
HAL Id: hal-01393772
https://hal.inria.fr/hal-01393772

Submitted on 8 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution| 4.0 International License

Preserving Dates and Timestamps for Incident Handling
in Android Smartphones

Robin Verma, Jayaprakash Govindaraj, Gaurav Gupta

To cite this version:
Robin Verma, Jayaprakash Govindaraj, Gaurav Gupta. Preserving Dates and Timestamps for Incident
Handling in Android Smartphones. 10th IFIP International Conference on Digital Forensics (DF),
Jan 2014, Vienna, Austria. pp.209-225, �10.1007/978-3-662-44952-3_14�. �hal-01393772�

https://hal.inria.fr/hal-01393772
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Chapter 14

PRESERVING DATES AND TIMESTAMPS
FOR INCIDENT HANDLING IN
ANDROID SMARTPHONES

Robin Verma, Jayaprakash Govindaraj and Gaurav Gupta

Abstract The “bring your own device” (BYOD) policy is rapidly being adopted
by enterprises around the world. Enterprises save time and money when
they allow employees to bring their own electronic devices to the work-
place; employees find it convenient and efficient to use a single device
for professional and personal use. However, securing the personal and
professional data in the devices is a huge challenge for employers and
employees. Dates and timestamps constitute important evidence when
devices have been compromised or used for illegal activities. This paper
focuses on the malicious tampering of dates and timestamps in Android
smartphones. The proposed reactive approach gathers kernel-generated
timestamps of events and stores them in a secure location outside an
Android smartphone. In the case of a security incident, the stored
timestamps can assist in an offline digital forensic investigation. To
our knowledge, this is the first attempt to preserve authentic Android
event timestamps in order to detect potential malicious actions, includ-
ing anti-forensic measures.

Keywords: Android smartphones, dates and timestamps, preservation

1. Introduction
The growth and adoption of smartphones have gathered pace during

the past five years. According to a Gartner report [12], during the second
quarter of 2013, the sales of smartphones surpassed the sales of feature
phones and accounts, corresponding to 51.8% of market share, which
amounted to approximately 225 million units. In the same report, Gart-
ner notes that Android, an open source mobile operating system, leads
the smartphone operating system market with a 79.0% share. Accord-
ing to the International Data Corporation [16], Android dominated the

210 ADVANCES IN DIGITAL FORENSICS X

smartphone operating system market during 2013, with around 75.3%
of the share, and will continue to dominate until 2017.

In a May 2013 survey, the Pew Research Center [27] noted that 61%
of American cell phone owners have smartphones, out of which 28% own
Android devices. Most people prefer to have one device for both personal
and professional needs, so instead of taking a new device from their
employers, they bring their personal devices to the workplace. This has
given rise to the “bring your own device” (BYOD) trend that is catching
on around the world [19]. According to another Gartner report [29], 50%
of the companies are expected to allow their employees to carry their own
devices by 2017, and the majority of these devices will be smartphones
and tablets.

In an enterprise environment, the BYOD policy helps employers save
on the cost of devices and services, and enables employees to conveniently
manage their personal and professional data on a single device. However,
BYOD also has opened up new windows of opportunities for fraudsters
to access, modify, edit and steal information, and then cover their tracks
by tampering with data on the devices. Indeed, personal mobile devices
are one of the weakest links for gaining unauthorized access to enterprise
networks and carrying out malicious actions.

In a BYOD environment, the incentive for stealing information from
a phone is high because both personal and corporate data are stored on
the same device [19]. Access control restrictions imposed on files can
protect against unauthorized access by someone other than the owner
of the device; however, access control fails if the device owner decides
to compromise security or adopts a cavalier attitude regarding device
security. To hide their tracks, malicious individuals could attempt to
tamper with metadata, including modification, access, change and/or
creation dates and timestamps (MAC DTSs) to match the MAC DTSs
that existed before the malicious access.

