
NeuroSuites-BNs: An open web framework for massive

Bayesian networks focused on neuroscience

Mario Michiels, Pedro Larrañaga, Concha Bielza

Abstract

NeuroSuites-BNs is the first web framework for learning, visualizing, and interpreting Bayesian networks (BNs) that can scale

to tens of thousands of nodes while providing fast and friendly user experience. All the necessary features that enable this are

reviewed in this paper; these features include scalability, extensibility, interoperability, ease of use, and interpretability. Scalability

is the key factor in learning and processing massive networks within reasonable time; for a maintainable software open to new

functionalities, extensibility and interoperability are necessary. Ease of use and interpretability are fundamental aspects of model

interpretation, fairly similar to the case of the recent explainable artificial intelligence trend. We present the capabilities of our

proposed framework by highlighting a real example of a BN learned from genomic data obtained from Allen Institute for Brain

Science. The extensibility properties of the software are also demonstrated with the help of our BN-based probabilistic clustering

implementation, together with another genomic-data example.

Keywords: Bayesian networks, web, software, interpretability, neuroscience, genomics

1 Introduction

Currently, we are in the data era and have a wide range

of approaches to analyse data ranging from statistical

methods to machine learning techniques. The need for

comparatively more advanced analysis techniques is

rapidly increasing owing to the large quantity and com-

plexity of data being generated.

This data explosion is occurring in almost each

field because new datasets are being made avail-

able by new data acquisition technologies and data

sharing platforms. In this study, we focus on neuro-

science, which has always suffered from replication cri-

sis caused by multiple small research teams not shar-

ing their datasets and the use of ad hoc lab procedures.

This scenario occurs despite numerous scientists in

this field desiring access to public datasets of other re-

searchers (Tenopir et al., 2011). However, this trend is

changing because daily, more data are becoming avail-

able, and current collaborative frameworks are not only

convenient but also necessary (Bouchard et al., 2016;

Leitner et al., 2016; Wicherts et al., 2011).

Genomics and morphological/electrophysiological

studies are particularly experiencing a tremendous rise

in data. The contributions via collective databases are

particularly important (e.g. NeuroMorpho.org (Ascoli

et al., 2017) in the case of morphological data). In

addition, some online collaborative frameworks such

as brainlife.io (Hayashi and Pestilli, 2017) (mainly used

for MRI studies) and Geppetto (Cantarelli et al., 2018)

(which works with morpho-electrical biophysical mod-

els) are emerging to satisfy the need for processing and

analysing all such datasets in an easy and useful man-

1

.CC-BY-NC-ND 4.0 International licensepreprint (which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for thisthis version posted February 4, 2020. . https://doi.org/10.1101/2020.02.04.934174doi: bioRxiv preprint

https://neurosuites.com
https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

ner.

Analysing neuroscience data can be particularly

complex as the data be obtained from multiple research

areas with different scales and measurement tools.

Some of these datasets can have numerous instances

and/or present an extremely high dimensionality, such

as microarray data, which can have a variable for ev-

ery gene (in the order of tens of thousands). Learning

machine learning models with massive datasets hav-

ing numerous features requires unique algorithms, be-

cause they can cause the curse of dimensionality prob-

lem.

Besides the complexity of learning, obtaining the

models and analysing them are key aspects to acquire

useful insights about a domain. In biological domains,

it is particularly sensitive and risky to make decisions

based on models for which the process of drawing con-

clusions and their implications is not understandable.

Furthermore, currently, it is particularly important to

comply with the right to an explanation from algorith-

mic decisions (Goodman and Flaxman, 2017) to ensure

they can be easily understood by the experts in the do-

main.

We need to differentiate between the trends of ex-

plainable artificial intelligence (XAI) (Nott, 2017) and

interpretable AI. XAI focuses on modifications of well-

established black box models, such as deep neural net-

works and random forests, to allow extracting knowl-

edge from them, as they can provide accurate predic-

tions in some domains but it is lacking in the explain-

ability requirements (Rudin, 2019). Contrastingly, in-

terpretable AI refers to white box models that are in-

herently explainable, which is the focus of this paper.

Therefore, the current trend (Gunning, 2017) is direct-

ing to either conduct research on interpretable AI or

XAI.

In the following, we refer to the explanatory capa-

bilities of interpretable AI models as interpretability.

To better understand the interpretability requirements,

these models must have two properties: (a) conclusion

transparency: it should be possible to ascertain why a

conclusion was reached, e.g. by showing the obtained

relationships between the variables, (b) improvement

of the system: the model transparency should allow

not only to validate the results but also to change the

model when desired and validate how these changes

affect the conclusion. For a more detailed view, we re-

fer to Asilomar AI Principles (2017) and Samek et al.

(2017).

We focus on probabilistic graphical models, partic-

ularly on Bayesian networks (BNs) (Pearl, 1988), be-

cause they fulfil all the above-mentioned interpretabil-

ity requirements. The graphical component in a BN is

particularly useful because it presents the probabilistic

relationships between the variables. In addition, the in-

ference machinery offers prediction and interpretability

capabilities about the reasoning and the model. For a

more in-depth review of the interpretability features of

BNs, we refer the reader to Lacave et al. (2007) and

Yuan et al. (2011). Owing to their interpretable nature,

BNs have already been applied to neuroscience data

with successful results (Bielza and Larrañaga, 2014;

Luengo-Sanchez et al., 2019).

BNs are probabilistic graphical models that use the

probability theory to present a compact graphical rep-

resentation of the joint probability distribution over a set

of random variables, X = {X1, ..., Xn}. BNs consist

of two main parts: a graph, which is a directed acyclic

graph (DAG) representing the probabilistic conditional

dependencies between the variables in X , and param-

eters, which are a series of conditional probability dis-

tributions (CPDs) (Koller and Friedman, 2009).

Each node in the graph represents a random vari-

able, Xi, in the vector of variables, X = (X1, ..., Xn),

and its arcs represent the probabilistic conditional de-

pendence relationships with respect to the other vari-

ables. Each node, Xi, has an associated CPD, which

represents its probability distribution conditioned on its

2

.CC-BY-NC-ND 4.0 International licensepreprint (which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for thisthis version posted February 4, 2020. . https://doi.org/10.1101/2020.02.04.934174doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

Fig. 1: Hypothetical BN example modelling the risk

of dementia. Figure extracted from Bielza and

Larrañaga (2014).

parents, Pa(Xi), in the graph (Figure 1). With all this

information, the joint distribution of all the random vari-

ables can be expressed as

P (X) =
n∏

i=1

P (Xi|Pa(Xi)). (1)

Following the example in Figure 1, if a patient has

neuronal atrophy but has not had a stroke, using infer-

ence tools we can calculate that there is a 0.40 proba-

bility he will be demented: P (d|n, s̄) = 0.40.

Although theoretically obtained properties are suffi-

cient to explain a model, we need appropriate software

tools to visualize and manipulate the model interac-

tively. The remainder of this paper is structured as fol-

lows: first we review the requirements that BN software

tools should meet to fully exploit their interpretability

features: scalability, extensibility, interoperability, ease

of use, and interpretability.

In the next section, we review the existing multi-

ple software tools in the state-of-the-art and highlight

that all of them lack one or more fundamental aspects

so that they cannot visualize all the BN capabilities.

Then, in Section 3, we present NeuroSuites-BNs, a

new open-source framework that aims to address all

these key factors and provide real-world use cases.

Finally, we discuss future improvements to be imple-

mented in this line of research.

2 Problems with state-of-the-art of

software in massive BN interpretability

It is important to differentiate between individual soft-

ware components addressing specific tasks (e.g. a

learning algorithm), referred as software packages, and

general frameworks, as the one presented in this paper,

which provide all the necessary tools to work with BN

capabilities (learning, visualization, and reasoning). In

this section, we review the problems with the current

BN software frameworks and packages by explaining

the contents summarized in Table 1, which compares

all the main BN software.

2.1 Scalability

Massive BNs present mainly three scalability problems:

learning their graph structure, efficiently visualizing it,

and developing a fast inference engine for the reason-

ing.

When the number of variables is extremely small, the

graph structure of a BN can be even modelled with only

expert knowledge. However, when the dataset has nu-

merous random variables, the graph must be learned

by computational methods. Learning the structure of

a BN is known to be an NP-hard problem (Chicker-

ing et al., 1994). The search space for all the possi-

ble DAGs is super-exponential in the number of nodes,

i.e. O(n!2(n
2)) (Robinson, 1973). Different algorithms

attempt to solve the above problem by applying heuris-

tics to this super-exponential space.

