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There isan Erratato thistutorial that is on the next two pages. Y ou may want to print it out
before you begin reading this article.



ERRATA

. Page 351, left-hand column, Paragraph 5: Change “Law of Contradiction” to “Law of
Excluded Middle” and “Law of Excluded Middle” to “Law of Contradiction”.

. Page 351, right-hand column, first paragraph after Example 6, lines 1 and 2: change
“Laws of Contradiction and Excluded Middle’ to “Laws of Excluded Middle and
Contradiction”.

. Page 351, right-hand column, paragraph 3, line 15: change x,y,> 0 to x,y>0.

. Page 352, left-hand column, first paragraph, next to last line: change “dual-logic”’ to
“crisp set”.

. Page 353, left-hand column, equation for p,, (x,y): thesecond x should be x,.

. Page 355, left-hand column, oneline above Equation (14): change p, ¢ ,, 10 1, <(2)-

. Pages 359 and 360, captionsto Figures 15 and 16: change p,.(y) to . (y) in two places
in each caption.

. Page 359, right-hand column, next to the last paragraph: For some reason that | cannot
recall, in the erroneous paragraph, I claim that for all x* x¢, p_.(y)=1, which I then

interpret as a form of non-causality, i.e., a rule will be fired for all x 1 xd. | then argue for the
use of a Mamdani or Larsen implication on the basis of their causality. This is incorrect;
however, it does not affect anything else in the 1995 tutorial. The correct analysis is as
follows:

If we assume that the fuzzy set A’ is a fuzzy singleton, i.e.,

11 x=x¢
MA'(X)_%O x! x¢and" xT X

then
- (%) = 8P, ([ 1 (TR ()]
=supf e 5 (XCY) , =11, 5 (XCy)

regardless of whether we use minimum or product for 0. Observe that for the singleton
fuzzifier the supremum operation is very easy to evaluate, because . (x) is non-zero at only

one point, xd.

Note that “causality” is not the issue. The issue is a bias in the membership function of the



fired rule output fuzzy set, as can be seen in Figures 15c and 16b. It seems peculiar that the
support of this fuzzy set extends over the entire output domain whereas the support of the
consequent set is the base of the triangle.

9. Page 360, Table5, top row, third column: change uq(y) to p,(y)-

10. Page 365, right-hand column, next to last line and last line: in two places change
Heq, (XY) 1O o (X,Y).

11. Page 366, left-hand column, line 1 and Equation (34): change Heq, (% Y) 10 W (X,Y)-
12. Page 366, |eft-hand column, line 1: change [x,... X, Y] tO (X,....X,,Y).

13. Page 368, left-hand column, Equation (41): change the numerator of this equation from
Gik mlfl ka to Gik mFI +G'2:| ka )

14. Page 370, left-hand column, Example 25, line 4: in two places, change [x, ] to (X, ).
15. Page 371, left-hand column, Paragraph 3, line 3: insert a comma between 20 and m..
16. Page 374, |eft-hand column, Paragraph 4, line 6: change [x,] to (x ).

17. Page 374, right-hand column, top paragraph: in 6 places, change M, to Mp.

18. Page 374, right-hand column, Paragraph 2, line 12: change [x,] to (x ).



Fuzzy Logic Systems for Engineering: A Tutorial

JERRY M. MENDEL, FELLOW, IEEE

A fuzzy logic system (FLS) is unique in that it is able t0
simultaneously handle numerical data and linguistic knowledge.
It is a nonlinear mapping of an input data (feature) vector into
a scalar output, i.e., it maps numbers into numbers. Fuzzy set
theory and fuzzy logic establish the specifics of the nonlinear
mapping. This tutorial paper provides a guided tour through those
aspects of fuzzy sets and fuzzy logic that are necessary 1o synthesize
a FLS. It does this by starting with crisp set theory and dual
logic and demonstrating how both can be extended to their fuzzy
counterparts. Because engineering systems are, for the most part,
causal, we impose causality as a constraint on the development
of the FLS. Doing this lets us steer down a very special and
widely used tributary of the FL literature, one that is valuable
for engineering applications of FL, but may not be as valuable
for nonengineering applications.

After synthesizing a FLS, we demonstrate that it can be expressed
mathematically as a linear combination of fuzzy basis functions,
and is a nonlinear universal function approximator, a property
that it shares with feedforward neural nerworks. The fuzzy basis
function expansion is very powerful because its basis functions can
be derived from either numerical data or linguistic knowledge, both
of which can be cast into the forms of 1F-THEN rules. To date, a
FLS is the only approximation method that is able to incorporate
both types of knowledge in a unified mathematical manner.

I. INTRODUCTION

A. Problem Knowledge

For many problems two distinct forms of problem knowl-
edge exist: 1) objective knowledge, which is used all the
time in engineering problem formulations (e.g., mathemati-
cal models), and 2) subjective knowledge, which represents
linguistic information that is usually impossible to quantify
using traditional mathematics (e.g., rules, expert informa-
tion, design requirements). Examples of objective knowl-
edge are: equations of motion for a submarine, spacecraft,
robot, etc.; convolutional model that describes a commu-
nication channel or a reflection seismology experiment;
and, a priori statistics for random parameters. Examples of
subjective information are: the following rule that might be
valid for tracking a submarine or any other slowly moving
large object—If a target is being tracked at one time point,
then it will not be too far away at the next time point; and,
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the following rule that might be valid for processing a
specific section of relection seismology data—If the data
does not contain too many significant events, then those
events are very close to one another.

Subjective knowledge is usually ignored at the front end
of engineering designs; but it is frequently used to evaluate
such designs. I believe that both types of knowledge should
and can be utilized to solve real problems. The two forms
of knowledge can be coordinated in a logical way using
fuzzy logic (FL).

Two approaches for doing this have appeared in the
literature: 1) model-based approach in which “objective”
information is represented by mathematical models, and
“subjective” information is represented by linguistic state-
ments that are converted to rules, which are then quantified
using FL [58]-[60]; and 2) model-free approach in which
rules are extracted from numerical data and are then com-
bined with linguistic information (collected from experts),
both using FL. In this paper we focus on the model-free
approach, because it can be applied to the same class of
problems that feedforward neural networks (FFNN) can be;
hence, we can compare the FL and FFNN approaches.

B. Purpose of this Paper

Most of the FL literature deals with mappings from fuzzy
sets into fuzzy sets (we will define and illustrate what is
meant by a fuzzy set later). In many applications of FL to
engineering problems, we are interested in mappings from
numbers into numbers, and not sets into sets. Consequently,
our problem is more difficult than the usual FL. problem.
We have to add a front-end “fuzzifier” and a rear-end
“defuzzifier” to the usual FL model. The result is a fuzzy
logic system (FLS). The purpose of this tutorial paper is to
provide the reader with a guided tour through those parts
of the FL literature that I believe are necessary in order to
synthesize a FLS.

There is a huge amount of literature on FL. A lot of
it is theoretical, and is presently not utilized when FL
is applied to engineering problems. This is analogous to
the dichotomy between the pure and applied mathematics
literatures and their use in engineering. Of course, we must
always be on the lookout for important new theoretical ideas
and results in FL theory that may lead to new and practical
solutions to engineering problems.

0018-9219/95$04.00 © 1995 IEEE
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Fig. 1.

(a) Mackey-Glass chaotic time series and its single-step prediction. The latter was obtained

using a FLS forecaster that predicts one step ahead using a window of 10 past measurements. The
FLS forecaster was trained using the first 500 samples of the time series. (b) Baselining the FLS
forecaster against the most naive forecaster, the zero-order hold, which predicts the next value

as the present value.

One danger in providing a guided tour is that it is only
possible to reference a smattering of the huge FL literature
(e.g., Maier and Sherif [48] provide 450 references), and
this may offend some of the contributors to that literature.
Even worse, it is not even possible to reference all of the
works that contributors to the subfield of FLS’s will feel
should be referenced (especially if it is their work). To all
of those contributors who feel offended by omission, the
author sincerely apologizes.

C. What is a Fuzzy Logic System?

In general, a FLS is a nonlinear mapping of an input
data (feature) vector into a scalar output (the vector output
case decomposes into a collection of independent multi-
input/single-output systems). The richness of FL is that
there are enormous numbers of possibilities that lead to
lots of different mappings. This richness does require a
careful understanding of FL and the elements that comprise
a FLS. One can, of course, challenge the validity of some
of these possibilities. To me, this is analogous to the
representation problem that we always face in engineering,
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i.e., do we use a linear model, time-domain or frequency-
domain model, lumped-parameter or distributed parameter
model, state-space or input-output model, deterministic or
random model, etc.? Once we agree on the representation,
then we can proceed. The same is true about FL.

In this paper, we show how to interpret the nonlinear
mapping of a FLS geometrically, as is commonly done in
the FL controls literature, and also how to write a detailed
formula for its input-output relationship. The latter lets
us analyze a FLS, develop training algorithms for them,
and write computer programs that incorporate the FLS into
specific applications.

D. Potential of FLS’s

One of the things we will cover in this paper is how
time-series forecasting can be accomplished using a FLS.
Our nonlinear FLS forecaster uses a small window of
past measurements to forecast the next value of the time
series. Fig. 1 depicts almost perfect one-step ahead fore-
casting of a chaotic Mackey—Glass time series [41], [47].
It is impossible to discern a difference between the actual
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Table 1 Engineering Terms Whose Contextual
Usage Is Usually Quite Fuzzy

Term Contextual Usage
Alias none, a bit, high
Bandwidth narrowband, broadband
Blur somewhat, quite, very
Correlation low, medium, high, perfect

Errors large, medium, small, a lot of, not so great,
very large, very small, almost zero

Frequency high, low, ultra-high

Resolution low, high

Sampling low-rate, medium-rate, high-rate, very high-rate
Stability stable (lightly damped, highly damped, over

damped. critically damped), unstable

and predicted time series in Fig. 1(a). Fig. 1(b) baselines
the FLS forecaster against the most naive forecaster, the
zero-order hold, which predicts the next value as the
present value. If a new forecaster cannot do better than
the zero-order hold forecaster, it is worthless. Hopefully,
this example demonstrates the potential of a FLS.

E. Rationale for FL in Engineering

The first paper on FL. which is now considered to be
the seminal paper on FL, was written by Lotfi Zadeh
[84], who is also considered to be the founding father
of the entire field of FL. In this paper, Zadeh states
“... the fact remains that ... imprecisely defined ‘classes’
play an important role in human thinking, particularly
in the domains of pattern recognition, communication of
information and abstraction.” In another important paper
[85], we find the following, often quoted, Principle of
Incompatibility, which many take as a rationale for the
study of FL in engineering and other disciplines: “As the
complexity of a system increases, our ability to make
precise and yet significant statements about its behav-
ior diminishes until a threshold is reached beyond which
precision and significance (or relevance) become almost
mutually exclusive characteristics”—or, “The closer one
looks at a real-world problem, the fuzzier becomes its
solution.”

F. Fuzzy Concepts in Engineering

Some people object, on principle, to using FL instead
of a more familiar model-based approach to design. To
dispel the notion of crispness (i.e., dual-valued concepts,
which either are true or are not true), I list a collection of
terms (see Table 1) that are widely used in control, signal
processing and communications. While we frequently strive
for crisp values of these terms, we usuvally use them in
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Fig. 2. Fuzzy logic system (FLS). The elements of the FLS are
explained later.

fuzzy contexts, where they actually convey more useful
information than would a crisp value.

Correlation is an interesting example, because it can be
defined mathematically so that, for a given set of data,
we can compute a crisp number for it. Let’s assume that
correlation has been normalized so that it can range between
zero and unity, and that for a given set of data we compute
the correlation value as 0.15. When explaining the amount
of data correlation to someone else, it is usually more
meaningful to explain it as “this data has low correlation.”
When we do this, we are actually fuzzifying the crisp value
of 0.15 into the fuzzy set “low correlation.”

Stability is another very interesting example. A system
either is or is not stable; there is nothing fuzzy about this.
However, if the system is stable, we frequently describe its
degree of relative stability, using any of the terms listed
in Table 1. These terms may be more meaningful than the
following description: “The system has four complex poles
and the effective damping ratio for the system is 0.3.” We
just describe the response of such a system as “lightly
damped.” Once again, we are fuzzifying the crisp value
of 0.3 into the fuzzy set “lightly damped.”

For interesting historical perspectives on FL, including
its earlier origins (when it was called continuous-valued
logic) see [50], and, for philosophical interpretations of
FL, see [38].

