Definite Integration in
Mathematica V3.0

Victor Adamchik

I ntroduction

The aim of this paper is to provide a short description of definite integration a gorithmsimplemented in Mathemat-
ica Version 3.0.

$Ver si on

Linux 3.0 (April 25, 1997)

Proper Integrals

All proper integralsin Mathematicaare evaluated by means of the Newton-L eibniz theorem
b
f f(X)dx=F(b)—F(a)
a

where F(X) is an antiderivative. It is well-known that the Newton-Leibniz formulain the given form does not hold
any longer if the antiderivative F(x) has singularities on an interval of integration (a, b). Let us consider the

following integral
f“ X +2x+4 Ix
0 X4—-Tx2+2x+17

where the integrand is a smooth integrable function on an interval (0, 4).
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4 +2X +Xx?

Pl ot
[17+2x—7x2+x4

. {x, 0, 4}]

- Graphics-

As it follows from the Risch structure theorem the correspondent indefinite integral is doable in elementary
functions

. X2 +2X +4
|nt=j dx
X4 +#2X-7x%x24+17

1 tan’l( —x—l) 1 tan’l( X+1 )
2 X2 —4 2 X2 —4

If we simply substitute limits of integration into the antiderivative we get an incorrect resullt.

Limt[int, Xx-»>4] -Limt[int, Xx->0]

1 5
—tan’l(—) - tan’l(—)
4 12

This is because the antiderivative is not a continuous function on an interval (0, 4). It hasajump at x = 2, which
is easy to see in the following graphic.
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Plot[int, {x, 0, 4}]
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- Graphics-
The right way of applying the Newton-Leibniz theorem is to take into account an influence of the jump
Limt[int, x->4, Direction -> 1] -
Limt[int, x->2, Direction -> -1] +

Limt[int, x->2, Direction -> 1] -
Limt[int, x->0, Direction -> -1]

1 5
S I -1(
7ot (4) ten (33
Mathematica evaluates definite integralsin precisely that way.
J‘A X2+2x+4
dx
0 X4-7x%x2+2x+17

n—tan’l(%) - tan’l(%)

The origin of discontinuities of antiderivatives along the path of integration is not in the method of indefinite

integration but rather in the integrand. In the discussed example, the integrand has four singular poles that
become branch points for the antiderivative.

NRoot s[Xx* -7 x2 +2x +17 == 0, X]

X == —-1.95334 — 0.244028i V x == —1.95334 + 0.244028: V
X ==1.95334 — 0.755972i V x == 1.95334 + 0.755972

Connected in pairs these points make two branch cuts. And the path of integration crosses one of them. The
following Cont our Pl ot clearly exposes the problem.
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Cont our Pl ot [Eval uate[Re[int /. x ->x+1| y11, {x, -3, 4}, {y, -3, 4},
Cont our Shadi ng -> Fal se, Contours -> 20, Pl otPoints ->40,
Epi | og -> {Hue[0], Thi ckness[0. 005], Line[{{0, 0}, {4, 0}}1}]

ar

- ContourGraphics-

We see that in a complex plane of the variable x the antiderivative has two branch cuts (bold black vertical lines)
and the path of integration, the line (0,4), intersects the right branch cut. Obviously, by varying the constant of
integration we can change the form of the antiderivative so that we would get various forms of branch cuts. Here
we understand the constant of integration as a function f(x) such that % is zero. As a simple example let us
consider the step-wise constant function i)fiz—

Vi

]

Sinplify[ox
0
Thinking hard, we can built an antiderivative that does not have a branch cut crossing a given interval of integra-
tion. However, we can never get rid of branch cuts!

Analysis of the singularities of antiderivatives is a time consuming and sometimes heuristic process, especially if
trigonometric or special functions are involved in antiderivatives. In the lattet oasgr at e may not be able
to detect all singular points on the interval of integration, which will result in a warning message

— Integrate::gener: Unable to check convergence
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Y ou should pay attention to the message since it warns you that the result of the integration might be wrong.

