary, Ψ is surjective. Now a belongs to ker Ψ iff fa is the
identity function, i.e., axa−1 = x for all x ∈ G, in other words, a commutes with every
x in G. Thus ker Ψ = Z(G), and the result follows from the first isomorphism theorem.

6. If f is an automorphism of Zn, then since 1 generates Zn, f is completely determined by
m = f(1), and since 1 has order n in Zn, m must have order n as well. But then m is a
unit mod n (see (1.1.5)), and f(r) = f(1+1+ · · · 1) = f(1)+f(1)+ · · · f(1) = rf(1) =
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rm. Conversely, any unit m mod n determines an automorphism θ(m) = multiplication
by m. The correspondence between m and θ(m) is a group isomorphism because
θ(m1m2) = θ(m1) ◦ θ(m2).

7. The first assertion follows from the observation that HN is the subgroup generated
by H ∪ N (see (1.3.6)). For the second assertion, note that if K is a subgroup of G
contained in both H and N , then K is contained in H ∩N .

8. If g(x) = y, then g ◦ fa ◦ g−1 maps y to g(axa−1) = g(a)y[g(a)]−1.

9. If G is abelian, then fa(x) = axa−1 = aa−1x = x.

Section 1.5

1. C2 × C2 has 4 elements 1 = (1, 1), α = (a, 1), β = (1, a) and γ = (a, a), and the
product of any two distinct elements from {α, β, γ} is the third. Since each of α, β,
γ has order 2 (and 1 has order 1), there is no element of order 4 and C2 × C2 is not
cyclic.

2. The four group is V = {I, a, b, c} where the product of any two distinct elements from
{a, b, c} is the third. Therefore, the correspondence 1→ I, α→ a, β → b, γ → c is an
isomorphism of C2 × C2 and V .

3. Let C2 = {1, a} with a2 = 1, and C3 = {1, b, b2} with b3 = 1. Then (a, b) generates
C2 × C3, since the successive powers of this element are (a, b), (1, b2), (a, 1), (1, b),
(a, b2), and (1, 1). Therefore C2 × C3 is cyclic of order 6, i.e., isomorphic to C6.

4. Proceed as in Problem 3. If a has order n in Cn and b has order m in Cm, then (a, b)
has order nm in Cn × Cm, so that Cn × Cm is cyclic of order nm.

5. Suppose that (a, b) is a generator of the cyclic group Cn ×Cm. Then a must generate
Cn and b must generate Cm (recall that Cn × {1} can be identified with Cn). But
(a, b)k = 1 iff ak = bk = 1, and it follows that the order of (a, b) is the least common
multiple of the orders of a and b, i.e., the least common multiple of n and m. Since n
and m are not relatively prime, the least common multiple is strictly smaller than nm,
so that (a, b) cannot possibly generate Cn × Cm, a contradiction.

6. By (1.3.3), G and H are both cyclic. Since p and q are distinct primes, they are
relatively prime, and by Problem 4, G×H is cyclic.

7. Define f : H ×K → K ×H by f(h, k) = (k, h). It follows from the definition of direct
product that f is an isomorphism.

8. Define f1 : G×H ×K → G× (H ×K) by f1(g, h, k) = (g, (h, k)), and define f2 : G×
H × K → (G × H) × K by f2(g, h, k) = ((g, h), k). It follows from the definition of
direct product that f1 and f2 are isomorphisms.

Section 2.1

1. Never. If f is a polynomial whose degree is at least 1, then f cannot have an inverse.
For if f(X)g(X) = 1, then the leading coefficient of g would have to be 0, which is
impossible.
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2. If f(X)g(X) = 1, then (see Problem 1) f and g are polynomials of degree 0, in other
words, elements of R. Thus the units of R[X] are simply the nonzero elements of R.

3. (a) No element of the form a1X + a2X
2 + · · · can have an inverse.

(b) For example, 1−X is a unit because (1−X)(1 + X + X2 + X3 + · · · ) = 1.

4. Since Z[i] is a subset of the field C of complex numbers, there can be no zero divisors
in Z[i]. If w is a nonzero Gaussian integer, then w has an inverse in C, but the inverse
need not belong to Z[i]. For example, (1 + i)−1 = 1

2 − 1
2 i.

5. If z = a + bi with a and b integers, then |z|2 = a2 + b2, so that if z is not zero, we
must have |z| ≥ 1. Thus if zw = 1, so that |z||w| = 1, we have |z| = 1, and the only
possibilities are a = 0, b = ±1 or a = ±1, b = 0. Consequently, the units of Z[i] are 1,
−1, i and −i.

6. All identities follow directly from the definition of multiplication of quaternions. Al-
ternatively, (b) can be deduced from (a) by interchanging x1 and x2, y1 and y2, z1

and z2, and w1 and w2. Then the second identity of (c) can be deduced by noting
that the quaternion on the right side of the equals sign in (a) is the conjugate of the
quaternion on the right side of the equals sign in (b).

7. Multiply identities (a) and (b), and use (c). (This is not how Euler discovered the
identity; quaternions were not invented until much later.)

8. The verification that End G is an abelian group under addition uses the fact that G is
an abelian group. The additive identity is the zero function, and the additive inverse
of f is given by (−f)(a) = −f(a). Multiplication is associative because composition
of functions is associative. To establish the distributive laws, note that the value of
(f + g)h at the element a ∈ G is f(h(a)) + g(h(a)), so that (f + g)h = fh + gh.
Furthermore, the value of f(g + h) at a is f(g(a) + h(a)) = f(g(a)) + f(h(a)) since
f is an endomorphism. Therefore f(g + h) = fh + gh. The multiplicative identity is
the identity function, given by E(a) = a for all a.

9. An endomorphism that has an inverse must be an isomorphism of G with itself. Thus
the units of the ring End G are the automorphisms of G.

10. Use Euler’s identity with x1 = 1, y1 = 2, z1 = 2, w1 = 5 (34 = 12 + 22 + 22 + 52)
and x2 = 1, y2 = 1, z2 = 4, w2 = 6 (54 = 12 + 12 + 42 + 62). The result is 1836 =
(34)(54) = 412 + 92 + 52 + 72. The decomposition is not unique; another possibility
is x1 = 0, y1 = 0, z1 = 3, w1 = 5, x2 = 0, y2 = 1, z2 = 2, w2 = 7.

11. In all four cases, sums and products of matrices of the given type are also of that type.
But in (b), there is no matrix of the given form that can serve as the multiplicative
identity.. Thus the sets (a), (c) and (d) are rings, but (b) is not.

Section 2.2

1. By Section 1.1, Problem 6, the additive subgroups of Z are of the form (n) = all
multiples of n. But if x ∈ (n) and r ∈ Z then rx ∈ (n), so each (n) is an ideal as well.

2. If the n by n matrix A is 0 except perhaps in column k, and B is any n by n matrix,
then BA is 0 except perhaps in column k. Similarly, if A is 0 off row k, then so is AB.
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3. (a) This follows from the definition of matrix multiplication.

(b) In (a) we have ajr = 0 for r �= k, and the result follows.

(c) By (b), the ith term of the sum is a matrix with cik in the ik position, and 0’s
elsewhere. The sum therefore coincides with C.

4. The statement about left ideals follows from the formula of Problem 3(c). The result
for right ideals is proved in a similar fashion. Explicitly, AEij has column i of A as its
jth column, with 0’s elsewhere. If A ∈ Rk then AEij has aki in the kj position, with
0’s elsewhere, so if aki �= 0 we have AEija

−1
ki = Ekj . Thus if C ∈ Rk then

n∑
j=1

AEija
−1
ki ckj = C.

5. If I is a two-sided ideal and A ∈ I with ars �= 0, then by considering products of the
form a−1

rs EpqAEkl (which have the effect of selecting an entry of A and sliding it from
one row or column to another), we can show that every matrix Eij belongs to I. Since
every matrix is a linear combination of the Eij , it follows that I = Mn(R).

6. A polynomial with no constant term is of the form a1X + a2X
2 + · · · anXn = Xg(X).

Conversely, a polynomial expressible as Xg(X) has no constant term. Thus we may
take f = X.

7. Let a be a nonzero element of R. Then the principal ideal (a) is not {0}, so (a) = R.
Thus 1 ∈ (a), so there is an element b ∈ R such that ab = 1.

8. Since an ideal I is a finite set in this case, it must have a finite set of generators
x1, . . . , xk. Let d be the greatest common divisor of the xi. Every element of I is
of the form a1x1 + · · · + akxk, and hence is a multiple of d. Thus I ⊆ (d). But
d ∈ I, because there are integers ai such that

∑
i aixi = d. Consequently, (d) ⊆ I.

[Technically, arithmetic is modulo n, but we get around this difficulty by noting that
if ab = c as integers, then ab ≡ c modulo n.]

Section 2.3

1. Use the same maps as before, and apply the first isomorphism theorem for rings.

2. If In is the set of multiples of n > 1 in the ring of integers, then In is an ideal but not
a subring (since 1 /∈ In). Z is a subring of the rational numbers Q but not an ideal,
since a rational number times an integer need not be an integer.

3. In parts (2) and (3) of the Chinese remainder theorem, take R = Z and Ii = the set of
multiples of mi.

4. Apply part (4) of the Chinese remainder theorem with R = Z and Ii = the set of
multiples of mi.

5. To prove the first statement, define f : R → R2 by f(r1, r2) = r2. Then f is a ring
homomorphism with kernel R′1 and image R2. By the first isomorphism theorem for
rings, R/R′1 ∼= R2. A symmetrical argument proves the second statement. In practice,
we tend to forget about the primes and write R/R1

∼= R2 and R/R2
∼= R1. There is
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also a tendency to identify a ring with its isomorphic copy, and write R/R1 = R2 and
R/R2 = R1 This should not cause any difficulty if you add, mentally at least, ”up to
isomorphism”.