G. Fuzzy Logic System: A High-Level Introduction

Fig. 2 depicts a FLS that is widely used in fuzzy logic
controllers and signal processing applications. A FLS maps
crisp inputs into crisp outputs. It contains four components:
rules, fuzzifier, inference engine, and defuzzifier. Once the
rules have been established, a FLS can be viewed as a
mapping from inputs to outputs (the solid path in Fig. 2,
from “Crisp Inputs” to “Crisp Outputs™), and this mapping
can be expressed quantitatively as y = f(z). One of the
major goals of this paper is to obtain explicit formulas for
the nonlinear mapping between x and y.

Rules may be provided by experts (you may be such a
person) or can be extracted from numerical data. In either
case, engineering rules are expressed as a collection of IF-
THEN statements, e.g., “IF u; is very warm and w3 is quite
low, THEN turn v somewhat to the right.” This one rule
reveals that we will need an understanding of: 1) linguistic
variables versus numerical values of a variable (e.g., very
warm versus 36°C); 2) quantifying linguistic variables (e.g.,
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u; may have a finite number of linguistic terms associated
with it, ranging from extremely hot to extremely cold),
which is done using fizzy membership functions; 3) logical
connections for linguistic variables (e.g., “and,” “or,” etc.);
and 4) implications, i.e., “IF A THEN B.” Additionally, we
will need to understand how to combine more than one rule.

The fuzzifier maps crisp numbers into fuzzy sets. It
is needed in order to activate rules which are in terms
of linguistic variables, which have fuzzy sets associated
with them.

The inference engine of the FLS maps fuzzy sets into
fuzzy sets. It handles the way in which rules are combined.
Just as we humans use many different types of inferen-
tial procedures to help us understand things or to make
decisions, there are many different fuzzy logic inferential
procedures. Only a very small number of them are actually
being used in engineering applications of FL.

In many applications, crisp numbers must be obtained
at the output of a FLS. The defuzzifier maps output sets
into crisp numbers. In a controls application, for example,
such a number corresponds to a control action. In a signal
processing application, such a number could correspond to
the prediction of next year’s sunspot activity, a financial
forecast, or the location of a target.

H. Applications of Fuzzy Logic

A short list of applications of FL includes: Controls
Applications—aircraft control (Rockwell Corp.), Sendai
subway operation (Hitachi), cruise control (Nissan),
automatic transmission (Nissan, Subaru), self-parking
model car (Tokyo Tech. Univ.), and space shuttle
docking (NASA); Scheduling and Optimization—elevator
scheduling (Hitachi, Fujitech, Mitsubishi) and stock market
analysis (Yamaichi Securities); and Signal Analysis for
Tuning and Interpretation — TV picture adjustment (Sony),
handwriting recognition (Sony Palm Top), video camera
autofocus (Sanyo/Fisher, Canon) and video image stabilizer
(Matshushita/Panasonic). For many additional applications,
see [38], [44], [61], [69], and [82].

I. Fuzzy Logic and Probability

Some people maintain that there is no difference between
FL and probability. When I am asked about this, often
at the beginning of a lecture or course on FL, I ask the
following question: “How many of you have had a formal
course on probability?” Usually, all hands go up. Then
I ask “How many of you have had a formal course on
FL?’ Usually, no hands, or only a very small number
of hands go up. I then state that in order to explain the
differences between FL and probability, we must first spend
time formally understanding FL. Only then can we make
intelligent comparisons between that which we understand
(probability) and that which we will understand (FL).
Consequently, we now turn to short primers on fuzzy sets
and FL, after which we shall return to probability versus
fuzzy logic.
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Fig. 3. Partitioning of the set of all automobiles in New York
City into subsets by: (a) color, (b) domestic or foreign, and (c)
number of cylinders.

II. SHORT PRIMER ON Fuzzy SETS

A. Crisp Sets

Recall that a crisp set A in a universe of discourse U
(which provides the set of allowable values for a variable)
can be defined by listing all of its members or by identifying
the elements z C A. One way to do the latter is to specify
a condition by which x C A; thus A can be defined as
A = {z | z meets some condition}. Alternatively, we can
introduce a zero-one membership function (also called a
characteristic function, discrimination function, or indicator
function) for A, denoted pa(x), such that A = pa(z) =
1if z € A and pa(z) = 0if £ ¢ A. Subset A
is mathematically equivalent to its membership function
pa(z) in the sense that knowing pa(z) is the same as
knowing A itself.

Example 1: Consider the set of all automobiles in New
York City; this is U. The elements of U are individual
cars; but, there are many different types of subsets that can
be established for U, including the three that are depicted
in Fig. 3. Either a car has or does not have six cylinders.
This is a very crisp requirement. Hence, if our car has four
cylinders, its membership function value for the subset of
four cylinder cars is unity, whereas its membership function
value for the subset of six cylinder cars is zero.

B. Fuzzy Sets

A fuzzy set F' defined on a universe of discourse U
is characterized by a membership function pp(x) which
takes on values in the interval [0, 1]. A fuzzy set is a
generalization of an ordinary subset (i.., a crisp subset)
whose membership function only takes on two values, zero
or unity. A membership function provides a measure of the
degree of similarity of an element in U to the fuzzy subset.

Example 1 (Contd.): A car can be viewed as “domestic”
or “foreign” from different perspectives. One perspective
is that a car is domestic if it carries the name of a
USA auto manufacturer; otherwise it is foreign. There
is nothing fuzzy about this perspective; however, many
people today feel that the distinction between a domestic
and foreign automobile is not as crisp as it once was,
because many of the components for what we consider to be
domestic cars (e.g., Ford, GM, and Chrysler) are produced
outside of the USA. Additionally, some “foreign” cars are
manufactured here in the USA. Consequently, one could
think of the membership functions for domestic and foreign

PROCEEDINGS OF THE IEEE, VOL. 83, NO. 3, MARCH 1995
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Fig. 4. Membership functions for domestic and foreign cars,
based on the percentage of parts in the car made in the USA.

cars looking like pp(z) and pp(z) depicted in Fig. 4.
Observe that a specific car (located along the horizontal
axis by determining the percentage of its parts made in the
USA) exists in both subsets simultaneously-—domestic cars
and foreign cars—but to different degrees of membership.
For example, if our car has 75% of its parts made in the
USA, then p1p(75%)= 0.9 and 1 p(75%)= 0.25. Ultimately,
we would describe our car as domestic. In fact, when we do
this, we decide on the subset by choosing it to be associated
with the maximum of 1 p(75%)= 0.9 and pp(75%)= 0.25.
What do we call a car that has exactly 50% of its parts
made in the USA and abroad (see [38] for discussions
on maximum fuzziness and paradoxes which occur when
membership value equals 0.5)?

Describing a car by its color is also not a crisp descrip-
tion, because each color has different shades associated
with it.

The main point of this example is to demonstrate that in
fuzzy logic an element can reside in more than one set to
different degrees of similarity. This can not occur in crisp
set theory. 0O

A fuzzy set F' in U may be represented as a set of ordered
pairs of a generic element x and its grade of membership
function: F = {(z,up(z)) | © € U}. When U is
continuous (e.g., the real numbers), F' is commonly written
as F = [, pup(x)/x. In this equation, the integral sign does
not denote integration,; it denotes the collection of all points
x € U with associated membership function pp(z). When
U is discrete, F' is commonly written as F' = Y., ur(z)/x.
In this equation, the summation sign does not denote
arithmetic addition; it denotes the collection of all points
z € U with associated membership function pp(x); hence,
it denotes the set theoretic operation of union. The slash in
these expressions associates the elements in U with their
membership grades, where pp(z) > 0.

Example 2 : [87] Let F' = integers close to 10; then
F = 0.1/7 + 0.5/8 + 0.8/9 + 1/10 + 0.8/11 + 0.5/12
+ 0.1/13. Three points to note from F are: 1) the integers
not explicitly shown all have membership functions equal
to zero; by convention, we do not list such elements; 2)
the values for the membership functions were chosen by a
specific individual; except for the unity membership value
when z = 10, they can be modified based on our own
personal interpretation of the phrase “close”; and 3) the
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Fig. 5. Membership functions for T'(pressure) = {weak, low,
okay, strong, high}. The shapes of the membership functions as
well as their degree of overlap are quite arbitrary. (© 1992 IEEE.
This figure has been taken from E. Cox, “Fuzzy Fundamentals,”
IEEE Spectrum, pp. 58-61, Oct. 1992.)

membership function is symmetric about z = 10, because
there is no reason to believe that integers to the left of 10 are
close to 10 in a different way than are integers to the right
of 10; but, again, we are free to make other interpretations.

C. Linguistic Variables

Zadeh [86] states “In retreating from precision in the
face of overpowering complexity, it is natural to explore
the use of what might be called linguistic variables, that
is, variables whose values are not numbers but words
or sentences in a natural or artificial language. ... The
motivation of the use of words or sentences rather than
numbers is that linguistic characterizations are, in general,
less specific than numerical ones.”

Let u denote the name of a linguistic variable (e.g.,
temperature). Numerical values of a linguistic variable u
are denoted x, where x € U. Sometimes z and « are used
interchangeably, especially when a linguistic variable is a
letter, as is sometimes the case in engineering applications.
A linguistic variable is usually decomposed into a set of
terms, T'(u), which cover its universe of discourse.

Example 3: [13] Let pressure (u) be interpreted as a
linguistic variable. It can be decomposed into the following
set of terms: T'(pressure) = {weak, low, okay, strong, high},
where each term in T'(pressure) is characterized by a fuzzy
set in the universe of discourse U = [100 psi, 2300 psi].
We might interpret weak as a pressure below 200 psi, low
as a pressure close to 700 psi, vkay as a pressure close
to 1050 psi, strong as a pressure close to 1500 psi, and
high as a pressure above 2200 psi. These terms can be
characterized as fuzzy sets whose membership functions
are shown in Fig. 5. Measured values of pressure (z) lie
along the pressure axis. In this example, a vertical line from
any measured value intersects at most two membership
functions. So, for example, x = 300 resides in the fuzzy
sets weak pressure and low pressure, to different degrees
of similarity.

D. Membership Functions

In engineering applications of fuzzy logic, membership
functions, pp(x), are, for the most part, associated with
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Fig. 6. Membership functions for T(height) = {short men,
medium men, tall men}. (a) Most people’s membership functions,
and (b) professional basketball player’s membership functions.
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Fig. 7. Membership functions associated with A = damping
ratio u considerably larger than 0.5, and B = damping ratio u
approximately 0.707. (a) pa(z) and pp(z) (b) paus(r), (©)
nanp(x), and (d) pg(x). (Adapted from Figs. 2 and 3 in [87]).

terms that appear in the antecedents or consequents of rules,
or in phrases (e.g., foreign cars).

Example 4: Some examples of rules and associated
membership functions (shown in brackets) are: 1) IF
we are tracking a target at one instant of time,
THEN the target will not be too far away at the
next instant of time [proo-rarR—away(z)]; 2) IF
the horizontal position is medium positive and the
angular position is small negative, THEN the control
angle is large positive  [uMEDIUM-POSITIVE(Z),
psMALL-NEGATIVE (0), prarce—positive (@)} and,
3) IF y(t) is close to 0.5, THEN f(y) is close to zero
[tcLosE-To-0.5(¥), MCLOSE—TO-ZERO(f(y))]- o

The most commonly used shapes for membership func-
tions are triangular, trapezoidal, piecewise linear and Gauss-
ian. Until very recently, membership functions were chosen
by the user arbitrarily, based on the user’s experience;
hence, the membership functions for two users could be
quite different depending upon their experiences, perspec-
tives, cultures, etc. More recently, membership functions
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have been designed using optimization procedures (e.g.,
[23], 271, [75], and [77]).

Example 5: Let U be the set of all men. The term
“height” can mean different things to different people.
Fig. 7 depicts two sets of membership functions for the set
of terms {short men, medium men, tall men}. Clearly, the
terms short men, medium men, and tall men will have a very
different meaning for a professional basketball player than
they will for most other people. This illustrates the fact that
membership functions can be quite context dependent. O

The number of membership functions is up to us. Greater
resolution is achieved by using more membership functions
at the price of greater computational complexity. Mem-
bership functions don’t have to overlap; but, one of the
great strengths of FL is that membership functions can be
made to overlap. This expresses the fact that “the glass
can be partially full and partially empty at the same time.”
In this way we are able to distribute our decisions over
more than one input class, which helps to make FL systems
robust. Although membership functions do not have to be
scaled between zero and unity, most people do this so that
variables are normalized. We can always normalize a fuzzy
set by dividing pp(z) by its largest value supypp(z).

E. Some Terminology

The support of a fuzzy set F is the crisp set of all points
z in U such that pp(z) > 0. For example, the support of
the fuzzy set short in Fig. 6(a) is = € [0, 5.5]. The element
z in U at which pp(z) = 0.5 is called the crossover point.
A fuzzy set whose support is a single point in U with
ur(z) = 1, is called a fuzzy singleton.

