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Angles Between Euclidean Subspaces

SHENG JIANG
Department of Mathematics, Yangzhou University, Yangzhou, Jiangsu 225002, P.R. China.

Abstract. The angle between two subspaces of dimensions p and ¢ in a Euclidean space is considered
by using exterior algebra. Some properties of angles are obtained. The relation between such a
higher dimensional angle and the usual principal angles is also given. And finally, an application to
Grassmann manifolds is briefly discussed.

Mathematics Subject Classifications (1991): 51MO05, 51M16, 51K05.

Key words: higher-dimensional angle; principal angles; Grassmann manifolds.

The trigonometry in a higher-dimensional Euclidean space has been studied by
several authors. Déband [1] proved the generalized law of cosines, the Pythagore-
an theorem and the Heron formula for n-simplices in a Euclidean space by means
of determinants. Eriksson [2] generalized the law of sines. S.-Y. T. Lin and Y.-F.
Lin [3] gave a new approach of the n-dimensional Pythagorean theorem. And,
Miao and Ben-Israel [4] established some new properties for the principal angles
between subspaces in a Euclidean n-space. These principal angles have an impor-
tant application in statistics to the canonical correlation theory of Hotelling [5].

In this paper we will consider the angle between two subspaces in an n-
dimensional Euclidean space E", derive some new properties, find the relation
between the higher dimensional angle and the principal angles of two subspaces,
and briefly discuss an example of application to the geometry of Grassmann man-
ifolds.

1. Preliminaries

For convenience, we will use exterior algebra for computations, it makes the results
clear and the proofs simpler. In this section we briefly state some basic facts about
exterior or Grassmann algebra which are needed in our paper; for details see, for
example, Bourbaki [6, ch. 3], or Flanders [7, ch. 2].

Let E™ be an n-dimensional real linear space endowed with a Euclidean inner
product. For two vectors a and b, denote by a - b their inner product.

The symbol A? E™ denotes the linear space consisting of all linear combinations
with real coefficients of wedges of p vectorsin E™, 1 < p < n.Elements of AP E"



are called p-vectors over E™. A p-vector is said to be simple or decomposable, if it
can be decomposed as a single wedge of p vectors in E™.

An induced product in A? E™ can be naturally introduced as follows.

For a pair of p-vectors

a=aiAagA---ANay, B=bAbyA---Aby,
define

{a, B) = det(a; - bj).
We can prove the following

LEMMA 1. The linear space NP E™ endowed with () is a Euclidean space.

Proof. Choosing in E™ an orthonormal basis {e;}, j = 1, 2,...,n, we getin
AP E™ an induced orthonormal basis {Ex }, K = 1, 2,...,(3), where the Ex’s
are the wedges of p different vectors e; (see Flanders [7, p. 14]). An arbitrary
p-vector « can be decomposed as

a=Y AxEk,
K

where the Ag’s are real scalars. So

(o, @) = Z(,\K)z.

K

Hence for any « € AP E", (o, ) = 0 if and only if o = 0. Consequently (,)
defines a Euclidean inner product. )

COROLLARY. For arbitrary o, € AP E™, we have

(@, @)(B, ) = (e, B,
where equality holds if and only if a differs from 3 only in a scalar factor.
Remark. The length of a p-vector « is defined by

la] = /(a, @).

a = 0 if and only if || = 0.

2. Higher Dimensional Angle

Leta = aj A ag A- - *A a, be anonzero decomposable p-vector. Then a corresponds
to a p-dimensional subspace AP of E™ spanned by a1, az,. .., a,. Conversely, for
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any basis of the vector subspace AP, the wedge of basis vectors equals ko, where
k is a nonzero real number.
Further, suppose that 1 < p < g < n, and
a=aiNa A Nay, (1)
B=biAbyA---Nby. 2)

If A and B are the subspaces corresponding to « and 3, respectively, and B is
the orthogonal complement of B in E™, then we have

ajzaf—l-a};,
where

a_f;’rEB, a}.{EBL, i=1,2,...,p
Put

ag = aff/\af/\---f\af,
ay =af Aay A---Aa),

oM = 06— O — oy.
Then we have a decomposition
a = ayg + ay + ap, 3)

where ag, ay and oy are called the horizontal, vertical and mixed parts, respec-
tively, of a.. By direct computation, we get the following lemmas.

LEMMA 2. The decomposition (3) is invariant under transformations of basis in
subspace A. Precisely, if in the linear subspace A we choose another basis {a'},
we have the corresponding p-vector o and projections oy, oy, and oy, and

o =ka, oy=kay, oy =kay, o)y =kay
for some nonzero scalar k.

LEMMA 3. (o, ag) > 0, where equality holds if and only if oy = 0.