6. The product is always a subset of the intersection, by definition. First consider the
case of two ideals. Then 1 = a1 + a2 for some a1 ∈ I1, a2 ∈ I2. If b ∈ I1 ∩ I2,
then b = b1 = ba1 + ba2 ∈ I1I2. The case of more than two ideals is handled by
induction. Note that R = (I1 + In)(I2 + In) · · · (In−1 + In) ⊆ (I1 · · · In−1) + In.
Therefore (I1 · · · In−1) + In = R. By the n = 2 case and the induction hypothesis,
I1 · · · In−1In = (I1 · · · In−1) ∩ In = I1 ∩ I2 ∩ · · · ∩ In.

7. Let a + ∩iIi map to (1 + I1, 0 + I2, c3 + I3, . . . , cn + In), where the cj are arbitrary.
Then 1 − a ∈ I1 and a ∈ I2, so 1 = (1 − a) + a ∈ I1 + I2. Thus I1 + I2 = R, and
similarly Ii + Ij = R for all i �= j.

Section 2.4

1. If n = rs with r, s > 1 then r /∈ 〈n〉, s /∈ 〈n〉, but rs ∈ 〈n〉, so that 〈n〉 is not prime. But
Z/〈n〉 is isomorphic to Zn, the ring of integers modulo n (see Section 2.3, Problem 1).
If n is prime, then Zn is a field, in particular an integral domain, hence 〈n〉 is a prime
ideal by (2.4.5).

2. By Problem 1, I is of the form 〈p〉 where p is prime. Since Z/〈p〉 is isomorphic to Zp,
which is a field, 〈p〉 is maximal by (2.4.3).

3. The epimorphism a0 + a1X + a2X
2 + · · · → a0 of F [[X]] onto F has kernel 〈X〉, and

the result follows from (2.4.7).

4. The ideal I = 〈2, X〉 is not proper; since 2 ∈ I and 1
2 ∈ F ⊆ F [[X]], we have 1 ∈ I and

therefore I = F [[X]]. The key point is that F is a field, whereas Z is not.

5. Suppose that f(X) = a0 + a1X + · · · belongs to I but not to 〈X〉. Then a0 cannot
be 0, so by ordinary long division we can find g(X) ∈ F [[X]] such that f(X)g(X) = 1.
But then 1 ∈ I, contradicting the assumption that I is proper.

6. Let f(X) = anXn + an+1X
n+1 + · · · , an �= 0, be an element of the ideal I, with n

as small as possible. Then f(X) ∈ (Xn), and if g(X) is any element of I, we have
g(X) ∈ (Xm) for some m ≥ n. Thus I ⊆ (Xn). Conversely, if f(X) = Xng(X) ∈ I,
with g(X) = an + an+1X + · · · , an �= 0,, then as in Problem 5, g(X) is a unit, and
therefore Xn ∈ I. Thus (Xn) ⊆ I, so that I = (Xn), as claimed.

7. f−1(P ) is an additive subgroup by (1.3.15), part (ii). If a ∈ f−1(P ) and r ∈ R, then
f(ra) = f(r)f(a) ∈ P , so ra ∈ f−1(P ). Thus f−1(P ) is an ideal. If ab ∈ f−1(P ), then
f(a)f(b) ∈ P , so either a or b must belong to f−1(P ). If f−1(P ) = R, then f maps
eveything in R, including 1, into P ; thus f−1(P ) is proper. (Another method: As a
proper ideal, P is the kernel of some ring homomorphism π. Consequently, f−1(P ) is
the kernel of π ◦ f , which is also a ring homomorphism. Therefore f−1(P ) is a proper
ideal.) Consequently, f−1(P ) is prime.

8. Let S be a field, and R an integral domain contained in S, and assume that R is not
a field. For example, let R = Z, S = Q. Take f to be the inclusion map. Then {0} is
a maximal ideal of S, but f−1({0}) = {0} is a prime but not maximal ideal of R.
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9. If P = I∩J with P ⊂ I and P ⊂ J , choose a ∈ I\P and b ∈ J\P . Then ab ∈ I∩J = P ,
contradicting the assumption that P is prime.

Section 2.5

1. Any number that divides a and b divides b and r1, and conversely, any number that
divides b and r1 divides a and b. Iterating this argument, we find that gcd(a, b) =
gcd(b, r1) = gcd(r1, r2) = · · · = gcd(rj−1, rj) = rj .

2. This follows by successive substitution. We start with rj = rj−2 − rj−1qj , continue
with rj−1 = rj−3− rj−2qj−1, rj−2 = rj−4− rj−3qj−2, and proceed up the ladder until
we have expressed d as a linear combination of a and b. There is an easier way, as
Problem 3 shows.

3. The first equation of the three describes the steps of the algorithm. We wish to prove
that axi + byi = ri, that is,

a(xi−2 − qixi−1) + b(yi−2 − qiyi−1) = ri. (1)

But this follows by induction: if axi−2 + byi−2 = ri−2 and axi−1 + byi−1 = ri−1, then
the left side of (1) is ri−2−qiri−1, which is ri by definition of the Euclidean algorithm.

4. We have the following table:

i qi+1 ri xi yi

−1 — 123 1 0
0 2 54 0 1
1 3 15 1 −2
2 1 9 −3 7
3 1 6 4 −9
4 2 3 −7 16

For example, to go from i = 1 to i = 2 we have x2 = x0 − q2x1 = 0 − 3(1) = −3,
y2 = y0 − q2y1 = 1 − 3(−2) = 7, and r2 = r0 − q2r1 = 54 − 3(15) = 9; also,
q3 = �15/9� = 1. We have ax2 + by2 = 123(−3) + 54(7) = 9 = r2, as expected. The
process terminates with 123(−7) + 54(16) = 3 = d.

5. If p is composite, say p = rs with 1 < r < p, 1 < s < p, then rs is 0 in Zp but r
and s are nonzero, so Zp is not a field. If p is prime and a is not zero in Zp then the
greatest common divisor of a and p is 1, and consequently there are integers x and
y such that ax + py = 1. In Zp this becomes ax = 1, so that every nonzero element
in Zp has an inverse in Zp, proving that Zp is a field.

6. Since f(X) and g(X) are multiples of d(X), so are all linear combinations a(X)f(X)+
b(X)g(X), and consequently I ⊆ J . By Problem 2, there are polynomials a(X) and
b(X) such that a(X)f(X) + b(X)g(X) = d(X), so that d(X) belongs to I. Since I is
an ideal, every multiple of d(X) belongs to I, and therefore J ⊆ I.

7. Take f(X) =
∑n

i=0 biPi(X).
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8. If g(X) is another polynomial such that g(ai) = f(ai) for all i, then f and g agree at
n+1 points, so that f(X)−g(X) has more than n roots in F . By (2.5.3), f(X)−g(X)
must be the zero polynomial.

9. If F has only finitely many elements a1, . . . , an, take f(X) = (X − a1) · · · (X − an).

10. Let F be the complex numbers C. Then every polynomial of degree n has exactly n
roots, counting multiplicity. Thus if f(a) = 0 at more than n points a, in particular
if f vanishes at every point of C, then f = 0. More generally, F can be any infinite
field (use (2.5.3)).

Section 2.6

1. If r = 0 then I contains a unit, so that 1 ∈ I and I = R.

2. If b /∈ 〈p1〉 then b+ 〈p1〉 �= 〈p1〉, so b+ 〈p1〉 has an inverse in R/〈p1〉, say c+ 〈p1〉. Thus
(b + 〈p1〉)(c + 〈p1〉) = 1 + 〈p1〉, hence (bc− 1) + 〈p1〉 = 〈p1〉, so bc− 1 ∈ 〈p1〉.

3. If bc− dp1 = 1 then bcp2 · · · pn− dp1 · · · pn = p2 · · · pn, and since b and p1 · · · pn belong
to I, so does p2 · · · pn, contradicting the minimality of n. (If n = 1, then 1 ∈ I, so
I = R.)

4. If a, b ∈ R and x, y ∈ J then (ax+by)p1 = xp1a+yp1b. Since x, y ∈ J we have xp1 ∈ I
and yp1 ∈ I, so that (ax + by)p1 ∈ I, hence ax + by ∈ J .

5. If x ∈ J then xp1 ∈ I, so Jp1 ⊆ I. Now I ⊆ 〈p1〉 by Problem 3, so if a ∈ I then
a = xp1 for some x ∈ R. But then x ∈ J by definition of J , so a = xp1 ∈ Jp1.

6. Since J contains a product of fewer than n primes, J is principal by the induction
hypothesis. If J = 〈d〉 then by Problem 5, I = J〈p1〉. But then I = 〈dp1〉, and the
result follows. (If n = 1, then p1 ∈ I, hence 1 ∈ J , so J = R and I = J〈p1〉 = 〈p1〉.)

7. Assume that P ⊆ Q. Then p = aq for some a ∈ R, so aq ∈ P . Since P is prime, either
a or q belongs to P . In the second case, Q ⊆ P and we are finished. Thus assume
a ∈ P , so that a = bp for some b ∈ R. Then p = aq = bpq, and since R is an integral
domain and p �= 0, we have bq = 1, so q is a unit and Q = R, a contradiction of the
assumption that Q is prime.

8. Let x be a nonzero element of P , with x = up1 · · · pn, u a unit and the pi prime. Then
p1 · · · pn = u−1x ∈ P , and since P is prime, some pi belongs to P . Thus P contains
the nonzero principal prime ideal 〈pi〉.