F. Set Theoretic Operations

1) Crisp Sets: Now that we have defined fuzzy sets, what
can we do with them? We could ask the same question about
crisp sets, and we know that there are lots of things we can
do with them; hence, we expect that we can do analogous
things with fuzzy sets. To begin, let us briefly review the
elementary crisp-set operations of union, intersection, and
complement.

Let A and B be two subsets of U. The union of A and B,
denoted A U B, contains all of the elements in either A or
B,ie,paup(z)=1ifz € Aorz € B,and pyup(z) =0
ifz & A and = € B. The intersection of A and B, denoted
AN B, contains all of the elements that are simultaneously
in A and B, ie., panp(z) = 1if v € A and ¢ € B,
and pang(z) = 0if z ¢ Aorx ¢ B. Let A denote the
complement of A; it contains all the elements that are not
in A, ie, pi(z) =1ifz ¢ Aand pz(z) =0if z € A
From these facts, it is easy to show that:

AUB = paup(z) = max{pa(z), ps(z)] (la)
AN B = panp(r) = minfpa(z), ps(z)]  (1b)
pa(r) =1- pa(z). (Ic)

For example, z € A or z € B means (pa(x)
Lpp(z) = 1), (pa(z) = Lup(z) = 0), or (pa(z)
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0,up(x) = 1), for which max[pa(z),ps(z)] = 1
and, z ¢ A and z ¢ B means (pa(z) = O,up(z) =
0) for which max[us(z), up(x)] = 0. Consequently,
max[pa(z), pp(z)] does provide the correct membership
function for union.

The formulas for paus(z), pans(x), and pz(z) are
very useful for proving other theoretical properties about
sets. Note, also, that “max” and “min” are not the only
ways to describe pqup(z) and panp(z). While these
formulas are not usually part of conventional set theory,
they are essential to fuzzy set theory; however, as we have
just demonstrated, they really do occur in conventional set
theory. See {33] and [81] for other ways to characterize
these operations.

The crisp union and intersection operations are commuta-
tive (e.g., AU B = BU A), associative (e.g., AUBUC =
(AU B)UC = AU (B U C)) and distributive [e.g.,
AnN(BUGC)=(AnB)u(AnC)and AU (BNC) =
(AU B) N (AU C)]. These properties can be proved either
by Venn diagrams or by using the operations involving
membership functions given in (1).

De Morgan’s laws for crisp sets are: AU B = ANB and
AN B = AU B. These laws, which are also very useful in
proving things about more complicated operations on sets,
can also be proved either by Venn diagrams or by using the
operations involving membership functions given in (1).

The two fundamental (Aristotelian) laws of crisp set
theory are: 1) Law of Contradiction: AU A = U (e,
a set and its complement must comprise the universe of
discourse), and 2) Law of Excluded Middle: AN A = ¢
(i.e., an element can either be in its set or its complement;
it cannot simultaneously be in both).

2). Fuzzy Sets: In FL, union, intersection and complement
are defined in terms of their membership functions. Let
fuzzy sets A and B be described by their membership
functions p4(z) and pp(z). One definition of fuzzy union
leads to the membership function

paus(r) = max[pa(z), up(z)) (2a)

and one definition of fuzzy intersection leads to the mem-
bership function

pang(z) = min[pa(z), pp(z)]. (2b)

Additionally, the membership function for fuzzy comple-
ment is

pp(7) =1- pp(). (20)

Obviously, these three definitions were motivated by their
crisp counterparts, in (1).

Although (2) and (1) look exactly alike, we must remem-
ber that: (1) sets A and B in (2) are fuzzy, whereas in (1)
they are crisp; and, (2) fuzzy sets can only be characterized
by their membership functions, whereas crisp sets can be
characterized either by their membership functions, or a
description of their elements, or a listing of their elements.
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Example 6: Consider the fuzzy sets A = damping ratio
u considerably larger than 0.5, and B = damping ratio u
approximately 0.707. Note that damping ratio is a positive
real number. Consequently, A = {(z,pa(z)) | z € U},
and B = {(z,un(z)) | = € U}, where, for exam-
ple, ua(z) and up(z) are specified, as [87]: pa(z) =
[0,z < 0.5] or [1/(1 + (z — 0.5)"2),2 > 0.5}, and
pp(z) = 1/(1 + (z — 0.707)*), z > 0. Fig. 7 depicts
pa(z), (), paus(z), pans(z), and pp(z). Observe,
from Fig. 7(d), that the point z = 0.5 exists in both B
and B simultaneously, but to different degrees, because
up(0.5) # 0 and pz(0.5) # 0. O

This example demonstrates that for fuzzy sets the Laws
of Contradiction and Excluded Middle are broken, i.e., for
fuzzy sets: AUA #U and AN A # $. We have also seen
this in the automobile Example 1. In fact, one of the ways to
describe the difference between crisp set theory and fuzzy
set theory is to explain that these two laws do not hold
in fuzzy set theory. Consequently, any other mathematics
that relies on crisp set theory, such as (frequency-based)
probability, must be different from fuzzy set theory.

The “max” and “min” operators are not the only ones
that could have been chosen to model fuzzy union and
fuzzy intersection. Zadeh, in his pioneering first paper
[84], defined two operators each for fuzzy union and fuzzy
intersection, namely: fuzzy union—maximum and algebraic
sum [paup(z) = pa(x) + pp(z) — pa(z)us(@)]; fuzzy
intersection—minimum and algebraic product [nang(z) =
pa(z)pp(z)]. Later, other operators, which have an ax-
iomatic basis, were introduced—t-conorm operators for
fuzzy union also known as an s-norm, and denoted @),
and t-norm operators for fuzzy intersection (denoted ).
See [80] for precise axiomatic-based definitions of both
operators. Some other examples of ¢-conorms are: bounded
sum: £ @y = min(1, z + y); and, drastic sum: x Py = x if
y=0,yif z =0, 1 if z,y,> 0. Some other examples of
t-norms are: bounded product: T x y = max[0,z +y — 1];
and, drastic product. z vy = z if y = 1,y if z =
1, 0 if z,y < 1. There is even an axiomatic definition
for the complement of a fuzzy set (denoted c) [33, pp.
38-45). In engineering applications, most people use the
fuzzy complement whose membership function is given in
(2c).

As pointed out by Zimmerman [87], pairs of ¢-norms
and t-conorms satisfy the following generalization
of DeMorgan’s laws [7]:  s{ua(z), pB(z))] =
c{tle(nale)),clus(@))}, and  tlua(z), uplz)] =
cfs[e(ua(z)), c(up(x))]}, where x € U. For example,
max[pa(x), pp(z)] = 1 —min[l — pa(z),1 - pp(x)] and
min[pa(z), pp(z)] = 1 — max(l — pa(z),1 — pp(z)].

Note, also, that there are other ways of combining fuzzy
sets, e.g., the fuzzy and, fuzzy or, compensatory and, and
compensatory or; [87], [81].

The different ¢-norms, ¢-conorms and complements, that
are available to us in fuzzy set theory, provide us with a
plethora of richness and also with some (tough) choices
that will have to be made in our FLS. Zimmerman (87,
pp. 42—43] provides eight criteria which might be helpful
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Fig. 8. Sagittal diagram for relation of stability between the set
of all linear, second-order continuous-time systems and the set of
the poles of such systems.

in selecting the connective’s operator. Unfortunately, this
author found most of these criteria to be so subjective
that he could not use them in his engineering applications.
Most engineering applications of fuzzy sets use: 1) the
min or algebraic product t-norm for fuzzy intersection; 2)
the max t-conorm for fuzzy union; and, 3) 1 — pa(z) for
the membership function of the fuzzy complement. Finally,
we note that all of the operators that are available for
fuzzy union, intersection and complement reduce to their
dual-logic counterparts when the membership functions are
restricted to the values O or 1.

G. Relations and Compositions on the Same Product Spaces

1) Crisp Relations: “A crisp relation represents the pres-
ence or absence of association, interaction, or interconnect-
edness between the elements of two or more sets” [33,
p. 65]. Here we limit our attention to relations between two
sets U and V, i.e., to binary relations denoted R(U, V). For
example, let R represent the relation of stability between
the set of all linear, second-order continuous-time systems
and the set of the poles of such systems. Of all the possible
pairings of linear second-order continuous-time systems,
and poles, we know that only those pairs whose members
are time-invariant and have poles lying either in the left-
half of the complex s-plane or on the imaginary axis of
that plane are stable.

We let U x V denote the Cartesian product of the two
crispsets U and V,ie, UXxV ={(z,y) |z €U and y €
V}. R(U,V) is a subset of U x V, which should be very
clear from the example of stability just given; however,
let us elaborate on this example to make it even clearer.
Let U = {z1,z2} = {linear second-order time-varying
continuous-time system, linear second-order time-invariant
continuous-time system} and V' = {y1,y2,y3} = {poles lie
in the left-half s-plane, poles lie on the jw-axis, poles lie
in the right-half s-plane}. The cartesian product U x V
can be visualized as a 2 x 3 array of ordered pairs,
e.g., the (1-2) element is (linear second-order time-varying
continuous-time system, poles lie on the jw-axis). Clearly,
our stability relation R(U,V) is the following subset of
U x V:R(U,V) = {(linear second-order time-invariant
continuous-time system, poles lie in the left-half s-plane),
(linear second-order time-invariant continuous-time system,
poles lie on the jw-axis)}. Because a relation is itself a set,
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all of the basic crisp set operations can be applied to it
without modifications.

Crisp relation R(U, V) can be defined by the following
membership function:

sr(z.y) = {(1) ;ft;:rf‘iy?:;y if (z,y) € RUV) 5
For binary relations defined over a cartesian product whose
elements come from a discrete universe of discourse, it
is convenient to collect the membership functions into a
relational matrix whose elements are either zero or unity.
The relational matrix for our stability relation is

Y Y2 Ys

z1 {0 0 O

) ( 1 1 0 )
An equivalent representation for a binary relation is a
sagittal diagram, in which the sets U,V are each repre-
sented by a set of nodes in the diagram that are clearly
distinguished from one another. Elements of U x V with
nonzero membership grade in R(U,V) are represented
in the diagram by lines connecting the respective nodes.
Although not explicitly shown, the lines have membership
values equal to unity. The sagittal diagram for our stability
relation is depicted in Fig. 8.

2) Fuzzy Relations: Fuzzy relations represent a degree of
presence or absence of association, interaction, or intercon-
nectedness between the elements of two or more fuzzy sets.
Some examples of binary fuzzy relations are: z is much
larger than y, y is very close to x, 2 is much greener than
y, system 1 is less damped than system 2, bandwidth of
system A is larger than that of system B, and, Tone C
is of higher local signal-to-noise ratio than tone D. Fuzzy
relations play an important role in a FLS.

Let U and V be two universes of discourse. A fuzzy
relation, R(U, V) is a fuzzy set in the product space U x V,
i.e., it is a fuzzy subset of U x V, and is characterized by
membership function pg(z,y) where z € U and y € V,
ie, R(U,V) = {((z,), ur(z,y)) | (,) € U x V}. The
difference between a fuzzy relation and a crisp relation
is that for the former ug(z,y) € [0, 1], whereas for the
latter pug(z,y) = 0 or 1. The generalization of a fuzzy
relation to an n-dimensional cartesian product space is
straightforward.

Example 7: Let U and V be the real numbers, and con-
sider the fuzzy relation “target x is close to target y.” Close
is sometimes referred to as a “root concept.” Here is one
membership function for this relation: pcrose(|z — 3|) =
max[(5|z — y|)/ 5, 0]. This relational membership function
is depicted in Fig. 9. Note that the distance between the
two targets |z — y| is treated as the independent variable,
which makes it possible to view the membership function
on a two-dimensional plot. O

Because fuzzy relations are fuzzy sets in product space,
set theoretic and algebraic operations can be defined for
them using our earlier operators for fuzzy union, intersec-
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A ncrose(x-y)

5 > x-y|

Fig. 9. Relational membership function pc:Losg (l# — yl)-

tion and complement. Let R(z,y) and S(x,y) (shortened
in the sequel to R and S) be two fuzzy relations in the
same product space U x V. The intersection and union of
R and S, which are compositions of the two relations, are
then defined as

pras(Z,y) = prc,y) * ps(z,y) (4a)
prus(z,y) = pr(z,Y) ® ps(z,y) (4b)

where « is any ¢-norm, and & is any {-conorm.