The problem becomes comparatively more complex

when dealing with a massive number of variables of the

order of thousands of nodes, requiring distinct types of

algorithms for constraining the computational memory

and time. This problem can be solved in a reason-

able time by two methods: constraining the graph struc-

ture and developing new algorithms that completely uti-

3

.CC-BY-NC-ND 4.0 International licensepreprint (which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for thisthis version posted February 4, 2020. . https://doi.org/10.1101/2020.02.04.934174doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

lize parallelization technologies. The first solution in-

cludes algorithms that inherently constraint the struc-

ture (e.g. the Chow–Liu method (Chow and Liu, 1968))

and the generating poly-tree recovery algorithm (Re-

bane and Pearl, 1987); in the latter, the resulting graph

can only be a tree or a polytree. There are other algo-

rithms which by default do not constraint the structure;

however, when the problem has an extremely high di-

mensionality, they include assumptions, like limiting the

number of parents, for each node to finish in a reason-

able time. Some examples of this case are the PC

algorithm (Spirtes et al., 2000) and the max–min hill-

climbing (MMHC) algorithm (Tsamardinos et al., 2006).

For a more detailed view of BN structure learning algo-

rithms, we refer the reader to Koski and Noble (2012).

However, some problems like learning gene regula-

tory networks (GRNs) need to be modelled without re-

stricting the structure, because all types of relations

between the variables are possible. The algorithms

available for these models are highly limited because

most of them cannot be parallelized; therefore, new op-

timized algorithms are emerging (Bernaola et al., 2019;

Liu et al., 2016; Madsen et al., 2017). Another problem

is that some of these state-of-the-art algorithms are not

typically found in the existing BN software frameworks,

because the latter are not frequently updated to include

new algorithms. Moreover, the existing frameworks do

not have a scalable software architecture to parallelize

these algorithms on multiple computing nodes.

Once the BN structure and its corresponding pa-

rameters have been learned, we need approaches

to visualize it efficiently to understand the model and

to analyse it to draw conclusions. Although there

exist software packages that can visualize general-

purpose massive graphs (Graphistry; Jacomy and

Plique; Kashcha) using the GPU computational power,

this is not so for BNs. Specifically, for BNs, viewing the

nodes and edges is not sufficient; we also need to vi-

sualize their node parameters and run BN operations,

such as making queries and observing the posterior

distributions. Essentially, we need a rich set of inter-

active options to fully understand and exploit the graph

structure and parameters. This is clearly one of the

most important bottlenecks in the current frameworks

when dealing with massive BNs.

Finally, we require an efficient inference engine,

which in the ideal case would be exact. However, exact

inference in discrete BNs is NP-hard (Cooper, 1990);

therefore, the network structure can be constrained to

reduce this cost with unique algorithms. Approximate

inference is the alternative when we do not want to con-

strain the network structure; however, it is also associ-

ated with computational problems as it is also NP-hard

(Dagum and Luby, 1993). In comparison, exact infer-

ence is tractable in the continuous space for Gaussian

BNs (see Section 3.4.4).

2.2 Extensibility

Extensibility refers to the software capability to include

new functionalities easily and coherently. It is cru-

cial for the software to be written modularly to in-

troduce new algorithms and functionalities. Three of

the major software in BN frameworks are BayesiaLab

(Conrady and Jouffe, 2013), Hugin (Madsen et al.,

2005), and BayesFusion (Druzdzel, 1999), which all

have proprietary licenses, and therefore, the code is

not open-source. This presents a significant problem in

an advancing research field like this, because the re-

search community cannot code its own extensions and

changes. In an ideal case, the frameworks should be

open-source and have simple and multiple approaches

to introduce new extensions coded by the community.

2.3 Interoperability

Interoperability can be considered as one of the direct

consequences of a good extensibility level. This is be-

cause it refers to the capability of integrating new func-

4

.CC-BY-NC-ND 4.0 International licensepreprint (which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for thisthis version posted February 4, 2020. . https://doi.org/10.1101/2020.02.04.934174doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

tionalities (from other software packages to improve

their usability) and possessing an ecosystem where all

the components can work together.

The current frameworks (Table 1) are proprietary and

specifically designed only for working with probabilis-

tic graphical models. Therefore, connections with other

types of machine learning algorithms or different anal-

ysis tools are not possible at present. Owing to their

proprietary nature, the community developers cannot

implement some functionalities, such as having direct

API connections with specific data sources as neuro-

scientific databases.

Nevertheless, the BN community has some open-

source software packages that are well maintained

and have a good extensibility; however, they are de-

signed for highly specific tasks, e.g. learning algorithms

(Aragam et al., 2019; Benjumeda et al., 2019) and in-

ference algorithms (Højsgaard, 2012). We also have

other packages, such as bnlearn (Scutari, 2010) and

pgmpy (Ankan and Panda, 2015), which comprise a set

of interconnected tools but they lack some basic mod-

ules, e.g., a graphical interface or connection with other

packages, which would make them to be considered as

frameworks. Thus, the problem of such packages is the

lack of completeness, unlike the proprietary options.

Furthermore, some software packages are devel-

oped for the specific purpose of a scientific research.

While this is appropriate for advancing the research

field, frequently these software tools are overlooked

and not maintained once the corresponding paper is

published. The first consequence is a waste of time

associated with coding again previously written algo-

rithms by other researchers when the existing code be-

comes obsolete and not extensible. Another conse-

quence is the difficulty of integration to other software,

because they may be written in a different programming

language. Therefore, the library can have data format

problems, software incompatibilities between versions,

etc.

2.4 Ease of use and interpretability

Software packages regularly do not include a graphi-

cal interface; therefore, the learning curve is extremely

steep for users not experts in programming, which com-

monly is the case with some neuroscientists. Graph

visualization cannot even be considered for software

packages because they mostly rely on third-party soft-

ware to display a static view of the BN structure and

cannot display node parameters.

In comparison, frameworks are much more user

friendly because they provide a sophisticated graphical

interface to work with. However, as a direct implication

of their low scalability, they are not capable of visualiz-

ing and managing massive networks. Moreover, spe-

cific solutions for distinct use cases (e.g. automatically

running a set of algorithms when new data emerges

from a database) cannot be developed by different re-

search teams, because of their extensibility problem.

This problem is another bottleneck when customized

solutions need to have an easy and rapid workflow,

ranging from acquiring the data to analysing them.

3 NeuroSuites-BNs

In this section, we present NeuroSuites-BNs, whose

software architecture has been specifically designed to

overcome all the problems highlighted in the previous

section (see also Table 1). Summarizing, we find our-

selves stuck in incomplete open source solutions ver-

sus more complete solutions in the proprietary field.

The objective of the framework presented in this pa-

per is to combine the best properties of both worlds

and present one complete open-source solution, with

the possibility of further improvement and becoming in-

creasingly complete. It is important to acknowledge

that NeuroSuites-BNs is included in the NeuroSuites

platform, which we developed for integrating different

neuroscience tools.

NeuroSuites-BNs has already been successfully

5

.CC-BY-NC-ND 4.0 International licensepreprint (which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for thisthis version posted February 4, 2020. . https://doi.org/10.1101/2020.02.04.934174doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

used with genomic data in Bernaola et al. (2019), and

as genomic examples, here we present real-world use

cases to illustrate how we addressed the four inter-

pretability requirements explained above.

