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This document is the first in the series [1] — [7], concerned with the use of lattices as
a tool for analysing modules and spaces. This particular document is concerned with the
general basic lattice theoretic background needed to analyse certain ranking techniques
as given in [2, 3, 4]. The later documents [5]-[7] are concerned with specific topics in the
analysis. The central idea is for each module M its family A = Sub(M) of submodules is
a complete lattice of a certain kind, and for each topological space S its topology A = OS
is also a similar kind of complete lattice. Several aspects of M and can be gleaned by a
lattice theoretic analysis of A. In this document I describe the background lattice theory
needed for the analysis. Some of this is well known and some not. Also some of the
material is more general than is technically needed for the applications. However, that
extra generality will help to place the material in its appropriate context.

As with all the documents in the series this one is written as a teaching document
rather than a research document. In other words, the development is quite slow, and no
doubt there are some parts than you can omit because you already know that material.
However, as mentioned above, there will be places where I refer to one of [1, 2] so that
certain details of some proofs need not be repeated.

Of course, the word ‘I’ refers to myself, but when I say ‘we’ I mean me and you.
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1 Basic notions

We are concerned here with the category Idm of idioms and its subcategory Frm of
frames. Each is a certain kind of complete lattice. Before we define these let us recall
some standard material, the lattice aspects and the completeness properties.

1.1 DEFINITION. A lattice is a structure
(A, <A, T,V, 1)

where (A, <) is a partially ordered set with a top T and a bottom L, and for each pair
of elements a,b € A there is a

meet a A D join a Vb



within A.
A lattice morphism

f

A B

between two lattices is a function f which is monotone

(Vo,y e Nz <y = f(z) < f(y)]

with
f(M=T fL=1

and, more importantly, respects the two binary operations, that is

fleny)=fla)nfly)  fl@Vy) = [flz)V fy)
for each z,y € A. |

Notice that technically this is a bounded lattice since it has a top and a bottom. Every
lattice we look at is bounded, so we don’t need to keep mentioning that. I should point
out that being monotone is a consequence of the other morphism properties. However,
when checking that a function is a morphism it is useful to verify the monotone property
first. This is always the case when monotonicity is involved.

There are several textbooks on lattices, but perhaps the most comprehensive is [22].

There are two properties that a lattice may or may not have. These play a part here.

1.2 DEFINITION. Let A be a lattice.
The lattice A is modular if

(aVx)ANb=aV (xlabel001 — fwedgeb)

for all a,z,b € A with a <.
The lattice A is distributive if

(aVax)ANb=(aAb)V (xAD)
(anz)Vb=(aVb)A(xVDb)
for all a,z,b € A. ]

Being distributive seems to require two conditions. However, each of the two univer-
sally quantified conditions implies the other. (If you ever have to teach a bit of lattice
theory then set that equivalence as an exercise. They will forget the quantifiers.) Notice
that the modular condition requires a comparison a < b on the two outside elements. A
simple exercise show that each distributive lattice is modular. Of course, not every lattice
is modular, and not every modular lattice is distributive. A lantern and a pentagon will
help you through that.

Being modular or being distributive are important restrictions on some of the lattices
we look at. The need for modularity is not apparent in this document, but it does seem to
be important for some of the later developments. There are also other conditions, weaker
than modularity, that I suspect could be come important for this topic, but they are not
needed here.

That is one aspect we use. We also need certain completeness properties.



1.3 DEFINITION. A poset A is
/\ -complete \/ -complete
if each subset X C A has a
infimum (greatest lower bound) A X supremum (least upper bound) \/ X
respectively. [ |

Of course, a poset is /\ -complete precisely when it is \/-complete, but when we look
at possible morphisms we need to distinguish between the two properties.

1.4 DEFINITION. A \/-morphism

f

A B

between two complete posets is a function f which is monotone and respects suprema,

that is
fVX) =V flX]
for each subset X C A.
Let Sup be the category of complete posets and \/-morphisms. [

In this definition we write f[-] for the direct image function across f, that is

fIXT=A{f(z) |z e X}

for X C A.

A \/ -morphism need not preserve arbitrary infima. In fact, a V-morphism need not be
a A-morphism. You might like to think of an example of this. There is a corresponding
category Inf of complete lattices and A -morphisms. The two categories have the same
objects but different arrows. However, we don’t need Inf here.

In this document we look at the basic properties of the category Idm of idioms. This
is a subcategory of Sup. Many of the construction we require are first carried out in Sup
and then modified to deal with Idm. Section 3 is a nice example of this technique.

We are almost ready to introduce the main notion of this document, that of an idiom.
We need just one more observation.

We consider certain complete lattices. Thus for each subset X both the supremum
and the infimum

VX A X

exists. However, as indicated above, these play very different roles. Given a complete
lattice there is a possible distributive aspect

(DL) aAVX=V{aAz|ze X}

for certain elements a and certain subsets X. We may ask that this law holds for all
elements a and all subsets X of a certain kind. For instance, this law for finite subsets X
is just the standard distributive law.

Recall that a subset X of a poset is directed if it is non-empty and for each x,y € X
there is some z € X with z,y < z.



1.5 DEFINITION. An idiom is a complete lattice A for which the distributive law (DL)
holds for all directed sets X.

A frame is a complete lattice A for which (DL) holds for all sets X.

An idiom morphism between two idioms is a lattice morphism that also preserves
arbitrary suprema. Let Idm be the category of idioms and idiom morphism.

A frame morphism between two frames is an idiom morphism. Let Frm be the category
of frames and frame morphisms. [ |

An idiom is sometimes said to be upper continuous and sometimes A-continuous. I find
the name ‘idiom’ quite convenient. The two books [14] and [28] are concerned with the use
of lattices to analyse certain aspect of modules. You should look at them in conjunction
with this and the related documents cited above.