Example 8: Consider the sentence “x is much larger than
y and y is very close to z,” a sentence which we know
is implausible. We wish to establish a fuzzy membership
function for it. We begin by recognizing that this sentence
is a composition between the two relations “z is much
larger than y” and “y is very close to z,” and that both
relations live on the same product space U x V. We
then create membership functions for the relations “z is
much larger than y,” pyr(z,y), and “y is very close to
z,” pvc(y, ). Finally, using these membership functions
and an appropriate t-norm (e.g., min), we can create the
membership function for the sentence, as umLAve(Z,y) =
min[pnme (2, ), pve (Y, )]

As a concrete example of this procedure, let U = {z1, T2,
z3} and V = {y1,¥2,v3,y4}. The membership functions
umL (2, y) and pye (y, =) are assumed to be given by the
following relational matrices [87]:

Vi Y2 Y3 Y4

2 (08 1 01 07
pvL(z,y) =21 0 08 0 O
x3 \09 1 0.7 08

and

T To I3
yi {04 09 03

0 04 O

_ Y2
pvely,z) = ys | 09 05 08

ya \0.6 0.7 0.5

(52)

Then, for example, uymLave (73, ¥4) = min[pmr (23, ya),
pve (¥4, £3)] = min(0.8, 0.5) = 0.5. The complete mem-
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Fig. 10. Sagittal diagrams for Example 9; (a) original diagram for
relations B (U, V) and R2(V, W); (b) compositional diagram for
R3(U,W).

bership function, pnvrave(ir, ¥), can similarly be shown to
be given by

Yi Y2 Y3 Y4
z1 04 0 0.1 0.6

pMuave(z,y) = 22 { 0 04 0 0
z3 \03 0 07 05

(5b)

Observe from (5b) that, because most of its elements are
less than 0.5, this sentence is treated with a high degree of
disbelief, except, perhaps at (x1.y4) and (3, y3). O

H. Relations and Compositions on Different Product Spaces

1) Crisp Compositions: Next, we consider the composi-
tion of crisp relations from different product spaces that
share a common set, namely P(U, V) and Q(V,W). Klir
and Folger [33, p. 75] state “The composition of these two
relations is denoted by

R(U,W) = P(U,V) o QV,W) (6)

and is defined as a subset R(U, W) of U x W such that
(z,w) € R if and only if there exists at least one y € V
such that (z,y) € P and (y,w) € Q.7
Example 9: Here we begin with the saggital diagram
depicted in Fig. 10, from which we conclude that the
relational matrices R;(U,V), R2(V, W), and R3(U, W)
are:
Y1 Y2 Yz Y4
T 0 1 0 1
RUV)=2, 1 0 0 0
2 \N0 0 1 1
Z1 29 23 Zy

v {1l 0 0 0

R2(‘/, W) _ Y2

21 292 23 i

o
=
—_
j—t

Ty

Rs(UW)= 2,01 0 0 0 M
z3\1 1 1 0

Because it is not efficient to keep describing our com-

positions in terms of sagittal diagrams, we need a formula
that conveys the same information. O
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Definitions: The max-min composition of relations
P(U,V)and Q(V, W), is defined by the membership function
tpoq (T, z), where

#roq(z, 2) = {(z, 2), maximin(up (7, y), o (y, 2))]}. @)

The max-product composition of relations P(U, V') and Q(V,
W), is defined by the membership function ppxq (x, z), where

nrxq (@, 2) = {(z. 2), max{pp (2. y)uoly, )} O)

It is a fact that carrying out the operations of either the
max-min or max-product compositions leads to the correct
relational matrix R(U, W).

Example 10: Let’s verify (8) and (9) for the 1-2 el-
ement of R3(U,W) in (7). For this element, (8) be-
comes pr,(21,22) = {(r1, 22), maxy[min(pr, (z1, ¥),
18, (. 22))]} = {(@1. 22), max[min(pr, (21, 91), s (1.
z2)), min(pr, (1, Y2), KR, (Y2, 22)), min(pr, (1, ¥3),
pr,(Ys, 22)), min(pg, (z1, Y4), LR, (Y2, 22))]} = {(z1,
2z9), max[min(0,0), min(1,0), min(0,1), min(1,0)]} =
{(z1, 22), max[0,0,0,0] = 0}, which agrees with (7). Sim-
ilarly, (9) becomes pg, (21, 22) = {(x1, 22), max,[unr, (21,
ViR, (Y, 22)]} = {(z1, 22), max[ug, (1, y1) pr, (11, 22),
1R, (T1, Y2)ieR, (Y2, 22), LR, (T1, Y3)LiR, (Y3, 22), bR, (21,
ya)ur, (ya. 22)]} = {(z1, 22), max[(0x0), (1x0), (0x 1),
(1 x 0)]} = {(z1, 22), max[0,0,0,0] = 0}, which also
agrees with (7). O

While this example is not a proof of the validity of (8)
and (9), it demonstrates that they both seem to be correct
representations for R(U, W).

The following shortcuts can be used to evaluate the max-
min or max-product compositions.

Max-Min Composition: (1) Write out each element in
the matrix product Q(U,V) P(V,W); but, (2) treat each
multiplication as a min operation; and, then, (3) treat each
addition as a max operation.

Max-Product Composition: (1) Write out each element in
the matrix product Q(U,V) P(V,W); but, (2) treat each
multiplication as an algebraic multiplication operation; and,
then, (3) treat each addition as a max operation.

Example 10 (Continued): Let’s use these two shortcuts to
verify (8) and (9) for the 1-3 element of R3(U, W) in (7).
Now (8) leads to R3(x1,23) =0x 0+1x0+0x0+1x
1 = min (0,0) + min (1, 0) +min (0, 0) + min (1, 1)= max
0, 0, 0, 1) = 1. Similarly, (9) leads to R3(z1,23) = 0 X
0+1x0+0x0+1x1=max(0,0,0,1)=1. 0O

The max-min and max-product compositions are not the
only ones that correctly represent R(U, W); however, they
seem to be the most widely used ones.

2) Fuzzy Compositions: Next, we consider the composi-
tion of fuzzy relations from different product spaces that
share a common set, namely R(U,V) and S(V,W), e.g.,
z is smaller than y and y is close to z. The composition of
fuzzy relations from different product spaces that share a
common set is defined analogously to the crisp composition,
except that in the fuzzy case the sets are fuzzy sets.
Associated with fuzzy relation R is its membership function
pne(z,y), where up(z,y) € [0, 1] and associated with
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fuzzy relation S is its membership function ps(y, z), where
us(y,z) € [0, 1]. When R and S are from discrete
universes of discourse, then the fuzzy composition of R
and S, denoted R o S, can be described either by a sagittal
diagram, in which each branch is labeled by its membership
function value, or a fuzzy relational matrix, in which each
element is a positive real number between and including
zero and unity. A mathematical formula for ppos(zx, z),
that is motivated by (8) and (9), is the following sup-star
composition of R and S:

ros(,2) = suplur(w.y) * ps(y.2)l. - (1)
¥

When U, V, and W are discrete universes of discourse,
then the sup operation is the maximum. Motivation for
using the “star” operation, which, of course is short for a
t-norm, comes from the crisp max-min and max-product
compositions, because both the min and product are -
norms. Although it is permissible to use other ¢-norms,
the most commonly used sup-star compositions are the
sup-min and sup-product. The shortcuts for computing the
sup-min and sup-product, given above, apply also to fuzzy
compositions over discrete universes of discourse.

Example 11: Returning to Example 8, let us consider the
sentence “‘z is much larger than y and y is very close
to z.” We begin by creating membership functions for
the relations “z is much larger than y,” pmi{(z,y), and
“y is very close t0 z,” uvc(y.z). As in Example 8, let
U = {:1}1,1’2,.1?3} and V = {yl,yg,yg,y4}; additionally,
let W = {21, #2, 23 }. Membership functions pu1(2,y) and
pve(y, z) are given by

Y1 Y2 Y3 Ya
z; {08 1 0.1 07
puL(z,y) =z, 0 08 0 0 and

zs \09 1 07 08
zZ1 Z2 0z
y1 {04 09 03
y2| 0 04 O
yz| 0.9 0.5 08
ys \0.6 0.7 0.5

pve(y, z) =

(1D
Using the max-min composition, we find that

z z9 23
z; {06 0.8 0.5

pMLove(z,z)=z2 | O 04 0 |. (12)
z3 \0.7 09 0.7

whereas using the max-product composition, we find that

21 22 23
z; (042 0.72 0.35
pmLxve(z,2)=z2 | 0 032 0 ]. (13)

zg \ 0.63 0.81 0.56

Observe that, unlike the case of crisp compositions, for
which exactly the same results are obtained using either
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Fig. 11. Block diagram interpretation for the sup-star composition.

xeU KR, ¥) yev us(y, z) zeW aeX HRoSoT(x,a)
@)
26X | hreser(x, )

RoS

T

b)

Fig. 12. Multiple fuzzy relations in (a) can be handled two at a time, as in (b).

the max-min or max-product compositions, the same results
are not obtained in the case of fuzzy compositions. This is
a major difference between fuzzy composition and crisp
composition.

Fig. 11 provides a block diagram interpretation for the
sup-star composition. It is equally valid for crisp and fuzzy
compositions. It suggests a simple way to compose more
complicated fuzzy relations.

Example 12: Fig. 12 depicts the interconnection of three
fuzzy relations and how they can be composed. First rela-
tions R and S are composed using the sup-star composition;
then, that result is composed with relation T', again using
the sup-star composition. Of course, we could have first
composed relations S and T', after which we could compose
R with that result. O

Suppose fuzzy relation R is just a fuzzy set, so that
pr(x,y) just becomes pg(z), e.g., “y is medium large and
2 is smaller than y.” Then V = U, and Fig. 11 reduces
to Fig. 13, which gives us the sense of how a fuzzy set
can activate a fuzzy relation. This special case will, as we
shall demonstrate in the subsection below, entitled “Fuzzy
Implication,” be extremely important to us, especially in
our later development of our FLS.

What happens to the sup-star composition in this
case? Because V = U, supyev[ur(z,y) * us(y,2)] =
sup,cylpr(x) * ps(x,z)] which is only a function of
output variable z; hence, we can simplify the notation
1Ros(T,2) 1O BRos(), SO that when R is just a fuzzy set,

MRos(2) = sgg[un(x) * ps(z, 2)]- (14
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Fig. 13. Block diagram interpretation for the sup-star composition
when the first relation is just a fuzzy set.

For discrete universes of discourse, we can evaluate the
max-min or max-product compositions in (14) using the
shortcuts described above; however, we must first create a
row matrix for pgr(z), ie., if £ € U = {z1,22,...,Zn},
let R(U) = (nr(z1), pr(Z2), - - -, r(Zn)). Then, we have
for:

Max-Min Composition: 1) Write out each element in the
matrix product R(U) S(U, W); but, 2) treat each multipli-
cation as a min operation; and then, 3) treat each addition
as a max operation.

Max-Product Composition: 1) Write out each element in
the matrix product R(U) S(U, W); but, 2) treat each
multiplication as an algebraic multiplication operation; and,
then, 3) treat each addition as a max operation.

1. Hedges

A linguistic hedge or modifier is an operation that mod-
ifies the meaning of a term, or more generally, of a fuzzy
set. For example, if weak pressure is a fuzzy set, then very
weak pressure, more-or less weak pressure, extremely weak
pressure, and not-so weak pressure are examples of hedges
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which are applied to this fuzzy set. Hedges can be viewed as
operators that act upon a fuzzy set’s membership function to
modify it. Here we give a small sample of these operators;
many more can be found in [14].

1) Concentration: icon(u)() £ [uy (2)]?. H, for exam-
ple, weak pressure has membership function uwp(p),
then very weak pressure is a fuzzy set with member-
ship function [uwp(p))?, and very very weak presure
is a fuzzy set with membership function [uwp(p)]*.
Because our membership functions have been as-
sumed to be normalized, it is clear that the operation
of concentration leads to a membership function that
lies within the membership function of the original
fuzzy set (thus, the term concentration); both have
the same support, and the same membership values
where the value of the original membership function
equals unity or zero.

2) Dilation: pan)(z) £ [py(z)]Y/2. If, for example,
weak pressure has membership function pwp(p),
then more or less weak pressure is a fuzzy set with
membership function [pwp(p)]'/2. The operation of
dilation leads to a membership function that lies
outside of the membership function of the original
fuzzy set (thus, the term dilation); both have the
same support, and the same membership values where
the value of the original membership function equals
unity or zero.

3) Artificial Hedges: Two hedges that are quite useful are
the plus and minus hedges, whose membership func-
tions are fp1us(y(€) 2 [y (2)]1? and fminus(v) ()
£ [ (2)]° 7. These artificial hedges provide milder
degrees of concentration and dilation than those as-
sociated with the concentration and dilation hedges.