MAC DTSs of digital data on a smartphone constitute fundamental
evidence in digital forensic investigations. Thus, establishing the authen-
ticity of the recovered MAC DTSs is of prime importance. Malicious
tampering of MAC DTSs mainly involves modifying dates and time-
stamps and/or file contents. Commercial tools, including the Cellebrite
Universal Forensic Extraction Device (UFED) system and FTK Mobile
Phone Examiner, can recover mobile device data; however, most of them
prove to be inadequate when attempting to establish the authenticity of
MAC DTSs.

This paper demonstrates that tampering with MAC DTSs on Android
smartphones is possible using anti-forensic techniques. A mechanism
is described for preserving dates and timestamps for incident handling

Verma, Govindaraj & Gupta 211

involving Android smartphones. System-generated MAC DTSs are col-
lected with the aid of a loadable kernel module (LKM) [14], which hooks
system calls to capture the values. The dates and timestamps, along with
location details, are stored as event logs in a secure location outside the
smartphone (e.g., a local enterprise server or the cloud). In the event
of a security incident, the stored data and timestamps can assist in an
offline digital forensic investigation.

2. Related Work
Weil [28] has shown that dynamic date and timestamp analysis can

determine the actual times of events on a personal computer (especially
when they are not available or tampered with) by utilizing an external
source of data-time data. Carrier and Spafford [7] have suggested that
dynamic timeline analysis is essential to reconstructing digital events
after a security incident and identifying the suspects. To implement
these ideas, a customized forensic tool named Zeitline was developed
by Buchholz and Falk [6] that creates timelines from various sources
and presents the details via a graphical interface; however, the tool has
certain limitations in handling clock differences and clock drifts. An im-
proved tool, Cyber-Forensic Time Lab (CFTL), was created by Olsson
and Boldt [20]. A different approach to address the same problem is de-
scribed by Marrington, et al. [18], who trace computer activity timelines
by utilizing the “causality” of events in computer systems. Their tool
extracts the MAC timestamps from a hard drive and correlates events
according to their causality. However, the problem of MAC timestamp
tampering was not been addressed in their implementation, which leads
to certain irregularities in the results.

Barik, et al. [4] were the first to propose the logging of MAC DTSs
for filesystems. Das, et al. [8] and Ansari, et al. [2] have enhanced this
approach for use in filesystem intrusion detection. All three works focus
on Linux systems with conventional hard disk drives as storage media. In
contrast, this paper describes an Android solution that has considerable
differences in terms of functionality and implementation.

Grover [11] has proposed an enterprise monitoring application, “Droid-
Watch,” that continuously collects data from Android phones. The col-
lected data sets are uploaded to an enterprise server for assisting security
personnel in monitoring, auditing and responding to incidents and con-
ducting forensic investigations. However, the approach is not secure
against root attacks and application uninstallation attacks.

Android phone anti-forensics is also an important related area of re-
search. Distefano, et al. [9] have devised an anti-forensic technique that

212 ADVANCES IN DIGITAL FORENSICS X

uses the private folder of an installed Android application to hide coun-
terfeit evidence; they propose a safe uninstallation process to hide ev-
idence of tampering. Albano, et al. [1] have demonstrated that the
timestamps of tampered files can be restored without raising suspicion
and without leaving any traces in the filesystem. However, their method
is only able to change the contents of the storage media; data that has
been uploaded to a location external to device is untouched.

Linux security modules (LSMs) were created as a framework to sup-
port security functionality [26]. Security modules that have been imple-
mented include Security Enhanced Linux (SELinux), AppArmor, Smack
and TOMOYO Linux. Shabtai, et al. [24] have implemented SELinux
on an Android platform to perform strict access control. The steps in-
volved compiling the kernel with SELinux support, followed by designing
an Android-specific security policy. The standard startup processes and
supporting scripts were modified to load the new policy at startup. In
the final step, the Android disk image (popularly called ROM) was cre-
ated to be flushed on the phone.