Section 2.7

1. If m is a generator of the indicated ideal then m belongs to all 〈ai〉, so each ai divides
m. If each ai divides b then b is in every 〈ai〉, so b ∈ ∩n

i=1〈ai〉 = 〈m〉, so m divides b.
Thus m is a least common multiple of A. Now suppose that m is an lcm of A, and let
∩n

i=1〈ai〉 = 〈c〉. Then c belongs to every 〈ai〉, so each ai divides c. Since m = lcm(A),
m divides c, so 〈c〉 is a subset of 〈m〉. But again since m = lcm(A), each ai divides m,
so m ∈ ∩n

i=1〈ai〉 = 〈c〉. Therefore 〈m〉 ⊆ 〈c〉, hence 〈m〉 = 〈c〉, and m is a generator
of ∩n

i=1〈ai〉.
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2. Let a = 11 + 3i, b = 8 − i. Then a/b = (11 + 3i)(8 + i)/65 = 85/65 + i35/65. Thus
we may take x0 = y0 = 1, and the first quotient is q1 = 1 + i. The first remainder
is r1 = a − bq1 = (11 + 3i) − (8 − i)(1 + i) = 2 − 4i. The next step in the Euclidean
algorithm is (8− i)/(2−4i) = (8− i)(2+4i)/20 = 1+(3i/2). Thus the second quotient
is q2 = 1 + i (q2 = 1 + 2i would be equally good). The second remainder is r2 =
(8−i)−(2−4i)(1+i) = 2+i. The next step is (2−4i)/(2+i) = (2−4i)(2−i)/5 = −2i,
so q3 = −2i, r3 = 0. The gcd is the last divisor, namely 2 + i.

3. We have Ψ(1) ≤ Ψ(1(a)) = Ψ(a) for every nonzero a. If a is a unit with ab = 1,
then Ψ(a) ≤ Ψ(ab) = Ψ(1), so Ψ(a) = Ψ(1). Conversely, suppose that a �= 0 and
Ψ(a) = Ψ(1). Divide 1 by a to get 1 = aq + r, where r = 0 or Ψ(r) < Ψ(a) = Ψ(1).
But if r �= 0 then Ψ(r) must be greater than or equal to Ψ(1), so we must have r = 0.
Therefore 1 = aq, and a is a unit.

4. Ψ((a1 + b1

√
d)(a2 + b2

√
d))

= ψ(a1a2 + b1b2d + (a1b2 + a2b1)
√

d)
=

∣∣a1a2 + b1b2d + (a1b2 + a2b1)
√

d
∣∣∣∣a1a2 + b1b2d− (a1b2 + a2b1)

√
d
∣∣;

Ψ(a1 + b1

√
d)Ψ(a2 + b2

√
d)

=
∣∣a1 + b1

√
d
∣∣∣∣a2 + b2

√
d
∣∣∣∣a1 − b1

√
d
∣∣∣∣a2 − b2

√
d
∣∣

and it follows that Ψ(αβ) = Ψ(α)Ψ(β). Now Ψ(α) ≥ 1 for all nonzero α, for if
Ψ(α) = |a2 − db2| = 0, then a2 = db2. But if b �= 0 then d = (a/b)2, contradicting the
assumption that d is not a perfect square. Thus b = 0, so a is 0 as well, and α = 0, a
contradiction. Thus Ψ(αβ) = Ψ(α)Ψ(β) ≥ Ψ(α).

5. Either d or d − 1 is even, so 2 divides d(d − 1) = d2 − d = (d +
√

d)(d −
√

d). But 2
does not divide d +

√
d or d−

√
d. For example, if 2(a + b

√
d) = d +

√
d) for integers

a, b then 2a− d = (1− 2b)
√

d, which is impossible since
√

d is irrational. (If
√

d = r/s
then r2 = ds2, which cannot happen if d is not a perfect square.)

6. Define Ψ as in Problem 4 (and Example (2.7.5)). Suppose 2 = αβ where α and β are
nonunits in Z[

√
d]. Then 4 = Ψ(2) = Ψ(α)Ψ(β), with Ψ(α), Ψ(β) > 1 by Problems 3

and 4. But then Ψ(α) = Ψ(β) = 2. If α = a + b
√

d then |a2 − db2| = 2, so a2 − db2 is
either 2 or −2. Therefore if b �= 0 (so that b2 ≥ 1), then since d ≤ −3 we have

a2 − db2 ≥ 0 + 3(1) = 3,

a contradiction. Thus b = 0, so α = a, and 2 = Ψ(a) = a2, an impossibility for a ∈ Z.
7. This follows from Problems 5 and 6, along with (2.6.4).
8. Just as with ordinary integers, the product of two Gaussian integers is their greatest

common divisor times their least common multiple. Thus by Problem 2, the lcm is
(11 + 3i)(8− i)/(2 + i) = 39− 13i.

9. If α = βγ, then Ψ(α) = Ψ(β)Ψ(γ). By hypothesis, either Ψ(β) or Ψ(γ) is 1(= Ψ(1)).
By Problem 3, either β or γ is a unit.

Section 2.8

1. If D is a field, then the quotient field F , which can be viewed as the smallest field
containing D, is D itself. Strictly speaking, F is isomorphic to D; the embedding map
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f(a) = a/1 is surjective, hence an isomorphism. To see this, note that if a/b ∈ F , then
a/b = ab−1/1 = f(ab−1).

2. The quotient field consists of all rational functions f(X)/g(X), where f(X) and g(X)
are polynomials in F [X] and g(X) is not the zero polynomial. To see this, note that
the collection of rational functions is in fact a field, and any field containing F [X] must
contain all such rational functions.

3.
a

b
+

(
c

d
+

e

f

)
and

(
a

b
+

c

d

)
+

e

f
both compute to be

adf + bcf + bde

bdf
.

4.
a

b

(
c

d
+

e

f

)
=

a

b

(
cf + de

df

)
=

acf + ade

bdf
and

ac

bd
+

ae

bf
=

acbf + bdae

b2df
=

acf + dae

bdf
=

acf + ade

bdf
.

5. If g is any extension of h and a/b ∈ F , there is only one possible choice for g(a/b),
namely h(a)/h(b). (Since b �= 0 and h is a monomorphism, h(b) �= 0.) If we define g
this way, then g(a) = g(a/1) = h(a)/h(1) = h(a), so g is in fact an extension of f .
Furthermore, if a/b = c/d then since h is a monomorphism, h(a)/h(b) = h(c)/h(d).
Therefore g is well-defined. Again since h is a monomorphism, it follows that g

(
a
b + c

d

)
=

g
(

a
b

)
+ g

(
c
d

)
and g

(
a
b

c
d

)
= g

(
a
b

)
g
(

c
d

)
. Since g is an extension of h, we have g(1) = 1,

so g is a homomorphism. Finally, if g(a/b) = 0, then h(a) = 0, so a = 0 by injectivity
of h. Thus g is a monomorphism.

6. The problem is that h is not injective. As before, if g is to be an extension of h, we
must have g(a/b) = h(a)/h(b). But if b is a multiple of p, then h(b) is zero, so no
such g can exist.

7. We must have g(a/b) = g(a/1)g((b/1)−1) = g(a)g(b)−1.
8. If a/b = c/d, then for some s∈S we have s(ad−bc) = 0. So g(s)[g(a)g(d)−g(b)g(c)] = 0.

Since g(s) is a unit, we may multiply by its inverse to get g(a)g(d) = g(b)g(c), hence
g(a)g(b)−1 = g(c)g(d)−1, proving that g is well-defined. To show that g is a homomor-
phism, we compute

g
(a

b
+

c

d

)
= g

(
ad + bc

bd

)
= g(ad + bc)g(bd)−1

= [g(a)g(d) + g(b)g(c)]g(b)−1g(d)−1 = g
(a

b

)
+ g

( c

d

)

Similarly, we have g
(

a
b

c
d

)
= g

(
a
b

)
g
(

c
d

)
and g(1) = 1.

Section 2.9

1. We have an(u/v)n + an−1(u/v)n−1 + · · ·+ a1(u/v) + a0 = 0; multiply by vn to get

anun + an−1u
n−1v + · · ·+ a1uvn−1 + a0v

n = 0.

Therefore

anun = −an−1u
n−1v − · · · − a1uvn−1 − a0v

n.
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Since v divides the right side of this equation, it must divide the left side as well, and
since u and v are relatively prime, v must divide an. Similarly,

a0v
n = −anun − an−1u

n−1v − · · · − a1uvn−1,

so u divides a0.

2. Xn − p satisfies Eisenstein’s criterion, and since the polynomial is primitive, it is
irreducible over Z.

3. f3(X) = X3+2X+1, which is irreducible over Z3. For if f3(X) were reducible over Z3,
it would have a linear factor (since it is a cubic), necessarily X − 1 or X + 1(= X − 2).
But then 1 or 2 would be a root of f3, a contradiction since f3(1) = 1 and f3(2) = 1
(mod 3).

4. By Eisenstein, X4 + 3 is irreducible over Z. The substitution X = Y + 1 yields
Y 4 + 4Y 3 + 6Y 2 + 4Y + 4, which is therefore irreducible in Z[Y ]. Thus X4 + 4X3 +
6X2 + 4X + 4 is irreducible in Z[X], i.e., irreducible over Z.

5. Note that 〈n, X〉 is a proper ideal since it cannot contain 1. If 〈n, X〉 = 〈f〉 then
n ∈ 〈f〉, so n is a multiple of f . Thus f is constant (�= 1), in which case X /∈ 〈f〉.

6. Since 1 /∈ 〈X, Y 〉, 〈X, Y 〉 is a proper ideal. Suppose 〈X, Y 〉 = 〈f〉. Then Y is a
multiple of f , so f is a polynomial in Y alone (in fact f = cY ). But then X /∈ 〈f〉, a
contradiction.

7. If p = X + i, then p is irreducible since X + i is of degree 1. Furthermore, p divides
X2 + 1 but p2 does not. Take the ring R to be C[X, Y ] = (C[X])[Y ] and apply
Eisenstein’s criterion.

8. Write f(X, Y ) as Y 3+(X3+1) and take p = X+1. Since X3+1 = (X+1)(X2−X+1)
and X + 1 does not divide X2 −X + 1, the result follows as in Problem 7.

Section 3.1

1. F (S) consists of all quotients of finite linear combinations (with coefficients in F ) of
finite products of elements of S. To prove this, note first that the set A of all such
quotients is a field. Then observe that any field containing F and S must contain
A, in particular, A ⊆ F (S). But F (S) is the smallest subfield containing F and S,
so F (S) ⊆ A.

2. The composite consists of all quotients of finite sums of products of the form xi1xi2 · · ·
xin

, n = 1, 2, . . . , where i1, i2, . . . , in ∈ I and xij
∈ Kij

. As in Problem 1, the set A
of all such quotients is a field, and any field that contains all the Ki must contain A.

