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Outline

o The scientific basis for building coupled Earth system models
@ Atmospheres, oceans, clouds, ecosystems, photons, ...
@ Time and space scales
@ Dynamics and physics
9 The structure of a coupled Earth System Model
@ Components and grids
@ Conservation and accuracy
@ Timestepping and stability
@ The Exchange Grid
Q Coarse-grain concurrency
@ Concurrent physics example: radiation
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@ Ice-ocean boundary
@ Chemistry, dust, ...
e Future approaches to coupling
@ Models as task graphs
Q Recap and bibliography Q'@
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Atmospheric general circulation
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Figure courtesy NASA. Circulations driven by unequal heating on av®

rotating sphere.
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Ocean general circulation
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Figure courtesy Smithsonian Institution. Wind and radiation driven v @
circulation of fluid with complex boundaries and terrain.
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Ecosystem interactions and the carbon cycle

Storage in GIC
Fluxes in GGy

Figure courtesy NASA. Cycles exchange small amounts between Iw@
reservoirs.
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The global cloud field: a multiscale system

GFDL HIRAM Forecast Model

GFDL Super High Resolution Atmosphere Model
(Super HIRAM)

Figure courtesy S.-J. Lin and the FV3 team, NOAA/GFDL. Structure
from metres to planetary scale. Does this image pass a climate Turing
test?

v
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Earth Radiation budget
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Figure courtesy IPCC FAQ. Warming results from a small net @
imbalance in the sum of many components and feedbacks. 4
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Atmospheric process scales
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Oceanic process scales
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The model zoo
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increasingly accessible to experiments

increasing reliance on observational inference

From Bony et al (2013).
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https://link-springer-com/chapter/10.1007/978-94-007-6692-1_14

The brittleness of coupled systems

Integrated assessment
models

Atmospheric
processes

settlement and -.
infrastructure K
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Sea level rise

vulnerability

sjopow 3

Imapacts, adaptation and

From Moss et al 2010. Coupling across this model chain is a socialg @,
scientific, semantic, and software challenge. 4
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https://www.nature.com/articles/nature08823

No separation of "large" and "small" scales
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Nastrom and Gage (1985). We arbitrarily truncate resolution at so

wavelength (km)

point to separate “dynamics” from “physics”.
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http://adsabs.harvard.edu/abs/1985JAtS...42..950N

Coupling terminology review

@ Coupling: between different climate subsystems with feedbacks
and fluxes in both directions.

@ Nesting: a component of finer resolution coupled within the same
component at coarser resolution.

e One-way nesting: No feedback from fine-scale model to
coarse-scale model (see also dynamical downscaling, regional or
limited-area modeling).

e Two-way nesting: fine-scale features feed back to modify coarse
grid state.

@ Chaining: models of different subsystems without feedback, e.g
health, agriculture, human systems models.

@ Dynamics and physics: resolved and unresolved scales of motion.

v
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Outline

9 The structure of a coupled Earth System Model
@ Components and grids
@ Conservation and accuracy
@ Timestepping and stability
@ The Exchange Grid

v
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Earth system model evolution

Mid-1970s Mid-1980s Early 1990s Late 1990s Present Day Early 2000s?

Atmosphere Atmosphere
© Landsudace

Ocean and sea ice

Ocean and Sulphur
sea ice model cycle model

Figure courtesy IPCC. ¥ @
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Notional Earth System Model Architecture

Earth System Model

e

Atmosphere Land Ocean

e W l l
| AtmDyn | [ AtmPhy |  [LandBio | [LandH,0| [ OcnBio | [ OcnClr |

r——]|

|Rad || H:0 || PBL |

Component specialists must be free to choose algorithms, grids, <
discretizations, timestepping, ... &\
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Diversity of coupling architectures

The Software Archltecture of Global Climate Models
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Alexander and Easterbrook, AGU 2011. v®
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Diversity across model components

@ Dycores: few key variables representing mass, momentum,
energy but strong cross-cell dependencies. Wide range of
numerics: FD, FV, FE methods all in active use.

@ Land: no data dependencies across cells, but highly multivariate
representations of ecosystem dynamics inside a cell.

@ Numerical issues associated with poles and singularities.

7 T o~ MPASOcean60km.nc
=X J L V7 b T

e o
A S
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Data assimilation

Zhang - 2008)C005261

GHGNA § radiative forcings

A
Atmosphere
model
u, v, t,q, ps

Sea-Ice
model

a)

Data assimilation uses ensembles to find likely model trajectory taking
into account model error and observational error. (Figure courtesy

Zhang et al 2008). v @
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Ensemble Coupled Data Assimilation (ECDA)
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Components (“instances”) execute in parallel. L4
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Serial coupling

Uses a forward-backward timestep for coupling.

