CUTS IN THE ML DEGREES

KATHERINE ARTHUR, NOAM GREENBERG, AND JOSEPH S. MILLER

ABSTRACT. We show that the cut defined by a real number r € [0, 1] is realised
in the hierarchy of p-bases in the ML degrees if and only if it is left—Hg.

1. INTRODUCTION

In [1], the authors characterise the sets that are computable from some pair of
relatively random sequences, or equivalently, from both halves of some ML-random
sequence. There are only countably many such sets, they are all K-trivial, and the
Turing degrees of these sets form an ideal. It turns out that this ideal is one among
a hierarchy of ideals B), in the K-trivial degrees, each indexed by rationals p € [0, 1],
with p < ¢ implying that B, < B,. If p = k/n with k£ < n natural numbers, then
B, is the collection of sets A which for some random sequence Z (equivalently, for
7Z = Q) being any left-c.e. random sequence), A is computable from the join of any k
of the n-columns of Z. Various similar characterizations of these ideals are known;
for example, see [1, Prop. 5.1].

Since the B), are a strictly ordered chain of ideals, it is natural to ask: which cuts
are realised? Namely for which reals r € (0, 1) is there a set A that is an element of
B, exactly for p > 7 There are only countably many K-trivial sets, and so only
countably many cuts are realised this way. In this paper we characterise these cuts:

Theorem 1.1. The following are equivalent for a real number r € (0,1):

(1) There is a set A such that for allpe Qn[0,1], Ae B, < p>r.
(2) 7 is right-X5.

By (2), we mean that the right cut {p € Q : p > r} is BJ. We note that since
each ideal B, is characterised by being computable from a collection of random
sequences, [2, Thm. 2.1] implies that we may take A to be c.e. in (1).

Remark 1.2. When r € (0, 1) is rational, the conditions of Theorem 1.1 hold. How-
ever, in this case, one can also ask whether thereis aset Awith Ae B, <= p=>r.
A positive answer follows from [2, Thm. 3.3]. Alternatively, the construction below
can be modified to obtain such a set A.

The main tool used to explore the ideals B, is cost functions. We recall some
definitions. A cost function is a computable function c: N> — R>%. In this paper
we only consider cost functions ¢ with the following extra properties:

(i) Monotonicity: for all x and s, ¢(x, s) < c¢(x,s+1) and c(x, s) = c(x +1, s);
(if) The limit condition: for all z, c(z) = lim; c(x, s) is finite and lim, 4 c(z) =
0;
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(iii) For all z and s, ¢(z,s) < 1;

(iv) For all s < z, ¢(x,s) = 0.
The idea is that a cost function ¢ measures, in an analytic way, the complexity of
a computable approximation (As) of a AJ set A. Intuitively, the fewer the mind-
changes, the simpler A is. The number c(z,s) is the cost of changing A on x at
stage s, namely of setting As(z) # As_1(x). The monotonicity condition says that
the cost of changing x goes up as time passes, and that at any given stage, it is
cheaper to change A on larger numbers. The limit condition puts a restraint on the
costs, ensuring they are not too onerous in the limit. The notion of obedience tells
us which computable approximations are simple from ¢’s point of view:

Definition 1.3. Let (A,) be a computable approximation of a A set A, and let
¢ be a cost function. The total c-cost of (A) is

c(Ay = ). cq(x) [w is least such that A,(z) # A._1(z)].
s<w
We say that A obeys c if for some computable approximation (A;) of A, ¢{A;) is
finite.

In [1], it is shown that for all rational p € (0,1), A € B, if and only if A obeys
the cost function cgq , defined by

cap(,5) = {

Here () is some increasing computable approximation of a left-c.e. ML-random
sequence €. This characterisation of the ideals B, shows that Theorem 1.1 is really
a theorem about cost functions. For two cost functions ¢ and ¢, write ¢ « ¢’ if:

(Qs — Q)P ifz>s;
0, if x < s.

e for all z and s, c(z,s) < c/(z, s); and
e for every constant k, ¢’(z) > kc(z) for all but finitely many z.
We prove:

Proposition 1.4. Let {c, : pe Q x (0,1)} be a collection of uniformly computable
cost functions, such that if p < q, then ¢y < c,. Then for any real number r € (0,1),
the following are equivalent:

(1) There is a set A such that for all p e Q n [0,1], A obeys c, if and only if
D>
(2) r is right-39.