3. By (3.1.9), [F [α] : F ] = [F [α] : F [β]][F [β] : F ], and since the degree of any extension
is at least 1, the result follows.

4. Let min(−1+
√

2,Q) = a0 +a1X +X2 (a polynomial of degree 1 cannot work because
−1 +

√
2 /∈ Q). Then a0 + a1(−1 +

√
2) + (−1 +

√
2)2 = 0. Since (−1 +

√
2)2 =

3 − 2
√

2, we have a0 − a1 + 3 = 0 and a1 − 2 = 0, so a0 = −1, a1 = 2. Therefore
min(−1 + 2

√
2,Q) = X2 + 2X − 1.
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5. Let β = b0 + b1α + · · ·+ bn−1α
n−1. Then for some a0, . . . , an ∈ F we have a0 + a1β +

· · · + anβn = 0. Substituting the expression for β in terms of α into this equation,
reducing to a polynomial in α of degree at most n− 1 (as in the proof of (3.1.7)), and
setting the coefficients of the αi, i = 0, 1, . . . , n− 1 equal to zero (remember that the
αi form a basis for F [α] over F ), we get n linear equations in the n + 1 unknowns ai,
i = 0, . . . , n. We know that a solution exists because β is algebraic over F . By brute
force (try ai = 1, aj = 0, j > i for i = 1, 2, . . . , n), we will eventually arrive at the
minimal polynomial.

6. Define ϕ : F (X) → E by ϕ(f(X)/g(X)) = f(α)/g(α). Note that ϕ is well-defined,
since if g is a nonzero polynomial, then g(α) �= 0 (because α is transcendental over F ).
By (3.1.2), ϕ is a monomorphism. Since ϕ(F (X)) = F (α), it follows that F (X) and
F (α) are isomorphic.

7. The kernel of ϕ is I, and as in (3.1.3), F [X]/I is a field. The image of ϕ is F [α], and
by the first isomorphism theorem for rings, F [α] is isomorphic to F [X]/I. Therefore
F [α] is a field, and consequently F [α] = F (α).

8. If f = gh, then (g + I)(h + I) = 0 in F [X]/I, so F [X]/I is not a field. By (2.4.3), I
is not maximal.

9. The minimal polynomial over F belongs to F [X] ⊆ E[X], and has α as a root. Thus
min(α, E) divides min(α, F ).

10. The result is true for n = 1; see (3.1.7). Let E = F [α1, . . . , αn−1], so that
[F [α1, . . . , αn] : F ] = [F [α1, . . . , αn] : E][E : F ] = [E[αn] : E][E : F ]. But [E[αn] : E]
is the degree of the minimal polynomial of αn over E, which is at most the degree of
the minimal polynomial of αn over F , by Problem 9. An application of the induction
hypothesis completes the proof.

Section 3.2

1. f(X) = (X − 2)2, so we may take the splitting field K to be Q itself.
2. f(X) = (X − 1)2 + 3, with roots 1 ± i

√
3, so K = Q(i

√
3). Now i

√
3 /∈ Q since

(i
√

3)2 = −3 < 0, so [K : Q] ≥ 2. But i
√

3 is a root of X2 + 3, so [K : Q] ≤ 2.
Therefore [K : Q] = 2.

3. Let α be the positive 4th root of 2. The roots of f(X) are α, iα,−α and −iα. Thus
K = Q(α, i). Now f(X) is irreducible by Eisenstein, so [Q(α) : Q] = 4. Since
i /∈ Q(α) and i is a root of X2 + 1 ∈ Q(α)[X], we have [K : Q(α)] = 2. By (3.1.9),
[K : Q] = 2× 4 = 8.

4. The argument of (3.2.1) may be reproduced, with the polynomial f replaced by the
family C of polynomials, and the roots α1, . . . , αk of f by the collection of all roots of
the polynomials in the family C.

5. Take f = f1 · · · fr. Since α is a root of f iff α is a root of some fi, the result follows.
6. If the degree is less than 4, it must be 2 (since

√
m /∈ Q). In this case,

√
n = a + b

√
m,

so n = a2 + b2m + 2ab
√

m. Since m is square-free, we must have a = 0 or b = 0,
and the latter is impossible because n is square-free. Thus

√
n = b

√
m, so n = b2m, a

contradiction of the hypothesis that m and n are distinct and square-free.
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Section 3.3

1. If α1, . . . , αn form a basis for E over F , then E is generated over F by the αi. Each
αi is algebraic over F because F (αi) ⊆ E, and (3.1.10) applies.

2. There are only countably many polynomials with rational coefficients, and each such
polynomial has only finitely many roots. Since an algebraic number must be a root of
one of these polynomials, the set of algebraic numbers is countable. Since the complex
field is uncountably infinite, there are uncountably many transcendental numbers.

3. The complex field C is algebraically closed, and C is an extension of the rational field Q.
But C is not algebraic over Q, by Problem 2.

4. The algebraic numbers A form a field by (3.3.4), and A is algebraic over Q by definition.
But it follows from Section 2.9, Problem 2, that A contains subfields of arbitrarily high
degree (in fact subfields of every degree) over Q, so that A/Q is not finite.

5. This can be verified by transfinite induction. A splitting field is always an algebraic ex-
tension (see (3.2.2)), and the field F<f is algebraic over F by the induction hypothesis.
The result follows from (3.3.5).

6. By definition of algebraic number, A is an algebraic extension of Q. If α is algebraic
over A, then as in (3.3.5), α is algebraic over Q, so α ∈ A. Thus A has no proper
algebraic extensions, so by (3.3.1), A is algebraically closed.

7. Since E is an extension of F we have |F | ≤ |E|. Suppose that α ∈ E and the minimal
polynomial f of α has roots α1, . . . , αn, with α = αi. Then the map α → (f, i) is
injective, since f and i determine α. It follows that |E| ≤ |F [X]|ℵ0 = |F [X]|. But
for each n, the set of polynomials of degree n over F has cardinality |F |n+1 = |F |, so
|F [X]| = |F |ℵ0 = |F |. Thus |E| = |F |.

8. Let C be an algebraic closure of F , and let A be the set of roots in C of all polynomials
in S. Then F (A), the field generated over F by the elements of A, is a splitting field
for S over F ; see Section 3.2, Problem 4.

9. If F is a finite field with elements a1, . . . , an, the polynomial f(X) = 1+
∏n

i=1(X−ai)
has no root in F , so F cannot be algebraically closed.

Section 3.4

1. Let f(X) = (X − 1)p over Fp.
2. α is a root of Xp − αp = (X − α)p, so m(X) divides (X − α)p.
3. By Problem 2, m(X) = (X − α)r for some r. We are assuming that α is separable

over F (αp), so m(X) must be simply X − α. But then α ∈ F (αp).
4. The “if” part follows from the proof of (3.4.5), so assume that F is perfect and let

b ∈ F . Let f(X) = Xp − b and adjoin a root α of f . Then αp = b, so F (αp) =
F (b) = F . By hypothesis, α is separable over F = F (αp), so by Problem 3, α ∈ F .
But then b is the pthpower of an element of F .

5. If α1, . . . , αn is a basis for E over F , then by the binomial expansion mod p,
K = F (αp

1, . . . , α
p
n). Now since E/F is algebraic, the elements of F (αp

1) can be ex-
pressed as polynomials in αp

1 with coefficients in F . Continuing, αp
2 is algebraic over
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F , hence over F (αp
1), so each element of F (αp

1, α
p
2) can be written as a polynomial in

αp
2 with coefficients in F (αp

1). Such an element has the form
∑

s

( ∑
r

brsα
pr
1

)
αps

2

with the brs ∈ F . An induction argument completes the proof.
6. Extend the yi to a basis y1, . . . , yn for E over F . By Problem 5, every element of

E(= F (Ep)) has the form y = a1y
p
1 + · · ·+ anyp

n with the ai ∈ F . Thus {yp
1 , . . . , yp

n}
spans E over F . It follows that this set contains a basis, hence (since there are exactly
n vectors in the set) the set is a basis for E over F . The result follows.

7. Assume the extension is separable, and let α ∈ E. Then α is separable over F , hence
over F (αp), so by Problem 3, α ∈ F (Ep). Thus E = F (Ep). Conversely, suppose that
E = F (Ep) and the element α ∈ E has an inseparable minimal polynomial m(X).
By (3.4.3), m(X) is of the form b0 +b1X

p + · · ·+br−1X
(r−1)p +Xrp. Since m(α) = 0,

the elements 1, αp, . . . , αrp are linearly dependent over F . But by minimality of
m(X), 1, α, . . . , αrp−1 are linearly independent over F , hence 1, α, . . . , αr are linearly
independent over F . (Note that rp − 1 ≥ 2r − 1 ≥ r.) By Problem 6, 1, αp, . . . , αrp

are linearly independent over F , which is a contradiction. Thus E/F is separable.
8. We may assume that F has prime characteristic p. By Problem 7, E = K(Ep) and

K = F (Kp). Thus E = F (Kp, Ep) = F (Ep) since K ≤ E. Again by Problem 7,
E/F is separable.

9. If g can be factored, so can f , and therefore g is irreducible. If f(X) = g(Xpm

) with
m maximal, then g /∈ F [Xp]. By (3.4.3) part (2), g is separable.

10. Suppose that the roots of g in a splitting field are c1, . . . , cr. Then f(X) = g(Xpm

) =
(Xpm − c1) · · · (Xpm − cr). By separability of g, the cj must be distinct, and since
f(α) = 0, we have αpm

= cj for all j. This is impossible unless r = 1, in which case
f(X) = Xpm − c1. But f ∈ F [X], so αpm

= c1 ∈ F .
11. If αpn

= c ∈ F , then α is a root of Xpn − c = (X − α)pn

, so min(α, F ) is a power
of X − α, and therefore has only one distinct root α. The converse follows from
Problem 10 with f = min(α, F ).

