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1. Introduction

1.1 What is R?

“R is a language and environment for statistical computing and
graphics”

Similar to the S language (which was developed at Bell
Laboratories, US)

R is Open Source and free (under the terms of the GNU Licence)

Relatively simple programming language

Large number of users and freely available extensions
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1. Introduction

1.2 What does R do?

Data handling and storage

Mathematical operations and calculations (for a wide range of
data types)

Data analysis

Publication quatlity plots
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2. R basics
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2. R basics

2.1 Objects

Data classes
integer
numeric (i.e. double)
character
logical

Data structures
scalars
vectors
matrices
dataframes
lists
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2. R basics

e.g. integer vector

> x = c(2L,4L,6L)

> x

[1] 2 4 6

> class(x)

[1] "integer"

e.g. numeric vector

> y = seq(from = 0, to = 1, by = 0.1)

> y

[1] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

> class(y)

[1] "numeric"
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2. R basics

e.g. logical matrix

> my.matrix = matrix(c(TRUE,FALSE), nrow=2, ncol=4)

> my.matrix # fills by column and recycles values

[,1] [,2] [,3] [,4]

[1,] TRUE TRUE TRUE TRUE

[2,] FALSE FALSE FALSE FALSE

> class(my.matrix)

[1] "matrix"

> typeof(my.matrix)

[1] "logical"

D. Kidney (University of St Andrews) An Introduction to Data Analysis using R EMCSR, August 2014 11 / 51



2. R basics

e.g. list

> my.list = list(x = letters[1:3],

+ y = matrix(1:2, 1, 2))

> my.list

$x

[1] "a" "b" "c"

$y

[,1] [,2]

[1,] 1 2

> class(my.list)

[1] "list"

> typeof(my.list)

[1] "list"
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2. R basics

e.g. data frame

> my.data.frame = data.frame(

+ x = letters[1:3],

+ y = 1,

+ z = 3:1)

> my.data.frame

x y z

1 a 1 3

2 b 1 2

3 c 1 1

> class(my.data.frame)

[1] "data.frame"

> typeof(my.data.frame)

[1] "list"
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2. R basics

2.2 Functions

Simple functions

> log(10)

[1] 2.302585

Compound functions

> exp(log(10))

[1] 10
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2. R basics

Functions on objects

> x = matrix(1:9, nrow = 3)

> x

[,1] [,2] [,3]

[1,] 1 4 7

[2,] 2 5 8

[3,] 3 6 9

> log(x)

[,1] [,2] [,3]

[1,] 0.0000000 1.386294 1.945910

[2,] 0.6931472 1.609438 2.079442

[3,] 1.0986123 1.791759 2.197225
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2. R basics

Apply functions

> apply(x, 1, sum) # row sums

[1] 12 15 18

> apply(x, 2, mean) # column means

[1] 2 5 8

See also tapply, sapply and lapply.
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2. R basics

Make your own functions

> myfunc = function(x,y=3){

+ result = 2 * x + y

+ return(result)

+ }

> myfunc(10) # using default value for y

[1] 23
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2. R basics

2.3 Graphics

e.g. the plot function

> x = rnorm(100) ; y = rnorm(100)

> plot(x, y)
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2. R basics

customising plots

> plot(x, y, pch = 17, col = "blue", cex = 1.5,

+ xlim = c(-3,3), ylim = c(-3,3),

+ ylab = "y-values", xlab = "x-values",

+ main = "An example plot",)
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2. R basics

customising plots

> i = as.factor(x > 0)

> plot(x, y, cex = 1.5,

+ pch = c(15,17)[i],

+ col = c("red", "blue")[i])
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2. R basics

annotating plots

> plot(x, y)

> abline(v = mean(x), h = mean(y), lty = 2, lwd = 4,

+ col = c("red","blue"))

> points(mean(x), mean(y), pch = 19, col = 3, cex = 5)
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2. R basics

heat maps

> par(mfrow = c(1,2))

> image(volcano)

> image(volcano, col = topo.colors(10))

> contour(volcano, add = TRUE)
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2. R basics

3D plots

> par(mfrow = c(1,2))

> persp(volcano)

> persp(volcano, phi = 30, theta = 15, expand = 0.5, d = 2)
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3. Data Analysis

3.1 Example 1

Suppose we want to compare the speed of two different
algorithms

We could run each algorithm once and compare the times...