6

.CC-BY-NC-ND 4.0 International licensepreprint (which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for thisthis version posted February 4, 2020. . https://doi.org/10.1101/2020.02.04.934174doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

Tab. 1: Comparison of the main BN software frameworks/packages

Features/software NeuroSuites-BNs BayesiaLab BayesFusion Hugin bnlearn pgmpy

S
ca

la
bi

lit
y

Learn massive networks X

Visualize massive networks X

Parallelized learning (single computer) X X X

Parallelized learning (cluster computing) X X

Has web interface X X X

E
xt

en
si

bi
lit

y

Open source X X X

Discrete variables learning X X X X X X

Discrete variables inference X X X X X

Discrete variables visualization X X X X

Continuous variables learning X X X X

Continuous variables inference X X X X

Continuous variables visualization X X X

Probabilistic clustering X X

Dynamic BNs X X X X

In
te

ro
pe

ra
bi

lit
y Connection with other languages X X X

Connection with other science fields X

Connection with online data sources X X X

Import/export BNs from/to other software X X X X X

ea
se

of
us

e Is a framework X X X X

Interactive visualization X X X X

Interpretation of massive networks X

Available online X

7

.CC-BY-NC-ND 4.0 International licensepreprint (which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for thisthis version posted February 4, 2020. . https://doi.org/10.1101/2020.02.04.934174doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

3.1 Scalability

NeuroSuites is developed as a scalable web applica-

tion to run the heavy operations in the backend while

providing a lightweight rapid experience in the fron-

tend. Its framework follows a modular architecture (Fig-

ure 2), where each fundamental component is isolated

as a Docker (Merkel, 2014) microservice (Figure 2.1);

therefore, the system can be easily scalable horizon-

tally and work as a whole. Moreover, multiple moni-

toring tools have been included since the architecture

became large and complex, and a set of tools is pro-

vided to monitor the state of the hardware, logs, task

queues, etc.

The scalable architecture is designed to be efficient

and solve the computational problems of visualizing

and managing large learning algorithms and graph op-

erations. The nginx web server (Sysoev, 2004) pro-

vides the entry point for the web requests (Figure 2.2)

and also acts as the load balancer in case the server

has multiple instances running the web application.

The frontend code (Figure 2.3) is based on vanilla

JavaScript (JS) and JQuery, to provide a simple but ef-

ficient architecture, and the style is in HTML5, CSS3,

and Bootstrap3. To provide a scalable visualization of

the BN graphs, we have made various extensions to the

sigmajs library (Jacomy and Plique), which range from

visualizing the node parameters to numerous specific

BN operations, fully explained in Section 3.4. Sigmajs

uses a WebGL engine, which utilizes a GPU card to

efficiently visualize massive graphs.

To transmit the requests and responses from the

frontend to the backend, we employ the uWSGI soft-

ware (Unbit), which acts as a web server gateway in-

terface to communicate with the Python backend (Fig-

ure 2.4). The backend core (Figure 2.5) is written in

the Django framework (Django Software Foundation,

2013), to allow us to use optimized Python libraries for

managing the graph and also other scientific libraries

(e.g. Numpy, Scipy, or Scikit-learn (Jones et al.; Pe-

dregosa et al., 2011; Van Der Walt et al., 2011)). Net-

workX (Hagberg et al., 2008) is the main library used

in the backend to store the graphs and run the graph

manipulation tasks. Lightweight graph operations, such

as colouring groups of the nodes, are completely con-

ducted in the frontend with the sigmajs library. The

heavyweight operations are sent to the backend where

they are processed with NetworkX, and the result is

sent back to sigmajs to update the graph (Figure 2.6).

Standard HTTP requests and responses have time

and computational limitations, which make them unfea-

sible to run long-duration tasks, e.g. some BN struc-

ture learning algorithms. To overcome these limitations,

we have included a queue-workers system using Rab-

bitMQ (RabbitMQ) and Celery (Celery) (Figure 2.7).

The system arranges all the long time-consuming re-

quests and queues them to be executed in the most ef-

ficient order. The system administrator can opt to scale

the necessary containers when the workload is not suf-

ficient for the number of concurrent users. For instance,

when the workload is highly intense in the heavy opera-

tions, the system administrators will increase the num-

ber of workers and the queue system will automatically

distribute the workload.

For high memory efficiency, the uploaded datasets

are internally stored on our server using the Apache

Parquet (Vohra, 2016) format . To save the internal

state of an application, the data session of the user is

stored in a PostgreSQL database (PostgreSQL) con-

nected to the Django framework to process all the op-

erations in transparently (Figure 2.8).

The included BN structure learning algorithms are

categorized into the following six groups: (a) Statistical

based (from Scikit-learn (Pedregosa et al., 2011), only

for continuous variables): Pearson correlation, mutual

information, linear regression, graphical lasso, and GE-

NIE3 (Irrthum et al., 2010); (b) Constraint based: PC,

grow shrink, iamb, fast.iamb, and inter.iamb; (c) Score

and search: hill climbing, hill climbing with tabu search,

8

.CC-BY-NC-ND 4.0 International licensepreprint (which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for thisthis version posted February 4, 2020. . https://doi.org/10.1101/2020.02.04.934174doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

Fig. 2: Software architecture of NeuroSuites-BNs.

Chow-Liu tree, Hiton parents and children, sparsebn

(Aragam et al., 2019), and FGES-Merge (Bernaola

et al., 2019); (d) Hybrid: MMHC and MMPC; (e) Tree

structure: naive Bayes, tree augmented naive Bayes;

(f) Multi-dimensional Bayesian network classifier. All

the algorithms where we have not specified a reference

here, were implemented in bnlearn.

Only some structure learning algorithms are suitable

for large-scale networks, such as the Chow–Liu algo-

rithm, GENIE3, sparsebn, MMHC, and FGES-Merge.

However, for massive networks only the FGES-Merge

can learn a network in a reasonable time without con-

straining the structure, because it is coded to run in par-

allel in multiple computing instances. NeuroSuites-BNs

includes MPI (Walker and Dongarra, 1996), which al-

lows this type of parallelism using the mpi4py Python

package (Dalcin). However, owing to the computational

limitations of our production server, we cannot provide

more than one computing node. Nevertheless, devel-

opers who install their own NeuroSuites instance can

9

.CC-BY-NC-ND 4.0 International licensepreprint (which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for thisthis version posted February 4, 2020. . https://doi.org/10.1101/2020.02.04.934174doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

make use of this parallelization capability by deploying

multiple computing nodes to run their desired Docker

containers.

BN parameter learning and inference engine (Figure

2.8) have also been designed to be scalable for mas-

sive BNs and are explained in detail in Sections 3.4 and

3.4.4, respectively.

3.2 Extensibility

NeuroSuites follows an extensible architecture where

each module has internal submodules, allowing the

modules to extend in any manner.

This extensibility enables highly easy integration of

new learning algorithms or new graph functionalities for

BNs and other modules. For example, to include a new

structure learning algorithm, the only requirements are

taking the dataset as a Pandas data frame (McKinney,

2010) and outputting a NetworkX graph object. The

changes in the frontend would be minimal, only adding

a new button to run the new learning algorithm. The en-

tire workflow is automated, and the learning algorithm

would be directly queued to the system when a request

is sent.

As the backend core is written in Python, the easi-

est method to extend it is by coding a Python exten-

sion. Because we aimed to support maximal scien-

tific communities, we also included bindings to the R

programming language for the BN learning algorithms

and other statistical packages. The binding was eas-

ily achieved via the wrappers provided using the Rpy2

package (Gautier) (Figure 2.9).

To demonstrate the extensibility of the models, we

also included support for BNs-based clustering models.

Thus, in the backend side, a subclass of the BN model

was created with the necessary extensions, and for the

frontend side, the same Javascript core for BNs was

recycled and the necessary extensions were included

(see Section 3.4.4).

3.3 Interoperability

To provide an interoperable ecosystem, we designed

a well-defined workflow consisting of first uploading the

raw dataset and then selecting the desired tools to anal-

yse it. Therefore, different sections can be found on

NeuroSuites, where each refers to a tool or a specific

set of processing tools. The focus of this study is on

the BNs section; however, users can also use other

tools already integrated in NeuroSuites. Some of these

tools, such as the statistical analysis section (Figure

2.10), can provide significant preliminary analysis for

improved better understanding of the data to then cre-

ate better BN models.

As a use case regarding interoperability, there exists

an API client that can connect a data source; it is the

latest live version of the NeuroMorpho.org database.

This type of direct connection to a data source is conve-

nient when the data from a specific neuroscience field

are required to be connected. This allows the users to

easily access the data without the need to first down-

load the data on their computer and then upload them

to the NeuroSuites server. Thanks to the extensibility

properties of NeuroSuites, it would be straightforward

to implement numerous data source connectors to any

database, e.g. the Allen Cell Types Database (Sunkin

et al., 2012) and the DisGeNET database for genes-

human disease associations (Piñero et al., 2016).