Section 3.5

1. Take F = Q, K = Q( 3
√

2) (see (3.5.3)), and let E be any extension of K that is normal
over F , for example, E = C.

2. The polynomial f(X) = X2 − a is irreducible, else it would factor as (X − b)(X − c)
with b + c = 0, bc = a, i.e., (X − b)(X + b) with b2 = a, contradicting the hypothesis.
Thus E is obtained from Q by adjoining a root of f . The other root of f is −√a, so
that E is a splitting field of f over Q. By (3.5.7), E/Q is normal.

3. Take F = Q, K = Q(
√

2), E = Q( 4
√

2). Then K/F is normal by Problem 2, and
E/K is normal by a similar argument. But E/F is not normal, since the two complex
roots of X4− 2 do not belong to E. The same argument works with 2 replaced by any
positive integer that is not a perfect square.
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4. There are at most n embeddings of E in C extending σ. The proof is the same, except
that now g has at most r distinct roots in C, so there are at most r possible choices
of β. The induction hypothesis yields at most n/r extensions from F (α) to E, and the
result follows.

5. Since the rationals have characteristic zero, the extension is separable. Since E is the
splitting field of (X2 − 2)(X2 − 3) over Q, the extension is normal, hence Galois.

6. Since
√

3 /∈ Q(
√

2), the extension has degree 4. By (3.5.9), there are exactly four
Q-automorphisms in the Galois group. By (3.5.1), each such Q-automorphism must
permute the roots of X2−2 and must also permute the roots of X2−3. There are only
four possible ways this can be done. Since a Q-automorphism is completely specified
by its action on

√
2 and

√
3, the Galois group may be described as follows:

(1)
√

2→
√

2,
√

3→
√

3;
(2)
√

2→
√

2,
√

3→ −
√

3;
(3)
√

2→ −
√

2,
√

3→
√

3;
(4)
√

2→ −
√

2,
√

3→ −
√

3.

Since the product (composition) of any two of automorphisms (2),(3),(4) is the third,
the Galois group is isomorphic to the four group (Section 1.2, Problem 6).

7. Yes, up to isomorphism. If f is the polynomial given in (3.5.11), any normal closure is
a splitting field for f over F , and the result follows from (3.2.5).

8. If f is irreducible over F and has a root in E1∩E2, then f splits over both E1 and E2,
hence all roots of f lie in E1 ∩ E2. Thus f splits over E1 ∩ E2, and the result follows.

Section 4.1

1. If x ∈ R, take r(x + I) to be rx + I to produce a left R-module, and (x + I)r = xr + I
for a right R-module. Since I is an ideal, the scalar multiplication is well-defined, and
the requirements for a module can be verified using the basic properties of quotient
rings.

2. If A is an algebra over F , the map x→ x1 of F into A is a homomorphism, and since F
is a field, it is a monomorphism (see (3.1.2)). Thus A contains a copy of F . Conversely,
if F is a subring of A, then A is a vector space over F , and the compatibility conditions
are automatic since A is commutative.

3. Let R = Z and let M be the additive group of integers mod m, where m is composite,
say m = ab with a, b > 1. Take x = a (mod m) and r = b.

4. Any set containing 0 is linearly dependent, so assume a/b and c/d are nonzero rationals.
Since a/b

c/d is rational, the result follows.

5. In view of Problem 4, the only hope is that a single nonzero rational number a/b spans
M over Z. But this cannot happen, since an integer multiple of a/b must be a fraction
whose denominator is a divisor of b.

6. If a ∈ A ⊆ C and x ∈ B ∩C, then ax ∈ (AB)∩C. Conversely, let c = ab ∈ (AB)∩C.
Then b = a−1c ∈ C since A ⊆ C. Thus ab ∈ A(B ∩ C).
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7. If f(X) = a0 + a1X + · · ·+ anXn and v ∈ V , take

f(X)v = f(T )v = a0Iv + a1Tv + · · ·+ anTnv

where I is the identity transformation and T i is the composition of T with itself i
times.

Section 4.2

1. Let W be a submodule of M/N . By the correspondence theorem, W = L/N for some
submodule L of M with L ≥ N . Since L = L + N , we have W = (L + N)/N .

2. No. If S is any submodule of M , then S + N is a submodule of M containing N ,
so S + N corresponds to W = (S + N)/N . We know that W can also be written as
(L+N)/N where L ≥ N . (For example, L = S +N .) By the correspondence theorem,
S + N = L + N , and there is no contradiction.

3. If A ∈Mn(R), then AE11 retains column 1 of A, with all other columns zero.

4. To identify the annihilator of E11, observe that by Problem 4, AE11 = 0 iff column 1
of A is zero. For the annihilator of M , note that Ej1 ∈ M for every j, and AEj1 has
column j of A as column 1, with zeros elsewhere. (See Section 2.2, Problem 4.) Thus
if A annihilates everything in M , then column j of A is zero for every j, so that A is
the zero matrix.

5. R/I is an R-module by Problem 1 of Section 4.1 If r ∈ R then r + I = r(1 + I), so
R/I is cyclic with generator 1 + I.

6. We must show that scalar multiplication is well-defined, that is, if r ∈ I, then rm = 0
for all m ∈ M . Thus I must annihilate M , in other words, IM = 0, where the
submodule IM is the set of all finite sums

∑
rjmj , rj ∈ R, mj ∈M .

7. No, since (r + I)m coincides with rm.

Section 4.3

1. Essentially the same proof as in (4.3.3) works. If z1 + · · ·+ zn = 0, with zi ∈Mi, then
zn is a sum of terms from previous modules, and is therefore 0. Inductively, every zi

is 0. (In the terminology of (4.3.3), zi is xi − yi.)

2. Only when A = {0}. If A has n elements, then by Lagrange’s theorem, nx = 0 for
every x ∈ A, so there are no linearly independent sets (except the empty set).

3. This follows because (−s)r + rs = 0.

4. If I is not a principal ideal, then I can never be free. For if I has a basis consisting of
a single element, then I is principal, a contradiction. But by Problem 3, there cannot
be a basis with more than one element. If I = 〈a〉 is principal, then I is free if and
only if a is not a zero-divisor.

5. Z, or any direct sum of copies of Z, is a free Z-module. The additive group of rational
numbers is not a free Z-module, by Problem 5 of Section 4.1
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6. The “only if” part was done in (4.3.6), so assume that M has the given property. Con-
struct a free module M ′ = ⊕i∈SRi where Ri = R for all i. Then the map f : S →M ′

with f(i) = ei (where ei has 1 in its ith component and zeros elsewhere) extends to a
homomorphism (also called f) from M to M ′. Let g : M ′ →M be the module homo-
morphism determined by g(ei) = i. Then g ◦ f is the identity on S, hence on M , by
the uniqueness assumption. Similarly, f ◦ g = 1.

7. An element of M is specified by choosing a finite subset F of α, and then selecting an
element bi ∈ R for each i ∈ F . The first choice can be made in α ways, and the second
in |R||F | = |R| ways. Thus |M | = α|R| = max(α, |R|).

8. We may take B to the set of “vectors” (ei) with 1 in position i and zeros elsewhere.
Thus there is a basis element for each copy of R, so |B| = α.

Section 4.4

1. To prove that the condition is necessary, take the determinant of the equation
PP−1 = I. Sufficiency follows from Cramer’s rule.

2. A homomorphism f : V → W is determined by its action on elements of the form
(0, . . . , 0, xj , 0, . . . , 0). Thus we must examine homomorphisms from Vj to ⊕m

i=1Wi.
Because of the direct sum, such mappings are assembled from homomorphisms from
Vj to Wi, i = 1, . . . , m. Thus f may be identified with an m×n matrix whose ij element
is a homomorphism from Vj to Wi. Formally, we have an abelian group isomorphism

HomR(V, W ) ∼= [HomR(Vj , Wi)].

3. In Problem 2, replace V and W by V n and take all Wi and Vj to be V . This gives an
abelian group isomorphism of the desired form. Now if f corresponds to [fij ] where
fij : Vj → Vi, and g corresponds to [gij ], then the composition g ◦ f is assembled
from homomorphisms gik ◦ fkj : Vj → Vk → Vi. Thus composition of homomorphisms
corresponds to multiplication of matrices, and we have a ring isomorphism.

4. In (4.4.1), take n = m = 1 and M = R.
5. Since f(x) = f(x1) = xf(1), we may take r = f(1).
6. This follows from Problems 3 and 4, with V = R.
7. If the endomorphism f is represented by the matrix A and g by B, then for any c ∈ R,

we have c(g ◦ f) = (cg) ◦ f = g ◦ (cf), so EndR(M) is an R-algebra. Furthermore,
cf is represented by cA, so the ring isomorphism is also an R-module homomorphism,
hence an R-algebra isomorphism.

Section 4.5

1. Add column 2 to column 1, then add -3 times column 1 to column 2, then add −4
times row 2 to row 3. The Smith normal form is

S =


1 0 0

0 3 0
0 0 6



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2. The matrix P−1 is the product of the elementary column matrices in the order in which
they appeared. Thus

P−1 =


1 0 0

1 1 0
0 0 1





1 −3 0

0 1 0
0 0 1


 =


1 −3 0

1 −2 0
0 0 1




P =


−2 3 0
−1 1 0
0 0 1




The matrix Q is the product of the elementary row matrices in opposite order (i.e., if
R1 appears first, followed by R2 and R3, then Q = R3R2R1). In this case there is only
one matrix, so

Q =


1 0 0

0 1 0
0 −4 1




A direct computation shows that QAP−1 = S.
3. The new basis is given by Y = PX, i.e., y1 = −2x1 + 3x2, y2 = −x1 + x2, y3 = x3.

The new set of generators is given by V = SY , i.e., v1 = y1, v2 = 3y2, v3 = 6y3.
4. Let di = a1 · · · ai. Then di is the gcd of the i × i minors of S, and hence of A. The

ai are recoverable from the di via a1 = d1 and ai = di/di−1, i > 1. Thus the ai are
determined by the matrix A and do not depend on any particular sequence leading to
a Smith normal form.