...but this tells us nothing about how much the runtimes might
vary from one run to the next

It would be better to run each algorthm multiple times and
compare the two sets of times

Statistical analysis can help us make an objective decision
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3. Data Analysis

Here are some real data. It looks pretty clear cut, but we’ll analyse them
anyway.
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3. Data Analysis

We want to know:

Is it plausible that the mean run time (i.e the long run average) for
each algorithm is the same?

In other words, is it plausible that the difference between the mean
run times is zero?
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3. Data Analysis

We could answer this in two ways:

1 A two-sample t-test,

2 Or a one-way ANOVA
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3. Data Analysis

First let’s have a look at the data.

Algorithms data

> head(algorithms)

algorithm runtime log.runtime

1 2 44659 10.70681

2 2 29701 10.29894

3 1 127845 11.75857

4 2 47603 10.77065

5 1 76642 11.24690

6 1 89245 11.39914

> attach(algorithms) # allows direct use of column names
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3. Data Analysis

Now perform a t-test using the t.test() function.

Two-sample t-test

> a1 = log.runtime[algorithm == 1]

> a2 = log.runtime[algorithm == 2]

> t.test(a1, a2, var.equal = TRUE)

Two Sample t-test

data: a1 and a2

t = 117.8057, df = 1998, p-value < 2.2e-16

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

0.8392051 0.8676192

sample estimates:

mean of x mean of y

11.40930 10.55588
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3. Data Analysis

The most important part of the output is the p-value

We can access the p-value directly if we save the output (which
happens to be a list) and extact the relevant component

Accessing the p-value

> results = t.test(a1, a2, var.equal = TRUE)

> results$p.value

[1] 0
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3. Data Analysis

The p-value gives the probability of the result if the null hypothesis
(i.e. no difference) were true

In this case the p-value is extrememly small (0.05 is the conventional
cutoff)

So the probability of observing a result like this if the null hypothesis
were true is extremely small

And we therefore reject the null hypothesis in favour of the alternative
hypothesis that the means are different

When interpreting p-values always ask yourself:

What is the null hypothesis?
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3. Data Analysis

Alternatively we could perform a one-way ANOVA using R’s linear
modelling capabilities.

One-way ANOVA

> fit1 = lm(log.runtime ~ algorithm, data = algorithms)

> summary(fit1)

...

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 12.262709 0.011560 1060.8 <2e-16 ***

algorithm -0.853412 0.007244 -117.8 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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3. Data Analysis

The reliability of the results of the t-test and the ANOVA depends on the
following assumptions about the data:

1 Normally distributed

2 Constant variance

3 Independence

You will get a chance to assess these assumptions in the practical.
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3. Data Analysis

3.2 Example 2

Suppose we wanted to assess the influence of a continuous
variable on algorithm speed, or some other type of continuous
response
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3. Data Analysis

For example, consider the following set of artificual data (based on Figure
3. in Gent, 2013).
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3. Data Analysis

We might wish to know:

Is there a linear relationship between the number of propagations has
no relationship with mean number of conflicts?

If so, what is the nature of that relationship?

We can try and answer these questions using simple linear regression.
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3. Data Analysis

First let’s have a look at the data.

Speedup data

> head(speedup)

conf prop

1 1.8662396 1.3703172

2 0.7953660 0.7339403

3 0.1689633 0.5044575

4 1.5296215 0.7363003

5 5.3021610 4.6651811

6 0.2300878 0.1102576

> attach(speedup) # allows direct use of column names
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3. Data Analysis

Now lets perform a simple linear regression using R’s linear modelling
capabilities.