Let’s take a closer look at the idiom distributive law. Of course, the comparison

aN\/ X >V{aNnz|xe X}

holds in every complete lattice. Thus the content of the idiom distributive law is the
converse comparison.
By definition a frame is a certain kind of idiom. Which kind?

1.6 LEMMA. Let A be an idiom. Then A is a frame precisely when it is distributive (in
the finitary sense).

Proof. Trivially, if A is a frame then it is distributive. Thus we need the converse.
Suppose A is distributive and consider an arbitrary subset Y C A. Consider any
a € A. We require

aANVY <V{anylyeY}

since the converse comparison always holds. Let X be the set of all the joins of finite
subsets of Y. Thus a typical element x € X has the form

Yyr VoV

for y1,...,y, € Y. This set X is closed under joins and hence is directed. Also Y C X
so that \/Y <\/ X. Thus

aANVY <anVVX<V{arnz]|zeX}
where a use of the idiom distributive law gives the second comparison. We have
=1V Viyn

so that
aNz=aANypV---Varhy, <\[{ary|yeY}

since A is distributive. Thus

Vi{enz|ze X}<V{any|yeY}

to give the required result. [
The idiom distributive law looks one sided, but it does have a two sided consequence.
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1.7 LEMMA. Let A be an arbitrary idiom. Then

VXANNVY)=V{zry|zeX,yeV}
for each pair X,Y if directed subsets.

Proof. Let
a=VX b=VY

be the two separate suprema. Since Y is directed we have
anNb=aAN\Y =\{aNy|yeY}
by a use of the idiom distributive law. For each y € Y we have

any=NX)rny=V{zAy|zeX}

by another use of the idiom distributive law. Thus

aNb=V{aAylyeY}=V{V{zAnylzeX}|[yeY}=V{zry|lzeX,yeY}

as required. [

We observed above that each version of the finitary distributive law implies the other.
This is not the case with the idiom distributive law. There is a frame with an element
a # T and a linearly ordered set X of elements with

AX=1 and aVze=T

for each z € X. Thus
aVAX #A{aVve|ze X}

in this frame. Can you think of such a frame?
Let’s now look at some canonical examples of idioms, frames, and morphisms.
Consider any module M (over some ring R) and any topological space S. Each of

these has an associated lattice
Sub(M) oS

the lattice of submodules of M and the topology on S, the lattice of open sets. Each of
these is a complete lattice. Infima in Sub(M) are computed as intersections, and suprema
in OS are computed as unions. It doesn’t take long to see that OS is a frame. It is a
subframe of the power set of S. A short calculation shows that Sub(M) is a modular
idiom, but in general it is not a frame.

The notion of a frame was invented in Paris in the late 1950s as a tool to analyse the
algebraic properties of a topology without mentioning the points of the space. For that
reason the study of frames is sometimes referred to as point-free topology. However, in
some ways that view is too narrow. Many aspects of the study of frames have little to do
with point-sensitive (point set) topology. A rather old account of frames can be found in
[23]. A more recent survey is given in [32], with a detailed account in [30].

Idioms (without the name) have been used for several years, either explicitly or im-
plicitly, to analyse certain aspects of modules. Quite a lot of module theory can be done
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in terms of idioms without mentioning the elements of the modules. The two books [14]
and [28] are concerned with this idea.

In this and related documents [2] — [7] I show there are some quite strong parallels
between the study of certain properties of modules and spaces. I also believe the study
of idioms in their own right is interesting.

As an example of a frame morphism, consider a continuous map

¢

T S

between two topological spaces. We know that each of the topologies OS and OT' is a
frame, and a simple exercise shows that the inverse image function
¢(7

os orT

is a frame morphism. However, in general, a module morphism does not give an idiom
morphism between the two idioms of submodules.

To conclude this section we obtain a result that might look a little strange, or even
irrelevant. However, it will be useful in Section 4.

Lemma 1.6 characterizes the class of frames withing the class of idioms. There is also
a characterizations of the class of frames within the class of complete lattices. To describe
that we need a preliminary notion.

1.8 DEFINITION. Let A be any lattice. An implication on A is a 2-placed operation (- > -)
such that
r<(b>a)<=bAx<a

for all a,b,z € A. |

Trivially, any lattice can carry at most one implication. The standard example of an
implication is that carried by a boolean algebra. There are also other examples. You
might like to describe the implication carried by a topology (but you may find it helpful
to work in terms of closed sets rather that open sets).

As the following shows, having an implication is an important distinguishing property.

1.9 THEOREM. Let A be a complete lattice. Then A carries an implication precisely
when A is a frame.

Proof. Suppose first that A is a frame. We check that for a,b € A
b-a=\{z|bAzx<a}
defines an implication. The condition
r<(b=a)<=bAhz<a

is immediate, and the converse is a simple consequence of the frame distributive law.
Conversely, suppose A carries an implication operation. We require

bAVX <V{bAzx]|ze X}
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for b € A and X C A. Let a be the supremum on the right hand side. Then
reX = bAx<a = z<(b>a)

so that
VX <(b>a)

to give the required comparison. [ ]

As we will see in Section 4 using an implication is a useful little tick.

2 Inflators and nuclei

In this section we look at various kinds of functions carried by an idiom. You may think
this is a bit of a distraction, but in due course we that these functions are important
calculating devices.

2.1 DEFINITION. Let A be an arbitrary idiom.
An inflator on A is a function f : A —— A that is inflationary and monotone, that is

r < f(z) r<y = f(z) < f(y)

for z,y € A.
A closure operation on A is an inflator f that is also idempotent, that is 2 = f.
A nucleus on A is a closure operation f such that

fla) A fb) < flanb)

for all a,b € A.
A binary pre-nucleus on A is an inflator f such that

fla) A fb) < flanb)

for all a,b € A.
A unary pre-nucleus on A is an inflator f such that

f(a) Ab< flanb)

for all a,b € A.
A derivative on A is an inflator f such that the closure f*° is a nucleus. |

A few words about this terminology won’t go amiss.