In 2012, the National Security Agency specified the SEAndroid stan-
dard [25] for implementing SELinux on Android devices; the SELinux-
enabled Android has been successfully tested against most contempo-
rary exploits that seek to gain root access. Shabtai, et al. [24] and
Smalley [25] require that the disk image of an Android phone or tablet
be flushed with their own customized ROM, which is impractical in a
BYOD environment. Our solution, on the other hand, focuses on pre-
serving the MAC DTSs without reflushing, which keeps the phone data
intact and is more suited to a BYOD environment. Additionally, the
user’s personal data residing on the device is preserved, enabling regular
phone use to continue without any impact after the LKM installation.

3. MAC DTS Tampering
Our research initially focused on developing and testing an attack

tool that could tamper with files and their timestamps without leaving
forensic evidence. Following this, a tool was developed that could detect
such tampering. We selected the HTC Wildfire and Samsung Galaxy
S2 GT-I9100 Android phones as prototypes for the research. The two
phones were chosen because they represent two ends of the smartphone
segment in terms of processing power, storage capacity, battery power
and cost. HTC Wildfire is a low-end smartphone with a 0.60 GHz CPU,
single core processor, 512 MB RAM and 1230 mAh battery capacity.
The Samsung Galaxy S2 is a high-end smartphone with a 1.20 GHz
CPU, dual core processor, 1 GB RAM and 1,650 mAh battery capacity.

Verma, Govindaraj & Gupta 213

Original
Date

Tampered
Date

Figure 1. Tampering with the date of a camera image file.

The Android filesystem stores data and the corresponding metadata
(including MAC DTS values) in SQLite databases. The data includes
phone calls, short message service (SMS) messages, multimedia messag-
ing service (MMS) messages, photographs/video captured by the cam-
era, audio recorded by the microphone and other types of files (e.g.,
Word, Excel, PDF and text). User applications access the data through
various APIs and interfaces controlled by the operating system. Ap-
plications need explicit permissions to use the APIs and interfaces; the
permissions are generally granted to them at the time of their installa-
tion. The Android filesystem ensures that users have no direct access to
the SQLite databases by storing them in the restricted internal memory
of the phone.

Although Android is claimed to be secure by design, it is possible to
bypass the Android security mechanisms (see, e.g., [5, 17]). In fact, sev-
eral timestamp tampering applications are available. For example, one
application named SQLite Editor (available at goo.gl/ppxAXo) can be
used to overwrite the timestamps of received SMS messages. We also
built a custom application that can tamper with the timestamps of calls,
SMS messages, camera images and video files on Android phones. Fig-
ure 1 shows screenshots of a camera image file before and after tampering
with the date.

3.1 Attack Methodology and Anti-Forensics
Anti-forensic actions seek to destroy or tamper with digital evidence [9,

13]. Specific actions include destroying evidence, hiding evidence, al-
tering evidence and counterfeiting evidence. Our attack methodology

214 ADVANCES IN DIGITAL FORENSICS X

involved creating a MAC DTS tampering application that performs the
following actions:

Eliminating/Altering Evidence: Evidence is not created or
evidence is altered to thwart a forensic investigation. The MAC
DTS tampering application extracts data entries from the SQLite
database via APIs into a text file, and the data in the text file is
changed. For example, the Type column value of a call entry in the
calls table in file contacts2.db is changed to “5,” for which the
legitimate values are “1” for an incoming call, “2” for an outgoing
call and “3” for a missed call. After the change is made, the
application writes the text back to the database. A forensic tool
that extracts database entries would ignore the edited entry when
extracting call records. Several other similar operations can be
performed on other potential evidence in a SQLite database.

Counterfeiting Evidence: Fake evidence is implanted to thwart
a forensic investigation. For example, the tampering application
can overwrite entries in a SQLite database. Also, it can overwrite
the logcat buffer that stores the debugging logs.