AT = A4 F(O) (1)
N Ot+1 O! + f(At+1) (2)
Ot Ot+1 Ot+2 Ot+3 Ot+4
Att1 Alt+2 A3 At+4 At+5
Y'Y
T
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Concurrent coupling

This uses a forward-only timestep for coupling. While formally this is
unconditionally unstable, the system is strongly damped*. Answers

vary with respect to serial coupling, as the ocean is now forced by
atmospheric state from At ago.

AT = A4 (O (3)
A o' = O'+f(A) (4)
Ot Ot+1 Ot+2 Ot+3 ot+4
P
At At+1 At+2 At+3 At+4
T A
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Implicit coupling and the exchange grid

Fluxes at the surface often need to be treated using an implicit
timestep. (e.g temperature flux in near-surface layers that can have
vanishingly small heat capacity.)

oT 9T
- = KZ—
At AZ?
AT = 7 (7)

v

V. Balaji (balaji@princeton.edu) Coupled Modeling Tutorial 11 September 2018 24/60



Implicit coupling and the exchange grid

Tridiagonal solver in Eq. 7 across multiple components and grids.

Atmosphere
[

Exchange
A———

Atmosphere
Land

v
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Coupled architecture with SBL on exchange grid
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Flux exchange

Three types of flux exchange are permitted: REGRID, REDIST and
DIRECT.

REGRID physically distinct grids, requires exchange grid.
REDIST identical global grid, different domain decomposition.
DIRECT identical grid and decomposition.

Current use: REGRID between atmos<—ice, atmos<—>land,
land<—ice, REDIST between ocean<—=-ice.

v
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Parallelism in the FMS coupler
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FMS coupled architecture: ice-ocean coupling
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Exchange grid: features

@ Each cell on exchange grid “belongs” to one cell on each parent
grid;

@ Conservative interpolation up to second order; monotonicity can
be imposed (required for positive-definite quantities).

@ All calls exchange local data; data-sharing among processors is
internal to the exchange software, and non-blocking.

@ Physically identical grids (e.g ocean and sea ice) exchange data
without interpolation.

@ Exchange grid is computed and stored offline following a gridspec
netCDF “standard”.

v
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Exchange grid size

| Atmosphere | Ocean | Xgrid Density | Scalability |

144x90 360x200 | 79644 |85 x 107° 0.29
288x180 | 1080x840 | 895390 | 1.9 x 107> 0.56

Exchange grid sizes for typical climate model grids. The first column
shows the horizontal discretization of an atmospheric model at “typical”
climate resolutions of 2°and 1°respectively. The ocean column shows
the same for an ocean model, at 1°and %O. The Xgrid column shows
the number of points in the computed exchange grid, and the density
relates that to the theoretical maximum number of exchange grid cells.
The scalability column shows the load imbalance of the exchange
grid relative to the overall model when it inherits its parallel
decomposition from one of the parent grids.

v
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The mask problem

Land Ocean Exchange

An issue arises when grids of two independent components (e.g land
and sea) share a boundary. The boundary is defined by a mask (e.g
land-sea mask) but the mask is discretized independently on the two
grids. However, exchange grid cells need to be uniquely assigned to a
single component. This means that some cells get clipped on one or
the other grid. In FMS, by convention, we choose to clip the land grﬁ'.@
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Outline

Q Coarse-grain concurrency
@ Concurrent physics example: radiation
@ Concurrent nesting
@ Ice-ocean boundary
@ Chemistry, dust, ...

v
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Massively concurrent coupling

J Ot o1 || ot+2
Lt Lt+1 Lt+2
Bt Bt+1 Bt+2
P Ct Ct+1 Ct+2
Rt RI—H Rt+2
At At+1 At+2
T

Components such as radiation, PBL, ocean biogeochemistry, each
could run with its own grid, timestep, decomposition, even hardwar% <
Coupler mediates state exchange. &\
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The radiation component

The atmospheric radiation component computes radiative transfer of
incoming shortwave solar fluxes and outgoing longwave radiation as a

function of all radiatively active species in the atmosphere (greenhouse
gases, aerosols, particulates, clouds, ...).

@ The physics of radiative transfer is relatively well-known, but a full
Mie-scattering solution is computationally out of reach.

@ Approximate methods (sampling the “line-by-line” calculation into

“bands”) have been in use for decades, and “standard” packages
like RRTM are available.

@ They are still very expensive: typically Aty > Atlppy, (in the GFDL
models typically 9X). The model is sensitive to this ratio.

@ Other methods: stochastic sampling of bands (Pincus and
Stevens 2013), neural nets (Krasnopolsky et al 2005)

Challenge: can we exploit “cheap flops” to set Aty = Atony? ~1%7)
V. Balaji (balaji@princeton.edu)
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Traditional coupling sequence

[ Coupler Main do loop (dt_cpld) }

« N

Atmos Down
dynamics
radiation

!
[ Land ]
[ Ice ]
[ )

Atmos Up

Mom/GOLD

A v

@) VP
.....