It is readily observed that cq 4 « cqj, whenever p < ¢, and so Proposition 1.4
implies Theorem 1.1.

2. PROOF OF PROPOSITION 1.4

Before we prove Proposition 1.4, we introduce some notation and state a lemma.
Suppose that (A;) is a computable approximation of a set A. A speed-up of (A) is
an approximation (Ay(s)) where h: N — N is computable and strictly increasing.
For simplicity, we write (Ap) for (A )). It is not difficult to see that if (Ap) is
a speed-up of (A), then for any cost function ¢, c{A,) < c(4). In fact, there
are several reasons that the cost on the left might be smaller. Suppose that z is
the least such that Ay (z) # Aps—1)(2). So the step s contribution to c{Ap)
is c¢(z,s). In contrast, the step h(s) contribution to c{Ay) is at least c(z, h(s)),
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which by monotony is at least c(x,s). It may be more, since it is possible that
there is some y < x such that Ay (y) # Aps)—1(y), but it just happens that
Aps)(y) = Aps—1)(y). And of course, relative to (A,), c{Ax) only counts some
of the stages, namely those in the range of h. We will make use of the following,
which is well-known, and follows from the techniques in [3]:

Lemma 2.1. A AJ set A obeys a cost function c if and only if every computable
approximation (A;) of A has a speed-up (Ap) with ¢{A4,) < o0.

We fix an effective listing (h.) of partial “speed-up” functions. That is:

e (h.y are uniformly partial computable;

e Each h. is either total, or its domain is a finite initial segment of w;
e Each h. is strictly increasing on its domain;

e Every strictly increasing computable function is h. for some e.

Further, for every e and s, let n. , = maxdom h. s; by withholding convergences,
we may assume that:

e dom h. ¢ is an initial segment of w; and

® heg(nes) <s.

For any cost function ¢ we can define

c{Ap)[s] = Z c(x,m) [ is least such that A, () # Ap,(m-1)]-

M<Ne, s

The value c{Ay,)[s] is computable, uniformly in e, s and in a computable index
for c. And if h, is total, then c(Ap, ) = lim, c{Ax_)[s].

(1) = (2) of Proposition 1.4 is essentially [3, Fact 2.13], which is uniform. We
are given a A set A; we fix a computable approximation (A ) for A. By Lemma 2.1,
A obeys ¢, if and only if there are some e and M such that h. is total and for all s,
c,(Ap[s] < M. This is a X9 predicate of p. Note that the collection of p such
that A obeys c, must be a right cut (a final segment of Q n (0,1)); this follows
from the assumption that ¢, < ¢, for p < g.

Before we give the details, we briefly discuss the proof of (2)=(1). We are
given a right-$9 real r € (0,1), and define a computable approximation (As) of
the desired set A. The value of r can be guessed by the true path on a tree of
strategies: one duty of the strategies is to guess, given p € Q n (0,1), whether
p > r or not; locally the behaviour of the true path is X9/I19, so to approximate
the 9 predicate p > r, we need to keep trying different existential witnesses for
the outermost quantifier.

Suppose that a strategy 7 works with some rational number p = p”. There
are two possibilities. The infinite outcome 7°00 believes that it has proof that
p > r, and so it is 7700’s responsibility to ensure that A obeys c,. This is both
done passively, by initialisations, and more actively, by setting strict bounds on
the action of weaker requirements. The speed-up of (A,) which witnesses that A
obeys p is the restriction of our approximation to the 7"co-stages. There are two
kinds of nodes o that my change A, and thus increase the cost measured by 77c0:
nodes to the right of 7700, and nodes extending 7°c0. For each node o we assign
a bound ¢ on the amount of cost that o’s action may cause to nodes (strategies)
strictly above it (nodes that o extends). We distribute the bounds §% so that the
total damage caused by all nodes extending 7700 is finite. The nodes to the right



4 K. ARTHUR, N. GREENBERG, AND J. S. MILLER

of 7700 (including the finite outcome 7°fin) contribute nothing to 7°00’s cost. This
is the result of initialisations and our speed-up: at the m'" 7700 stage, nodes to
the right only change A on numbers greater than m, and we measure the c,-cost
of these changes at stage m. We use the assumption (iii) above, that if s < z then
cp(z,s) =0.