Destroying Evidence: Evidence is deleted to thwart a forensic
investigation. For example, the tampering application can delete
the contents of a SQLite database and the logcat buffer.

Note that data retrieval is possible after these anti-forensic actions are
performed. However, the retrieval is both costly and time-consuming [10,
22].

Attack Scenario 1. The first scenario assumes that an individual left
his Android phone unattended for five to ten minutes, during which time
an attacker gained physical access to the phone. The following steps are
involved in the attack scenario:

The phone is connected to a laptop that has Android SDK (open
source software development kit) installed.

The MAC DTS tampering application is installed on the phone via
the laptop. The application can be installed even if the phone is
locked. However, like all contemporary mobile forensic tools, the
USB debugging mode must be enabled.

The contents of camera image database are extracted to the in-
ternal memory folder of the application, following which the file is
pulled to the laptop.

Verma, Govindaraj & Gupta 215

The file metadata and MAC DTSs are modified.

The updated file is pushed back to the phone and the phone
database is updated.

The logcat entries in the phone are cleared.

The process requires the execution of a small set of simple commands
(that could easily be combined into a script). The entire process takes
about three minutes (five iterations), ample time to carry out the at-
tack in the real world. Note that physical acquisition from the phone
could reveal the deleted data, but this would be expensive and time
consuming [22].

Attack Scenario 2. The second scenario assumes that a company
employee intends to steal a confidential document. Since the time at
which he accessed the document would be suspicious, he accesses the
file via his Android phone and modifies the MAC DTS values to hide
his tracks. The following steps are involved in the attack scenario:

The MAC DTS tampering application is installed on the phone.

The confidential file is accessed and stolen.

The MAC DTS values are changed to their values before the access.

The tampering application is uninstalled and the logcat entries are
cleared.

4. Implementation
Our solution for preserving dates and timestamps engages a custom

LKM that hooks the sys open() system call and captures the kernel-
level timestamp values of selected files. The timestamps are then up-
loaded to a secure local server.

Figure 2 shows a schematic diagram of the implementation architec-
ture. Details about the LKM algorithm and the procedures for compiling
the LKM and loading the LKM on a phone are provided below. After
the LKM is loaded, it reads the MAC DTS values from the phone. The
captured values are written to a temporary log file that is stored in the
internal memory of the phone. The log file is uploaded to a local server
when network connectivity is available.

4.1 LKM Algorithm
The LKM algorithm shown in Figure 3 incorporates four functions:

root start, hacked open, hacked unlink and root stop. Function

216 ADVANCES IN DIGITAL FORENSICS X

User
Space

Kernel
Space

Camera
Application

App
DB

Click
Picture

sys_open() is called

Internal
Memory System Call

Invoked

LKM

Timestamp
Log File

Log
Uploading

App

Server

Android Phone

Servers

Log
Processing/
Encryption

Module

Enterprise Server

Cloud

Store on
Local server

or
Cloud

file attributes
generated/updated

Read
MAC DTS

U
pd

at
e

M
A

C
 D

TS

Figure 2. Preserving dates and timestamps.

root start initializes the log file pointer, sets the sys open() call ad-
dress to point to the hacked open() call and sets the sys unlink() call
address to point to the hacked unlink() call. Function hacked open
takes the file path and file attributes as input parameters. If the file path
name matches the selected file or folder in the filter array, then the date
and timestamp details are written to a log file; following this, control is
passed back to the original sys open() call. Function hacked unlink
takes the file path name as an input parameter. If the file path matches
the log file path, then the delete operation is denied; otherwise, control is
passed back to the original sys unlink() call. Function root stop func-
tion closes the log file pointer, restores the address back to the original
sys unlink() call routine and restores the address back to the original
sys open() call routine.