5. If A and B have the same Smith normal form S, then A and B are each equivalent to
S and therefore equivalent to each other. If A and B are equivalent, then by the result
stated before Problem 4, they have the same gcd of i×i minors for all i. By Problem 4,
they have the same invariant factors and hence the same Smith normal form.

6. Here are the results, in sequence:

1. The second row is now (3 2 −13 2)
2. The first row is (3 2 −13 2) and the second row is (6 4 13 5)
3. The second row is (0 0 39 1) and the third row is (0 0 51 4)
4. The third row becomes (0 0 12 3)
5. The second row is (0 0 12 3) and the third row is (0 0 39 1)
6. The third row is (0 0 3 −8)
7. The second row is (0 0 3 −8) and the third row is (0 0 12 3)
8. The third row is (0 0 0 35)
9. The first row is now (3 2 2 −38)

10. The final matrix is 
3 2 2 32

0 0 3 27
0 0 0 35


 .
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7. We see from the Hermite normal form that we can take x = 0, y = 7, z = 9, provided
0 and 35 are congruent mod m. Thus m must be 5, 7 or 35.

Section 4.6

1. 441 = 32 × 72, and since there are two partitions of 2, there are 2 × 2 = 4 mutually
nonisomorphic abelian groups of order 441, with the following invariant factors:

(1) a1 = 3272, G ∼= Z441

(2) a1 = 3071, a2 = 3271, G ∼= Z7 ⊕ Z63

(3) a1 = 3170, a2 = 3172, G ∼= Z3 ⊕ Z147

(4) a1 = 3171, a2 = 3171, G ∼= Z21 ⊕ Z21

2. 40 = 23 × 51, and since there are three partitions of 3 and one partition of 1, there
are 3 × 1 = 3 mutually nonisomorphic abelian groups of order 40, with the following
invariant factors:

(1) a1 = 2351, G ∼= Z40

(2) a1 = 2150, a2 = 2251, G ∼= Z2 ⊕ Z20

(3) a1 = 2150, a2 = 2150, a3 = 2151, G ∼= Z2 ⊕ Z2 ⊕ Z10

3. The steps in the computation of the Smith normal form are

1 5 3

2 −1 7
3 4 2


→


1 5 3

0 −11 1
0 −11 −7


→


1 0 0

0 −11 1
0 −11 −7


→


1 0 0

0 1 −11
0 −7 −11




→


1 0 0

0 1 −11
0 0 −88


→


1 0 0

0 1 0
0 0 88




Thus G ∼= Z1 ⊕ Z1 ⊕ Z88
∼= Z88.

4. Cancelling a factor of 2 is not appropriate. After the relations are imposed, the group
is no longer free, so that 2y = 0 does not imply that y = 0. Another difficulty is
that the submodule generated by 2x1 + 2x2 + 8x3 is not the same as the submodule
generated by x1 + x2 + 4x3.

5. Take M = ⊕∞n=1Mn, where each Mn is a copy of Z. Take N = Z and P = 0. Since the
union of a countably infinite set and a finite set is still countably infinite, we have the
desired result.

6. If N and P are not isomorphic, then the decompositions of N and P will involve
different sequences of invariant factors. But then the same will be true for M ⊕N and
M ⊕ P , so M ⊕N and M ⊕ P cannot be isomorphic.

Section 4.7

1. If u′ is another solution, then f ′u = f ′u′(= vf), and since f ′ is injective, u = u′.
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2. By commutativity, wgfa = g′vfa, and by exactness, gf = 0. Thus vfa ∈ ker g′ =
im f ′ by exactness.

3. For commutativity, we must have f ′ua = vfa = f ′a′, so ua = a′. Note that a′ is
unique because f ′ is injective. Checking that u is a homomorphism is routine, e.g., if
vfai = f ′a′i, i = 1, 2, then vf(a1 + a2) = f ′(a′1 + a′2), so u(a1 + a2) = ua1 + ua2, etc.

4. uc = ugb = g′vb.

5. Suppose c = gb1 = gb2. Then b1 − b2 ∈ ker g = im f by exactness, so b1 − b2 = fa.
Then f ′wa = vfa = v(b1 − b2). By exactness, 0 = g′f ′wa = g′v(b1 − b2), and the
result follows.

6. Add a vertical identity map at the left side of the diagram and apply (ii) of the four
lemma.

7. Add a vertical identity map at the right side of the diagram and apply (i) of the four
lemma.

8. Add a vertical identity map w at the right side of the diagram and apply (ii) of the
four lemma, shifting the notation [s→ t, t→ u, u→ v, v → w].

9. Since u and g′ are surjective, v must be also, by commutativity.

10. Since f and u are injective, f ′t, hence t, must be also, by commutativity.

11. Add a vertical identity map s at the left side of the diagram, and apply (i) of the four
lemma, shifting notation [t→ s, u→ t, v → u, w → v].

12. If vb = 0, then b = gm, hence 0 = vgm = g′um. Thus um ∈ ker g′ = im f ′, say
um = f ′a′. Since t is surjective, a′ = ta, so ufa = f ′ta = f ′a′. Therefore um and
ufa are both equal to f ′a′. Since u is injective, m = fa, so b = gm = gfa = 0,
proving that v is injective.

13. Let a′ ∈ A′. Since u is surjective, f ′a′ = um, so vgm = g′um = g′f ′a′ = 0. Since v
is injective, gm = 0, hence m ∈ ker g = im f , so m = fa. Thus um = ufa = f ′ta.
Therefore f ′a′ and f ′ta are both equal to um. Since f ′ is injective, a′ = ta, proving
that t is surjective.

Section 5.1

1. The kernel of any homomorphism is a (normal) subgroup. If g ∈ ker Φ then
g(xH) = xH for every x ∈ G, so by (1.3.1), x−1gx ∈ H. Take x = g to get g ∈ H.

2. By Problem 1, ker Φ is a normal subgroup of G, necessarily proper since it is contained
in H. Since G is simple, ker Φ = {1}, and hence Φ is injective. Since there are n left
cosets of H, Φ maps into Sn.

3. If [G : H] = n < ∞, then by Problem 2, G can be embedded in Sn, so G is finite, a
contradiction.

4. g(xH) = xH iff x−1gx ∈ H iff g ∈ xHx−1.

5. If x ∈ G, then K = xKx−1 ⊆ xHx−1, and since x is arbitrary, K ⊆ N .

6. g1(H ∩K) = g2(H ∩K) iff g−1
2 g1 ∈ H ∩K iff g1H = g2H and g1K = g2K, proving

both assertions.
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7. Since [G : H] and [G : K] are relatively prime and divide [G : H ∩K] by (1.3.5), their
product divides, and hence cannot exceed, [G : H ∩K].

8. By the first isomorphism theorem, G/N is isomorphic to a group of permutations of L,
the set of left cosets of H. But |L| = [G : H] = n, so by Lagrange’s theorem, |G/N |
divides |Sn| = n!.

9. Since n > 1, H is a proper subgroup of G, and since N is a subgroup of H, N is a
proper subgroup of G as well. If N = {1}, then |G| = [G : N ], so by Problem 8,
G divides n!, contradicting the hypothesis. Thus {1} < N < G, and G is not simple.

Section 5.2

1. For arbitrary σ and π, we have πσπ−1(π(i)) = πσ(i). In the cycle decomposition of σ,
i is followed by σ(i), and in the cycle decomposition of πσπ−1, π(i) is followed by
πσ(i), exactly as in the given numerical example.

2. If g ∈ CG(S) and x ∈ S then gxg−1 = x, so gSg−1 = S, hence CG(S) ≤ NG(S).
If g ∈ NG(S) and x ∈ S, then gxg−1 ∈ S, and the action is legal. As in (5.1.3),
Example 3, the kernel of the action consists of all elements of NG(S) that commute
with everything in S, that is, NG(S) ∩ CG(S) = CG(S).

3. We have z ∈ G(gx) iff zgx = gx iff g−1zgx = x iff g−1zg ∈ G(x) iff z ∈ gG(x)g−1.

4. We have g1G(x) = g2G(x) iff g−1
2 g1 ∈ G(x) iff g−1

2 g1x = x iff g1x = g2x, proving that
Ψ is well-defined and injective. If the action is transitive and y ∈ X, then for some x,
y = gx = Ψ(gG(x)) and Ψ is surjective.

5. If g, h ∈ G, then h takes gx to hgx. In the coset action, the corresponding statement is
that h takes gG(x) to hgG(x). The formal statement is that Ψ is a“G-set isomorphism”.
In other words, Ψ is a bijection of the space of left cosets of G(x) and X, with Ψ(hy) =
hΨ(y) for all h ∈ G and y in the coset space. Equivalently, the following diagram is
commutative.

gx �� hgx

gG(x) ��

Ψ

��

hgG(x)

Ψ

��

6. The two conjugacy classes are {1} and G \ {1}. Thus if |G| = n > 1, the orbit sizes
under conjugacy on elements are 1 and n− 1. But each orbit size divides the order of
the group, so n − 1 divides n. Therefore n = k(n − 1), where k is a positive integer.
Since k = 1 is not possible, we must have k ≥ 2, so n ≥ 2(n− 1), so n ≤ 2.

7. If gi is an element in the ith conjugacy class, 1 ≤ i ≤ k, then by the orbit-stabilizer
theorem, the size of this class is |G|/|CG(gi)|. Since the orbits partition G, the sum of
the class sizes is |G|, and

k∑
i=1

1
xi

= 1
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where xi = |CG(gi)|. If, say, g1 = 1, so that x1 = |G|, the result follows from the
observation that each xi, in particular x1, is bounded by N(k).

Section 5.3

1. The group elements are I, R = (1, 2, 3, 4), R2 = (1, 3)(2, 4), R3 = (1, 4, 3, 2),
F = (1)(3)(2, 4), RF = (1, 2)(3, 4), R2F = (1, 3)(2)(4), R3F = (1, 4)(2, 3). Thus
the number of distinct colorings is

1
8

(
n4 + n + n2 + n + n3 + n2 + n3 + n2

)
=

1
8

(
n4 + 2n3 + 3n2 + 2n

)
.