Now consider the XY outcome 7°fin. This outcome believes that p < r, and so
tries to ensure that A does not obey c¢,. By Lemma 2.1, it suffices to check all speed-
ups of our base approximation (As). We make use of the following strengthening
of Lemma 2.1:

Lemma 2.2 (Fact 2.2 of [3]). Suppose that (A;) is a computable approximation
of a set A that obeys a cost function c. Then for any £ > 0, there is a speed-up of
(As) with total cost bounded by e.

Thus, in order to show that A does not obey c,, it suffices to ensure that for
all e, ¢,{(Ap,) = 1. The node 7 will be assigned one e. It needs to change A on
numbers x so that the cost ¢,(Ap, ) increases. The node 7 faces two difficulties:

e Some nodes above 7 restrain 7 from adding more than §” to their cost; and
07 is much smaller than 1.
e The speed-up function h, is revealed to 7 very slowly.

The second difficulty is technical: we see h.(m) converge to some value ¢ only at
some stage s much later than ¢. Thus, 7 discovers that it had to change A; on some
value; but A; was already defined at stage t. This is addressed easily by giving 7
an infinite collection (which we denote by w[T]) of potential inputs for = to play
with; for a suitable z € wl™), the node 7 keeps A, (z) # A;(x) for stages r > s until
we see a value of h. greater than s.

The first difficulty is fundamental: this is where we use the assumptions on the
relative growth-rate of the cost functions c,. Take some node T working to increase
cy{Ap, ) for some e and ¢, and let p be some node above 7 that is concerned about
incurring cost from 7’s action. The node p only cares if it is trying to keep costs
low; that is, if p"o0 < 7. Let p = p” be the rational number that p is working with;
it is trying to keep the c,-cost of some approximation finite. Now the outcome p“o0,
and therefore 7, believe that they have proof that p > r. The node 7 is working
with the assumption that ¢ < r. Thus, we can arrange that ¢ < p. The assumption
¢y € ¢, now means that 7 can change A to make the cy-cost large while keeping
the cp,-damage very small: smaller than 67.

We now give the details. Let r € (0,1) be right-329. There are uniformly com-
putable, non-decreasing sequences (¢2:¢)__ = (of natural numbers) for p € Q and
e < w such that for all such p, p > r if and only if for some e < w, (&) is
unbounded.

We define a computable approximation (A,) of a A9 set A. We will meet two
types of requirements. The first type of requirements are indexed by p € Q n (0,1):

N, : If p > r, then A obeys c,.
Requirements of the second type are indexed by pe Q n (0,1) and e < w:
Ry If p <rand he is total, then c,(Ap, ) > 1.

As discussed above, meeting these requirements suffices to ensure (1) of the propo-
sition.
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Approzimating r. We work with a full binary tree of strategies. The strategies are
the finite sequences of the symbols co and fin.
By recursion on the length |o| of a node o on the tree, we define:

e p” €@ (0,1) and e € w; the node o will attempt to meet either N,o or
I%pCr ,e7 )

e arational number ¢ > p?; this is an upper bound on the value of r believed
by o.

The meaning of the outcome oo is that we believe that p” > r, and so we meet
Nyo by defining a suitable speed-up of our approximation for A. The meaning of
the outcome fin is that we believe that p” < r, and so we meet R,o co.

We use an effective w-ordering of all the pairs (p,e) € (Q n (0,1)) x w. We start
with the root of the tree, which is the empty sequence (), by letting (p<,e®) be
the least pair in our ordering; we let r& = 1.

Suppose that ¢ is on the tree and that we have already defined p?,e? and r°.
We then define these parameters for the children 0”00 and o"fin. We start with
the latter:

(a> ,',.O'AQ’J _ pa.

(b) ,,,o“fin = 7o,
Then, for both children 7 of o, we let (p7,e”™) be the next pair (p,e) on our list
after (p”,e?) such that p < r7.

For brevity, for any node o, we write:

o (9 for (277,
e h? for h.o (and similarly hZ for heo ).