Radiation timestep much longer than physics timestep. °@
(Figure courtesy Rusty Benson, NOAA/GFDL). 5 &
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Concurrent coupling sequence

[ Coupler Main do loop (dt_cpld) }

[ Atmos Pelist ] { Ocean Pelist }

Atmos Down
Radiation Ocean
Atmos Up

[ OpenMP parallel section ] [ MPI rank ]

Radiation executes on physics timestep from lagged state.
(Figure courtesy Rusty Benson, NOAA/GFDL).
v S
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Concurrent coupling sequence using pelists

[ Coupler Main do loop (dt_cpld) ]

i i| ill - “ Ocean J

(LPhysics Peiist)
[ Atmos Down ]

Land Ice Radiation

a0

Mom/GOL

OpenMP ”ﬁ |

Requires MPl communication between physics and radiation. <,
(Figure courtesy Rusty Benson, NOAA/GFDL). @V
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Concurrent coupling sequence: hybrid approach

[ Coupler Main do loop (dt_cpld) }

[ Atmos Pelist } { Ocean Pelist }

Atmos Down
Radiation Ocean
Atmos Up

[ OpenMP parallel section ] [ MPI rank ]

Physics and radiation share memory.
(Figure courtesy Rusty Benson, NOAA/GFDL).
v S
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Results from climate run

20 year AMIP/SST climate runs have completed on Gaea (Cray XEB6).

@ Control: 9.25 sypd
0 Atrag = YAty
e 864 MPI-ranks / 2 OpenMP threads
@ Serial Radiation: 5.28 sypd
0 Alpag = Alpny
@ 864 MPI-ranks / 2 OpenMP threads
@ Concurrent Radiation: 5.90 sypd
0 Afag = Alppy
@ 432 MPI-ranks / 4 OpenMP threads (2 atmos + 2 radiation)
e Can get back to 9 sypd at about ~2700 cores (roughly 1.6X).

Comparison of Concurrent Radiation to Control

@ climate is similar
@ TOA balance is off by ~ 4W/m?, mostly in the short wave, but
easily retuned when ready to deploy

See Balaji et al (2016).
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https://www.geosci-model-dev.net/9/3605/2016/gmd-9-3605-2016.pdf

Cubed-sphere grid with nests

Telescoping nests 2:1 nested grid Nest in stretched grid

v
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Lee vortices off Hawaii under two-way nesting

¢ 72 hr forecast from 1 Aug 2010 00Z

with real topography

¢ Showing Vorticity x 105

[ 17 [ [ T T L
3 -2 =1 1 2 E] 4 5

~5 p
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¢360 single grid

Ton 165w on

¢120 nested grid

180 7o 17om o

[ET 50

1

1

Figure courtesy Lucas Harris and S-J Lin, NOAA/GFDL.
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Concurrent two-way nesting

Typical nesting protocols force serialization between fine and coarse

grid timestepping, since the C* are estimated by interpolating between
C" and C"1.

cn C*n+% C*n+% Cn+1
| | | |

Fr Fn+s Fn+3 Frt
| | | |

We enable concurrency by instead estimating the C* by extrapolation
from C"~' and C", with an overhead of less than 10%. (See Harris

and Lin 2012 for details.)
v
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Concurrent coupling: possible stability issues

@ Evidence of Lagged Stress-Inertial
Coupling Instability in Sea-Ice Thickness

January 1, Year 20

Atcp = 3600 s Atep = 7200 s

0 0.05 5

0.5 1 L5 2 25 3 35 1 4.5
1/4° MOM6 / SIS CORE Run Sea Ice Thickness (m)

Sequentially coupled data-driven ice-ocean model Hallberg (2014, Clivar Exchanges)

Figure courtesy Bob Hallberg (GFDL).
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Concurrent coupling: possible stability issues

@, Explosive Sea-Ice Growth as a Manifestation of
a Sea Ice-Ocean Coupling Instability with KPP

Jan. 1 Sea Ice Thickness of Siberia Jan. 4 Sea Ice Thickness of Siberia

o =

N A

 — o — Tty ¥

(26, ~hy_py = byl [+ o+ )

Time (hours)

Figure courtesy Bob Hallberg (GFDL). S
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Ice-ocean boundary

Sequential coupling

Atmos. Atmosphere
Thermo Dynamics
Ice
Dynamics

Q(SST,T,T), 1(u,u,u,)

SST, u,
Ocean Ocean
L ‘i Time
t" D Atcnllnleﬂ ~ tn+1
Figure courtesy Alistair Adcroft, Princeton and GFDL. %9
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Ice-ocean boundary