Functions that are both inflationary and monotone occur quite a lot in this topic and
other places. There doesn’t seem to be a common name for such a function, but I find
‘inflator’ quite useful.

The name ‘closure operation’ is standard for this kind of function. However, note that
this need not be a topological closure operation.

As we will see in Section 3 the nuclei on an idiom capture the kernels of the morphism
from that idiom. When the morphism is a quotient, surjective, the nucleus controls



everything that is going one. Hence the name. Notice that since a nucleus f is inflationary
its characteristic property can be improve to

fla) N f(b) = flanD)

for elements a, b.

There are two kinds of nuclei which control much more complicated gadgets, namely
G-topologies. Gabriel topologies on a module category produce the localizations of that
category. These are equivalent to a certain family of nuclei that pass through the category.
Grothendieck topologies on a presheaf category over a base category are equivalent to a
certain kind of nucleus on the classifier of the category. A description and comparison of
this machinery is given in [43]. Because of this connection we often write j for a typical
nucleus. Why ‘5’ you might ask. I could tell you but I won’t.

As we will see pre-nuclei are useful gadgets to help us deal with nuclei. As indicated,
there are two kinds of pre-nuclei, and these have been around for many years. Usually,
in any one document, only one kind is needed and this is referred to as a pre-nucleus.
However, when we start to develop ranking techniques we find that both kinds are needed,
so I have introduced a distinguishing terminology. In fact, in this document we could get
by with just the unary version, but we might as well get used to the other kind now.
Also, here we don’t need derivatives, but we will later and it is useful to have these
related notions defined together in one place.

The family of all inflators on A is partially ordered by the pointwise comparison. Thus

f<g = (Vo eA)[f(r) < g(2)]

for inflators f and ¢g. In due course we see that each of these families of functions is a
complete lattice, and infima are computed pointwise. Furthermore, the family UA of all
unary pre-nuclei is itself an idiom. More importantly, the family NA of all nuclei is a
frame, and is a quotient of UA. This with the previous observations indicates why these
notions are helpful.

Notice that the composite g o f of two inflators is itself an inflator. If each is a
pre-nucleus of either kind then so is the composite. However, the composite of two
closure operations need not be a closure operation. It is merely an inflator. Similarly, the
composite of two nuclei need not be a nucleus. It is merely a binary pre-nucleus.

The idea of a derivative and the notation f*° needs a bit more explanation. It is
concerned with the ordinal iterates of an inflator.

Let

Ord

be the ordinals, or as many of them as we need to analyse the idiom A. The composite
of two inflators on A is itself an inflator. We extend that idea by iteration.

2.2 DEFINITION. Let A be an arbitrary idiom, and let f be an inflator on A. The ordinal
iterates
(f*| a € Ord)

of f are generated by

fo=4d  f=fofr  f=V{f"la<)}



for each ordinal o and limit ordinal A. At the limit jump the pointwise supremum is use,
that is

a) =VA{f*a)|a< A}
for each a € A. |

Notice how the completeness of A is used to pass across the limit jumps. This kind of
construction works for any complete poset, but that generality is not needed here.

2.3 LEMMA. Let A be an arbitrary idiom, with f an inflator on A. FEach ordinal iterate
of f is an inflator, and the whole family of iterates is an ascending chain of inflators.

Proof. We show that each function f¢ is an iterator by induction on the ordinal . The
base case is trivial. Since the composite of two inflators is an inflator, the successor step
is immediate. The jump to a limit ordinal A\ follows by a couple of simple calculations.
For instance, consider elements x < y of A. By the induction hypothesis we have

[ @) < f*(y)

for each ordinal o < A. This gives

f(@) < fAy)

by the construction of f*, and hence

) < )

by a second use of that construction.
For the second part we require

f(z) < (=)
for each pair of ordinals § < a and each element x. This follows by a simple induction
on « with 7 and z held fixed. |

Consider this chain of inflators.
d=f<fP<-.<f*<--- aeOrd

On set-theoretic grounds at some stage this chain will stabilize. There is some ordinal
such that
f@ — foz
for all larger ordinals aw. The value of # depends on the parent idiom A and the particular
inflator f. Different examples can give very different values. In [2] — [4] we see that this
idea is the basis of several standard ranking techniques.
Here we are not concerned with the value of 6, so we write

fOO
for the stable limit of the ascending chain. This is an inflator since it is in the chain,
and it is idempotent by the stability. Thus f°° is a closure operation. A few moment’s
thought shows that f°° is the least closure operation above f. This closure operation f*°
may or may not be a nucleus, but often we want it to be. By definition, an inflator f is
a derivative precisely when its closure f*° is a nucleus.

How might we recognize that an inflator is a derivative? This is where pre-nuclei are
helpful.



24 LEMMA. Let A be an idiom and consider an inflator f on A.

(a) If f is a binary pre-nucleus then each ordinal iterate f* is also a binary pre-nucleus.
In particular, the closure f* is a nucleus.

(b) If f is a unary pre-nucleus then each ordinal iterate f is also a unary pre-nucleus,
and each limit ordinal iterate f* is a binary pre-nucleus. In particular, the closure f> is
a nucleus.

(c) Each nucleus is a binary pre-nucleus, each binary pre-nucleus is a unary pre-
nucleus, and each unary pre-nucleus is a derivative.

Proof. (a) Suppose f is a binary pre-nucleus. For fixed a,b € A we show

fHa) A feb) < f*(aAb)
by induction on «.