Allocating capital to nodes. Computably, we assign to each node o a positive ratio-
nal number §% such that
7 <1

(where the sum ranges over all strategies o). The idea of the parameter 6 is that o
promises any 7 with 7700 < ¢ that it will not add more than §° to the cost accrued
by 7.}

Construction. At stage s, we define the path of accessible nodes by recursion. If a
strategy o is accessible at stage s, then we say that s is a o-stage.

We start with Ag = 0%.

The root is always accessible. Suppose that a node o is accessible at stage s. If
|o| = s, we halt the stage. We also initialise all nodes weaker than o.

Suppose that |o| < s.

First, let ¢t < s be the last o"co-stage before stage s; ¢ = 0 if there was no such
stage. If £7 > ¢, then we let 6”00 be the next accessible node.

Suppose that ¢7 < t. We will define the notion of a o-action stage. Let w be
the last o-action stage prior to stage s; w = 0 if there was no such stage. Let

1Actually, it will be 267, for a truly unimportant reason. The last o-action may add to the
cost o is measuring a quantity close to 1, making the total cost close to 2; from 7’s point of view,
the increase is then close to 2§7.

More importantly, note that the value §° does not depend on the stage number. A reasonable
approach would be to shrink 49 each time o is initialised. We do not need to do this, because
even when o is initialised, the amount that it previously added to the total cost it is monitoring
has not gone away, and so it does not need to start afresh.
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n = maxdomh?; let s* be the last stage prior to stage s at which ¢"fin was
initialised. If:
(i) cpr (CAne))[s] < 1;
(if) n > w; and
(iii) there is a number z > s*, x € wl?] satisfying”

Crf’(mvs) < Cpe (Ian) ! 607

then we choose the least such z, set Asiq1(z) = 1 — As(z), and call s a o-action
stage. Otherwise, 0 makes no change to A at stage s. In either case, we let c"fin
be the next accessible node.

2.1. Verification. Let 0* denote the true path. Because we never terminate a
stage s before we get to a node of length s, and the strategy tree is binary splitting,
the true path is infinite.

Toward verifying that the requirements are met, we show that the true path
approximates r correctly. For the first part of the next lemma, note that if 7
extends o, then 77 = r7, S0 inf cs% 77 = limgegx 7.

Lemma 2.3.
(a) r = inf,esx r9.
(b) For all rational p € (0,7), for all e, there is some o € §* with (p”,e?) = (p, e).

Proof. First, by induction on the length of o € §* we verify that 7 > r. For the
root this is clear since r < 1. If o € 6* and r? > r, there are two cases. If "0 € §*
then (¢2) is unbounded, which implies that p® = 77 ® > r. Otherwise o"fin € §*
and 77 % = p7 > p,

Let 7 = inf e+ r°. Let p € (0,7) be rational and let e < w. For all 7 € 6%,
r™ > p. Thus, we never skip over the pair (p,e) when assigning pairs to the nodes
on the true path. It follows that there is some o € 6* with (p”,e?) = (p,e). This
verifies (b).

Suppose, for a contradiction, that # > r. Let p € (r,7) be rational, and let e
witness that p > r, that is, (¢£¢) is unbounded. Let o € 6* with (p?,e?) = (p, e).
Then 000 € §* and r” ® = p < 7, which is a contradiction. |

The next lemma shows that action by a node does increase the total cost it is
monitoring. Let o be any node, and let s be a o-action stage. We let
e n? = maxdom h7;
e y2 be the number acted upon by o, that is, the unique number y € wle]
such that Agy1(y) # As(y).

Lemma 2.4. Let o be any node, and suppose that s < s’ are two o-action stages.
Then
cpo ((Ane))[s] = epe ((Ane))[s] + epe (17, n2).
Proof. Let y = y7. We may assume that s’ = s is the next c-action stage after
stage s. Also let s~ be the previous o-action stage prior to stage s (s~ = 0 if there
was no such stage). Since o does not act between stages s~ and s, and between
stages s and sT,
e Ai(y) is constant for t € (s, s]; and

2Recall that wlPl| for p € {00, £in}<*, is a partition of w into pairwise disjoint, infinite com-
putable sets.
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e Ay(y) is constant for t € (s,s%].