4.2 LKM Compilation
The LKM must be compiled against the kernel source code on which

it has to be loaded. The compilation instructions are posted on the
Android Open Source Project website (goo.gl/TQVVV). The first step
is to set up the kernel environment on a computer. Following this, it
is necessary to acquire the original kernel source code of the Android
version installed on the device. For the two scenarios described above,
we downloaded the Android 2.1 Eclair kernel source from HTC [15] and
the Android 2.3 Gingerbread kernel source from Samsung [23].

Verma, Govindaraj & Gupta 217

Function root start
Output: File Pointer to the record.log file

{Log File Pointer = File Open ("/data/data/record.log")
Original Sys Open Pointer = sys call table[NR open]
Original Sys Unlink Pointer = sys call table[NR unlink]
sys call table[NR open] = Our Sys Open call hacked open
sys call table[NR unlink] = Our Sys Open call hacked unlink

}

Function hacked open
Input: File Path Name, Flags
Output: File Pointer to the record.log file

{Filter = File/Folder path for enabling timestamp logging
Path Name = Current working directory
If (Filter = Path Name)

Log Path Name, Date and Time and File Operation Type ID
Else

Return to Original Sys Open Operation
EndIf

}

Function hacked unlink
Input: File Path Name

{If (Path Name = Log File Path)
Return -1 /* Deny log file deletion. */

Else
Return to Original Sys Unlink Operation

EndIf
}

Function root stop
Original Sys Open Pointer, Log File Pointer

{Restore to Original System Call
sys call table[NR open] = Original Sys Open Pointer
sys call table[NR unlink] = Original Sys Unlink Pointer
Close Log File Pointer

}

Figure 3. Algorithm for logging MAC DTS values using the LKM.

The next step is to locate the physical address of the system call table
on each phone in order to hook system calls. A mandatory condition for
loading the LKM successfully on the phones is that the “vermagic string”
(see Table 1 for details) of the kernels and LKMs should match [21].

218 ADVANCES IN DIGITAL FORENSICS X

Table 1. Smartphones used in the experiment.

Phone Android Vermagic sys call table
Version String Address

HTC Wildfire 2.1 Eclair 2.6.29-4266b2e1 0xc002bfa4
Samsung Galaxy 2.3 Gingerbread 2.6.35.7-I9100XWKL1- 0xc0028fe4
S2 GT-I9100 (XWKL1) CL809037

4.3 Loading the LKM
Root permissions (administrative privileges) are required to load the

LKM on an Android phone. Generally, temporary rooting is a good
option because it involves the least number of changes to the filesystem,
which is preferred in digital forensics. We decided to apply temporary
rooting on the Samsung Galaxy S2; however, we permanently rooted
the HTC wildfire to explore how our solution performs on permanently
rooted devices. (As a matter of fact, our solution works seamlessly on
temporary and permanently rooted devices.) We followed the rooting
instructions listed on the XDA Developers mobile software development
community portal (www.xda-developers.com).

Figure 4. Storing the record.log file in internal memory.

After the phone was rooted, the LKM was loaded. The LKM mon-
itors the events occurring on a selected set of files and directories. It
reads the MAC DTS values for these files and writes them to a log file
(recordfile.log) on the phone (Figure 4).

Verma, Govindaraj & Gupta 219

Creation

Modification

Access

Figure 5. Snapshot of the record.log file for camera image IMAG0699.jpg.

4.4 Hiding Log File Deletions
The log file is stored in the internal memory of the Android smart-

phone, which is not accessible directly by applications; thus, the file is
secure from deletion attempts. In the event that an attacker manually
locates the log file, an attempt to delete it is denied by the LKM mod-
ule, which bypasses the call to sys unlink (hacked unlink() call);
this ensures the security of the log file. The overall approach can be
categorized as “anti-anti-forensics,” in that, by not allowing deletions, a
possibly destructive anti-forensic attempt is foiled.