3.4 Ease of use and interpretability

Here, we review the capabilities of NeuroSuites-BNs

by presenting a complete real use case: learning and

interpreting the GRN of the full human genome using

brain data extracted from microarrays, provided by the

Allen Brain Atlas (Hawrylycz et al., 2012). The dataset

consists of 20,708 protein-coding genes as predictor

features with 3500 samples; therefore, each element in

the dataset corresponds to a measurement of a gene

expression level.

10

.CC-BY-NC-ND 4.0 International licensepreprint (which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for thisthis version posted February 4, 2020. . https://doi.org/10.1101/2020.02.04.934174doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

(a) Upload data set section

(b) Select variables to create the BN

Fig. 3: Steps to upload a data set and select its desired variables.

In step 1, the desired dataset (Figure 3a) is uploaded.

In our deployed production server, we accept CSV and

Apache Parquet gzip formats. Note that the BNs can

also be created by different software, e.g. BayesiaLab

or bnlearn, and then be imported in a BIF/CSV/Apache

Parquet format to NeuroSuites-BNs to visualize and

interpret the model. However, for this example, we

present the entire workflow to create and interpret a

new model.

In step 2, we move to the BNs section under ”Ma-

chine Learning” and select the desired variables to

learn the model (Figure 3b). For this example, we se-

lect some continuous variables that correspond to the

expression level of some genes. It is also possible to

discretize the selected variables with different methods

or select the class variables for a supervised classifica-

tion model; however, this is not the case in our example.

Following the selection of the desired variables, the

BN structure graph is learned by selecting a structure

learning algorithm, as described in the section below

(Figure 4a). For this example, we use FGES-Merge

because it is specifically designed for genomic data,

being memory and computationally efficient and hav-

ing the ability to readjust the final structure to follow the

11

.CC-BY-NC-ND 4.0 International licensepreprint (which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for thisthis version posted February 4, 2020. . https://doi.org/10.1101/2020.02.04.934174doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

(a) BN structure learning algorithm selection

(b) BN parameter learning algorithm selection

Fig. 4: Steps to learn a BN.

topology of the GRN (Nair et al., 2015).

Once the algorithm is completed, the obtained graph

is displayed in the visualizer, and we can immediately

manipulate it. Nevertheless, to provide a complete ex-

ample, we also present how to learn the model param-

eters for each node. For this, we select the maximum

likelihood estimation (MLE) of a Gaussian distribution

(Figure 4b), which provide the learned Gaussian distri-

bution for each node and the weights corresponding to

the relationships with its parents. Mathematically, the

CPD of a node, Y , given its parents Pa(Y) is

p (Y |Pa(Y)) = N
(
β0 + βTPa(Y);σ2

Y

)
. (2)

To estimate the parameters, β0, β, and σ2
Y , for each

node, the Gaussian MLE learns a multilinear regression

between Y and Pa(Y). The regression coefficients pro-

vide estimations of β0 and β, and the mean of the re-

gression residuals sum of the squares yields the σ2
Y

estimate.

Having learned the node parameters, we can utilize

the inference engine by asking some queries to the BN

and obtain the predicted results when some node val-

ues are fixed, as explained in detail in Section 3.4.4.

There are several visualization and interpretability

options, which are categorized into four groups:

layouts, general viewing options, highlighting

nodes/edges, and parameter visualization and in-

ference.

3.4.1 Layouts

A predefined layout is displayed in the visualizer when

the BN is loaded for the first time, but depending

on the problem, a different one might be needed to

be set. Choosing the appropriate layout should be

the first step to understand the graph structure of

a BN. The layouts (Figure 5a, right corner) can be

tree-based layouts (Dot, Sugiyama) (Koutsofios and

North, 1991; Sugiyama et al., 1981), force-directed lay-

outs (Fruchterman-Reingold, ForceAtlas2) (Chippada;

Csardi and Nepusz, 2006; Fruchterman and Reingold,

1991; Jacomy et al., 2014), circular, grid, and image

12

.CC-BY-NC-ND 4.0 International licensepreprint (which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for thisthis version posted February 4, 2020. . https://doi.org/10.1101/2020.02.04.934174doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

(a) Lower bar options

(b) Upper bar options

(c) Lower bar options when groups are created and inference is conducted

Fig. 5: BN visualization options.

layouts. The last one is a novel method developed by

us to create a layout by detecting the edges from any

image. It is particularly useful for creating user-defined

layouts or complex layouts that cannot be implemented

by other algorithms. Layouts are computed in the back-

end side for efficiency, although we also provide a fron-

tend (client version) implementation for the ForceAtlas2

algorithm (Plique, 2017).

For small or medium BNs, tree layouts are recom-

mended, whereas force-directed layouts are recom-

mended for large BNs, because with this type of layout

cluster formation occurs. In this example, we select the

13

.CC-BY-NC-ND 4.0 International licensepreprint (which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for thisthis version posted February 4, 2020. . https://doi.org/10.1101/2020.02.04.934174doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

ForceAtlas2 algorithm because it can clearly yield the

topology properties of GRNs (locally dense but globally

sparse) (Figure 6a). Note that the extensibility nature

of a project affect the convenience for the developers to

add new layout algorithms or modify the existing ones

to meet their own needs.

3.4.2 General viewing options

For general viewing options, we can easily navigate

through the graph, allowing to zoom any region of in-

terest. The lower bar of the visualizer has buttons to

show/hide the labels for each node, arrows, drag and

drop nodes, full screen, and reloading the graph (Fig-

ure 5a, left side).

Multiple relevant scale options are also implemented

(Figure 5a, right side), such as node sizes dependent

on the number of nodes in their Markov blanket or edge

thickness dependent on their weights, irrespective of

their reference. For instance, the edge weights can cor-

respond to a score that refers to their importance in the

network, such as the BIC score (Schwarz, 1978). It is

a penalized likelihood of the dataset calculated with the

BIC difference of adding that edge versus not adding it.

A filtering option to remove the edges below or above

a certain weight threshold is also included (Figure 5b,

bottom left).

3.4.3 Highlighting nodes/edges

Subsequent to selecting the appropriate layout and

configuring the general viewing options, the next step

is highlighting the relevant nodes or edges. We provide

tools for highlighting the nodes isolated in the Markov

blanket of a given node or its parents or children (Fig-

ure 5a, centre).

When dealing with massive networks, one of the

most important features is the creation of groups. The

groups can be created by three ways: manually, auto-

matically, or uploading a list of already defined groups

(a) Nodes coloured by the Louvain algorithm for communities

detection. ForceAtlas2 layout is applied

(b) Metadata groups information uploaded. Same network as in

(a) but now only a subset of the nodes associated with the

schizophrenia disease and the edges between them are

selected

Fig. 6: BN structure of the full human brain genome,

where independent nodes are not shown.

of nodes. A node or a set of nodes manually can be

selected by searching for them by their name in the

search fields with auto-completion (Figure 5b, middle

left, ”Find one node”). Once we have selected the de-

sired nodes to highlight, we can opt to create a group

with them, and our node selection is saved to be used

14

.CC-BY-NC-ND 4.0 International licensepreprint (which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for thisthis version posted February 4, 2020. . https://doi.org/10.1101/2020.02.04.934174doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

subsequently (Figure 5b, upper middle, ”Select multi-

ple nodes”). A name and colour can also be assigned

to each created custom group.

To generate groups automatically, we can run some

algorithms designed for community detection, such as

the Louvain algorithm (Blondel et al., 2008), which op-

timizes a modularity score for each community. In this

case, the modularity evaluates the density of edges in-

side a community compared to that of the edges out-

side it. To select groups already created externally, we

can upload the metadata JSON file, so that each node

has some associated tags.

Finally, we can select a specific group (Figure 5c, up-

per left), and each node is displayed according to the

colour of its category (Figure 6a). Moreover, we can se-

lect a specific category within a group (Figure 5c, cen-

tre), and only the nodes with that category are shown

(Figure 6b).

15

.CC-BY-NC-ND 4.0 International licensepreprint (which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for thisthis version posted February 4, 2020. . https://doi.org/10.1101/2020.02.04.934174doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

(a) Selection of one random node associated with schizophrenia disease, following inclusion of the metadata information about

the gene–disease association. In this case, we select the node on top, corresponding to gene KIF17, fix its value to make it

an evidence node, E = e, and only show its children to have a clear view of their relations

(b) Evidence node set (KIF17) (top) and one of its children (bottom), corresponding to gene KCNIP3 associated with malignant

neoplasm of a breast. The plot includes its original marginal Gaussian PDF in blue, p(Q), as it is before setting any evidence,

and the new one in black, p(Q|E), which corresponds to its PDF after setting the evidence of gene KIF17. The exact

parameters are also displayed. Therefore, the inference process demonstrates how fixing a low value for the gene associated

with schizophrenia (KIF17) also results in a value near zero for the gene associated to the malignant breast neoplasm

(KCNIP3), which indicates a relationship between these two genes.