LEMMA 4. |of? = |ag|?* + lav|? + |am|?.
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Proof. One easily verifies that
(am,ay) = (ag,anm) = (av,ap) = 0. a
DEFINITION. The angle @ between subspaces AP and BY,p < ¢, is defined by

logr |

: 4
o “4)

@ = arccos

Remark 1. The concept of the p-dimensional angle defined above is a natural
generalization of classical angles such as the angles between two lines, a line and
a plane, and between two planes. By Lemma 4, it is clear that @ is real and satisfies

0<60< /2
further, @ = /2 if and only if the subspace A is orthogonal to B.
Remark 2. When p = ¢, formula (4) can be written as

e, 8]
o] - 16]
In this case, the p-dimensional angle € between two decomposable p-vectors « and

[ over E™ is equal to the usual Euclidean angle between « and 3 as two vectors in
the induced Euclidean space AP E™.

6 = arccos

3. First Properties

Using the projection a7, we can easily generalize some well-known properties of
usual angles to the higher dimensional case as follows.

THEOREM 1 (Reducibility). Let A and B be subspaces of E™ with dimensions p
and q, respectively, where 1 < p < g < n. Suppose that AN B # {0}, and that
the orthogonal complements of AN B in A and in B are A’ and B’, respectively.
Then the angle between A and B is equal to the angle between A' and B'.

THEOREM 2 (Three cosines). Suppose that 1 < p < q < n, AP and B1 are
subspaces of E™ with dimensions p and g, respectively, and AP is not orthogonal to
B1Y. Suppose CP? is the projection of AP in B9, and DP is an arbitrary p-dimensional
subspace of BY. Denote by 0',0 and ¢ the angles between AP and DP, AP and B9,
and C? and DP, respectively. Then

cos @ = cosfcos .

Proof. Let a and § be the p-vectors corresponding to AP and DP, respectively.
Denote by ajr, ay and a)s the horizontal, vertical and mixed parts, respectively,
of a with respect to BY. Then ay corresponds to C?, and we have

(G.'V,(S) = (aM:5> =0.



Hence
_ Keud)l _ e, d)l
o - fo]  lef - |6]
_len| lon,9)]
la| o] |6

= cos 8 cos ¢. O

cos@’

COROLLARY (Minimum). Suppose AP and BY are subspaces of E™ with dimen-
sions p and q, respectively, 1 < p < q < n. Then the angle 0 between AP and
BY equals the minimum of the angle between AP and an arbitrary p-dimensional
subspace DP of BY.

4. Further Properties
Now we consider some more interesting properties of higher dimensional angles.

THEOREM 3 (Triangle inequality). Let A,B and C be three different p-
dimensional subspaces of E™,1 < p < n. Denote by 045,0sc and Opc the
angles between A and B, A and C, and B and C, respectively. Then

6B +0Bc = 0ac. (5)

Equality in (5) holds if and only if dim(ANBNC') = p—1 and the 1-dimensional
orthogonal complements A', B' and C' of ANBNC in A, B and C, respectively,
lie in one and the same plane and B' is placed in the smaller pair of vertical angles
formed by A' and C'.

Proof. Denote N = dim AP E™. Let S¥~! be the unit hypersphere in AP E™.
Identifying opposite points of S ~1, we obtain an elliptic space V1. Three
different p-dimensional subspaces A, B and C of E™ correspond to three different
points A*, B* and C” in YN-1 Then 045,0pc and 84c equal the distances
between the points A* and B*, B* and C*, and A* and C*, respectively. Since 2V 1
is a metric space (see, for example, Blumenthal [8]), inequality (5) is obtained.

For equality to hold in (5), it is necessary and sufficient that the point B* lies
on the metric segment A*C*. So there exist nonzero scalars h and k such that

B = ha+ kv,

where a, 8 and -y are the decomposable p-vectors corresponding to the subspaces
A, B and C, respectively. Since g is decomposable, we have

ﬁAy:OJ :UGB,
and hence

hahNy+kyAy=0, yé€B. (6)



Denoting
r=dim(ANBNC),
from 8 = ha + kv we get
dim(ANC)=r.

Let A’, B’ and C'’ be the orthogonal complements of AN BN Cin A, B and C,
respectively. Then

dimA' =dimB' =dimC’' =p—r,
AnC'=AnB =B'nC"={0}.
Denote by o/, ' and ' the (p — r)-vectors corresponding to A’, B’ and C’, respec-
tively. From (6) it follows that
hd Ay +ky' Ay =0, o €B.
One can choose a basis in E™ (which is not orthogonal in general) such that
o =ae A+ A €p—rs ')/ =ceppt1 A" Ae2por,
where a and c are nonzero scalars. The vector 3’ can be decomposed as follows:

p—r n—2p+2r

y = Z u;e; + Z Vj€p—r4j + Z Wi€2p—2r+4t-
=1 j=1 =1

So we obtain

p—r p—r
ha Z viet A ANep—r Neprij+ kcz Uip—ri1 N+ Nexp_2r N €+
j=1 i=1

n—2p42r

+ha Z wieyr A--+ANep_r A €2p_2r 1+
t=1

n—2p+2r

Z Wiep—r+1 N - Nexp_2r A €2p2r4t
t=1

=0.
Ifr <p—1,thenp —r > 2, we will get

hvj = k'u,: = hwt = kwt =0



for all 4,§ and £. But ' # 0 and A' N B’ = B'N C' = {0}, so we must have
h = k = 0, which is impossible by assumption. Therefore we get

dim(ANBNC)=p—1.