We have used the 2 sign in these hedge membership

functions to convey the fact that the exponents used in the
hedge membership functions are quite arbitrary; they can be
changed depending upon our interpretation of the hedges.

Example 13: [85] We frequently use the phrase highly

unlikely. Here we show how to obtain a membership
function for it. Let U denote a universe of discourse
associated with an appropriate quantity related to our notion
of likely. We will clarify U below. Let upixery (z) be the
fuzzy membership function for the root concept of likely.
Then,

pHIGHLY UNLIKELY (#) = [1 — prikery (£)]**07. (15)

To obtain (15), we have interpreted the hedge highly as
minus very very (which, of course, is subjective) and have
used the fact that unlikely is the complement of likely.
From estimation theory (e.g., [19]), we know that like-
lihood is proportional to probability. This fact helps us to
establish the universe of discourse, U, as values of prob-
ability (the constant of proportionality between probability
and likelihood is irrelevant), i.e., p € U where p € [0, 1].
As a concrete example, we assume the following discrete
universe of discourse: U =0 + 0.1 + 0.2 + 0.3 + 0.4
+ 05 + 06 + 0.7 4+ 08 + 09 + 1, where the +
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sign denotes union rather than arithmetic sum. In order
to evaluate (15), we need to specify prixery(p). Based
on our own perception of the fuzzy set likely, we make
the following choice for ypikeLy (p) (your choice may be
different):

uLKELY (p) = 1/1+ 1/0.9 + 1/0.8 + 0.8/0.7 + 0.6/0.6
+0.5/0.5 + 0.3/0.4 + 0.2/0.3. (16)

Recall that the terms not shown have zero membership
function values. Evaluating (15), we find that

HHIGHLY UNLIKELY(P)
~1/0+1/0.1+1/0.2+0.5/0.3 + 0.3/0.4. (17)

Observe, from (16) and (17), that the membership
function HHIGHLY UNLIKELY(I’) seems to make sense,
i.e., it agrees with our own notion that something that
is highly unlikely has a very very small chance (i.e.,
probability) of occuring. Consequently, large values for
MHHIGHLY UNLIKELY(T)) should and indeed do occur for
small values of probability, p.

III. SHORT PRIMER ON Fuzzy LOGIC

From Fig. 2, we see that one of the major components
of a FLS is Rules. Our rules will be expressed as logical
implications, i.e., in the forms of IF-THEN statements, e.g.,
IF v is A, THEN v is B, where u € U and v € V. A
rule represents a special type of relation between A and
B; its membership function is denoted 4, 5(z,y). What
is a proper and appropriate choice for this membership
function? Nothing that we have presented so far helps us to
answer this question, because an implication resides within
a branch of mathematics known as logic, and so far we
have been discussing set theory. Fortunately, as stated in
[33] “It is well established that propositional logic is iso-
morphic to set theory under the appropriate correspondence
between components of these two mathematical systems.
Furthermore, both of these systems are isomorphic to a
Boolean algebra, which is a mathematical system defined
by abstract (interpretation-free) entities and their axiomatic
properties. The isomorphisms between Boolean algebra, set
theory, and propositional logic guarantee that every theorem
in any one of these theories has a counterpart in each of
the other two theories. These isomorphisms allow us, in
effect, to cover all these theories by developing only one
of them.” Consequently, we will not spend a lot of time
reviewing crisp logic; but, we must spend some time on it,
especially on the concept of implication, in order to reach
the comparable concept in fuzzy logic.

A. Crisp Logic (Much of This Section
is Paraphrased from [1])

Rules are a form of propositions. A proposition is an
ordinary statement involving terms which have been de-
fined, e.g., “The damping ratio is low.” Consequently, we
could have the following rule: “IF the damping ratio is
low, THEN the system’s impulse response oscillates a long
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Table 2 Truth Table for Five Operations That
Are Frequently Applied to Propositions

P q PAg pVy P—a peg ~pr
T T T T T F
T E I3 T F F F
F T F T T F T
F F F F T T T

time before it dies out.” In traditional propositional logic, a
proposition must be meaningful to call it “true” or “false,”
whether or not we know which of these terms properly
applies.

Logical reasoning is the process of combining given
propositions into other propositions, and then doing this
over and over again. Propositions can be combined in many
ways, all of which are derived from three fundamental
operations: conjunction (denoted p A q ), where we assert
the simultaneous truth of two separate propositions p and
g (e.g.. damping ratio is low and bandwidth is large);
disjunction (denoted p V q) where we assert the truth of
either or both of two separate propositions (e.g., I will
design an analog filter or I will design a digital filter); and,
implication (denoted p — ¢) which usually takes the form
of an IF-THEN rule, an example of which has been given
in the previous paragraph. The IF part of an implication
is called the antecedent, whereas the THEN part is called
the consequent.

In addition to generating propositions using conjunction,
disjunction or implication, a new proposition can be ob-
tained from a given one by prefixing the clause “it is false
that ....”. This is the operation of negation (denoted ~p).
Additionally, p < g is the equivalence relation; it means
that p and ¢ are both true or false.

In traditional propositional logic we combine unrelated
propositions into an implication, and we do not assume any
cause or effect relation to exist. We will see later that this
last statement causes serious problems when we try to apply
traditional propositional logic to engineering applications,
where cause and effect rule (i.e., a system does not respond
until an input is applied to it; a system’s impulse response
is zero for all ¢t < 0).

In traditional propositional logic an implication is said
to be rrue if one of the following holds: 1) (antecedent is
true, consequent is true), 2) (antecedent is false, consequent
is false), and 3) (antecedent is false, consequent is true);
the implication is called false when 4) (antecedent is true,
consequent is false). Situation 1) is the familiar one of
common experience. Situation 2) is also reasonable, for
if we start from a false assumption we expect to reach a
false conclusion, however, intuition is not always reliable.
We may reason correctly from a false antecedent to a true
consequent (e.g., IF 1 = 2 is false, but, adding 2 = 1 to
this false statement, lets us correctly conclude that 3 = 3);
hence, a false antecedent can lead to a consequent which is
either true or false, and thus both situations 2) and 3) are
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allowed in traditional propositional logic. Finally, situation
4) is in accord with our intuition, for an implication is
clearly false if a true antecedent leads to a false consequent.

A logical structure is constructed by applying the above
four operations to propositions. The objective of a logical
structure is to determine the truth or falsehood of all
propositions which can be stated in the terminology of thi
structure.

A truth table is very convenient for showing relationships
between several propositions. The fundamental truth tables
for conjunction, disjunction, implicstion, equivalence and
negation are collected together in Table 2, in which symbol
T means that the corresponding proposition is true, and
symbol F' that it is false.

The fundamental axioms of traditional propositional logic
are: 1) every proposition is either true or false, but not both
true or false; 2) the expressions given by defined terms arc
propositions; and, 3) the truth tahie (in Table 2) for conjunc-
tion, disjunction, implication, equivalence, and negation.
Using truth tables, we can derive many interpretations of
the preceding operations and can also prove relationships
about them.

A tautology is a proposition formed by combining other
propositions (p,q,r,...) which is true regardless of the
truth or falsehood of p,q¢.r,... . The most important
tautology for our work is: (p — ¢) &~ [pA(~q)]. A proof
of this tautology, using truth tables, is given in Table 3
Observe that the entries in the two columns p — q¢ and
~ [p A (~q)] are identical; this proves the tautology. ‘thix
tautology can also be expressed as (p — q) <= (~p) V q,
the truth of which is also demonstrated in Table 3. The
importance of these tautologies is that they let us express
the membership function for p — ¢ in terms of membership
functions of either propositions p and ~g or ~p and q,
which was the main objective for this section.

Some of the most importaint mathematical equivalences
between logic and set theory are

Logic Set Theory
A n
Vv U

~ )
Additionally, as mentioned above, there is a correspondence
between elementary logic and Boolean Algebra (0, 1).
Any statement that is true in one system becomes a truc
statement in the other, simply by carrying through the
following changes in notation:

Logic Boolean Algebra (0, 1)
T 1
F 0
A X
v +
~ /
> —
DG, Ty a,b.c,...
In this list, ’ stands for complement, and a,b,c,... are

arbitrary elements of the set (0, 1).

357



Table 3 Proofs of (p — q) <~ [pA(~¢q)and (p — ¢) & (~p) Vg

P q (r—9 ~q pA(~q) ~[pA(~q)] ~Pp (~p)Vy
T T T F F T F T
T F F T T F F F
F T T F F T T T
F F T T F T T T
Table 4 Validations of (18) and (19)
pp(T) Hq(y) 1= pp(x) 1= pq(y) max(1 — pp(z), s1q(y)] 1-min[pp(2), 1 — pq(y)]
1 1 0 0 1 1
1 0 0 1 0 0
4] 1 1 0 1 1
0 0 1 1 1 1

Using the facts that (p — q) «>~[p A (~q)] and (p —
q) < (~p)V g, and the equivalences between logic and set
theory, we can now obtain two (nonunique) membership
functions for pp—.q(2, y). The first of these tautologies lets
us show that

up_’q(:l,‘, y) =1- llzpﬁ(i(z‘: y)
=1 - minfuy(z), 1 — pg(y)] (18)

and, the second of these tautologies lets us show that

tp—q(T,Y) = tpug(T, )

= max[l — pp(x), tg(y)]. (19)

In order to validate the truth of these two membership
functions, construct a Boolean truth table, such as the one
in Table 4. Observe that the entries in the last two columns
agree with the entries in Table 2 for p — ¢, where we
are interchanging logical T and F with Boolean 1 and 0,
respectively.

The implication membership functions in (18) and (19)
are by no means the only ones that give agreement with
p — q. Two others are (see [3] and [79] for many more):

(20
29)

tp—q(T.y) = 1 = pp(2)(1 — pg(y))
tp—g{r,y) = min[l, 1 — pp(z) + pg(y)].

The membership function in (20) is similar to the one in
(18), except that a product operation is used for conjunction
instead of the minimum operation.

In traditional propositional logic there are two very im-
portant inference rules, Modus Ponens and Modus Tollens.

Modus Ponens—Premise 1. “z is A”; Premise 2: “IF x is
A THEN vy is B”; Consequence: “y is B.” Modus Ponens is
associated with the implication “A implies B” [A — B]. In
terms of propositions p and ¢, Modus Ponens is expressed
as (pA(p— ) —q
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Modus Tollens:— Premise I: “y is not B”; Premise 2.
“IF z is A THEN y is B”; Consequence: “z is not A.” In
terms of propositions p and ¢, Modus Tollens is expressed
as (A (p — q) — P

Whereas Modus Ponens plays a central role in engineer-
ing applications of logic, due in large part to cause and
effect, Modus Tollens does not seem to have yet played
much of a role.

B. Fuzzy Logic

Fuzzy logic begins by borrowing notions from crisp
logic, just as fuzzy set theory borrows from crisp set
theory; however, as we shall demonstrate below, doing this .
is inadequate for engineering applications of fuzzy logic,
because, in engineering, cause and effect is the cornerstone
of modeling, whereas in traditional propositional logic it is
not. Ultimately, this will cause us to define “engineering”
implication operators. Before doing this, let us develop an
understanding of why the traditional approach fails us in
engineering.

As in our extension of crisp set theory to fuzzy set
theory, our extension of crisp logic to fuzzy logic is made
by replacing the bivalent membership functions of crisp
logic with fuzzy membership functions. That is all there
is to it; hence, the IF-THEN statement “IF u is A, THEN
v is B,” where uw € U and v € V, has a membership
function 4, g(z,y) where pa—p(z,y) € [0, 1]. Note that
pa—g(z,y) measures the degree of truth of the implication
relation between = and y. Examples of such membership
functions, are:

pa-p(z,y) =1 —min[pa(z),1 - up(y)] (22)
NA—»B(za y) = max[l - MA(iI?), ”'B(y)] (23)

and
pag(x,y)=1—pus(z)l - us(y)) (24)
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Fig. 14. System’s interpretation for Generalized Modus Ponens.
Remember that u and v are linguistic variables, and that their
numerical values are = and y, respectively.

which, of course, are fuzzy versions of (18)—(20), respec-
tively.

In fuzzy logic, Modus Ponens is extended to Generalized
Modus Ponens—Premise 1. “u is A*”; Premise 2: “IF u
is A THEN v is B”; Consequence: “v is B*.” Compare
Modus Ponens and Generalized Modus Ponens to see their
subtle differences, namely, in the latter, fuzzy set A* is
not necessarily the same as rule antecedent fuzzy set A,
and fuzzy set B* is not necessarily the same as rule
consequent B.