2. Yes. If the vertices of the square are 1, 2, 3, 4 in counterclockwise order, we can identify
vertex 1 with side 12, vertex 2 with side 23, vertex 3 with side 34, and vertex 4 with
side 41. This gives a one-to-one correspondence between colorings in one problem and
colorings in the other.

3. If the vertices of the square are 1, 2, 3, 4 in counterclockwise order, then WGGW
will mean that vertices 1 and 4 are colored white, and vertices 2 and 3 green. The
equivalence classes are

{WWWW}, {GGGG}, {WGGG, GWGG, GGWG, GGGW},
{GWWW, WGWW, WWGW, WWWG},

{WWGG, GWWG, GGWW, WGGW}, {WGWG, GWGW}.

4. Label (−1, 0) as vertex 1, (0, 0) as vertex 2, and (1, 0) as vertex 3. Then I = (1)(2)(3)
and σ = (1, 3)(2). Thus the number of distinct colorings is 1

2 (n3 + n2).

5. We have free choice of color in two cycles of I and one cycle of σ. The number of
distinct colorings is 1

2 (n2 + n).

6. We can generate a rotation by choosing a face of the tetrahedron to be placed on a
table or other flat surface, and then choosing a rotation of 0,120 or 240 degrees. Thus
there are 12 rotations, and we have enumerated all of them. By examining what each
rotation does to the vertices, we can verify that all permutations are even. Since A4

has 4!/2 = 12 members, G must coincide with A4, up to isomorphism.

7. The members of A4 are (1, 2, 3), (1, 3, 2), (1, 2, 4), (1, 4, 2), (1, 3, 4), (1, 4, 3), (2, 3, 4),
(2, 4, 3), (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3), and the identity. Counting cycles of length
1, we have 11 permutations with 2 cycles and one permutation with 4 cycles. The
number of distinct colorings is 1

12 (n4 + 11n2).

8. In the above list of permutations, the first 8 have no fixed colorings. In the next 3, we
can pick a cycle to be colored B, and pick a different color for the other cycle. This
gives 2×3 = 6 fixed colorings. For the identity, we can pick two vertices to be colored
B, and then choose a different color for each of the other two vertices. The number
of fixed colorings is

(
4
2

)
32 = 54. The number of distinct colorings of the vertices is

[(6x3) + 54)]/12 = 6.
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9. As in Problem 6, a rotation can be generated by choosing a face of the cube to be
placed on a table, and then choosing a rotation of 0,±90 or 180 degrees. Thus there
are 24 rotations, and we have enumerated all of them. Alternatively, there is a one-
to-one correspondence between rotations and permutations of the 4 diagonals of the
cube. Since there are 4! = 24 permutations of a set with 4 elements, there can be no
additional rotations. The correspondence between rotations and permutations of the
diagonals yields an isomorphism of G and S4.

10. Any permutation of the faces except the identity has a cycle of length 2 or more, and
each of the faces within that cycle must receive the same color, which is a contradic-
tion. Thus f(π) = 0 for π �= I. Now I fixes all legal colorings, and since there are 6
colors and 6 faces, the number of legal colorings is 6! = 720. The number of distinct
colorings is therefore 720/24 = 30.
Remark This problem can be solved directly without using the heavy machinery
of this section. Without loss of generality, choose any particular color for a particular
face, and move the cube so that this face is at the bottom. Choose one of the remaining
5 colors for the top face. The number of allowable colorings of the 4 remaining sides
of the cube is the number of circular permutations of 4 objects, which is 3! = 6. The
number of distinct colorings is 5× 6 = 30.

11. The group G = {1, R, R2, . . . , Rp−1} is cyclic of order p. Since p is prime, each Ri,
i = 1, . . . , p − 1, has order p, and therefore as a permutation of the vertices consists
of a single cycle. Thus the number of distinct colorings is

1
p

[np + (p− 1)n] .

12. Since the result of Problem 11 is an integer, np +(p− 1)n = np−n+np is a multiple
of p, hence so is np − n. Thus for any positive integer n, np ≡ n mod p. It follows
that if n is not a multiple of p, then np−1 ≡ 1 mod p.

Section 5.4

1. Let G act on subgroups by conjugation. If P is a Sylow p-subgroup, then the stabilizer
of P is NG(P ) (see (5.2.2), Example 4). By (5.2.3), the index of NG(P ) is np.

2. Since P is normal in NG(P ) (see (5.2.2), Example 4), PQ = QP ≤ G by (1.4.3). By
(5.2.4), PQ is a p-subgroup.

3. The Sylow p-subgroup P is contained in PQ, which is a p-subgroup by Problem 2.
Since a Sylow p-subgroup is a p-subgroup of maximum possible size, we have P = PQ,
and therefore Q ⊆ P .

4. (a) By definition of normalizer, we have gPg−1 ≤ gNG(P )g−1 ≤ gHg−1 = H. Thus
P and gPg−1 are subgroups of H, and since they are p-subgroups of maximum
possible size, they are Sylow p-subgroups of H.

(b) Since H is always a subgroup of its normalizer, let g ∈ NG(H). By (a), P and
gPg−1 are conjugate in H, so for some h ∈ H we have gPg−1 = hPh−1. Thus
(h−1g)P (h−1g)−1 = P , so h−1g ∈ NG(P ) ≤ H. But then g ∈ H, and the result
follows.
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5. By (5.2.4), [N : P ∩ N ] = [PN : P ] = |PN |/|P |. Since |P | is the largest possible
power of p for p-subgroups of G, [PN : P ] and p must be relatively prime. Therefore
[N : P ∩ N ] and p are relatively prime, so P ∩ N is a p-subgroup of N of maximum
possible size, i.e., a Sylow p-subgroup of N .

6. By the third isomorphism theorem, [G/N : PN/N ] = [G : PN ] = |G|/|PN |. Since
|G|/|P | and p are relatively prime and P ≤ PN , it follows that |G|/|PN | and p are
relatively prime. The result follows as in Problem 5.

7. Since f is an automorphism, f(P ) is a subgroup of G and has the same number of
elements as P , in other words, f(P ) is a Sylow p-subgroup. By hypothesis, f(P ) = P .

8. By (1.3.5), [G : N ] = [G : H][H : N ] = p[H : N ], and since [G : N ] divides p! =
p(p− 1)!, the result follows.

9. If q is a prime factor of [H : N ], then by Problem 8, q is a divisor of some integer
between 2 and p − 1, in particular, q ≤ p − 1. But by Lagrange’s theorem, q divides
|H|, hence q divides |G|. This contradicts the fact that p is the smallest prime divisor
of |G|. We conclude that there are no prime factors of [H : N ], which means that
[H : N ] = 1, Thus H = N , proving that H is normal in G.

Section 5.5

1. This follows from (5.5.6), part (iii), with p = 3 and q = 5.
2. Let Z(G)a be a generator of G/Z(G). If g1, g2 ∈ G, then Z(G)g1 = Z(G)ai for some i,

so g1a
−i = z1 ∈ Z(G), and similarly g2a

−j = z2 ∈ Z(G). Thus g1g2 = aiz1a
jz2 =

z1z2a
i+j = z2z1a

j+i = z2a
jz1a

i = g2g1.
3. By (5.5.3), the center Z(G) is nontrivial, so has order p or p2. In the latter case,

G = Z(G), so G is abelian. If |Z(G)| = p, then |G/Z(G)| = p, and G/Z(G) has order p
and is therefore cyclic. By Problem 2, G is abelian (and |Z(G)| must be p2, not p).

4. Each Sylow p-subgroup is of order p and therefore has p− 1 elements of order p, with
a similar statement for q and r. If we include the identity, we have 1 + np(p − 1) +
nq(q − 1) + nr(r − 1) distinct elements of G, and the result follows.

5. G cannot be abelian, for if so it would be cyclic of prime order. By (5.5.5), np, nq

and nr are greater than 1. We know that np divides qr and np > 1. But np can’t be
q since q �≡ 1 mod p (because p > q). Similarly, np can’t be r, so np = qr. Now nq

divides pr and is greater than 1, so as above, nq must be either p or pr (it can’t be r
because q > r, so r �≡ 1 mod q). Thus nq ≥ p. Finally, nr divides pq and is greater
than 1, so nr is p, q, or pq. Since p > q, we have nr ≥ q.

6. Assume that G is simple. Substituting the inequalities of Problem 5 into the identity
of Problem 4, we have

pqr ≥ 1 + qr(p− 1) + p(q − 1) + q(r − 1).

Thus

0 ≥ pq − p− q + 1 = (p− 1)(q − 1),

a contradiction.
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7. Since |P | = pr with r ≥ 1 and m > 1, we have 1 < |P | < |G|. Since G is simple, P is
not normal in G. By (5.5.4), n > 1. By Problem 9 of Section 5.1, |G| divides n!.

8. Assume G simple, and let n = np with p = 5. By Sylow (2), n divides 24 = 16 and
n ≡ 1 mod 5. The only divisors of 16 that are congruent to 1 mod 5 are 1 and 16, and
1 is excluded by Problem 7. Thus the only possibility is n = 16, and by Problem 7,
2456 divides 16!, hence 56 divides 16!. But in the prime factorization of 16!, 5 appears
with exponent 3 (not 6), due to the contribution of 5,10 and 15. We have reached a
contradiction, so G cannot be simple.

Section 5.6

1. Apply the Jordan-Hölder theorem to the series 1 � N � G.

2. Z has no composition series. By Section 1.1, Problem 6, each nontrivial subgroup of
Z consists of multiples of some positive integer, so the subgroup is isomorphic to Z
itself. Thus Z has no simple subgroups, so if we begin with {0} and attempt to build
a composition series, we cannot even get started.

3. We have the composition series 1 ? Z2 ? Z2 ⊕ Z3
∼= Z6 (or 1 ? Z3 ? Z2 ⊕ Z3

∼= Z6) and
1 ? A3 ? S3.