The base case, a = 0, is trivial.
For the induction step, a — a + 1, we have

FrHa)Afr ) = F(fA @) A F(F20) < F(F@)AfD)) < F(f*(anb)) = [ (anD)
as required. Here the second step uses the given pre-nucleus property of f, and the third

uses the induction hypothesis and the monotone property of f.
For the induction leap to a limit ordinal A we have

fAa) A fA (D) (V@) [a<A) A (V{f(a) |8 <A})
VAL @) A fP0) [, B < A}

VA (@) A fr(0) |7 < A}

VA (and) [y <A}

= fManbd)

for the required result. Here the second step uses the double distributive law (as given by
Lemma 1.7), the third step uses the increasing property of the generated chain, and the
fourth uses the induction hypothesis.

IN N IA

(b) The first part is proved by an ordinal induction by a modified version of the
argument of part (a).

For the second part consider any limit ordinal A and any pair a,b of elements. We
have

FAa) A fA(0) < VA a) AfI0) |, B <A}
by a use of the dual idiom distributive law as in part (a). But now two uses of the known
unary pre-nucleus property gives
)Ny < VA (anfo®) | a,B <A}
< VA (ffand) o, 8 < A}
< fP(anb)| a8 <A}
fAanb)

for the required result. Here the third step is a standard result concerning the use of
ordinals as iteration gadgets, and the fourth holds since § + a < A.

IA

(c) This is more or less trivial. [
That is all we need here about these notions. We can now show why the are relevant.
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3 Kernels and the factorization property

To motivate the content of this section we consider a bit of algebra which every under-
graduate should know. Consider the category of groups and group morphisms or the
category of rings and ring morphisms. For each algebra A of one of these kinds there is
a notion of a kernel subset K of A. When A is a group the set K is a normal subgroup,
and when A is a ring the set K is an ideal (a 2-sided ideal). For each such pair K C A
there is a construction which produces a quotient

A A/K

an algebra A/K of the same kind together with a surjective morphism. Furthermore,
every quotient from A occurs in this form (up to a canonical equivalence).

What about the corresponding notions and results for Idm and Frm? This is where
the bigger category Sup is useful. We first go through the analysis for Sup and then
modify this material to deal with Idm and Frm.

Before we look at these three cases lets consider the finitary version of semilattices,
or more generally other kinds of algebraic structures. For such an algebra there isn’t a
sensible notion of a kernel subset. We have to resort to the notion of a congruence, an
equivalence relation on A which respects the carried structure in an appropriate fashion.
We then prove three results.

(a) For each morphism

A

the kernel relation on A given by
r=y < f(r) = f(y)
(for z,y € A) is a congruence. We may call = the kernel congruence of f.

(b) For each congruence =~ on A the set of blocks (equivalence classes) A/~ of the
equivalence relation can be furnished as an algebra such that the canonical function

h
A A~

a— [a

(which sends each element to the block in which it lives) is a morphism with ~ as
its kernel congruence.

(c) Consider any congruence ~ on A and any morphism f from A with its kernel
congruence, as above. Suppose & is smaller that =, that is

for z,y € A. Then there is a unique morphism f* such that

A / B

Al

commutes.
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These result holds in any universal algebraic context, not just in the finitary situations.
There is almost nothing in the proofs beyond a long series of simple observations and a
few calculations. Result (c) is the fundamental factorization result, although often it is
not stated in this form. If you have never done it before it is a good exercise to compare
these statements with the usual statement of the corresponding results for groups and
rings. They are just the same results.

We now want versions of these results for Sup and Idm. Of course, we could simple
use these results with the appropriate notions of congruence. However, calculations with
congruences can get messy. We will see that for Sup and Idm there is a much neater
way of handling these notions.

In this section we look first at the Sup context. We then modify the methods to deal
with Idm.

3.1 The kernel of a Sup arrow

In this block we show that for Sup objects the three basic results (a, b, ¢) can be obtained
directly in terms of closure operations. To do that we first look at a result that might
seem a bit unnecessary. However, later we find that it is useful.

Consider a pair of complete posets A, I" and a monotone function between them.

f=1

A r

This may not be a \/-morphism. The following characterization explains why we use this
odd notation.

3.1 LEMMA. Consider a monotone function f* between two complete posets AT, as
above. Then f* is a Sup-morphism precisely when it has a right adjoint, that is a mono-
tone function

A

fi

in the opposite direction such that
fH(a) b = a < [fi(b)
forallae A;bel.
Proof. If f* is a Sup-morphism then
fub) =V {z e A f(z) < b}

give the right adjoint.
Conversely, suppose a right adjoint f, does exist and consider any subset X C A. Let

a=VX  b=V/IX]

so that f*(a) = b is required. A comparison f*(a) < b will suffice since the converse
comparison is immediate. We have

(Ve € X)[f*(z) < b]

12



by the construction of b. Thus
(Vo € X)z < f(b)]
by the adjunction property, and hence

by the construction of a. A second use of the adjunction property gives the required
result. |

We have just gone through a bit of miniature category theory. We can think of a poset
as a category with just one object. A monotone function is then a functor. A pair of
monotone functions f* - f, is an adjunction, which explains some of the terminology.

3.2 DEFINITION. The kernel of a Sup morphism

P

is the unique function k£ on A such that
r<k(a) < f(z) < f(a)
for all a,x € A. [ |

Clearly, for a given Sup morphism f there is at most one such function k. To show
there is such a function and to extract some of its properties we use the adjunction of f.

3.3 LEMMA. Let

f

A r

be an arbitrary Sup morphism. Then f does have a kernel k, this kernel is a closure
operation, and f(k(a)) = f(a) for each a € A.

Proof. We know that f has at most one kernel k. Let f* = f, let f. be the right
adjoint, and let £ = f, o f* to obtain a function on A. For x,a € A we have

< k(a) = fu(f(a) = f(z)=f"(x) < f*(a) = f(a)

to show that £ is the kernel.