Example 14: Consider the rule “IF a man is short, THEN
he will not make a very good professional basketball
player.” Here fuzzy set A is short man, and fuzzy set
B is not a very good professional basketball player. We
are now given Premise 1, as “This man is under five
feet tall.” Here A* is the fuzzy set man under five feet
tall. Clearly, A* # A; but, A* is similar to A. We now
draw the following consequence: “He will make a poor
professional basketball player.” Here B* is the fuzzy set
poor professional basketball player, and B* # B, although
B* is indeed similar to B. O

We see that in crisp logic a rule will be fired only if the
first premise is exactly the same as the antecedent of the
rule, and, the result of such rule-firing is the rule’s actual
consequent. In fuzzy logic, on the other hand, a rule is fired
so long as there is a nonzero degree of similarity between
the first premise and the antecedent of the rule, and, the
result of such rule-firing is a consequent that has a nonzero
degree of similarity to the rule’s consequent.

A system’s interpretation for Generalized Modus Ponens
is given in Fig. 14. This diagram coincides with Fig. 13,
from which we conclude that Generalized Modus Ponens is
a fuzzy composition where the first fuzzy relation is merely
the fuzzy set, A*. Consequently, pp«(y) is obtained from
the sup-star composition by comparing Figs. 14 and 13 and
making the appropriate symbolic transformations in (14)
(note that a max-min or max-product formula can also be
stated for Modus Ponens), i.e.,

pup-(y) = sup [pa-(z) * pasp(z,y). 25
zEA™

In order to help us understand the meaning of (25), we
shall consider some examples. In all these examples we
assume that p4-(z) = 1 for z = 2’ and p 4~ (z) = 0 for all
other = € U with = # &’ (later, we will call this a singleton

fuzzifier, and will learn why it is so popular).
Example 15: To begin, let us examine the result of
using (22), for pa—p(z,y), in (25), in which we use the
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Y

1 Ha(Y) . 1 -un(y)
HAX)] S
min{ fLa(x), 1 -pa(y)}
» Y » Y

] g

(@) ()

Hae(y)

(c)

Fig. 15. Construction of pg.(y) in (26). (a) Consequent
membership function pg(y); (b) construction of min
[ra(), 1 = uB(Y)]; (©) LBa(Y).

minimum as the ¢{-norm for the star composition. We find
that

I

sup [pa-(z) * pa_p(z,y)]
TEA”

par(z') % pa_p(e’,y)

=1xpap(z,y) = minfl, pa (2", y)]

= pa—p(’,y) =1 - minfpa(z), 1 - ns(y)]
(26)

pa+(y)

Observe that for this p4-(x) the supremum operation
is unnecessary, because p4-(z) is nonzero at only one
point, =’. A graphical interpretation of this result is given
in Fig. 15. The result, shown in (c), is disturbing for an
engineering application. It tells us that, given a specific
input x = 2/, the result of firing a specific rule, whose
consequent is associated with a specific fuzzy set of finite
support [the base of the triangle in (a)}, is a fuzzy set whose
support is infinite. The same result is obtained if we use
the product as the ¢t-norm for the star composition, i.e.,
1% pap(z’,y) = pawp(z’.y) when % is minimum or
product.

Note, also, from our derivation of (26) that for all z #
o' up-(y) = 1 [ie, pa-(z # ') * pasplz # 7',y) =
0% pap(z # 2',y) = min[0, paplz # 2/,y)] =0,
so that pp:(y) = 1 — min[0, paplz # z',y)] = 1].
This means that this rule will be fired for all z # z’
with maximum possible output membership function value,
unity. Clearly, this does not make much sense from an
engineering perspective, where cause (e.g., system input)
should lead to effect (e.g., system output), and noncause
should not lead to anything. |

Example 16: Perhaps the problem we experienced in
Example 15 is a result of a poor choice for p4_.p(z,y).
Let us, therefore, examine the result of using g4, 5(x,y)
obtained from (21), i.e., pa—p(z,y) = min[l,1—pa{z)+
up(y)] which, by the way, is the implication membership
function given by Zadeh in his important 1973 paper [85].
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Fig. 16. Construction of yg.(y) in (27). (a) Consequent mem-
bership function g g(y); (b) construction of ug.(y).

Table 5 Demonstration That Minimum and Product
Inferences Do Not Agree With 4 (i, y)

Hplr) tqly) min(up (), pa(y)) Hp (@) pq(y)
1 1 1 1
1 0 0 0
0 1 0 0
0 0 0 0

Substituting this expression for p4_,p(z,y) into (25), we
find that:

pB-(y) = sup [pa- (z) * pa—p(z,y)]
TEA*

= 4+ (Z‘,) * UA—B (-’E’: y)
= 1w pa-p(e,y) = pap(@,y)
=min[1,1 - pa(z’) + ua(y)] 27

regardless of whether we use minimum or product for x. A
graphical interpretation of this result is given in Fig. 16.

Once again, we have obtained a result, in Fig. 16(b) that
violates engineering common sense. We leave it to the
reader to demonstrate that all of the other choices we have
provided for p4,p(r,y) have the same problem. Even
those which we have not listed here (e.g., see [3] and [79])
have the same problem. O

Mamdani [49] seems to have been the first one to
recognize the problem we have just demonstrated, although
he does not explain it the way we have. He chose to work
with the following minimum implication:

pa—p(z,y) £ minfpa(z), up(y)]- (28)

His reasons for choosing this definition do not seem to
be based on cause and effect, but, instead on simplicity
of computation. Later, Larsen [42] proposed the following
product implication:

pa—p(z,y) £ pa(r)us(y). (29)

Again, the reason for this choice was simplicity of
computation rather than cause and effect. Today, minimum
and product inferences are the most widely used inferences
in the engineering applications of fuzzy logic; but, what do
they have to do with traditional propositional logic?
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1 ua(y)

(2) (b)

Fig. 17. Construction of pg«(y) in (31). (a) Consequent mem-
bership function ug(y); (b) construction of pp=(y).

Table 5 demonstrates that neither minimum inference nor
product inference agree with the accepted propositional
logic definition of implication, given in Table 2 and eval-
uated in Table 4; hence, minimum and product inferences
have nothing to do with traditional propositional logic. In-
terestingly enough, Table 5 reveals that minimum and prod-
uct inferences preserve cause and effect, i.e., p,.q(z,y)
is fired only when the antecedent and the consequent are
both true. We, therefore, propose that minimum and prod-
uct implications be referred to collectively as engineering
implications.

Example 17: The purpose of this example is to demon-
strate that both the minimum and product implications lead
to output fuzzy sets that do not violate common engineering
sense. As in Examples 15 and 16, we assume that y4- (z) =
1 for z = 2’ and pa-(z) = O for all other z € U with
z # z'. Then (25) becomes

pe-(y) = sup [ar () * pa—s(z,y)]
TrecA*

= pa-(2") * pa—p(z',y)
1 *“A—?B('r,:y) = H‘A—*B(‘T/:y) (30)

regardless of whether we use minimum or product for .
Let us consider minimum implication first; then, (30)
becomes

wp+(y) = minfu(z"), ps(y)]. (31

A graphical interpretation of this result is given in
Fig. 17. Observe from (b) that given a specific antecedent
z = ', the result of firing a specific rule is a fuzzy set
whose support is finite and is associated just with the
consequent of that rule. Additionally, from our derivation
of (31), observe that for all » # z', ug-(y) = 0 lie.,
pra-(z # 2') * pap(r # 2, y) = Oxpaplz # o',y) =
0, regardless of whether we use minimum or product for *].
I believe that these properties are desirable for engineering
applications of fuzzy logic.

Next, we consider the product implication for which (30)
becomes:

1p-(y) = palz )us(y). (32)

A graphical interpretation of this result is given in Fig. 18.
We draw the same conclusions from this figure as we did
for minimum implication; hence, our overall conclusions
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1 us(y)

(a) (b)

Fig. 18. Construction of s g+ (y) in (32). (a) Consequent mem-
bership function 1 g(y); (b) construction of x g« (y).

are that minimum and product inferences are, indeed, useful
engineering implications, and, that up- (y) can be expressed
as pp- (y) = pa(z')*up(y), where x is either the minimum
or product. O

This completes our primers on fuzzy set theory and
fuzzy logic. Some other topics, which appear frequently
in the FL literature, and are sometimes used in engineering
applications of FL, include: cardinality, extension principle,
quantifiers 3z and Vz, and a-cut of a fuzzy set; see [17],
[33], [81], and [87].

IV. FuUZZINESS AND OTHER MODELS

A lot has been written about fuzzy logic and its relation to
probability (e.g., [91, [35], [43], [46] and IEEE Transactions
on Fuzzy Systems, Mar. 1994, Special Issue). Many fuzzy
logic theorists maintain that FL is quite different than
probability, for a wide variety of reasons, including the
facts that: the laws of excluded middle and contradiction
are broken in FL, but are not broken in probability, and,
that conditional probability must be defined in probability
theory, but can be derived from first principles using FL
[35], [36]. Others maintain that FL subsumes probability.
Subjective (as distinguished from frequency based) proba-
bilists on the other hand, maintain that anything one can
do with FL can also be done with subjective probability,
and that the latter is to be preferred because it has an
axiomatic basis, whereas FL does not. They bemoan the
fact that engineers, who are the largest users of FLS’s, are
not adequately trained in subjective probability.

The fact of the matter is that there is some truth to
both sides of fuzziness versus probability. While it is of
great intellectual interest to establish the proper connections
between FL and probability, this author does not believe
that doing so will change the ways in which we solve
problems, because both probability and FL should be in
the arsenal of tools used by engineers. FL will not solve
all problems, nor will probability. Wang [73] argues it isn’t
that important whether you call something a “membership
function” or a “probabilistic function.” What is important
is how to use the function to represent human knowledge.

That FL is a tool of enrichment and not replacement
is clearly explained by Bezdek and Pal [5], who ask
the question: “Where do fuzzy models fit in with other
models?” They then give the following answer: “Fuzzy
models belong wherever they can provide collateral or
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competitively better information about a physical process.
-.. We note that each of the following disciplines provides
some information about the dynamics of motion: Newto-
nian mechanics, relativistic mechanics, statistical mechan-
ics, quantum mechanics, and auto mechanics. These models
provide us with different, useful, auxilliary, and sometimes
contradictory information about various facets of dynamics.
Each contributes something about the physical world, so it
is with various classes of models. .. . From a different point
of view, because every hard set is fuzzy but not conversely,
the mathematical embedding of conventional set theory
into fuzzy sets is as natural as the idea of embedding the
real numbers into the complex plane. In both cases we
can expect the larger “space” to contain answers to (real)
questions that cannot be found in the smaller one. Thus the
idea of fuzziness is one of enrichment not of replacement.”

Addressing the fuzziness versus probability issue, Bezdek
and Pal also ask “Isn’t fuzziness just a clever disguise for
probability?” Their answer is “... an emphatic no. There is
a strong philosophical argument against regarding fuzziness
as the surrogate for (frequency based) probability. The spirit
of this argument is contained in (the following) example.
Let L = set of all liquids, and let fuzzy subset £ = { all
(potable) liquids}. Suppose you had been in the desert for
a week without a drink and you came upon two bottles
marked C' and A.” Bottle C' is labeled p2(C) = 0.91 and
bottle A is labeled Pr[A € £] = 0.91. “Confronted with
this pair of bottles, and given that you must drink from
the one you choose, which would you choose to drink
from? Most readers when presented with this experiment
immediately see that while C' could contain, say, swamp
water, it would not ... contain liquids such as hydrochloric
acid. That is membership of 0.91 means that the contents of
C are fairly similar to perfectly potable liquids (e.g., pure
water). On the other hand, the probability that A is potable
= 0.91 means that over a long run of experiments, the
contents of A are expected to be potable in about 91% of the
trials; in the other 9% the contents will be deadly—about
a 1 chance in 10. Thus most subjects will opt for a
chance to drink swamp water. ... There is another facet
to this example, and it concerns the idea of observation.
Continuing then, suppose we examine the contents of C
and A and discover them to be” Dixie beer and hydrochlo-
ric acid, respectively. “Note that, after observation, the
membership value of C is unchanged while the probability
value for A drops from 0.91 to 0.0. This example shows
that these two models possess philosophically different
kinds of information: fuzzy memberships, which represent
similarities of objects to imprecisely defined properties;
and probabilities, which convey information about relative
frequencies.”

We are now ready to return to the FLS in Fig. 1.

V. Fuzzy LOGIC SYSTEMS

We will now discuss the four elements of our Fig. 2 FLS,
so that we will be able to write a mathematical formula that
relates the output of the FLS to its inputs.
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beam

Fig. 19. Ball on beam.