I mproper Integrals

It is quite clear that the above procedure cannot cover the whole variety of definite integrals. There are two
reasons behind that. First, the correspondent indefinite integral cannot be expressed in finite terms of functions
represented in Mathematica. For instance,

Jbos[Si n[x]] dx
f cos(sin(x)) dx

However, the definite integral with the specific limits of integration is doable.
J:Oos [Sin[x]] dx

7w Jo(1)

Second, even if an indefinite integral can be done, it requires a great deal of effort to find limits at the end points.
Hereisan example,

szTan[x]l/’r dx
0

1 1)
—r —
2 2

This is an improper integral since the top limit is a singular point of the integrand. The result of indefinite
integrationis

JTan [x1Y7™ dx

7aFi (32, 11+ B2 _tan?(x) tant 7 (%)

1+rm

To find the limit at x= 7 one has to, first, develop the asymptotic expansion of the hypergeometric Gauss
function at o, and second, construct the asymptotic scale for the Puiseux series. Currently, Mathematica’'s

Ser i es structureisbased on power series that allow only rational exponents.

Following we present a short description of the algorithm for evaluating improper integrals. The overall idea has
been givenin[1] and [3]. Some practical details regarding "logarithmic" cases are described in [2] and [4].
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B TheGeneral Idea

By means of the Méellin integral transform and Parseval’ sequality, a given improper integral is transformed to a
contour integral over the straight line (y —ioco, y + ioco0) in acomplex plane of the parameter z

Y+ico
e Z\ dx 1 . . s
fO fl(x) fz(;) —)Z‘ = m f fl 9 fz (8z>ds (1)
Y-t

where f;7(x) and f5'(x) are Mellin transforms of f1(x) and fa(x)
f(s) = f f () x5t dx
0

The real parameter y in the formula (1) is defined by conditions of existence of Mellin transforms
f:(x) and f;(x). Finally, the residue theorem is used to evaluate the contour integral in the right side of the
formula (1)

1 m
5 ng(z)cﬂz = kz_;zrzegk f(2)
J -

where I' is a closed contour, and ayx are poles of f(2) that lie in a domain bounded by 7. The success of this
scheme depends on two factors: first, the Mellin image of an integrand f1(X) fz(é) must exist, and, second, it
should be represented in terms of Gamma functions. If these conditions are satisfied then the contour integral in
(2), called the Mdllin-Barnes integral or the Meijer G-function, can aimost always be expressed in finite terms of
hypergeometric functions. This fact is known as Slater’ stheorem (see [1] and [5]). We said "amost aways',
since there is a special case of the G-function when the latter cannot be reduced to hypergeometric functions but
to their derivatives with respect to parameters. By analogy with linear differential equations with polynomial
coefficients, such a singular case of the G-function is named a logarithmic case. The modified Bessel function
Ko(2) issuch aclassical example, since its series representation

e k 1 22 K
o 34452 )
k=0 ’

cannot be expressed via hypergeometrics.

m Méellin-BarnesIntegrals
These integrals are defined by (seeg[6])

1 _
— g 23ds
27t

L

where
M T @ +9 17 T'bj—9

k
]—[J_:1 r(cj +9 [T}, Idj -9

g =
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and the contour £ is a line that separates poles of I (a; +s) from I (bj — s). Let us investigate when the integral
exists. On a straight line £, = (y —ioco, ¥ +ioco) the real part of se £ is bounded, and [Im(s)| - . Using the
Stirling asymptotic formula

1 . 1
Tx+iy)l=V2r |y ze zM (1 + O(m)) lyl = oo
we can deduce that the integrand g(s) z° vanishes exponentialy as |Im(s)|—»co if m+n—-k-1>0, and
larg(2| < 5 (m+n-k—=1). If m+n-k-1=0, then zmust be real and positive. Some additional conditions are
required here (see detailsin [1]).