4.5 Uploading the Log File
The log file generated by the LKM is subsequently uploaded at regular

intervals, depending on the availability of network connectivity, to a local
server with the help of our uploader application. We used the WAMP
software stack on our local server, which runs Apache, PHP and MySQL.
The system can easily be extended to use the cloud as external storage
for the uploaded logs. The MAC DTS entries for the files (Figure 5) can
be identified on the basis of unique flag values associated with operations
such as file creation, modification and deletion.

The LKM can read MAC DTS values for individual files such as im-
age files, audio files, text files and SQLite databases. However, it cannot
capture timestamps for individual database transactions. In the case of
SMS messages and calls, records are added to their respective databases.
All images, audio, video and other common files are updated directly
on the storage device and the entries are added to the corresponding

220 ADVANCES IN DIGITAL FORENSICS X

databases. For this reason, along with uploading the log file, the up-
loader application also extracts and uploads specific details (e.g., called
numbers, call status and call/SMS message times) from the call-records
folder and SMS database to track the entries that have been updated in
the databases.

The uploader application also writes the cell tower information and
the GPS location of the phone to the log file before uploading it. Adding
location information to the log file enhances the credibility of the logged
MAC DTS values because it can reveal the location where the tampering
may have taken place. Privacy issues arising from storing the log file on
a third-party cloud server can be addressed by creating a middleware
component in the cloud that encrypts the log file before storing it on the
cloud server.

4.6 Incident Handling
When tampering is suspected, the MAC DTS values of suspected

files on the phone must be cross-checked with the corresponding MAC
DTS log file values stored on the local server or cloud. If the values
match, no tampering is indicated; otherwise, the discrepancy should be
investigated.

In some cases, tampering can be detected even when the solution
is not deployed on a phone, or if there is some discrepancy that was
present on the phone before the solution was operational. For example,
every SQLite database on a device has a primary key (named id),
which increases in sequential order whenever a new record is inserted
into the database. If a call is made or an SMS message is sent to an
existing number, then a new record is written to the database. Camera
image, video and audio files also have distinct records in their respective
databases and, when they are edited, new entries with new id values are
written to the databases. If the timestamp values of one record with a
lower id value are after those of another record with a higher id value
(i.e., it was inserted later), then it is certain that timestamp values were
tampered with. These results can then be forwarded to a digital forensic
professional for further investigation.

4.7 Anti-Forensics
In addition to the anti-forensic techniques discussed above, we are

considering an additional category, namely, forensic tools that are op-
erating on a device [3]. When attempting to destroy evidence, the first
thing that an attacker might do is to delete the evidence file itself. Our
implementation cannot recover deleted data, but it can tell the time

Verma, Govindaraj & Gupta 221

Table 2. Performance benchmark parameters.

Test Parameter Operations

RAM R/W Operations MB per 10 seconds for integer array copying and
adding in RAM

CPU Integer Million operations per 10 seconds
CPU Float Million operations per 10 seconds
2D Graphics Performance evaluation for 2D animation
3D Graphics Performance evaluation for 3D animation
Database I/O Performance of SQLite queries such as INSERT,

SELECT and UPDATE
SD Card W Operations MB of data written to SD card per 10 seconds
SD Card R Operations MB of data read from SD card per 10 seconds

when a file was deleted. If the attacker tries to tamper with the meta-
data of an evidentiary file, the implementation can detect the attempt
and provide the original values from the stored log. If the attacker some-
how identifies the location of the log file and attempts to delete it, the
deletion would not be supported by the operating system.

Our solution is resistant to anti-forensic techniques that seek to hide
evidence. This is because log redirection is not possible when the LKM
is running. In the event that an attacker attempts to alter or counterfeit
the evidence (e.g., using the technique described in [1]), the LKM would
be unloaded and the logging would stop. This would result in log files not
being uploaded to the local server or cloud. To address this, a provision
could be made at the local server or in the cloud that, if no update is
received over a certain period of time, an alarm is raised that could be
used to isolate the device until further examination. The detection of
running forensic tools is not directly applicable to our solution because
only activities that occur after its installation can be captured. If an
enterprise deploys our solution on an Android device before the device
enters its ecosystem, then the activities that occurred earlier are assumed
to be of no concern to the enterprise.