A. Rules

A fuzzy rule base consists of a collection of IF-THEN
rules, which can be expressed as:

RW: IF uy is F} and uy is F} and
..up is Fi, THEN v is G* (33)

where [ = 1,2,..., M, F} and G' are fuzzy sets in U; C R
and V C R, respectively (R denotes the set of real
numbers), u = col(uy,...,up) €Uy x---xUp,andv € V.
u and v are linguistic variables. Their numerical values
are x € U and y € V, respectively. The main difference
between this rule and the ones already presented is multi-
ple antecedents. The following examples demonstrate how
rules can be constructed for some engineering problems.

Example 18: Fig. 19 depicts a ball on a beam [76]. The
beam is made to rotate in a vertical plane by applying a
torque at the center of rotation and the ball is free to roll
along the beam. We require the ball to remain in contact
with the beam. The control u(t) is the acceleration of 8. The
problem is to design a controller that drives the ball into
the origin so that the ball remains at the origin. This design
must be accomplished regardless of where the ball starts on
the beam, and regardless of the position of the beam.

This system is nonlinear and is described by four state
variables, r(t), dr(t)/dt,0(t), and d6(t)/dt. Hauser et al.
[21] have designed a control law that accomplishes the
stated goal using an input-output linearization technique.
Here we provide four high-level common sense rules that
are associated with the control of the ball. They are four-
input and one-output rules. By themselves, these high-level
rules are unable to control the ball; but, taken together with
a small amount of training data, generated by Hauser et
al.’s controller, they are able to control the ball.

Consider the configuration shown in Fig. 19. If the ball
stays at the depicted position (this corresponds to the IF part
of RV below), then we should move the beam downwards
(but not a lot) to reduce §, which is equivalent to saying “u
is negative,” because the control equals the acceleration of
6. Similar reasoning can be made when the ball starts out
to the right of the fulcrum and the beam is in the fourth
quadrant, or to the left of the fulcrum and the beam is
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in either the second or third quadrants. The resulting four
high-level rules are:

» R IF (radial position) 7 is positive and (radial
velocity) dr/dt is near zero and (angular position) 6
is positive and (angular velocity) df/dt is near zero,
THEN (control) u is negative

» R IF r is negative and dr/dt is near zero and 4 is
negative and df/dt is near zero, THEN u is positive

» RO): IF r is positive and dr/dt is near zero and 8 is
negative and df/dt is near zero, THEN u is positive
big

o RM: IF r is negative and dr/dt is near zero and 8 is
positive and df/dt is near zero, THEN u is negative
big

where r,dr/dt, 8, and df/dt play a dual role of linguistic
and numerical variables. Although the use of symbols for
linguistic variables may seem somewhat sloppy notation, it
really does not cause confusion.

I want to reemphasize the point that the rules just stated
are in no way meant to be a control design; they act in a
supervisory capacity.

Example 19: A well studied problem, both in neural
networks and fuzzy logic control, is the rruck backing
up problem. Backing a truck into a loading dock is a
difficult exercise for all but the most skilled truck drivers.
It is a severely nonlinear control problem for which no
traditional control system design method may exist. Nguyen
and Widrow [55] developed a neural network controller for
this problem. It was trained using numerical data, but did
not use linguistic rules from experts. Kong and Kosko [34]
developed a fuzzy control strategy for the same problem,
one that initially only used linguistic rules, and later used
numerical data and linguistic rules. Wang and Mendel [74],
[75] developed a numerical-fuzzy approach that used both
numerical data and linguistic rules.

Fig. 20 depicts the truck position in relation to the loading
dock. The truck’s position is determined by the three state
variables ¢, z and y. Control to the truck is the angle #.
Only backing up is considered, and enough clearance is
assumed between the truck and the loading dock so that y
does not have to be considered as an active state variable.
The task is to design a control system whose inputs are
¢ € [-90°, 270°] and z € [0, 20] and whose control is 8 €
[-40°, 40°], such that the final states will be (zs,¢5) =
(10, 90°).

Let us assume that we have a collection of representative
trajectories and control angles, and this information is used
in a way that is described in [75] or [34] to obtain a set of
27 IF-THEN rules that are summarized in the relational
matrix that is depicted in Fig. 21. This matrix is also
referred to as a fuzzy associative memory [36]. Membership
functions which are associated with ¢, z and 6, are depicted
in Fig. 22. Examples of some of the rules are (¢, x, and §
denote linguistic or numerical variables): R"?: IF ¢ is S3
and « is S1, THEN 6 is S3; R®9: IF ¢ is S1 and z is
B2, THEN 6 is §2; R*¥: IF ¢ is CE and z is CE, THEN
# is CE; R7-9: IF ¢ is B3 and z is B2, THEN @ is B2.
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loading dock
x=10, ¢ =90°

Fig. 20. Truck (cab) in relation to the loading dock.

S3 82|83
S2 |S2|83|S3(S3
S1 |B1]S1{S2|S3]8S2
¢ C3 |B2|B2|CE |S2 |S2
Bl |B2{B3]B2 |B1 |S1

B2 B3}B3 |B3 |B2
B3 B3 |B2
S2 S1 CE Bl B2

X

Fig. 21. Relational matrix with the rules of the truck backing up
controller. The entries in the marix are the fuzzy sets for control
angle ¢, which are a function of the two states, angular position,
¢, and horizontal position, x. Blank entries have no consequent
associated with them. See Fig. 22 for the membership functions
which are associated with «, r, and 6. Three activated rules at
time ¢; are enclosed in the heavier square (see Example 22).

Example 20: In the problem of identifying a nonlinear
dynamical system, where we have access to both the
system’s input, z(k), and output, y(k), suppose that we
also have some rough high-level knowledge about the
structure of the nonlinearity. To begin, we find out that
the nonlinearity f(-) depends only on y(k) and y(k — 1).
Additionally, we are told that f(-) is close to zero when
either y(k) is close to zero or -4, or when y(k — 1) is close
to zero. This qualitative information can be expressed as
the following three rules: R": IF %(k) is close to zero,
THEN f(y(k),y(k — 1)) is close to zero; R?: IF y(k) is
close to -4, THEN f(y(k),y(k — 1)) is close to zero; R®:
IF y(k — 1) is close to zero, THEN f(y(k), y(k — 1)) is
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(a)

Hx(x)
S2 S1 CE Bl B2

¥
10
x(t) =6

(b)

Fig. 22. Fuzzy membership functions for the truck backing up
problem. These membership functions were chosen by designers.
In these figures, S, CE, and B are short for small, center, and big,
respectively. Fuzzy sets that are activated by the measured states
at the time ¢, are shown in (a) and (b) (see Example 22). These
activated fuzzy sets are shown darker then the unactivated sets.

close to zero. The use of such rules in the identification
of f(-) has been shown by Wang and Mendel [77] to
accelerate the convergence of f (+) to f(-), and to improve
the approximation of f(-) by f(-).

Example 21: Let z(k),k = 1,2,..., be a time series,
such as daily temperatures of Juneau, AK, hourly mea-
surements of the Dow-Jones stock index, or the chaotic
Mackey—Glass time series depicted in Fig. 1. The problem
of time-series prediction (i.e., forecasting) is: Given a
window of n past measurements of a(k), namely z(k —
n+1), z(k —n+2),...,z(k), determine a future value
of z,x(k + 1), where n and ! are fixed positive integers.
In this example, let us suppose that I = 1, so that we are
interested in the single-stage predictor of z.

Suppose that we are given a collection of D data points,

z(1),%(2), ..., 2(D), so that there are at most D —n train-
ing pairs, xV x@) _ x(P=1) where xU) = col[nx 1 in-
put: desired output] and: x(1) = col[x(1),z(2),...,z(n) :
z(n + 1)), x? = col[z(2),2(3),... xz(n+1) : z(n +
2), ..., xP= = collz(D — n)y..., (D = 1)

There are at least two ways to extract rules from nu-
merical data: 1) let the data establish the fuzzy sets that
appear in the antecedents and consequents of the rules, or,
2) prespecify fuzzy sets for the antecedents and consequents
and then associate the data with these fuzzy sets. We will
briefly describe both approaches. Because a predicted value
of x will depend on n past values of z, there will be
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n antecedents in each rule. Let these n antecedents be
denoted wi,us, ..., and u,. The interesting feature of this
example is that, although each rule has n antecedents, these
antecedents are all associated with the same variable, z(k),
and so is the consequent.

For purposes of single-stage prediction, here are D — n
rules that we can cull from the D training pairs, x),
x@ ., x(P-m);

RW:IF u; is F} and uy is F} and --- and u,, is FJ,

THEN v is G1. In this rule, F] is a fuzzy set whose

membership function is centered at x(1), F is a fuzzy set

whose membership function is centered at z(2) ,.. ., F,%

is a fuzzy set whose membership function is centered at

x(n), and G! is a fuzzy set whose membership function

is centered at z(n + 1).

R®: IF uy is F2 and uy is F$ and --- and u, is F2,

THEN v is G2. In this rule, F? is a fuzzy set whose

membership function is centered at x(2), F22 is a fuzzy

set whose membership function is centered at z(3), ...,

F? is a fuzzy set whose membership function is centered

at z(n + 1), and G2 is a fuzzy set whose membership

function is centered at z(n + 2).

RP-™: IF uy is FP™™ and uy is Fy " and --- and

u, is FP=" THEN v is GP~". In this rule, F”~"

is a fuzzy set whose membership function is centered

at (D — n), F2D ™ is a fuzzy set whose membership
function is centered at (D —n+1), ..., F2~" is a fuzzy

set whose membership function is centered at (D — 1),

and GP~™ is a fuzzy set whose membership function is

centered at (D).

In this first approach to obtaining rules from numerical data,
we see that the antecedent and consequent membership
functions adapt to the locations of the data that are used
to create the rules.

In the second approach [71], [73], [75] we begin by
establishing fuzzy sets for all the antecedents and the con-
sequent. This is done by first establishing domain intervals
for all input and output variables. For the example of time-
series prediction, these domain intervals are all the same,
because uq, Us,..., u, and v are all sampled values of
the time series, (k). In other situations (e.g., the ball
and beam Example 18), each antecedent and consequent
will have different domain intervals. Let us assume that,
by examining the time series, we establish that z(k) €
[X~,X*] = U. Next, we divide each domain interval
into a prespecified number of overlapping regions. The
number of overlapping regions does not have to be the
same for each variable, and the lengths of these overlapping
regions can be equal or unequal. Each overlapping region
is then labeled and is assigned a membership function.
Resolution in prediction can be controlled by the coarseness
of the fuzzy sets that are associated with (k). Membership
functions could be of different types for different variables.
Measured values of a variable are permitted to lie outside
of the variable’s domain interval, because if z(k) > X¥,
then px(x) = 1 (see Fig. 23(b)).
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Fig. 23. Construction to determine degrees of the elements of
x(9), when » = 5. (a) A time series and its intersection with
the seven fuzzy sets shown in (b), and the six elements of the
jth window of data; and (b) the six elements of the jth window
of data projected ugx to intersect membership functions. In (a)
the elements of x{7) appear in chronological order, because the
horizontal axis is time. In (b) the elements of x(?) do not appear
in chronological order, because the horizontal axis is amplitude of
x(k). The amplitude scales are different in (a) and (b).

Fuzzy rules are generated from the given data pairs using
the following three-step procedure [75]:
1) Determine the degrees (i.e., the membership function
values) of the elements of x\/). As an example, in
Fig. 23 we consider the case when n = 5. Examining
Fig. 23b, we see that x(1] ) has degree 0.45 in B2 and
0.55 in B1, 25 has degree 0.2 in S1 and 0.8 in S2,
2§ has degree 0.45 in 52 and 0.6 in 3, 2 has
degree 0.4 in S1 and 0.6 in CE, z) has degree 1.0
in S1, and z$) has degree 0.3 in B3 and 0.7 in B2.
2) Assign each variable to the region with maximum
degree, e.g., 'r&’ ) above is considered to be Bl, ng )
is considered to be 52, ng ) is considered to be S3,
zgj ) is considered to be CE, zéj ) is considered to be
S1, and wéj) is considered to be B2.
3) Obtain one rule from one pair of desired input-output
data, e.g., IF 27 is Bl and 2§/’ is 52 and 2§ is §3
and % is CE and 2’ is S1, THEN y(j) is B2.
Because there can be lots of data, it is quite likely
that there will be some conflicting rules, i.e., rules
with the same antecedents but different consequents.
We resolve this by assigning a degree, D(RY)), to
each rule and accept only the rule from a conflict
group that has maximum degree, where D(RW) £
ux(zgj))ux(x(zj)) .. MX(J:S,J));LX(y(j)). For our example,
we find, from step one of our three-step procedure, that
D(RW) =0.55 x 0.88 x 0.6 x 0.6 x 1.0 x 0.7 = 0.122.