It is clear that we can not ssmply imply the residue theorem to this contour integral. We need initially to transform
the contour £ to the closed one. There are two possibilities: we can either transform £ into the left loop £ _,, the
contour encircling all poles of I" (a; + s), or to the right loop £ ., the contour encircling the poles of T" (b —s).
The criteria of which contour should be chosen appears from the convergence of the integral along that contour.
On the left-hand loop £_., the imaginary part of se £_.is bounded and Re(s) » —co. Assuming that
larg(—9)| < % and making use of the Stirling formula

r@=V2r Z7e? (1 + o(%)) Z oo, larg(2) <7

and the reflection formula of the Gamma function, we find that the Mellin-Barnes integral over the loop £ .,
exists, if n+1 —m-k> 0. If n+1 —m-k =0, then z must be within the unit disk | z| < 1. If zison aunit circle
| z| = 1, theintegral convergesif

RE[zn:aj-f-zm:bj-f-zk:Cj +z|:dj <-k+n-1
=1 =1 =1 =1

On the right-hand loop £ ..., theimaginary part of se £ ., is bounded and Re(s) — +oco. Proceeding similarly to
the above, we find that the Mellin-Barnes integral over the loop L., exists, if n+l-m-k<0. If
n+1—m-k =0, then zmust be outside of the unit disk. Additional conditions are required if zison aunit circle.

After determining the correct contour, the next step is to calculate residues of the integrand. Since the integrand

contains only Gamma functions, thistask is more or less formal. We don’teven need to calculate residues of the

integrand, but go straightforwardly to the generalized hypergeometric functions. The only obstacle is the logarith-

mic case, which occurs when the integrand has multiple poles. We have to separate two subclasses here: the
integrand that has a finite number of multiple poles, and the integrand that has infinitely many multiple poles. The
Mathematica integration routine has a full implementation of the former case. In the latter, the integration
artificially restricted by the second order poles, since for the higher order poles it would lead to infinite sums with
higher order polygamma functions. This class of infinite sums are extremely hard to deal with, symbolically and
numerically. If such a situation is detectkdt egr at e returns the Meijer G-function. However, there are
some very special transformations of the G-function, which could avoid bulky infinite sums with polygamma
functions, and give a nice result in terms of known functions. In [4] | demonstrated a few transformations that
reduce the order of the G-function and make it possible to handle special class of Bessel integrals in terms of
Bessel functions.
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m An Example

Consider the integral
= f L(X) dx
0 X(X2+1)

Y+ioco

ﬂ—foo ! sin( = )dx_ ! ff*(s)f*(s)a?s
T Jo XR+1 1/x) x = 2ni 12

Y*ioo

According to the formula (1), we have

where f;*(s) and f,(s) are Méellin transforms of ¢~ and sin(%):

0 XS—l
f1*[s] =j dx

0 x2 +1

1 TS Xs—l
|f(Re(s)>0ARe(S)<2, Encso(7),f)(2+ld/x)

0 1
fo*[s] =j Sin[—=]x*"dx
0 X
11(Ret9 > -1/ Ret®) < 1, ~r(-9 sin( 22, Fxs‘lsin(—l—)dx)
2 0 X
Therefore,

Y+ico

I'-s)ds

Ve

Ari
y—ico

where y is defined by conditions of the existence of Mellin transforms
O<y=Re(9 <1

As it follows from the previous section we can transform the integration contour (y — oo, y + ico) into the right
loop £ .. - Then, using the residue theorem we evauate the integral as a sum of residues at simple poles s=1,
2, ...

o (-1
Y K1
k=1

1-e)r
B 2e
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m Meijer G-Function

We did not intend to give a complete picture of the Meijer G-function here, but only necessary facts. In Version
3.0 the G-function is defined by

MejerG[{{alv a2! eey an}; {an+lv an+21 ey ap}}! {{bl! bZ! ey bm}! {anlv bm+2! ey bq}}v Z] =

mn a, ap, -, ap) B
GW(Z by b ... by)
1 [T T +9 [T TA-a - 9

z3ds

2ni v, Hiriml F(ai +9) Hiq:m-\tl r(l - bi - S)
and the contour £ is aleft (or right) loop £_ (or £..,) separated poles of I' (b; +s) from I'(1-a; —s). The
current implementation of the Meijer function has two noticeable features that differ it from the classical G-
function. First, you are not allowed to choose or move the contour of integration, and, second, Mei j er G has an

optional parameter (the classical G-function does not) that regulates the branch cut. The Meijer function is
supported symbolically and numerically.