Since f(a) < f(a) we see that k is inflationary. Since f is monotone, so is k. Since
k(a) < k(a) we have f(k(a)) < f(a). The converse comparison is immediate to give the
required equality.

Finally, with x = k%(a) we have

and hence
k*(a) = v < k(a)

to show that k is a closure operation on A. [ ]

This result is the analogue of result (a) given above. We now look at the analogue of
(b). This is more interesting.
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3.4 DEFINITION. Let j be a closure operation on the \/-semilattice A. We let
Ay =A{z e Alj(r) =a} = jA]
to obtain the fixed set of j. |

Since j is a closure operation the fixed set A; is just the set j[A] of outputs of j. Since
A; is a subset of A it is partially ordered by the restriction of the comparison on A.

3.5 LEMMA. Let j be a closure operation on the \/ -semilattice A. The fized set A; is
closed under arbitrary infima as calculated in A. In particular, A; is complete.

Proof. Consider any subset X C A;, and let a = A X as calculated in A. We required
a € A;. For each x € X we have a < z, so that j(a) < j(z) = z, and hence j(a) < a.
The converse comparison holds since j is inflationary. ]

This shows that A; is also a Sup object. However, it is not a sub-object of A. We
show that it is a quotient object. To do that we need to see how suprema are calculated
in Aj.

3.6 LEMMA. Let j be a closure operation on the \/ -semilattice A. For each subset X C A;

the element _
J

VX =j(VX)

is the supremum of X in A;.

Proof. Let ‘
j
a=\VX
so we have an element of Aj, and clearly a is an upper bound of X. We must show that

it is the least upper bound in A;. Consider any element b € A; which is an upper bound
for X. Then \/ X < b, so that

J

VX =35(VX)<jb)=b

to give the required result. ]

With this we can obtain the analogue of (b).

3.7 THEOREM. Let j be a closure operation on the \/ -semilattice A. The assignment

A—Tt

at——— j(a)

1s a Sup morphism, and its kernel is j.

14



Proof. Trivially, this assignment j* is monotone, so it suffices to show it respects
suprema, that is

J
7"V X) =VjX]
for each subset X C A. This unravels to
iV X)=j(VilX])

and the comparison < is more or less immediate. We look at the converse comparison.
For each x € X we have

VX >z andhence j(VX) > j(z)
since j is monotone. Thus
iV X) =V jlX]
by releasing x. Since j is monotone and idempotent this gives
IV X) =52V X) = 5(VilX])

as required.
Let k£ be the kernel of 5*. Thus

r < k(o) <= j(z) <j(a) < j(z) <j(a)
for all z,a € A. With = k(a) then
k(a) =z < j(z) < j(a)
to give k < j. With z = j(a) we have
j(x) = j*(a) = j(a) sothat j(a) =2z < k(a)
to give j < k. Thus k = j. [ |

Observe that although the have the same behaviour we must distinguish between the
two functions j* and j. The function j* is a morphism from A, but the function j is a
closure operation on A.

Since j* is a morphism, it has a right adjoint j,. You might like work out what it is.

This gives us the result (b) in terms of closure operations. We now look at the
factorization result (c).

3.8 THEOREM. Consider any closure operation j on the \/ -semilattice A and any \/ -
morphism

f

A r

with kernel k. Suppose j < k. Then there is a unique morphism f* such that

commautes.
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Proof. Since j* is surjective there can be at most one such morphism f* Thus is
suffices to exhibit an example of such a morphism.
For a € A we have

fla) < f(ja)) < f(k(a)) = f(a)
where the last equality holds by Lemma 3.3. Thus these three elements of I" are equal,
andso foj=f.
Since, as sets, we have A; C A, we may set

fi(a) = f(a)

for a € A;. This gives a function from A; to I'. Also, by the previous observation, for
each a € A we have

(ff o ") (a) = f(j(a)) = f(a)
so the triangle commutes as the Set level. Trivially, f# is monotone, so it suffices to show
is respects suprema. For this we require

J
FVX) =V FX]
for arbitrary X C A;. This is
FUV X)) =V fIX]
by unravelling the constructions involved. Since f is a morphism, this holds by the first

observation. [

In this block we have obtained the analogues of results (a, b, ¢) for the category Sup
but using closure operations in place of congruences. To conclude this block let’s see why
the two versions are equivalent.

We need to recall what a congruence for Sup is.

3.9 DEFINITION. Let A be a \/-semilattice. A congruence on A (that is a \/-congruence
on A) is an equivalence ~ such that for each similarly indexed subsets of A

X={a|icl} Y={y|icl}

the implication

holds. [ |

In other words the congruence ~ can be passed across arbitrary suprema.
Since such a congruence is an equivalence relation we may form the set

A/~
of blocks (equivalence classes). Each such block has the form
lal| ={z € A |z~ a}

where a is a representing element of the block. As usual, when manipulating such a block
we choose a representative, but take care that what we do is independent of the particular
choice. Here we can always choose a special representative.

16



3.10 LEMMA. Let A be any \/ -semilattice, let ~ be any congruence on A, and let X be
any block of this congruence. Then

a=VX

15 the unique mazimum member of X.

Proof. It suffices to show that a € X. Consider any b € X. We require a ~ b. With
the given block and Y = {b} we have

Ve e X,y eY)zx~y|
so that the congruence property gives
a=\X=\/Y =0
as required. |

Since each block of a congruence has a special member, it maximum member, it seems
a good idea to select this whenever possible. In fact that is what we have been doing.

3.11 THEOREM. Let A be an arbitrary \/ -semilattice. There is a canonical bijection
N<—>]
between the congruences &~ on A and the closure operations j on A. This is given by
(v ) jla)=V{zeA|z~a}
(v 1)) ambes ja) = j(b)
fora,b e A.