Fig. 7: Inference workflow in BNs. The network corresponds to the full human brain genome from the Allen Institute

for Brain Science.

16

.CC-BY-NC-ND 4.0 International licensepreprint (which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for thisthis version posted February 4, 2020. . https://doi.org/10.1101/2020.02.04.934174doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

Fig. 8: Inference effect in the query nodes. We can now infer the extent the evidence of a node (or group of nodes)

affects the PDF of other nodes or group of nodes, p(Q|E), by examining the Kullback–Leibler (KL) divergence

between the original and the posterior distributions or their mean or standard deviation variation. The left

column in each drop-down box corresponds to the genes id, and the right column presents the score values.

Note that in this example, the standard deviation values seem to be zero, because they are rounded to two

decimals. Further, the effect of fixing the evidence of only one node in a network of more than 20,000 nodes

can be minimal for the standard deviation of the other nodes.

When selecting a group of nodes, the arcs between

these nodes are also selected to provide a clear view

of the group. A user can also opt to highlight the neigh-

bours of the nodes for that group, even if they do not

belong to that group (Figure 5a, centre). Finally, to re-

alize a clear understanding of where a group is within

the global network, a user can enable an almost trans-

parent view of all the other nodes that are not in the

selected group.

Additionally, individual important nodes can also be

selected by fixing a threshold for their minimum number

of neighbours. An automatic approach has also been

included to highlight the important nodes using the be-

tweenness centrality algorithm (Figure 9a) implementa-

tion in NetworkX. It can detect the importance of a node

is according to the number of shortest paths (for every

pair of nodes) that pass through the node.

Comparisons of two different BNs are also possible

by displaying both structures in the same graph and

colouring the edges depending on which network they

belong to. To achieve this, we must first upload a BN

or learn it from a dataset, and then repeat this with the

second BN. However, a visual comparison is not suffi-

cient when the networks are large. Hence, we include

a summary table displaying some structural measures,

such as the accuracy, precision, recall, F-Score, and

Matthews correlation coefficient, which use the confu-

sion matrix of the edge differences of the second BN

with respect to the first BN.

3.4.4 Parameter visualization and inference

The next step is to visualize the node parameters and

make some queries to the BN, to demonstrate how the

inference engine works. NeuroSuites-BNs supports vi-

sualization for both discrete and continuous nodes. In

the case of discrete nodes, the marginal CPD table is

provided, whereas in the continuous case, an interac-

tive plot of its marginal Gaussian PDF is displayed (Fig-

ure 7a).

Because our example has only continuous Gaussian

nodes, we describe the continuous exact inference en-

gine. This involves converting the network parame-

ters into a multivariate Gaussian distribution, N (µ; Σ);

17

.CC-BY-NC-ND 4.0 International licensepreprint (which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for thisthis version posted February 4, 2020. . https://doi.org/10.1101/2020.02.04.934174doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

therefore, the marginalization operation for a query vari-

able, p(Q = q), is trivial, because we only need to

extract its mean and variance from the multivariate

Gaussian distribution. For the conditioning probabil-

ity density of a query variable given a set of evidence

variables, p(Q = q|E), we also utilize the multivari-

ate Gaussian distribution, following the equations de-

scribed in Koller and Friedman (2009).

Performing the inference operations in this manner

allows a highly rapid inference engine because the

most time consuming operation is conditioning over a

large set of evidence variables in E, which is O(l3), be-

ing l is the number of evidence variables E to condition

on. This complexity is directly a result of the formulas

for conditioning, as it is needed to invert a matrix of size

l × l.

From the user perspective, this entire process is

transparent, which is a key factor for the ease of use

and interpretability of BNs. The inference process is as

follows: to set the evidence nodes, E, the user either

clicks on the desired node and fixes the exact value

(Figure 7a) or selects a group of nodes. The last op-

tion only allows fixing a shared value of the evidence

for the whole group, because the standard deviation of

each member of the group varies from its mean value.

Setting different values at each node would be ineffi-

cient because the group can be large and the nodes

can have different scales.

To view how the parameters of the query nodes,

p(Q = q|E), change, the user clicks on a specific node

and both the original and new distributions are shown in

the same plot, allowing a better comparison of how the

parameters changed (Figure 7b). Note that when no

evidences are selected, only the original marginal dis-

tribution, p(Q = q), is displayed on clicking or searching

a desired node in the search bar. As both the original

and updated distributions are cached in the backend,

the estimated time for presenting the marginal distri-

bution of a specific node is highly optimized having a

constant complexity, which in real time is equivalent to

only a couple of seconds.

To provide useful insights about the inference effects,

we display multiple sorted lists of the query nodes,

demonstrating how much their distribution changes ac-

cording to the KL divergence value, mean variation, and

standard deviation variation (Figure 8). When the case

groups are created, a list of the multivariate KL diver-

gence values for each group is also be displayed.

In addition, to support another functionality for under-

standing the graph, we implemented the D-separation

criterion following the reachable algorithm described

in Koller and Friedman (2009), which can automati-

cally check for conditional independences. Two ran-

dom variables X and Y are conditionally independent

given a random variable Z, if for any assignment of

values X = x, Y = y, Z = z, knowing the value of

X does not affect the probability of Y when the value

of Z is already known, i.e. P (Y |X,Z) = P (Y |Z).

Thus, the D-separation algorithm can be particularly

useful when we are running inference and want to de-

termine whether some nodes are conditionally inde-

pendent when some evidence nodes are given.

We have implemented further extensions to support

BN-based probabilistic clustering models. The utilized

dataset for this use case is also from the Allen Brain

Atlas, specifically the one in the Cell Types Database:

RNA-Seq Data, which contains single-cell gene ex-

pression levels across the human cortex. Therefore,

the genes correspond to a set of continuous attributes

X = {X1, ..., Xn} for the cell measurements (i.e. the

dataset instances).

18

.CC-BY-NC-ND 4.0 International licensepreprint (which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for thisthis version posted February 4, 2020. . https://doi.org/10.1101/2020.02.04.934174doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

(a) Network edges for four clusters, each one with a different colour. The upper part of the image also presents the cluster

weights. Node sizes are adjusted to highlight the most important nodes with the betweenness centrality algorithm. Nodes

colours are according to external metadata to organize them in three groups given their importance.

(b) Selection of a group with the 20 most relevant nodes according to the metadata uploaded file. The plot displays the

parameters of gene X6857. Each of the four clusters (different colours), presents a Gaussian distribution. In this example, we

can easily notice that the most probable cluster assignation for this gene is cluster 1 (in grey), p(X6857|C = c1).

Fig. 9: BN-based probabilistic clustering model of 2000 nodes of the human brain genome.

19

.CC-BY-NC-ND 4.0 International licensepreprint (which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for thisthis version posted February 4, 2020. . https://doi.org/10.1101/2020.02.04.934174doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

In model-based clustering (Fraley and Raftery,

2002), it is assumed that the data follow a joint prob-

ability distribution, P (X), which can be expressed as a

finite mixture of K components. This implies that each

mixture component, P (X|C = c), refers to the CPD of

X variables given a cluster, c, where the hidden cluster,

c, has its own probability distribution, P (C = c). Thus,

P (X) =
K∑
c=1

P (C = c)P (X|C = c). (3)

Learning the parameters for this mixture model re-

quires a more advanced technique than MLE, because

the cluster variable is hidden. Therefore, we learn

the parameters (mixture weights P (C = c) and the

CPD parameters, i.e. P (X|C = c)) with the expec-

tation maximization algorithm (Dempster et al., 1977)

because it can handle incomplete data.

In genomics it is typically assumed that P (X|C = c)

follows a multivariate Gaussian distribution, N (µ,Σ).

Hence, the parameters are the mixture weight vector,

π, and the multivariate Gaussian distribution parame-

ters, i.e. the mean vector µ, and the covariance matrix,

Σ.