5. Impact on Performance
To examine the impact of installing the LKM on a phone, we ran 30

iterations of the System Test benchmarking tool (see goo.gl/0f67R) on
the HTC Wildfire smartphone with and without the LKM. We selected
this tool specifically because it provides results for various system pe-
ripherals at the same time. The system components considered in the
benchmarking are listed in Table 2. The graph in Figure 6 summarizes
the results.

222 ADVANCES IN DIGITAL FORENSICS X

73.50

120.50

65.20

401.75

261.00

712.25

49.10

62.50

73.55

114.65

65.00

403.40

265.5

706.25

42.85

71.05

0 100 200 300 400 500 600 700 800

RAM

CPU Integer

CPU Float-point

2D Graphics

3D Graphics

Database IO

SD Card Write

SD Card Read

With LKM Without LKM

Figure 6. Performance benchmarking results for the HTC Wildfire smartphone.

Our experiments demonstrated that the solution does not impact the
performance of the HTC Wildfire smartphone to a significant degree.
Similar results were observed for the Samsung Galaxy S2 smartphone.

6. Conclusions
Android smartphones used in a BYOD environment are vulnerable

to confidentiality and integrity attacks, especially those involving tam-
pering with potential evidentiary data stored on the phones. The solu-
tion described in this paper helps detect malicious data tampering by
storing authentic copies of the MAC DTS values of selected files and
directories on a local server or in the cloud for later verification and
validation. The solution is also applicable to Android tablets. Indeed,
the concept of storing kernel-generated authentic timestamps at secure
external locations for the purpose of identifying malicious activities can
be implemented for a variety of mobile device operating systems.

Our future research will focus on developing an anomaly-based intru-
sion detection system for Android devices. MAC DTS logs can be used
to construct models of expected behavior, enabling malicious activities
to be detected and blocked in real time. Another topic of future research
is to create a customized kernel using SE Linux as part of an integrated
solution.

Verma, Govindaraj & Gupta 223

References

[1] P. Albano, A. Castiglione, G. Cattaneo and A. De Santis, A novel
anti-forensics technique for the Android OS, Proceedings of the
International Conference on Broadband and Wireless Computing,
Communications and Applications, pp. 380–385, 2011.

[2] M. Ansari, A. Chattopadhayay and S. Das, A kernel level VFS
logger for building efficient filesystem intrusion detection systems,
Proceedings of the Second International Conference on Computer
and Network Technology, pp. 273–279, 2010.

[3] S. Azadegan, W. Yu, H. Liu, M. Sistani and S. Acharya, Novel anti-
forensics approaches for smartphones, Proceedings of the Forty-Fifth
Hawaii International Conference on System Science, pp. 5424–5431,
2012.

[4] M. Barik, G. Gupta, S. Sinha, A. Mishra and C. Mazumdar, An
efficient technique for enhancing the forensic capabilities of the Ext2
filesystem, Digital Investigation, vol. 4(S), pp. S55–S61, 2007.

[5] M. Becher, F. Freiling, J. Hoffmann, T. Holz, S. Uellenbeck and C.
Wolf, Mobile security catching up? Revealing the nuts and bolts of
the security of mobile devices, Proceedings of the IEEE Symposium
on Security and Privacy, pp. 96–111, 2011.

[6] F. Buchholz and C. Falk, Design and implementation of Zeitline:
A forensic timeline editor, Proceedings of the Fifth Digital Forensic
Research Workshop, 2005.

[7] B. Carrier and E. Spafford, An event-based digital forensic inves-
tigation framework, Proceedings of the Fourth Digital Forensic Re-
search Workshop, 2004.

[8] S. Das, A. Chattopadhayay, D. Kalyani and M. Saha, Filesystem in-
trusion detection by preserving MAC DTS: A loadable kernel mod-
ule based approach for Linux kernel 2.6.x, Proceedings of the Fifth
Annual Workshop on Cyber Security and Information Intelligence
Research, art. 57, 2009.