4. An consists of products of an even number of transpositions, and the result follows
from the observation that (a, c)(a, b) = (a, b, c) and (c, d)(a, b) = (a, d, c)(a, b, c).

5. If (a, b, c) ∈ N and (d, e, f) is any 3-cycle, then for some permutation π we have
π(a, b, c)π−1 = (d, e, f). Explicitly, we can take π(a) = d, π(b) = e, π(c) = f ; see
Section 5.2, Problem 1. We can assume without loss of generality that π is even, for
if it is odd, we can replace it by (g, h)π, where g and h are not in {d, e, f}. (We use
n ≥ 5 here.) Since N is normal, (d, e, f) ∈ N .

6. If N contains (1, 2, 3, 4), then it contains (1, 2, 3)(1, 2, 3, 4)(1, 3, 2) = (1, 4, 2, 3), and
hence contains (1, 4, 2, 3)(1, 4, 3, 2) = (1, 2, 4), contradicting Problem 5. If N con-
tains (1, 2, 3, 4, 5), then it contains (1, 2, 3)(1, 2, 3, 4, 5)(1, 3, 2) = (1, 4, 5, 2, 3), and so
contains (1, 4, 5, 2, 3)(1, 5, 4, 3, 2) = (1, 2, 4), a contradiction. The analysis for longer
cycles is similar. [Actually, we should have assumed that N contains a permuta-
tion π whose disjoint cycle decomposition is · · · (1, 2, 3, 4) · · · . But multiplication by
π−1 = · · · (1, 4, 3, 2) · · · cancels the other cycles.]

7. If N contains (1, 2, 3)(4, 5, 6), then it must also contain (3, 4, 5)(1, 2, 3)(4, 5, 6)(3, 5, 4) =
(1, 2, 4)(3, 6, 5). Thus N also contains (1, 2, 4)(3, 6, 5)(1, 2, 3)(4, 5, 6) = (1, 4, 3, 2, 6),
which contradicts Problem 6. If the decomposition of a permutation σ in N contains
a single 3-cycle, then σ2 is a 3-cycle in N , because a transposition is its own inverse.
This contradicts Problem 5.

8. If, (1, 2)(3, 4) ∈ N , then (1, 5, 2)(1, 2)(3, 4)(1, 2, 5) = (1, 5)(3, 4) belongs to N , and so
does (1, 5)(3, 4)(1, 2)(3, 4) = (1, 2, 5), contradicting Problem 5.

9. If N contains (1, 2)(3, 4)(5, 6)(7, 8), then it contains

(2, 3)(4, 5)(1, 2)(3, 4)(5, 6)(7, 8)(2, 3)(4, 5) = (1, 3)(2, 5)(4, 6)(7, 8).
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Therefore N contains

(1, 3)(2, 5)(4, 6)(7, 8)(1, 2)(3, 4)(5, 6)(7, 8) = (1, 5, 4)(2, 3, 6),

contradicting Problem 7.

10. We can reproduce the analysis leading to the Jordan-Hölder theorem, with appropriate
notational changes. For example, we replace the “subnormal” condition Gi � Gi+1

by the “normal” condition Gi � G.

11. We say that N is a minimal normal subgroup of H if {1} < N � H and there
is no normal subgroup of H strictly between {1} and N . In a chief series, there
can be no normal subgroup of G strictly between Gi and Gi+1. Equivalently, by
the correspondence theorem, there is no normal subgroup of G/Gi strictly between
Gi/Gi = {1} and Gi+1/Gi. Thus Gi+1/Gi is a minimal normal subgroup of G/Gi.

Section 5.7

1. S3 is nonabelian and solvable (1 ? A3 ? S3).

2. Let 1 = G0 ? G1 ? · · · ? Gr = G be a composition series, with all Gi/Gi−1 cyclic of
prime order (see (5.7.5)). Since |Gi| = |Gi/Gi−1||Gi−1| and G0 is finite, an induction
argument shows that G is finite.

3. The factors of a composition series are simple p-groups P , which must be cyclic of
prime order. For 1 ? Z(P ) � P , so Z(P ) = P and P is abelian, hence cyclic of prime
order by (5.5.1). [The trivial group is solvable with a derived series of length 0.]

4. S3 is solvable by Problem 1, but is not nilpotent. Since S3 is nonabelian, a central
series must be of the form 1 ? H ? S3 with H ⊆ Z(S3) = 1, a contradiction.

5. If Sn is solvable, then so is An by (5.7.4), and this contradicts (5.7.2).

6. By (5.5.3), P has a nontrivial center. Since Z(P ) is normal in P and P is simple,
Z(P ) = P and P is abelian. By (5.5.1), P is cyclic of prime order, and since P is a
p-group, the only possibility is |P | = p.

7. Let N be a maximal proper normal subgroup of P . (N exists because P is finite
and nontrivial, and 1 ? P .). Then the p-group P/N is simple (by the correspondence
theorem). By Problem 6, |P/N | = p.

8. If P is a Sylow p-subgroup of G, then |P | = pr and by Problem 7, P has a subgroup
Q1 of index p, hence of order pr−1. If Q1 is nontrivial, the same argument shows that
Q1 has a subgroup Q2 of order pr−2. An induction argument completes the proof.

9. Let G = D6, the group of symmetries of the equilateral triangle. Take N = {I, R, R2},
where R is rotation by 120 degrees. Then N has index 2 in G and is therefore normal.
(See Section 1.3, Problem 6, or Section 5.4, Problem 9.) Also, N has order 3 and
G/N has order 2, so both N and G/N are cyclic, hence abelian. But G is not abelian,
since rotations and reflections do not commute.

10. It follows from the splicing technique given in the proof of (5.7.4) that dl(G) ≤
dl(N) + dl(G/N).
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Section 5.8

1. Let H = 〈a | an〉, and let Cn be a cyclic group of order n generated by a. Then
an = 1 in Cn, and since an+j = aj , we have |H| ≤ n = |Cn|. The result follows as
in (5.8.6).

2. The discussion in Example 4 of (2.1.3), with i = a and j = b, shows that the quater-
nion group Q satisfies all the relations. Since ab = ba−1, it follows as in (1.2.4) that
every element of the given presentation H is of the form bras, r, s ∈ Z. Since b2 = a2,
we can restrict r to 0 or 1, and since a4 = 1, we can restrict s to 0, 1, 2 or 3. Thus
|H| ≤ 8, and the result follows as in (5.8.6).

3. Take a = (1, 2, 3) and b = (1, 2) to show that S3 satisfies all the relations. Since
ba = a−1b, each element of H is of the form arbs, r, s ∈ Z. Since a3 = b2 = 1,
|H| ≤ 3× 2 = 6, and the result follows as in (5.8.6).

4. No. There are many counterexamples; an easy one is Cn = 〈a | an = 1, a2n = 1〉, the
cyclic group of order n.

5. n−1
2 n1 = h2h

−1
1 ∈ N ∩H = 1.

6. Take ψ to be the inclusion map. Then πψ(h) = π(h) = π(1h) = h. To show that π is
a homomorphism, note that n1h1n2h2 = n1(h1n2h

−1
1 )h1h2 and h1n2h

−1
1 ∈ N .

7. If g ∈ G then g = (gπ(g)−1)π(g) with π(g) ∈ H and π(gπ(g)−1) = π(g)π(g)−1 = 1, so
gπ(g)−1 ∈ N . [Remember that since we are taking ψ to be inclusion, π is the identity
on H.] Thus G = NH. If g ∈ N ∩H, then g ∈ ker π and g ∈ H, so g = π(g) = 1,
proving that H ∩N = 1.

8. If we define π(n, h) = (1, h), i(n, 1) = (n, 1), and ψ(1, h) = (1, h), then the sequence
of Problem 6 is exact and splits on the right.

9. We have (n1h1)(n2h2) = n1(h1n2h
−1
1 )h1h2, so we may take f(h) to be the inner

automorphism of N given by conjugation by h ∈ H.

10. Consider the sequence

1 �� C3
i �� S3

π �� C2
�� 1

where C3 consists of the identity 1 and the 3-cycles (1, 2, 3) and (1, 3, 2), and C2 con-
sists of the identity and the 2-cycle (1, 2). The map i is inclusion, and π takes each
2-cycle to (1, 2) and each 3-cycle to the identity. The identity map from C2 to S3

gives a right-splitting, but there is no left splitting. If g were a left-splitting map
from S3 to C3, then g(1, 2) = (1, 2, 3) is not possible because g(1) = g(1, 2)g(1, 2) =
(1, 2, 3)(1, 2, 3) = (1, 3, 2), a contradiction. Similarly, g(1, 2) = (1, 3, 2) is impossible,
so g(1, 2) = 1, so g ◦ i cannot be the identity. Explicitly, g(2, 3) = g((1, 2)(1, 2, 3)) =
g(1, 2, 3) = (1, 2, 3), and g(1, 3) = g((1, 2)(1, 3, 2)) = g(1, 3, 2) = (1, 3, 2). Conse-
quently, g(1, 3, 2) = g((1, 3)(2, 3)) = 1, a contradiction.

11. In the exact sequence of Problem 6, take G = Zp2 , N = Zp, H = G/N ∼= Zp, i the
inclusion map, and π the canonical epimorphism. If f is a right-splitting map, its
image must be a subgroup with p elements (since f is injective), and there is only one
such subgroup, namely Zp. But then π ◦ f = 0, a contradiction.
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12. If g ∈ G, then gPg−1 ⊆ gNg−1 = N , so P and gPg−1 are both Sylow p-subgroups
of N . By Sylow (3), they are conjugate in N (the key point). Thus for some n ∈ N we
have P = n(gPg−1)n−1. But then by definition of normalizer we have ng ∈ NG(P ),
hence g ∈ NNG(P ).

13. The multiplication table of the group is completely determined by the relations an = 1,
b2 = 1, and bab−1 = a−1. The relations coincide with those of D2n, with a = R
and b = F .

14. The relation an = 1 disappears, and we have 〈a, b | b2 = 1, bab−1 = a−1〉.