Numerous genes require a high-dimensional model,

which can lead to major computational problems, in

terms of both memory and time. For instance, we would

have to work with Σ, which is an n × n matrix, where

n is the number of X variables (genes in this case).

To reduce the computational complexity and improve

the interpretability, we can factorize this expression to

encode the conditional independences between the X

variables in a cluster. This allows different graphical

models for different clusters, because the relationships

between the X variables are conditioned on each clus-

ter as

P (X|C = c) =
n∏

i=1

P (Xi|Pa(Xi), C = c) (4)

To represent this, we display each graph correspond-

ing to P (X|C = c) in the same BN, colouring the edges

with different colours for each cluster (Figure 9a). Se-

lection tools are also implemented to show/hide the dif-

ferent cluster edges and filter them (Figure 9b).

Finally, we express the joint probability distribution

of X (Eq. 3) factorized according to Eq. 4. We call

this BN-based probabilistic clustering (Pham and Ruz,

2009),

P (X) =
K∑
c=1

P (C = c)
n∏

i=1

P (Xi|Pa(Xi), C = c) (5)

Therefore, inference can be performed on each

graph corresponding to a cluster without affecting the

other cluster CPDs. For instance, we can fix the evi-

dence for the distribution of a gene, as Xi = e, given a

cluster C = c, where e is a scalar value, and then query

another gene to determine how its CPD for that cluster

has changed, P (Xj |C = c,Xi = e).

The obtained BN can be exported as an SVG im-

age or as a CSV file containing the graph information

about the arcs between the nodes. This exported file

can be loaded subsequently in another session to con-

tinue working. Finally, it is important to acknowledge

that the user data in a session remains in our servers

for 48 h since the last modification of the data. This limit

is imposed by our hardware limitations. To overcome

this limitation, a user can always create new sessions,

and the data will be stored again for 48 h. Users are

also encouraged to deploy their own server instance to

modify the framework according to their needs.

4 Discussion

We believe that the ease of use will be helpful in ini-

tiating collaborations between experts of multiple disci-

plines. This will be extremely important for the adoption

of these models by experts of other disciplines who are

not used to programming or software engineering, such

as some neuroscientists or physicians.

Here, we review some possible future use cases for

20

.CC-BY-NC-ND 4.0 International licensepreprint (which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for thisthis version posted February 4, 2020. . https://doi.org/10.1101/2020.02.04.934174doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

which we believe that this tool can be of great inter-

est. The first example could be the use of a private

server instance in closed local networks environments,

such as hospitals, clinical laboratories, or companies.

A workflow could be easily designed to have a clear

pipeline to process the data with machine learning tech-

niques. New data sources connections could be im-

plemented to automatically plug into the data acquisi-

tion machines. In addition, some type of specific pre-

processing for the data could be implemented in Neu-

roSuites (e.g. for genomic data it could be the removal

of irrelevant genes and the inclusion of domain knowl-

edge about the most important genes). Further, the

experts could analyse the data with the NeuroSuites-

BNs framework. The web characteristics of the frame-

works would make the tool available in a web browser

for each employee in the local network without the need

of installing the software on their computer.

Finally, we also believe this simplicity could be a great

aid for educational purposes when teaching BNs allow-

ing the theorical properties to be shown in a dynamic

environment.

The framework aims to be a complete product; how-

ever, this is an extremely large research field, and at

the time of writing this paper it does not include all the

existing state-of-the-art functionalities. Its extensibility

properties can make it possible to include numerous

extensions and implement new functionalities.

A useful implementation to be included would be

some inference algorithms for discrete BNs. We have

provided the support to learn and visualize discrete pa-

rameters in BNs. However, we have not included yet

any inference algorithm for them owing to the devel-

opment time constraints and the difficulty to visualize

the changes in the parameters when there are many

parameters per node and numerous nodes. Moreover,

massive datasets in various neuroscience fields, such

as genomics and electrophysiology, comprise only con-

tinuous features.

Another interesting extension would be the inclusion

of dynamic BNs (Murphy, 2002). The steps to imple-

ment this would be similar to the ones described in

the last section to include BN-based clustering mod-

els. However, there would be an increased complexity

to visualize the network for each timeframe and for per-

forming new types of inferences (e.g. filtering, smooth-

ing, etc.).

Finally, we want to highlight that NeuroSuites also of-

fers different tools, such as morphological reconstruc-

tions and microscopy data, for other neuroscience do-

mains. However, although this framework is designed

focusing on the neuroscience field, many other tools

can also be used in other research fields. Develop-

ers can modify the platform to target a different re-

search field. However, it is also important to note that

no modifications are needed if the user wants to up-

load his own dataset and learn a probabilistic graphical

model and interpret it, despite the neuroscience back-

ground theme of the website. For instance, the use

case that we followed here needs a specific BN struc-

ture learning algorithm designed for genomics (FGES-

Merge) along with all the visualization tools for under-

standing its massive network. However, for other do-

mains, where datasets are relatively smaller, other al-

gorithms could also be applied.

Data availability

Our production server on https://neurosuites.com

can be freely accessed, where all the futures

updates will be live. We also provide ac-

cess to the NeuroSuites source code reposi-

tory in https://gitlab.com/mmichiels/neurosuite.

The BNs used in the examples for show-

casing NeuroSuites-BNs can be found in

https://gitlab.com/mmichiels/fges parallel production

/tree/master/BNs results paper

21

.CC-BY-NC-ND 4.0 International licensepreprint (which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for thisthis version posted February 4, 2020. . https://doi.org/10.1101/2020.02.04.934174doi: bioRxiv preprint

https://neurosuites.com
https://gitlab.com/mmichiels/neurosuite
https://gitlab.com/mmichiels/fges_parallel_production/tree/master/BNs_results_paper
https://gitlab.com/mmichiels/fges_parallel_production/tree/master/BNs_results_paper
https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

Authors’ contributions

Mario Michiels designed the software architecture,

developed the software and wrote the manuscript.

Pedro Larrañaga and Concha Bielza conceived the

project, oversaw the development process, contribut-

ing with new ideas and corrections, and reviewed the

manuscript. All authors gave final approval for publi-

cation and agree to be held accountable for the work

performed therein.

Competing interests

We declare we have no competing interests.

Funding

This project has received funding from the European

Union’s Horizon 2020 Framework Programme for Re-

search and Innovation under Specific Grant Agree-

ment No. 785907 (HBP SGA2) and from the Spanish

Ministry of Economy and Competitiveness through the

TIN2016-79684-P project.

Acknowledgments

The authors would like to thank Sergio Paniego for his

help in the development of the NeuroSuites-BNs visual-

ization tool, Nikolas Bernaola for his assistance in pro-

gramming the continuous inference engine for BNs, and

Fernando Rodriguez-Sanchez for his research in BN-

based probabilistic clustering models and his help in

reviewing that section in this paper.

22

.CC-BY-NC-ND 4.0 International licensepreprint (which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for thisthis version posted February 4, 2020. . https://doi.org/10.1101/2020.02.04.934174doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

References

Ankan, A. and Panda, A., (2015). pgmpy: Probabilistic

Graphical Models using Python. In Proceedings of

the 14th Python in Science Conference. 6–11. doi:

10.25080/majora-7b98e3ed-001

Aragam, B., Gu, J., and Zhou, Q., (2019). Learn-

ing large-scale Bayesian Networks with the sparsebn

package. Journal of Statistical Software 91, 1–38.

doi:10.18637/jss.v091.i11

Ascoli, G. A., Maraver, P., Nanda, S., Polavaram, S.,

and Armañanzas, R., (2017). Win-win data sharing

in neuroscience. Nature Methods 14, 112–116. doi:

10.1038/nmeth.4152

Asilomar AI Principles, (2017). Principles developed in

conjunction with the 2017 Asilomar conference. In

Benevolent AI 2017

Benjumeda, M., Bielza, C., and Larrañaga, P., (2019).

Learning tractable Bayesian networks in the space of

elimination orders. Artificial Intelligence 274, 66–90.

doi:10.1016/j.artint.2018.11.007

Bernaola, N., Michiels, M., Larrañaga, P., and

Bielza, C., (2019). FGES-Merge. Available

online at: https://gitlab.com/mmichiels/fges_

parallel_production. (Acessed 14th August 2019)

Bielza, C. and Larrañaga, P., (2014). Bayesian net-

works in neuroscience: A survey. Frontiers in Com-

putational Neuroscience 8, 131. doi:10.3389/fncom.