Concurrent coupling

Atmos. Atmos. Atmos.
Thermo Thermo Thermo

Q(SST,T,T,), t(u,u,u,) Q(SST,T,T)), 1(u,u,u,) Q(SST,T,T), 1(u,u,u,)
SST, u, SST, u, SST, u,
: : — ‘i > Time
tnrl tn - A[mupled v tn&l
Figure courtesy Alistair Adcroft, Princeton and GFDL. %9
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Ice-ocean boundary

Embedding SIS2

Atmos. Atmos.
Thermo Thermo

Atmos.
Thermo

Q(SSTT,T,), t(u,u,u,) Q(SSTT,T,), w(u,u,u,) Q(SSTT,T,), t(u,u,u,)

Figure courtesy Alistair Adcroft, Princeton and GFDL. V®
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Ice-ocean boundary

Staggered-concurrent coupling

Atmos Atmos Atmos
Thermo Thermo Thermo

Q(SST,T,T,) T(u,,u,u,) Q(SST,T,T,) T(u,u,u,) Q(SST,T,T,) T(u,u,u,)

D AT
=/ = = .

> Time

-t n * i > o

‘coupled

Figure courtesy Alistair Adcroft, Princeton and GFDL. V®
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Ice-ocean boundary

Sequential coupling + Adams-Bashforth

Atmos. Atmosphere
Thermo Dynamics
Ice
Dynamics

Q(SSTT,T), w(u,u,u,)

SST, u, SST, u,
Ocean Ocean Ocean
: — — Time
tn'l tn - X e Ll tn‘l
Figure courtesy Alistair Adcroft, Princeton and GFDL. %9
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Ice-ocean boundary

Concurrent coupling + AB

Atmos. Atmos. Atmos.
Thermo Thermo Thermo

Q(SST,T,T,), t(u,u,u,) Q(SST,T,T)), 1(u,u,u,) Q(SST,T,T), 1(u,u,u,)
SST, u, SST, u, SST, u
: : — ‘i > Time
tnrl tn - A[mpled v t’“l
Figure courtesy Alistair Adcroft, Princeton and GFDL. %9
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Ice-ocean boundary

Staggered-concurrent coupling + AB

Atmos Atmos Atmos
Thermo Thermo Thermo

Q(SST,T,T,) T(u,,u,u,) Q(SST,T,T,) T(u,u,u,) Q(SST,T,T,) T(u,u,u,)
Uy SST"
< > Time
tn'1 t’l - At coupied tr|+1
Figure courtesy Alistair Adcroft, Princeton and GFDL. %9
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t chemistry

Managing Chemistry Dependencies/Feedback (1)

Incoming:

Dynamics: Chemistry:
e Latlon wind speeds « Compute tracer surface fluxes (dust, sea salt, ...)

Physics: Chemistry:
e  Planetary boundary o Compute carbon aerosols and sulfur chemistry.
layer depth

Radiation: Chemistry:
e Extinction values » Compute stratospheric chemistry.

Outgoing:
Chemistry: Physics:
e Tracer tendencies. ®  Added to the vertical diffusion tendencies and exchanged
_ with the land.
* Input to the moist physics calculation.

Figure courtesy Ray Menzel, Engility and GFDL. %9
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Dust in the the FMS Coupler

@ Dust exchange calculated within
vegetation canopy

@ cells partitioned in tiles

@ “settling” and “turbulent fluxes”
between atmosphere and
Flux canopy,

Coumerl @ emission parameters tuned to
Settling b match present day observations

o @ wet and dry deposition

@ Same design serves for nitrogen
coupling

AM4

LM4

q)cropland Deppasture
@ GFDL Exchange Grid continually evolves as science evolves
@ GFDL/OAR implementing exchange grid in community coupler
Courtesy Paul Ginoux, Elena Shevliakova, Niki Zadeh, NOAA/GFD® &
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Outline

e Future approaches to coupling
@ Models as task graphs

v
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Examples of DAG parallelism

ECMWF Seminar 2013

I LAUUM
E%- DAG = Directed Acyclic Graph

g& Can IFS use this technology? » e :/ )
Source: Stan Tomov, ICL, University of Tennessee, Knoxville J \

Figure courtesy George Mozdzynski, ECMWF.
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SWARM for DAGs

prioQueue.enqueue (source, 0)
while prioQueue not empty:
(node, dist) = prioQueue.dequeueMin ()
if node.distance not set:
node.distance = dist
for nbr in node.neighbors:
d = dist + edgeWeight (node, nbr)
prioQueue.enqueue (nbr, d) 2

Source

(a) (b)

Parent-child relations Data dependences
[ \

005 )
7

(o 1213 ]4]s]6f7]

(c) Order = Distance from source node (d)

Jeffrey et al, IEEE Micro 2016. %9
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Outline

Q Recap and bibliography ?3
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Recap

@ Coupling, nesting, chaining

v
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@ “Chained” models that become coupled
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