Simple linear regression

> fit2 = lm(conf ~ prop, data = speedup)

> summary(fit2)

...

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.11424 0.05141 2.222 0.0265 *

prop 1.05863 0.01815 58.335 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

D. Kidney (University of St Andrews) An Introduction to Data Analysis using R EMCSR, August 2014 38 / 51



3. Data Analysis

The estimate of the slope of the relationship is given by the prop
coefficient

extracting parameter estimates

> coef(fit2)

(Intercept) prop

0.1142375 1.0586284

> coef(fit2)["prop"]

prop

1.058628
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3. Data Analysis

The p-value for prop is extremely small (much less than 0.05) which
leads us to reject the null hypothesis.

The null hypothesis in this case is that the true value of the slope is
zero.
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3. Data Analysis

In addition to estimates we can also provide a range of plausible values
using 95% confidence intervals for the trye value of the parameters

confidence intervals for parameters

> confint(fit2)

2.5 % 97.5 %

(Intercept) 0.01335256 0.2151225

prop 1.02301708 1.0942397

Notice that zero does not fall inside either of these intervals.
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3. Data Analysis

We can plot the estimated regression line along with a confidence
region.

fitted regression line

> plot(prop, conf, xlab = "Propagations", ylab = "Conflicts")

> i = order(prop)

> preds1 = predict(fit2, speedup, interval = "confidence")

> lines(prop[i], preds1[i,"fit"], col = 2)

> lines(prop[i], preds1[i,"lwr"], col = 2, lty = 2)

> lines(prop[i], preds1[i,"upr"], col = 2, lty = 2)
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3. Data Analysis
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4. Advanced topics

One of R’s main strengths is it’s flexibility.

However one of it’s main weaknesses is that it can be relatively slow
(due to it being an interpreted, 4th generation language)

This is particularly the case with for loops

There are two main ways to speed up R: parallelistion and integrating
C++ code
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4. Advanced topics

4.1 Rcpp

#include <RcppArmadillo.h>

using namespace Rcpp;

// [[Rcpp::depends(RcppArmadillo)]]

// [[Rcpp::export]]

arma::rowvec colProds(NumericMatrix x){

arma::mat X = arma::mat(x.begin(), x.nrow(), x.ncol(), false);

arma::rowvec col_prods = prod(X,0) ;

return col_prods ;

}
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4. Advanced topics

Sourcing an Rcpp file

> A = matrix(1:9, 3)

> apply(A, 2, prod)

[1] 6 120 504

> require(Rcpp)

> sourceCpp("src/colProds.cpp")

> colProds(A)

[,1] [,2] [,3]

[1,] 6 120 504
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4. Advanced topics

Benchmarking - single run

> B = matrix(runif(1e7), 100) ; dim(B)

[1] 100 100000

> system.time(apply(B, 2, prod))["elapsed"]

elapsed

0.36

> system.time(colProds(B))["elapsed"]

elapsed

0
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4. Advanced topics

Benchmarking - multiple runs

> require(rbenchmark)

> benchmark(apply(B, 2, prod), colProds(B),

+ columns = c("test", "replications",

+ "elapsed", "relative"),

+ order = "relative", replications = 10)

test replications elapsed relative

2 colProds(B) 10 0.06 1.000

1 apply(B, 2, prod) 10 3.58 59.667
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4. Advanced topics

4.2 parallel

It’s fairly easy to parallelise embarassingly parallel code.

Serial
> nloops = 80

> nseconds = 0.01

> system.time({

+ results = lapply(1:nloops, function(i){

+ Sys.sleep(nseconds)

+ })

+ })["elapsed"]

elapsed

0.79
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4. Advanced topics

4.2 parallel

Parallel
> require(parallel)

> ncores = detectCores()

> myCluster = makeCluster(ncores)

> clusterExport(myCluster, "nseconds")

> system.time({

+ results = parLapply(myCluster, 1:nloops, function(i){

+ Sys.sleep(nseconds)

+ })

+ })["elapsed"]

elapsed

0.11

> stopCluster(myCluster)
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