The point is that no other node can change A on an element of w(?). Note that

s”<nl <h’(nd) <s<nly <h%(nl) <st.

Thus there is some m € (ng,n% ] such that s~ < h%(m — 1) < s < h7(m) < s*.
Then Apo(m-1)(y) # Apo@m)(y). This shows that stage m of the approximation
Ape contributes at least c,o(y,m) = cpo(y,n9) to cpo ((Apo))[sT], and this was
not seen at stage s. d
Lemma 2.5. Let 7 be any node. Then
Z {cpr(yI,n) : sis a T-action stage} < 2.
Proof. For t < w, let
7= 2 {cpr(yI,ny) : sis a T-action stage & s <t}.
Then Lemma 2.4 implies that for every 7-action stage s,
ST < cpr (CAp))[s] < 1.

If there are infinitely many 7-action stages then S7 < 1. Otherwise, let s be the
last T-action stage. As c,-(yI,n]) < 1, we have

ST =87 + ¢, (yl,ny) < 2. O

Lemma 2.6. Let o be a node and suppose that ¢"fin € 6*. Then there are only
finitely many o-action stages. If A7 is total then cpo(Apo) > 1.

Proof. If h? is partial, then there cannot be more than one c-action stage af-
ter stage maxdom h?. Suppose that h? is total. We will show that eventually,
cpe ((Ape))[s] = 1, which will also imply that there are only finitely many o-action
stages. Suppose, for a contradiction, that for all s, c,o ((Ape))[s] < 1.

Let s* be the last stage at which o"fin is initialised. Since r > p°, we know
that for all but finitely many x,

o () < cpo (@) - 07.

Xro

Let z* be the least z > s*, x € wl’! satisfying this inequality. Then for all but
finitely many stages t, for all s,

Cro(x*,8) < cpo(z¥,1) - 67,

For sufficiently late stages s, we have n = maxdomh? > z* and c,-(z*,s) <
cpo(x*,n) - 67. This shows that there are infinitely many c-action stages. Let ¢*
be a late o-action stage; let €* = c,0 (2*,¢*), which is positive. For every o-action
stage s > t*, by minimality of yZ, we have y7 < z*, and as ng > t*, monotonicity
of cpo implies that cpo(yJ,n7) = ¢*. Thus by Lemma 2.4, between any two o-

action stages, the partial cost c,((An ))[s] grows by at least £*, so eventually
grows beyond 1, which is a contradiction. O

Now fix some p e Q n (0,1).
Lemma 2.7. Suppose that p < r. Then for all e, the requirement R, . is met.

Proof. By Lemma 2.3(b), let ¢ € 0* such that (p?,e?) = (p,e). Since p < r,
o°fin € 6*. Then Lemma 2.6 implies that R, . is met. O
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Lemma 2.8. Suppose that p > r. Then the requirement NV, is met.

Proof. Let o be the longest node on the true path such that r > p. So p° < p and
oo € 0*. Let s* be sufficiently late so that:

e o is not initialised after stage s*; and

e For every 7 such that 7°fin < o, there are no 7-action stages after stage s*;
the latter uses Lemma 2.6. Let sg < s1 < s3 < ... be the increasing enumeration
of the o"w-stages after stage s*. We show that c,-{(A,, ) is finite, which suffices
since p? < p.

Let k > 1; let x be the least such that As, (zr) # As,_,(z). Let 7 be the
node such that x;, € wl™l. So there is some 74-action stage t; € [sp_1,5%) such
that zp = y;j Since ty, > s*, we know that 7,"fin lies to the right of ¢"00, or 7%
extends o”c0. In the first case (which includes the case 7, = o), 7"fin is initialised
at stage sp—1, and so xy > sp—1 > k, which implies that c,- (2, k) = 0; so stage k
contributes no cost to the total cost ¢, (A, ).

Suppose that 74 extends o”oo. Then t = sip_1, and more importantly, r™ <
r?® = p°. Thus

Cpa(,rk,k) < Cpr (xk,sk_l) < Cpr (l‘k,ngk71) <07

It follows that
Cpo Ay = O Cpo (@, k) <
k

Z o7 Z {cpr(yI,nl) : s a T-action stage} < ZQ(V <2
T

T>0"00

(using Lemma 2.5), and so is finite as required. a
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