VeI erGL{{0}, (3}, ({0}, (3}, 2]
1
z+1
. 1 1
MeijerG[{{-1}, {1, 2}}, {{o, E}, {1}, 5]
1 1
meijerd{ (-1, (. 21, {{0. 5. 0}, 5
N[%G

0.209893

Only in very trivial cases Mei j er Gis simplified automatically to the lower level special functions. Beyond that
all further transformations are assigned to Funct i onExpand:

Funct i onExpand[%84

Vrlo@ _ 2V @
€

e

-

Mei j er Gisinterlaced with indefinite and definite integration, and with solving linear differential equations with
polynomial coefficients. Here is an example related to definite integration:
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® x2 Bessel K[0, X]
j dx
1

x2 -1

T meijerG{ {0, (-3} t-1.0.0, 1, %)

The first element of the second argument of Mei j er G, which is {-1,0,0}, indicates that the integrand of the
correspondent contour integral contains the product of three Gamma functions I'(s— 1) I'(9) I'() and has an
infinite number of triple poles at s=-k, k=0,1,2, ... . From the design point of view it is definitely an advantage for
I nt egr at e to return a short object, Mei j er G, rather than enormous infinite sumsinvolving derivatives of the
Gammafunction.

Hyper geometric Functions

The essential part of integration is the generalized hypergeometric function, which is defined by

. a'l! a_z, ey a.p
HypergeometricPFQ[{ay, ..., ap}, {b1, .., by}, 21 = » Fq (z )

by, by ..., by

O M@y, &

Py H(J'Ll (by), k!
where (a), is a Pochhammer symbol

T () +k)

k
@, = D(aj +1-1)= @)

Conditions of convergence can be easily obtained by applying the d’ Alemberttest. It follows, Fq converges for
all finite zif p=<q, and for |7 < 1 if p=qg+ 1. Additional conditions are required on the circle of convergence
/z/=1. The above series definition of , Fq has an exceptional case, when p = 2 and g = 0 - such Hyper geonet -

ricPFQ isdefined viathe confluent hypergeometric function HypergeometricU

Hypergeonetri cPFQ {a, b}, {}, z]

a

(_-i-) U(a,a—b+1,——i—)

For |2 =1 and p=q+ 1, the hypergeometric function is defined as an analytic continuation via the Mellin-
Barnes integral, with the branch cut [1, c0):

g+l Fq (Z

ap, ag, aq+1)
by, bz ... by

y+ico
[MeaTby 1 re Nra-s
[Ty 27 TTCED

y—ico

(-2 3ds
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where the straight line (y — ico, ¥ + ico) Separates poles of I'(s) from T (a; — s).

Almost @l symbolic simplifications of Fq to the lower level functions are done automatically

. 1 1
Hyper geonetric2Fl[—, —, —, =]
3 2
1,
35 2 (V3 x+3log(2))
1 1 4 4
tricPFQ {1, —, —!}, {—, —1}, 1
Hyper geonet ri cPFQ { 3 3} {3 3} ]
1 1
=0 =
Qw (3)

Hypergeonetri cPFQI {1, 1, 1, 1}, {4, 4, 4}, -1]

2747 (—169 + 96 log(4) + 30£(3))

The exception is the Gauss function Hyper geonet ri c2F1. Since it has so many different transformation and
simplification rules some of them are assigned to Funct i onExpand:

Hyper geomet ri c2F1[1 t 3 1]
perg "4 4 4

Funct i onExpand[%

INIG; |
NJIE

1
2F1 (1, Z:

cot (v2) Iog(l—v_la—) log(1+ 7_15—)

V2 Nz 2v2

Principal-Value Integrals
Consider the integral
21

— dx
-1 X

1
— Integrate::idiv : Integral of; does not converge dri-1, 2.

[
—dX
1 X
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which does not exist in the Riemann sense, since it has a nonintegrable singularity at x = 0. However, if we
isolate x = 0 by €; > O from the left and by e, > O from the right and take a limit of correspondent integrals when
€1 » 0and ey —» 0, weobtain

—€1 2
lim (f ;cﬂx+f ;cﬂx): Iin?)(log(2)+Iog(el)—log(ez))

€10 -1
-0 -0

The double limit exists, and so it is a given integral, if and only if €;=¢,. Such understanding of divergent
integralsis called the principal-value or the Cauchy principal-value. It is easy to see that if an integral exists
in the Riemann sensg, it exists in the Cauchy sense. Thus, the class of Cauchy integralsislarger than the class
of Riemannintegrals.