The proof of this is a routine collection of small steps. I suggest you look at some of
these. More importantly, observe how calculations with closure operations are easier than
the corresponding calculations with congruences.

As an example of this think of producing the join of two congruences to obtain a
congruence. It’s a bit messy. But now suppose we look at the two closure operations j, k
corresponding to the congruences. We want the smallest closure operation [ above both
of them. Either of the composites

f=jok f=koj

is an inflator above j, k. Also
f<ir=1

and hence [ = f* is the closure operation we want.

17



3.2 The kernel of a Idm arrow

We now want the analogues of results (a, b, ¢) for idioms. All we have to do is go through
the material of the previous block and add a bit of extra material at each step. We are
looking for a special kind of closure operation. Guess which kind.

3.12 LEMMA. When viewed as a Sup morphism, the kernel of a Idm morphism

f

A r

18 a nucleus.

Proof. Let k£ be the kernel of f. By Lemma 3.3 we know that k is a closure operation
with
r <k(a) < f(z) < f(a)

for each a,r € A. Thus we require
k(ay) A k(az) < k(ay A as)
for arbitrary a;,as € A. Since f respects binary meets, a second use of Lemma 3.3 gives

f(k(ar) Ak(az)) = f(k(ar)) A f(F(az)) = flar) A flaz) = flar Aag) = f(k(ar A az))

and hence the characteristic property of k gives the required result. |

This result is the analogue of general result (a) for idioms. Now we look at the analogue
of (b). To do that we extend Theorem 3.7.

3.13 THEOREM. Let j be a nucleus on the idiom A. The complete lattice A; is an idiom,
and if A is a frame then so is A;. The assignment

At L,

at—— j(a)

s an idiom morphism, and its kernel is 7.

Proof. We know that A; is a complete lattice. We must show that the assumed
distributive law on A passes down to A;. Consider any subset X C A;, and for the time
being suppose that X is directed in A;. Observe that X C A and X is directed in A.
Recall also that a meet calculated in A; is the same as that calculated in A.

We require

J J
aNVX=V{anz|zeX}
for arbitrary a € A;. This is
anj(VX)=j(V{enz|zeX})
by the construction of the supremum in A;. But a € A;, so that a = j(a), and hence

j@) NGV X) =j(V{anz |z e X}

18



is the requirement. Since j is a nucleus this is

jlanVX)=j(V{aAz]|zec X})

which holds by the corresponding property in A. When A is just an idiom this calculation
works for directed X. When A is a frame it works for arbitrary X.

By Theorem 3.7 we know that j* is a \/ -morphism with j as its kernel. Thus it suffices
to show that j* passes across meets. Since j is a nucleus, this is immediate. |

Finally we look at result (c). To do that we modify Theorem 3.8. As with the previous
proof there is not a lot left to be done.

3.14 THEOREM. Consider any nucleus j on the idiom A and any idiom morphism

S

A r

with kernel k. Suppose j < k. Then there is a unique idiom morphism f* such that

commautes.

Proof. By Theorem 3.8 we know that the only possible morphism is given by
fi(a) = f(a)

for a € A;. Theorem 3.8 ensures that this f* is a \/-morphism. Thus it suffices to show
that f* passes across meets. Since f is given as an idiom morphism, this is immediate. W

These results show why nuclei are important. Clearly, we ought to start to gather
more information about the whole family of nuclei on an idiom. That is the topic of the
next section.

4 The assembly of an idiom

We know that the inflators on an idiom A can be partially ordered by the pointwise
comparison. In the same way we can partially order the pre-nuclei and the nuclei on A.
In this section we look at the some of the properties of these posets. In particular, we
investigate the nature of the assembly of A, the poset of all nuclei.

4.1 DEFINITION. For an arbitrary idiom A we let

IA UA BA NA
be the poset of all
inflators unary pre-nuclei binary pre-nuclei nuclei
on A (under the pointwise comparison). |
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This gives us a short chain
NACBACUACIA

of posets associated with A. However, we will see that this is the wrong way to think of

these posets.
Our first job is to show that each of these associated posets is a complete lattice, and

infima are calculated in a simple way.

4.2 DEFINITION. Let A be an arbitrary idiom, and let F' be any set of inflators on A.
The pointwise infimum A F' of F' is the function on A given by

(AF)(a) =A{f(a)| feF}
for each a € A. [ |

Observe that, almost trivially, this function A F is an inflator on A, and is a lower
bound for F in IA. Of course, we can do better than that, and remove any confusion
that could be caused by the terminology.

4.3 LEMMA. Let A be an arbitrary idiom, and let F' be any set of inflators on A.
The pointwise infimum )\ F is the actual infimum of F in TA.
If F CUA then AN F € UA and is the actual infimum in UA.
If F C BA then \ F € BA and is the actual infimum in BA.
If F C NA then \ F € NA and is the actual infimum in NA.

Proof. Consider any inflator g which is a lower bound for F'. Thus
g(a) < f(a)
for each a € A and each f € F'. But then
gla) < A{f(a) | f € F} = (AF)(a)

and hence
g<AF

to give the first required result.
Suppose F' C UA. Consider any a,b € A. For each f € F' we have

(AF)(@) Ab< fla) Ab< flaAb)

and hence
(AF)(@)Ab< (AF)(anb)

to deal with the unary case.

The binary case follows by a similar argument.

Suppose F' C NA. Tt suffices to show that ¢ = A F is idempotent. Consider any
a € A and any f € F. Then g < f so that



and hence ¢? < g, as required. |

Before we continue let’s consider the particular case where F' = ). On general grounds
A\ 0 is the top of TA, namely, that inflator tp with

tp(a) =T
for each a € A. The bottom of ITA is the identity function, that function zd with
id(a) =a

for each a € A. Each of tp, id is a nucleus.
Lemma 4.3 show that each of IA,UA, BA, NA is a complete lattice and infima are
easy to compute. What about suprema?