[9] A. Distefano, G. Me and F. Pace, Android anti-forensics through a
local paradigm, Digital Investigation, vol. 7(S), pp. S83–S94, 2010.

[10] E. Gal and S. Toledo, Algorithms and data structures for flash mem-
ories, ACM Computing Surveys, vol. 37(2), pp. 138–163, 2005.

[11] J. Grover, Android forensics: Automated data collection and re-
porting from a mobile device, Digital Investigation, vol. 10(S), pp.
S12–S20, 2013.

224 ADVANCES IN DIGITAL FORENSICS X

[12] A. Gupta, C. Milanesi, R. Cozza and C. Lu, Market Share Analysis:
Mobile Phones, Worldwide, 2Q13, Gartner, Stamford, Connecticut,
August 13, 2013.

[13] R. Harris, Arriving at an anti-forensics consensus: Examining how
to define and control the anti-forensics problem, Digital Investiga-
tion, vol. 3(S), pp. S44–S49, 2006.

[14] B. Henderson, Linux Loadable Kernel Module HOWTO (tldp.
org/HOWTO/Module-HOWTO), September 24, 1006.

[15] HTC Corporation, The HTC Developer Center, Taoyuan, Taiwan
(www.htcdev.com/devcenter), 2013.

[16] International Data Corporation, Worldwide mobile phone market
forecast to grow 7.3% in 2013 driven by 1 billion smartphone
shipments, according to IDC, Press Release, Framingham, Mas-
sachusetts, September 4, 2013.

[17] M. La Polla, F. Martinelli and D. Sgandurra, A survey on security
for mobile devices, IEEE Communications Surveys and Tutorials,
vol. 15(1), pp. 446–471, 2013.

[18] A. Marrington, I. Baggili, G. Mohay and A. Clark, CAT Detect
(Computer Activity Timeline Detection): A tool for detecting incon-
sistency in computer activity timelines, Digital Investigation, vol.
8(S), pp. S52–S61, 2011.

[19] K. Miller, J. Voas and G. Hurlburt, BYOD: Security and privacy
considerations, IT Professional, vol. 14(5), pp. 53–55, 2012.

[20] J. Olsson and M. Boldt, Computer forensic timeline visualization
tool, Digital Investigation, vol. 6(S), pp. S78–S87, 2009.

[21] C. Papathanasiou and N. Percoco, This is not the droid you’re look-
ing for..., presented at DEF CON 18, 2010.

[22] J. Reardon, S. Capkun and D. Basin, Data node encrypted filesys-
tem: Efficient secure deletion for flash memory, Proceedings of the
Twenty-First USENIX Security Symposium, 2012.

[23] Samsung, Samsung Open Source Release Center, Suwon, South Ko-
rea (opensource.samsung.com), 2013.

[24] A. Shabtai, Y. Fledel and Y. Elovici, Securing Android-powered
mobile devices using SELinux, IEEE Security and Privacy, vol. 8(3),
pp. 36–44, 2010.

[25] S. Smalley, The case for SE Android, presented at the Linux Security
Summit, 2011.

[26] S. Smalley, T. Fraser and C. Vance, Linux Security Modules: Gen-
eral Security Hooks for Linux, NAI Labs, Santa Clara, California
(tali.admingilde.org/linux-docbook/lsm.pdf), 2001.

Verma, Govindaraj & Gupta 225

[27] A. Smith, Smartphone Ownership 2013, Pew Research Center,
Washington, DC, June 5, 2013.

[28] M. Weil, Dynamic time and date stamp analysis, International
Journal of Digital Evidence, vol. 1(2), 2002.

[29] D. Willis, Bring Your Own Device: The Facts and the Future, Gart-
ner, Stamford, Connecticut, April 11, 2013.