In Version 3.0, definite integrals in the Riemann sense and principal-value integrals are separated by the new
option Pri nci pal Val ue. If you want to evaluate an integral in the Cauchy sense, set the option Pri nci -
palvValue toTrue (thedefault settingisFalse ). Hereisan example

1
Integrate[—, {x, -1, 2}, Principal Val ue- True]
X

log(2)

Integrate[ , {X, -1, 13}, Princi pal val ue—»True]

Sinh[5x +1]

% log(coth(2) tanh(3))

1 37 ) .
Integrate| X, -5 (3m), —2—} Pri nci pal Val ue » Tr ue]

X
Sin[3x]’ {
4C

9

If the integrand contains high-order polynomials, Integrate  returns RootSum objects

Integrate[ ————, {x, -2, 1}, Principal Val ue- True]
X7 +X+1
im
1+7Root# +#1+18&, 1)°
7 log(—#1 - 2) 7 log(1-#1)
RootSum(#l +#l+1&, — &)+ RootSum(#l +#l+1&, - &)
T#1° +1 T#1° + 1

Here are examples of integrals with movable singularities
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T
Integrate| , {x, 0, ?}, Pri nci pal Val ue » Tr ue]

a-Tan[x]?

ifla>0, —~ f% 1 ax
>0, ,
2a+2" Jo a-ta(x)

A

, {x, 0, =}, Principal Val ue- True]

cﬂx)

Here | nt egr at e detects that the integrand has a singular point along the path of integration if the parameter a
isreal positive.

Integrate|
X -a

X

A
|f(a>0ARe(A)>—1ARe(/\)<o,—a‘ncot(n/\),fx S
o X—

New Classes of Integrals

In this section we give a short overview of specific classes of definite integrals, which were essentially improved
in the new version. Mathematica now is able to calculate ailmost al indefinite and about half of definite integrals
from the well-known collection of integrals compiled by Gradshteyn and Ryzhik. Moreover, the Version 3.0
makes it possible to calculate thousands of new integrals not included in any published handbooks.

m integralsof rational functions

The Root Sumobject has been linked to | nt egr at e to display the result of integration in a more elegant and

shorter way
1 x-1
j X7 ax
0o XT+x3+1
log(1—#1)#1 —log(L—#1
RootSum(#17+#13+1&, 9 )6 92( ) &)_
7#1% + 3#1
log (—#1) #1 — log (—#1
RootSum(#17+#13+1&, 9 )6 92( ) &)
7#15 + 3#1

m |logarithmic and Polylogarithm integrals

J‘l x2 Log[x] Log[x + 1] dx
0 X+1

_;_ (=20+ 22 + 1610g(2) - £(3)



14 mier.nb

1 Log[l-x]3
j———dlx
o (1-x2)?

~ 6Lis(55)
(z-1z

m dlipticintegrals

The package, conducted an elliptic integration, is now autoloaded (as are as al other integration packages), so
you don’tneed to worry about its loading anymore

m integralsinvolving Bessel functions

J t Exp[-t2] Bessel | [2, t] Bessel K[2, t] dt
0

1 1
34+ = Ko| =
+z Ve 2(2)

dx

» Bessel J[1, x] Exp[-Z]
i x

231(2) Ka(2)
-roAi ryAi [x]2dx
0

T
122 V3 732
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m integralsinvolving non-analytic functions
2+2 |
J Si n[Abs [x]] dx
-1-1

\/_E_ B cos(vV2) B cos(2v/2)
3 3v2 3v2

(3+3u')[

37

jTNBx[Si n[x], Cos[2x]] dx
0

3V3

2

Additional Features

Mathematica’s capability for definite integration gained substantial power in the new version. Other essential
features of | nt egr at e not discussed in the previous sections are convergence tests and the assumptions
mechanism.