Consequently, by Theorem 1, 645, 84c and Opc are equal to the angles between
A’ and B', A’ and C', and B’ and C', where A’, B’ and C' are the 1-dimensional
orthogonal complements of AN B N C in A, B and C, respectively. The rest of
the proof is trivial. O

THEOREM 4 (Complement). Suppose AP and BY are subspaces of E™ with
dimensions p and g, respectively, 1 <p<qg<n,p<n-—g, B the orthogonal
complement of B in E™. Denote by 0 and 6+ the angles between A and B and
between A and B, respectively. Then

cos? @ + cos? 0+ < 1, @)
where equality holds if and only if either p = 1 or 60+ = 0(p > 1).
Proof. Inequality (7) follows from decomposition (3) and Lemma 4. Equality
in (7) holds if and only if
ap = 0.

This occurs if and only if eitherp = 1,0orp > l and o = ag ora = ay. O

Theorems 3 and 4 show some of the differences between the cases of higher and
lower dimensions.

5. Principal Angles

Let AP and BY be subspaces of E™ with dimensions p and g, respectively, 1 < p <
g < n. The principal angles between AP and BY,0 < 6; <6, <--- <0, < 7/2,
are given by

L. . §
Y aillb

b
——-max{i-—— talapblb,,m= 1,2,...,3’—1},
|al|o)
where a € AP, b € B (see Miao and Ben-Israel [4, p. 81]).

The following theorem gives a simple relation between the higher dimensional
angle 0 and the principal angles 01,65, ..., 0,.

THEOREM 5. Suppose the angle between AP and BY is 6, and the principal angles
between them are 61,0, ... ,0,. Then

cosf = cosfycosby - - cosby.



Proof. By normalization, all these a;’s and b;’s can be assumed to be unit vectors.
Puta = ay Aaz A+ A ap, then « is the p-vector corresponding to subspace AP,
and (o, a) = 1. Noting that

af =bjcosl, i=12,...,p,
we get

apg =cosfcosty---cosbpby Aby A--- Abp.
Therefore

cosf = |ag|

= cos B cost, - - - cosby. ]

Remark. The product of cosines of principal angles between subspaces L and
M was denoted by cos{L, M} only as a symbol in [4]. Now, Theorem 5 shows
that this symbol cos{L, M} is really the cosine of an angle.

6. Grassmann Manifolds

The set of all p-dimensional subspaces of E™ with suitable topology forms a
Grassmann manifold G(p,n — p). The theory of angles between subspaces of
E™ is closely connected with the geometry of Grassmann manifolds. In this way,
several theorems of distance geometry can be used to obtain the corresponding
results of differential geometry.

For example, by normalization, we can restrict p-vectors to have unit lengths. All
these unit p-vectors form a hypersphere SV ! of AP E*, where N = dim A? E™ =
(). Denote by G the submanifold of S N-1 consisting of points corresponding to
decomposable unit p-vectors. Then G is the isometrically immersed image of the
Grassmann manifold G(p,n — p) into SV—!, Research on geometric properties of
G is an interesting topic in differential geometry (see, for example, W. H. Chen
[9], who pointed out that G is an algebraic submanifold). In order to obtain the
immersed equations for G into S N-1 we choose an orthonormal basis {e;} n E™,
and then get an induced orthonormal basis {EK} in A? E™, where

Ex =ej Nej, A--- Nejy, I1<ii<ip <+ <ip <.

Therefore a unit p-vector « can be represented as
a= Z AxExk, Z(/\K)z =1,
K K

where
AK = Uipigeips 1<ii<ia< < <n.
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The quantities Ag are the usual Cartesian coordinates in the induced Euclidean
space EY or AP E™, and the Uiyiy-i, S are called Grassmann coordinates of «; they
will change sign if any two subscripts are interchanged. Our immersed equations
are just the conditions for a p-vector to be simple, which are known as Pliicker
equations and can be written out explicitly as follows:

j+1 -
Z(_‘l)j_!— Ug;by-bpUbpay-djap = UajayapUbibybys
i=1

where subscripts {ai,a,...,a,} and {by,by,...,b,} are two arbitrary arrange-
ments of {1,2,...,p}, and a; means that a; is omitted. (See Jiang [10, p. 84]; for
some particular cases also see Cartan [11, pp. 18-20]).

On the other hand, according to Menger, a subset of a metric space is called
(metrically) convex provided it contains for each two of its points at least one
between-point (see Blumenthal [8, p. 41]). Now from Theorem 3 and its proof we
infer the following result.

THEOREM 6. The Grassmann manifold G(p,n — p) as a submanifold of a sphere
is a metric space. Whenn > 3 and p > 1, it is not metrically convex.

Theorem 6 shows another difference between higher and lower dimensions.
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