2014.00131

Blondel, V. D., Guillaume, J. L., Lambiotte, R., and

Lefebvre, E., (2008). Fast unfolding of communi-

ties in large networks. Journal of Statistical Mechan-

ics: Theory and Experiment 2008, P10008. doi:

10.1088/1742-5468/2008/10/P10008

Bouchard, K. E., Aimone, J. B., Chun, M., Dean, T.,

Denker, M., Diesmann, M., et al., (2016). High-

Performance Computing in Neuroscience for Data-

Driven Discovery, Integration, and Dissemination.

Neuron 92, 628–631. doi:10.1016/j.neuron.2016.10.

035

Cantarelli, M., Marin, B., Quintana, A., Earnshaw, M.,

Court, R., Gleeson, P., et al., (2018). Geppetto: A

reusable modular open platform for exploring neu-

roscience data and models. Philosophical Transac-

tions of the Royal Society B: Biological Sciences 373,

20170380. doi:10.1098/rstb.2017.0380

Celery. Celery: Distributed task queue. Available online

at: http://www.celeryproject.org/

Chickering, D. M., Geiger, D., and Heckerman, D.,

(1994). Learning Bayesian networks is NP-hard.

Tech. rep., MSR-TR-94-17, Microsoft Research, Ad-

vanced Technology Division, Microsoft Corporation,

Redmond, WA

Chippada, B. ForceAtlas2 for Python. Available

online at: https://github.com/bhargavchippada/

forceatlas2. (Acessed 14th August 2019)

Chow, C. K. and Liu, C. N., (1968). Approximating

Discrete Probability Distributions with Dependence

Trees. IEEE Transactions on Information Theory 14,

462–467. doi:10.1109/TIT.1968.1054142

Conrady, S. and Jouffe, L., (2013). Introduction to

Bayesian Networks BayesiaLab. Bayesia SAS, USA

Cooper, G. F., (1990). The computational complexity

of probabilistic inference using Bayesian belief net-

works. Artificial intelligence 42, 393–405

Csardi, G. and Nepusz, T., (2006). The igraph software

package for complex network research. InterJournal

Complex Sy, 1695

Dagum, P. and Luby, M., (1993). Approximating prob-

abilistic inference in Bayesian belief networks is NP-

hard. Artificial intelligence 60, 141–153

23

.CC-BY-NC-ND 4.0 International licensepreprint (which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for thisthis version posted February 4, 2020. . https://doi.org/10.1101/2020.02.04.934174doi: bioRxiv preprint

https://gitlab.com/mmichiels/fges_parallel_production
https://gitlab.com/mmichiels/fges_parallel_production
http://www.celeryproject.org/
https://github.com/bhargavchippada/forceatlas2
https://github.com/bhargavchippada/forceatlas2
https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

Dalcin, L. mpi4py: Python bindings for MPI.

Available online at: https://github.com/mpi4py/

mpi4py. (Acessed 14th August 2019)

Dempster, A. P., Laird, N. M., and Rubin, D. B., (1977).

Maximum likelihood from incomplete data via the EM

algorithm. Journal of the Royal Statistical Society:

Series B (Methodological) 39, 1–22

Django Software Foundation, (2013). The Web frame-

work for perfectionists with deadlines — Django.

Available online at: https://www.djangoproject.

com/

Druzdzel, M. J., (1999). SMILE: Structural Modeling,

Inference, and Learning Engine and GeNIe: A devel-

opment environment for graphical decision-theoretic

models. In AAAI/IAAI. 902–903

Fraley, C. and Raftery, A. E., (2002). Model-based clus-

tering, discriminant analysis, and density estimation.

Journal of the American Statistical Association 97,

611–631

Fruchterman, T. M. and Reingold, E. M., (1991).

Graph drawing by force-directed placement. Soft-

ware: Practice and Experience 21, 1129–1164. doi:

10.1002/spe.4380211102

Gautier, L. rpy2. Available online at: https://rpy2.

bitbucket.io/

Goodman, B. and Flaxman, S., (2017). European

Union regulations on algorithmic decision-making

and a “right to explanation”. AI Magazine 38, 50–57

Graphistry. PyGraphistry: A library to extract, trans-

form, and visually explore big graphs. Avail-

able online at: https://github.com/graphistry/

pygraphistry. (Acessed 14th August 2019)

Gunning, D., (2017). Explainable artificial intelligence

(XAI). Available online at: https://www.darpa.mil/

program/explainable-artificial-intelligence.

(Acessed 10th October 2019)

Hagberg, A. A., Schult, D. A., and Swart, P. J., (2008).

Exploring Network Structure, Dynamics, and Func-

tion using NetworkX. Tech. rep., Los Alamos National

Lab (LANL)

Hawrylycz, M. J., Lein, E. S., Guillozet-Bongaarts, A. L.,

Shen, E. H., Ng, L., Miller, J. A., et al., (2012). An

anatomically comprehensive atlas of the adult human

brain transcriptome. Nature 489, 391

Hayashi, S. and Pestilli, F., (2017). Reproducible neu-

roimaging via open cloud services: data upcycling to

advance discovery in network neuroscience. Avail-

able online at: https://brainlife.io/

Højsgaard, S., (2012). Graphical independence net-

works with the gRain package for R. Journal of Sta-

tistical Software 46, 1–26

Irrthum, A., Wehenkel, L., Geurts, P., and Others,

(2010). Inferring regulatory networks from expres-

sion data using tree-based methods. PloS one 5,

e12776

Jacomy, A. and Plique, G. Sigmajs. Available online

at: http://sigmajs.org/. (Acessed 25th Novem-

ber 2019)

Jacomy, M., Venturini, T., Heymann, S., and Bastian,

M., (2014). ForceAtlas2, a continuous graph layout

algorithm for handy network visualization designed

for the Gephi software. PLoS ONE 9, e98679. doi:

10.1371/journal.pone.0098679

Jones, E., Oliphant, T., and Peterson, P. SciPy: Open

source scientific tools for Python. Available online at:

http://www.scipy.org/

Kashcha, A. VivaGraphJS: Graph drawing library for

JavaScript. Available online at: https://github.

com/anvaka/VivaGraphJS. (Acessed 14th Au-

gust 2019)

24

.CC-BY-NC-ND 4.0 International licensepreprint (which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for thisthis version posted February 4, 2020. . https://doi.org/10.1101/2020.02.04.934174doi: bioRxiv preprint

https://github.com/mpi4py/mpi4py
https://github.com/mpi4py/mpi4py
https://www.djangoproject.com/
https://www.djangoproject.com/
https://rpy2.bitbucket.io/
https://rpy2.bitbucket.io/
https://github.com/graphistry/pygraphistry
https://github.com/graphistry/pygraphistry
https://www.darpa.mil/program/explainable-artificial-intelligence
https://www.darpa.mil/program/explainable-artificial-intelligence
https://brainlife.io/
http://sigmajs.org/
http://www.scipy.org/
https://github.com/anvaka/VivaGraphJS
https://github.com/anvaka/VivaGraphJS
https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

Koller, D. and Friedman, N., (2009). Probabilistic

Graphical Models - Principles and Techniques. MIT

press

Koski, T. J. T. and Noble, J., (2012). A review of

Bayesian networks and structure learning. Mathe-

matica Applicanda 40

Koutsofios, E. and North, S., (1991). Drawing Graphs

with Dot. Tech. rep., 910904-59113-08TM, ATT Bell

Laboratories, Murray Hill, NJ

Lacave, C., Luque, M., and Diez, F. J., (2007). Expla-

nation of Bayesian networks and influence diagrams

in Elvira. IEEE Transactions on Systems, Man, and

Cybernetics, Part B (Cybernetics) 37, 952–965

Leitner, F., Bielza, C., Hill, S. L., and Larrañaga, P.,

(2016). Data publications correlate with citation im-

pact. Frontiers in Neuroscience 10, 419. doi:10.3389/

fnins.2016.00419

Liu, F., Zhang, S.-W., Guo, W.-F., Wei, Z.-G., and Chen,

L., (2016). Inference of gene regulatory network

based on local bayesian networks. PLoS computa-

tional biology 12, e1005024

Luengo-Sanchez, S., Larranaga, P., and Bielza, C.,

(2019). A Directional-Linear Bayesian Network and

Its Application for Clustering and Simulation of Neu-

ral Somas. IEEE Access 7, 69907–69921. doi:

10.1109/ACCESS.2019.2918494

Madsen, A. L., Jensen, F., Kjærulff, U. B., and Lang,

M., (2005). The Hugin Tool for probabilistic graphical

models. International Journal on Artificial Intelligence

Tools 14, 507–543. doi:10.1142/S0218213005002235

Madsen, A. L., Jensen, F., Salmerón, A., Langseth, H.,

and Nielsen, T. D., (2017). A parallel algorithm for

Bayesian network structure learning from large data

sets. Knowledge-Based Systems 117, 46–55

McKinney, W., (2010). Data Structures for Statistical

Computing in Python. In Proceedings of the 9th

Python in Science Conference, eds. S. van der Walt

and J. Millman. 51–56

Merkel, D., (2014). Docker: Lightweight Linux

containers for consistent development and deploy-

ment. Linux Journal 2014, 2. doi:10.1097/01.NND.