4.4 DEFINITION. Let A be an arbitrary idiom, and let F' be any non-empty set of inflators
on A. The pointwise supremum \/ I’ of F' is the function on A given by

(VE)(@) =V{f(a)| feF}
for each a € A. |

Note that we use this construction only on a non-empty set of inflators. The pointwise
supremum of the empty set () of inflators is given by

(V0)(a) =V0=L1

which does not produce an inflator. The least inflator is 2d, the identity function.

45 LEMMA. Let A be an arbitrary idiom, and let F' be any non-empty set of inflators
on A. Then the pointwise supremum \/ F is the actual infimum of F in IA.

Now suppose F' s directed.

If F CUA then \| F € UA and is the actual supremum in UA.

If F C BA then \/ F € BA and is the actual supremum in BA.

Proof. Let g be this pointwise supremum. Since F' is non-empty there is at least one
inflator f € F. Thus for each a € A we have

a < f(a) < gla)

to show that ¢ is inflationary. A similar calculation shows that ¢ is monotone, and hence
is an inflator. In other words, we have g € TA.

Trivially, g is an upper bound for F'. We show it is the least upper bound. To this
end consider any h € IA which is an upper bound for F', that is f < h for each f € F.
For each a € A we have f(a) < h(a) so that

g9(a) =V {f(a)| f € F} < h(a)

to show that g < h, for the required result.

21



Now suppose F' is directed. Observe that for each a € A the set

{f(a) [ f € F} < h(a)

is directed in A.
Suppose that each f € F' is a unary pre-nucleus. For each a,b € A we have

gla) Ab=(V{f(a) | f e F}) Ab
=VA{fl@)Ab| feF}
<VA{flanb) [ feF}=glanbd)
to show that ¢ is a unary pre-nucleus. The second step holds by the idiom distributive

property of A, and the third holds since each f is a unary pre-nucleus.
Suppose that each f € F'is a binary pre-nucleus. For each a,b € A we have

gla) Ag(d) = (V{fila) | fr e F}) A (V{fa(D) | fo € F})
= VA{fila) A fo(b) | fr, f2 € F}
<VA{f@)Af)| feF}
<VA{fland) | feF}=glanbd)
to show that ¢ is a binary pre-nucleus. The second step holds by the extended idiom
distributive property of A as given by Lemma 1.7, the third holds since F' is directed,

that is for each fi, fo € F' there is some f € F with fi, fo < f, and the fourth step holds
since each f is a binary pre-nucleus. |

This result does not extend to sets of nuclei. The pointwise supremum of a directed
set of nuclei is certainly a binary pre-nucleus, but it need not be idempotent. We look at
suprema of nuclei at the end of this section.

Being a complete lattice is interesting but not surprising. The next result is a hint
that there is something more important going on.

4.6 THEOREM. For each idiom A the complete lattice UA is itself an idiom.

Proof. We must show that UA satisfies the idiom distributive law. Thus we require

fANVG=\V{fNg|geG}

for each f € UA and each directed G C UA. We recall that these two suprema and all
infima are computed pointwise. We evaluate at an arbitrary element a € A. Thus

(fAVG)(a) = fla) A (VG)(a)
= f(a) AV {g(a) | g € G}
=V {fla)Ang(a)| g € G}
=V{(frga)lgeGr=(NV{frglgeG})(a)
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to give the required result. The second step holds since G is directed, and this produces
a directed subset of A. The third step holds by the idiom distributive law. The final step
holds since the involved subset of UA is directed. |

Consider any unary pre-nucleus f on A. From Section 2 we know that we may iterate
f though the ordinals to produce

fO[
and ascending chain on unary pre-nuclei. The stable limit
fOO

is the least nucleus above f. A few moment’s thought shows that the operation (-)* is a
closure operation on UA. And there is more.

47 THEOREM. Let A be an arbitrary idiom. The closure operation (-)* on the idiom
UA is actually a nucleus. It fized set is precisely the assembly NA of A.

Proof. Since () is a closure operation on UA it suffices to show it is a unary pre-
nucleus on UA, that is

fXNg<(fnrg)™
for arbitrary f,g € UA. To do that us we show
f*Ng < (fng)®

for each ordinal «, and then take a sufficiently large. To help with this let

h=fAg

so that our objective is
f*(a) Agla) < h*(a)

for arbitrary a € A. We proceed by induction on a with allowable variation of a.
The base case, a = 0, is immediate.
For the induction step, a — a + 1, we have

fetia) Agla) = f(f*(a) Agla) < f(f*(a) Agla)) < f(h(a))

where the second step holds since f is a unary pre-nucleus, and the third holds by the
induction hypothesis. This gives

et (a) A gla) < f(ha(a)) Agla) < f(ha(a)) /\g(ho‘(a)) = ho*(q)

to conclude this step.
For the induction leap to a limit ordinal A, for arbitrary a € A we have

fMa) Agla) =V {f*(a) | a <A} Agla)
= VA{/*a) Agla) [ o < A}
< VA{r(a) [a <A} = h*(a)

23



as required. Here the second step uses the idiom distributive law on A, and the third uses
the induction hypothesis.
Finally, the fixed set property

f =f < fisanucleus

is immediate. [ |

By the analysis of Section 3 these two results give the following.

4.8 COROLLARY. For each idiom A each of UN, NA is an idiom and

UA NA
f——1

is a canonical quotient with () as the kernel nucleus.

This result can be improved but to do that it seems that we need to use a different
tactic. We invoke Theorem 1.9. To do that we need a preliminary. The following result
is a generalization of Lemma 3.1 of [34].

4.9 LEMMA. Let A be an arbitrary idiom, let j be a nucleus, and let k be any inflator on
A. Let F be the set of unary pre-nuclei f with f ANk < j. The following hold.