m Conditions

In Version 3.0 | nt egr at e is"conditional." In most cases, if the integrand or limits of integration contains
symbolic parameters, | nt egr at e returnsan | f statement of the form

If[ conditions, answer, held integral ]

which gives necessary conditions for the existence of the integral. For example
f x* 1 Exp[-ax] dx
0
If(Re(a) >0ARe) >0, TQ), fe—xn -1 dx)
0

Setting the option Gener at eCondi ti ons to Fal se prevents | nt egr at e from returning conditional
results (asin Version 2.2):

I ntegrate[x*?! Exp[-ax], {X, 0, o}, GenerateConditions- Fal se]

a T

If a given definite integral has symbolic parameters, then the result of integration essentially always depends
on certain specific conditions on those parameters. In this example the restrictions Re(a) > 0 and Re(d) > 0
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came from conditions of the convergence. Even when a definite integral is convergent, some other conditions
on parameters might appear. For instance, the presence of singularities on the integration path could lead to
essential changes when the parameters vary. The next section is devoted to the convergence of definite
integrals.

Convergence

The new integration code contains criteria for the convergence of definite integrals. Each time | nt egr at e
examinesthe integrand for convergence

1 Cos [X] dx
.[:1 X

— Integrate::idiv : Integral of

1 cos(x)
Il " dx

This integral has a nonintegrable singularity at x = 0. Thus, | nt egr at e generates a warning message and
returns unevaluated. However, the integral exists in the Cauchy sense. Setting the option Pr i nci pal Val ue
to Tr ue, we obtain

cogX
i does not converge dr-1, 1.

Cos [x]
X

Integrate[ , {x, -1, 1}, Princi pal Val ue->True] //FullSinplify

0

Consider another integral with a symbolic parameter a

1
J xP-1 ArcTan[x] dx
0

O+l _ O 13 1
If{Re(p)>—1, d ( 4 ) 4ll/ ( 4 )Hr,fx/)ltanl(x)dx)
P 0

The integral hasasingular point at x = 0, which isintegrable only if Re(p) > —2.

If you are sure that a particular integral is convergent or you don’tcare about the convergence, you can avoid
testing the convergence by setting the option Gener at eCondi ti ons to Fal se. It will make | nt e-
grate return an answer abit faster.

Setting GenerateConditions to False aso letsyou evaluate divergent integrals

1
Integrate[—, {x, 0, 2}, GenerateConditions- Fal se]
X

log(2)
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m Assumptions

The new option Assunpt i on is used to specify particular assumptions on parameters in definite integrals.
Consider the integral with the arbitrary parameter y

00 X=Xy 4
X
o Vx
Here we set the option Assunpt i ons to Re(y) > 0
EXp[-X? -X Y] .
Integrate[ ————=, {x, 0, ®}, Assunptions-Re[y] >0]
Vx

s %)

Setting Assunpt i ons to Re(y) < 0, we get a different form of the answer

Exp[-Xx2 -xY]
VX
ﬁ 2 2
e av-y (ILs(F)+1:(F))
2vV2

Integrate| , {X, 0, o}, Assunptions-Re[y] < 0]

though the integral is a continuous function with respect to the parameter y

Exp[-x2 -xVY]

Vx

Pl ot [NIntegrate| . (%, 0, ®}], {y, -2, 2}]

-2 -1 1 2
- Graphics-

The next integral is discontinuous with respect to the parameter y
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Cos [x] (1 -Cos[y¥Xx])

> , {X, 0, o}, Assunptions-y>1]
X

Integrate|

1 1
Eﬂ()’— )

Cos[x] (1-Cos[yx])
X2

Integrate| , {X, 0, o}, Assunptions--1<y<1]
0

Cos [x] (1 -Cos[y¥Xx])

Integrate| > , {X, 0, o}, Assunptions-y<-1]
X
1 1 1
2” T
7z

If the given assumptions exactly match the generated assumptions, then the latter don’tshow up in the output;

otherwise, | nt egr at e produces assumptions complementary to ones given:

Integrate[x¥ ! (1-x)*1 {x, 0, 1}, Assunptions - Re[v] > 0]

T T - )
If(Re(u)>O Ty f(l X) dx
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