0000320699.47006.a3

Murphy, K., (2002). Dynamic Bayesian Networks: Rep-

resentation, Inference and Learning. Ph.D. thesis,

University of California

Nair, A., Chetty, M., and Wangikar, P. P., (2015). Im-

proving gene regulatory network inference using net-

work topology information. Molecular BioSystems

11, 2449–2463. doi:10.1039/c5mb00122f

Nott, G., (2017). Explainable Artificial Intelligence:

Cracking Open the Black Box of AI. Computer world

4

Pearl, J., (1988). Probabilistic Reasoning in Intelligent

Systems : Networks of Plausible Inference. Morgan

Kaufmann. doi:10.1016/c2009-0-27609-4

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,

Thirion, B., Grisel, O., et al., (2011). Scikit-learn: Ma-

chine Learning in Python. Journal of Machine Learn-

ing Research 12, 2825–2830

Pham, D. T. and Ruz, G. A., (2009). Unsupervised

training of Bayesian networks for data clustering.

Proceedings of the Royal Society A: Mathematical,

Physical and Engineering Sciences 465, 2927–2948

Piñero, J., Bravo, À., Queralt-Rosinach, N., Gutiérrez-

Sacristán, A., Deu-Pons, J., Centeno, E., et al.,

(2016). DisGeNET: A comprehensive platform in-

tegrating information on human disease-associated

genes and variants. Nucleic Acids Research 45,

D833–D839. doi:10.1093/nar/gkw943

Plique, G., (2017). ForceAtlas2 sigmajs plugin. Avail-

able online at: https://github.com/jacomyal/

25

.CC-BY-NC-ND 4.0 International licensepreprint (which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for thisthis version posted February 4, 2020. . https://doi.org/10.1101/2020.02.04.934174doi: bioRxiv preprint

https://github.com/jacomyal/sigma.js/tree/master/plugins/sigma.layout.forceAtlas2
https://github.com/jacomyal/sigma.js/tree/master/plugins/sigma.layout.forceAtlas2
https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

sigma.js/tree/master/plugins/sigma.layout.

forceAtlas2. (Acessed 25th November 2019)

PostgreSQL. PostgreSQL: The world’s most advanced

open source database. Available online at: https://

www.postgresql.org/. (Acessed 14th August 2019)

RabbitMQ. RabbitMQ. Available online at: https:

//www.rabbitmq.com/. (Acessed 25th Novem-

ber 2019)

Rebane, G. and Pearl, J., (1987). The Recovery of

Causal Poly-trees from Statistical Data. In Proceed-

ings of the Third Conference on Uncertainty in Artifi-

cial Intelligence. AUAI Press, UAI’87, 222–228

Robinson, R., (1973). Counting labeled acyclic di-

graphs. In New Directions in the Theory of Graphs

(Proc. Third Ann Arbor Conf., Univ. Michigan, Ann

Arbor, Mich., 1971), ed. Academic Press. 239–273

Rudin, C., (2019). Stop explaining black box machine

learning models for high stakes decisions and use

interpretable models instead. Nature Machine Intelli-

gence 1, 206–215. doi:10.1038/s42256-019-0048-x

Samek, W., Wiegand, T., and Müller, K.-R., (2017). Ex-

plainable Artificial Intelligence: Understanding, Visu-

alizing and Interpreting Deep Learning Models

Schwarz, G., (1978). Estimating the Dimension of a

Model. The Annals of Statistics 6, 461–464. doi:

10.1214/aos/1176344136

Scutari, M., (2010). Learning Bayesian networks with

the bnlearn R Package. Journal of Statistical Soft-

ware 35, 1–22. doi:10.18637/jss.v035.i03

Spirtes, P., Glymour, C. N., Scheines, R., Heckerman,

D., Meek, C., Cooper, G., et al., (2000). Causation,

prediction, and search. MIT press

Sugiyama, K., Tagawa, S., and Toda, M., (1981). Meth-

ods for Visual Understanding of Hierarchical System

Structures. IEEE Transactions on Systems, Man and

Cybernetics 11, 109–125. doi:10.1109/TSMC.1981.

4308636

Sunkin, S. M., Ng, L., Lau, C., Dolbeare, T., Gilbert,

T. L., Thompson, C. L., et al., (2012). Allen Brain At-

las: an integrated spatio-temporal portal for exploring

the central nervous system. Nucleic Acids Research

41, D996—-D1008. doi:10.1093/nar/gks1042

Sysoev, I., (2004). nginx. Available online at: https:

//nginx.org/. (Acessed 25th November 2019)

Tenopir, C., Allard, S., Douglass, K., Aydinoglu, A. U.,

Wu, L., Read, E., et al., (2011). Data sharing by sci-

entists: Practices and perceptions. PLoS ONE 6,

e21101. doi:10.1371/journal.pone.0021101

Tsamardinos, I., Brown, L. E., and Aliferis, C. F., (2006).

The max-min hill-climbing Bayesian network struc-

ture learning algorithm. Machine Learning 65, 31–

78. doi:10.1007/s10994-006-6889-7

Unbit. uWSGI. Available online at: https:

//uwsgi-docs.readthedocs.io/en/latest/.

(Acessed 25th November 2019)

Van Der Walt, S., Colbert, S. C., and Varoquaux, G.,

(2011). The NumPy array: A structure for efficient

numerical computation. Computing in Science and

Engineering 13, 22–30. doi:10.1109/MCSE.2011.37

Vohra, D., (2016). Apache Parquet. In Practical

Hadoop Ecosystem, Springer. 325–335. doi:10.1007/

978-1-4842-2199-0 8

Walker, D. W. and Dongarra, J. J., (1996). MPI: A stan-

dard message passing interface. Supercomputer 12,

56–68

Wicherts, J. M., Bakker, M., and Molenaar, D., (2011).

Willingness to share research data is related to the

strength of the evidence and the quality of reporting

of statistical results. PLoS ONE 6, e26828. doi:10.

1371/journal.pone.0026828

26

.CC-BY-NC-ND 4.0 International licensepreprint (which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for thisthis version posted February 4, 2020. . https://doi.org/10.1101/2020.02.04.934174doi: bioRxiv preprint

https://github.com/jacomyal/sigma.js/tree/master/plugins/sigma.layout.forceAtlas2
https://github.com/jacomyal/sigma.js/tree/master/plugins/sigma.layout.forceAtlas2
https://www.postgresql.org/
https://www.postgresql.org/
https://www.rabbitmq.com/
https://www.rabbitmq.com/
https://nginx.org/
https://nginx.org/
https://uwsgi-docs.readthedocs.io/en/latest/
https://uwsgi-docs.readthedocs.io/en/latest/
https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

Yuan, C., Lim, H., and Lu, T. C., (2011). Most relevant

explanation in bayesian networks. Journal of Artificial

Intelligence Research 42, 309–352. doi:10.1613/jair.

3301

27

.CC-BY-NC-ND 4.0 International licensepreprint (which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for thisthis version posted February 4, 2020. . https://doi.org/10.1101/2020.02.04.934174doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.04.934174
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Problems with state-of-the-art of software in massive BN interpretability
	Scalability
	Extensibility
	Interoperability
	Ease of use and interpretability

	NeuroSuites-BNs
	Scalability
	Extensibility
	Interoperability
	Ease of use and interpretability
	Layouts
	General viewing options
	Highlighting nodes/edges
	Parameter visualization and inference

	Discussion
	References