(i) F is closed under composition.
(i) F is directed.
(iii) F has a unique mazimum member.

(iv) This mazimum member is a nucleus.
Proof. (i). Consider fi, fo € F and let f = f; o fy. For each x € A we have

f(@) Nk(z) = fi(fa(e) AR(x) < fi(fa(2) AR(2)) < fi(5(2))

where the second step holds since f; is unary, and the third step holds since f; € F. But
now, since f; € I’ we have

fl@) Nk(x) < fi(i(2) AR(2) < fi(5(2) A k(@) < 5%(2) = j(@)

to show that f € F.
(ii). For fi, fo € F we have f1, fo < fi o fo € F, to give the required result.

(iii). Consider the pointwise supremum

g=VF

of F' given by
g9(a) =VA{f(a) | f € F}

for each a € A. Since F is directed we see that f is an inflator. A use of upper continuity
shows that g is a unary pre-nucleus. Thus it suffices to show that g € F.
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For each x,y € A we have

g@) Ny =VA{f(@)|feFiAy=V{f(z) ylfeF}

where the second step holds by a use of the upper continuity (since the supremum is
directed). In particular, we have

g(x) Nk(x) = VA{f(x) Nk(x) [ f e F} < j(x)

to show that g € F.
(iv). We have g € F and hence ¢g?> € F by part (i). But now ¢g? < g to show that g is
a nucleus. |

With this we can obtain the main result of this section.
4.10 THEOREM. Let A be an idiom. Then the assembly NA is a frame.

Proof. We know that NA is a complete lattice so, by Theorem 1.9 it suffices to show
that NA carries an implication. Consider any nuclei j, k& € NA. By Lemma 4.9 there is
a nucleus [ € NA such that

INE<j<—=[f<I

for each inflator f. In particular, this is holds for all f € NA to show that [ is the required
implication k > j. |
This result explains the title of this section.

4.11 DEFINITION. For each idiom A the assembly is the frame NA of all nuclei on A. B

We know that VA is a complete lattice, so each set J of nuclei has a supremum in
NA. To compute that we modify a trick given in Section 3. Let J° be the family of all
composites

jiow 0

for ji,...,jm € J. (If J is empty then J° = {id}.) This is a directed set of binary
pre-nuclei, and each lies below any nucleus that is an upper bound for J. By Lemma 4.3,
and by Theorem 4.7 its closure is a nucleus. This more or less gives the following.

4.12 THEOREM. Let A be an arbitrary idiom and let J° be the family of all composites
of members of J. Then the pointwise supremum

(V7)™
1s the supremum of J in NA.

A long term project is to understand the structure of this assembly NA. Believe me,
some weird things happen.
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5 Some final remarks

This document is the first in a series [1]-[7]. In this final section a say a few words about
the aim of that series, especially [2, 3, 4].

The general aim is to investigate certain ranking techniques for modules M and spaces
S. Each of these has an associated modular idiom

A=Sub(M) A=0S

(and, in fact, OS is a frame). The idea is to investigate ranking machinery for an arbitrary
modular idiom as a combined approach to the methods used for modules and spaces.

The general idea is to find a derivative f on a idiom A, an inflator for which the closure
f°° is a nucleus. The length of the iteration from f to f*° is then the rank of A relative
to f. (For some historical examples the rank is called the dimension or length.)

The document [2] sets up the basic machinery and then looks at two particular exam-
ples, the socle soc and the CB-derivative ebd (which originated in the study of modules
and spaces, respectively). The general idea is to select a set B of intervals of the parent
idiom A and look for the smallest nucleus for which the corresponding quotient collapses
of these intervals. The two particular examples are given by the simple intervals and
the complemented intervals, respectively. To find the collapsing nucleus we first convert
B into a derivative f and then iterate f. The process B+——— f is not obvious, and
the central theme of [2] is to describe the technique used. Almost always f is a unary
pre-nucleus, but on the better occasions it a binary.

Each nucleus j on the idiom A gives a quotient idiom A;, and this carries its own
ranking devices. We may lift any of these up to A to obtain a j-relative device on A. In
particular, we have soc; and cbd;, the j-socle and the j-CB-derivative on A. Precisely
how we do this is not immediately obvious, and [3] is concerned with the details of these
two examples. It turns out that there is quite a lot of similarity between these two
examples, and there are also some significant differences.

Each of soc; and ¢bd; is a pre-nucleus on A, and so we obtain a pair of operations

J — soc}’ J —— cbd;

on NA, the assembly of A. It turns out that each of these is a binary pre-nucleus on NA,
and have historical analogues in module theory. They are the

Gabriel Boyle

derivatives, respectively. The document [4] is an analysis of these devices.
An idea is to set

Gab(j) = socT Boy(j) = cbd}”

to obtain the first level pre-nuclei. Suppose now we are trying to rank A by soc. If soc™
is the top of NA then we have a measure for the whole of A. But what if soc® = Gab(id)
is too small? We then move up a level and iterate Gab. If Gab™(id) is the top of NA
then we have a measure of NA and of A. But what if Gab™(id) is too small? We still
have the higher level assemblies N2A, N3A, ... we could use. However, that is ‘work in
progress’, and as far as I am aware this idea has no historical antecedent.

The documents [5, 6, 7, 41] look at more specific topics. Perhaps I should mention
[6] in which I show how that classical Gabriel dimension of a module M is determined
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entirely by the structure of the idiom Sub(M). This is not unknown but I believe I bring
out some new aspects.

This document is item [1] in a series of Notes, [1] — [7], concerned with the use of
lattices as a tool for analysing modules and, to some extent, spaces. This bibliography is
for the whole of the series. Not all the items listed are needed for this document. I also
have a series of documents on Frames (distributive idioms). I hope to release these soon.
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