This three-step procedure is carried out for all D — n
training pairs. The results are at most D —n linguistic rules
of the form just obtained for R%) in step 3. O
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A multiple-antecedent multiple-consequent (i.e., multi-
input multi-output) rule can always be considered as a
group of multi-input single-output rules {45, p. 426], which
is why the literature concentrates on multi-input single-
output rules. This follows from crisp logic, e.g., (p —
@reA@)eo(Ppoa)A(P—qa)Ap—gs).

It is also possible to cast “nonobvious™ rules into the
form of (33). Six such rules are summarized next, because
it is very important for the reader to understand the power
and flexibility of the generic rule structure in (33). The first
five are adapted from [73].

1) Incomplete IF Rules: Suppose that we have created
a rule base where there are p inputs, but some rules
have antecedents that are only a subset of the p inputs,
e.g., IF uy is F} and up is FY and - - - and u,, is FL,
THEN v is G'. Such rules are called incomplete IF
rules, and apply regardless of w41, . . ., up. They can
be put into the format of the complete IF rule (33)
by treating the unnamed antecedents, e.g., U1, - - -
up, as elements of the fuzzy set INCOMPLETE (IN
for short) where, by definition pn(u) = 1 for all
w € R, ie, (IF uy is F} and wuy is F$ and - -- and
Um is FY,, THEN v is G*) « (IF u; is F! and uy
is F} and - - - and u,, is F, and ty,41 is IN - and
up is IN, THEN v is GY). A

2) Mixed Rules: Not all rules use the “and” connective;
some use the “or” connective, and some use a mixture
of both connectives. Such rules are called mixed rules.
These rules can be decomposed into a collection of
equivalent rules, using standard techniques from crisp
logic. Suppose, for example, we have the rule: 1F u,
is Fll and us is Ffj and - - - and u,, is F}n, Of Uy 1S
Fj, ;1 and - and u, is F}, THEN v is G'. This rule
can be expressed as the following two rules: R(V): IF
uy is F} and up is F} and - - - and u,, is F!, THEN
v is GY and, R®: IF 1wy, is Fl ., and - - and
uy, is F}, THEN v is G'. Observe that both of these
rules are Incomplete IF rules. See [70] for related
discussions on nesting of rules.

3) Fuzzy Statement Rules: Some rules do not appear to
have any antecedents; they are statements involving
fuzzy sets; hence, they are called fuzzy statement
rules. For example, “v is G' is such a rule. Clearly,
this is an extreme case of an incomplete IF rule, and
can therefore be formulated as: IF u; is IN and uy is
IN and - -- and wu, is IN, THEN v is G*.

4) Comparative Rules: Some rules are comparative, e.g.,
“The smaller the u, the bigger the v.” Such rules
must first be reformulated as IF-THEN rules; this
takes some experience. The preceding rule can be
expressed as “IF v is S, THEN v is B,” where S is
a fuzzy set representing smaller and B is a fuzzy set
representing bigger.

5) Unless Rules: Rules are sometimes stated using the
connective “unless”; such rules are called unless rules
and can be put into the format of (33) by using
logical operations, including De Morgan’s Laws. For
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Inference

B+(Y)
Engine Heely

HA — B(X, y)

Fig. 24. Interpretation of fuzzy inference engine as a system.
Again, remember that x and y are the numerical values of the
linguistic variables « and v, respectively.

example, the rule v is G! unless u; is Ff and uo is
Fjand --- and u, is F! can first be expressed as IF
not (uy is F{ and up is F} and - and u, is Fl,
THEN v is G*. Using De Morgan’s Law, AN B =
A U B, this can be reexpressed as IF w; is not FI‘ or
uz is not F or --- or u, is not F!, THEN v is G'.
We treat “not F}” as a fuzzy set, and then decompose
this mixed rule into a collection of p incomplete IF
rules each of the form IF u,; is not F;, THEN v is
GLi=12...,p.

6) Quantifier Rules: Rules sometimes include the quanti-
fiers “some” or “all”; such rules are called guantifier
rules. Because of the duality between propositional
logic and set theory, rules with the quantifier “some”
mean that we have to apply the union operator to
the antecedents or consequents to which the “some”
applies, whereas rules with the quantifier “all” mean
we have to apply the intersection operator to the
antecedents or consequents to which the “all” applies.

Of course, in practical applications, it is possible to have

rules that combine nonobvious [F-THEN rules 1-6 in all
sorts of ways.

B. Fuzzy Inference Engine

In the fuzzy inference engine (which is labeled “infer-
ence” in Fig. 2) fuzzy logic principles are used to combine
fuzzy IF-THEN rules from the fuzzy rule base into a
mapping from fuzzy input sets in U = Uy x Uy x-- - x U 1o
fuzzy output sets in V. Each rule is interpreted as a fuzzy
implication. With reference to (33), let F{ x Fi x ... x
Fy & Aand G' £ B; then, RO« F} x Ff x - x F!
— G' = A — B. We treat the fuzzy inference engine
as a system, one that maps fuzzy sets into fuzzy sets by
means of pa_,p(X,y); this is depicted in Fig. 24, which
we recognize is the same as Fig. 14, except that the input is
now a vector, because our rules have multiple antecedents.

In the rest of this paper we assume that our universes of
discourse are discrete, and that each U; (z = 1,2,...,p)
and G are finite, so that RY) is given by a discrete
multivariate membership function pp;, (%, y), described by

Bray(X,¥) = pap(x,y) where: x 2 col(wy, o, ..., Tp).

365



Consequently, pg(;)(X,y) = ptre[21, . - Tp,y] and

tray (X, y) = pass(x,y)

= ppi(@1) * - x ppi(Tp) * B (y) G4

where it has been assumed that multiple antecedents are
connected by and’s, and subsequently by ¢-norms, and,
that only the product or minimum ¢-norms are used. The
p-dimensional input to R is given by the fuzzy set A
whose membership function is (recall that the discrete fuzzy
set A, is written as Y. > ---) " pa, (x)/x, where the p
summations denote union operations):

BA(X) = e, (1) % - % px, (Tp) (35)

where X C Ur(k = 1,.. ., p) are the fuzzy sets describing
the inputs. Each rule R determines a fuzzy set B! =
A, o RY in R such that [see (25)]

1pt(y) = taorn (Y)
= 8UPxca, [qu (X) *HA-B (X, y)] . (36)

This equation is the input-output relationship in Fig. 2
between the fuzzy set that excites a one-rule inference
engine and the fuzzy set at the output of that engine.

Example 17 and its associated Figs. 17 and 18 are made
applicable to pp:(y) in (36), by replacing: 1) the scalar
antecedent z by the vector antecedent X, and 2) pa(z”)
by pa, (x') = px, () % - x px,(z,). When a min t-
norm is used, then g4, (x') = minfpx, (1), ..., 1x,(z,)],
whereas when a product t-norm is used, then pa, (X') =
o, () - -, ()

The final fuzzy set B = A, o [RD),R®) ... RM)),
which is determined by all the rules in the rule base, is
obtained by combining B! and its associated membership
function fi4 og (y) for all I = 1,2,..., M. Zadeh [85]
connected rules using the word “else,” one of whose
definitions is otherwise. Lee [45] uses the connective “also”
and has a discussion about a number of studies that were
performed to determine the best way to connect rules.
Most people connect rules using a t-conorm (i.e., the fuzzy
union), and these seem to give very good results when
our engineering implication operators are used, i.., B =
B'@B?’®...® BM,

Lee [45] provides a rigorous proof that the sup-min
or sup-product compositions and connective “also,” inter-
preted as a max t-conorm, are commutative, i.e., A, o
[RD, R, .., RM)] = UM A, o RY. For additional
discussions on connecting rules, see [18], [30], {31], [32],
{51}, [64].

There does not appear to be a unique or compelling
theoretical reason for combining rules using a t-conorm.
We have already seen that engineering applications require
engineering implications; such applications may also re-
quire engineering connectives. Combining rules additively
{36] is one such engineering connective. Kosko calls such
a FLS (with an appropriate fuzzifier and defuzzifier) an
additive FLS. Note, from our earlier definition of a t-
conorm and our examples for them, that arithmetic addition
is not a ¢t-conorm (the algebraic sumz ®©y = v +y — xy
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Fig. 25. An additive combiner which can be interpreted as an
adaptive filter that is activated by fuzzy sets that are the output of
a fuzzy prefilter.

is a t-conorm). Fig. 25 depicts the additive combiner. It
resembles an adaptive filter whose inputs are the output
fuzzy sets. The weights w1, ws, ..., wnm of the combiner
can be thought of as providing degrees of belief to each
rule. It is conceivable, that we know that some rules are
more reliable than others; such rules would be assigned a
larger weight than less reliable rules. If such information
is not known ahead of time, then we either set all the
weights equal to unity or we use a training procedure to
learn optimal values for the weights.

We will return to the question of how to combine rules,
when we later discuss the defuzzifier block of Fig. 2, to see
yet another method for engineering connectives.

Example 22: Let us return to the truck backing up
Example 19, for which membership functions are given in
Fig. 22 and a set of 27 IF-THEN rules are summarized in
Fig. 21. Imagine that we are backing up the truck, and at
some arbitrary time #; the states of the truck are ¢(t;) =
140° and z(t;) = 6. Observe that ¢(¢;) activates two
fuzzy sets, B1 and B2, whereas z(t;) also activates two
fuzzy sets, S1 and S2. Referring to the relational matrix’
in Fig. 21, this means that the following three rules are
activated: R>D: IF ¢ is Bl and z is S2, THEN § is B2;
RS2 IF ¢ is Bl and z is S1, THEN # is B3; and R6?:
IF ¢ is B2 and z is S1, THEN 6 is B3.

Let us now compute the output fuzzy set that is activated
for each of these rules. As in Examples 15-17, we assume
pa,(x') =1 for x = x’ and ju4,(x) = O for all other
x € U = Ug x Ux. It is informative to demonstrate these
computations graphically. Later we will obtain formulas
for them that can be programmed, so that they can be
performed automatically. Fig. 26 depicts the activation of
RD and its output fuzzy set, for either minimum or product
inference. Figs. 27 and 28 depict the comparable quantities
for R and R®?, respectively. Finally, Fig. 29 depicts the
overall output fuzzy set obtained using the max ¢-conorm.

A remaining question, motivated by Fig. 29, is “What
numerical value will be used for the steering wheel con-
trol (t;)? The answer to this question is the subject of
defuzzification. O

The graphical interpretation is easily extended from two
antecedents to more than two antecedents, as in the case of
the ball and beam Example 18, or the time-series prediction
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Fig. 26. Activation of R®:) and its output fuzzy set, BS:), for
either minimum or product inference. Membership functions were
taken from Fig. 22.

Hao)

. He(8)
: I 4 i i B(" 2
¥ 4

Iy 11T 05
0 45 50 13Ri80 225 270 min /
1) = 1400

0.6
prod
\ [

i } } +—
0 s\lo s 2

(=6

B2

0 10 20-30 40

Fig. 27.  Activation of R®? and its output fuzzy set, B2, for
either minimum or product inference.

Example 19 (when n > 2). A formula interpretation is
described later. :

C. Fuzzification

The fuzzifier maps a crisp point x = col(zy, .. ., zn) €U
into a fuzzy set A* in U. The most widely used fuzzifier
is the singleton fuzzifier which is nothing more than a
fuzzy singleton, i.e., A* is a fuzzy singleton with support
x'if pa-(x’) = 1 for x = x’ and pa.(x’) = 0 for
all other x € U with x # x’. When fuzzy input set
A* only contains a single element x’, then the supremum
operation in the sup-star composition (36) disappears, i.e.,
£8(Y) = pBaorw(y) = pap(x’,y). Examples 15-17
demonstrated this simplification, and it is this (tremendous)
simplification of the sup-star composition that is (in the
opinion of this author) the reason for the popularity of
singleton fuzzification. '

Singleton fuzzification may not always be adequate,
especially when data is corrupted by measurement noise.
Nonsingleton fuzzification provides a means for handling
such uncertainties totally within the framework of FLS’s.
A nonsingleton fuzzifier is one for which p4.(x') = 1 and
ta-(x) decreases from unity as x moves away from x'.
In nonsingleton fuzzification, x’ is mapped into a fuzzy
number [28], i.e., a fuzzy membership function is associated
with it. Examples of such membership functions are the
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Fig. 28.  Activation of R®? and its output fuzzy set, 862, for
either minimum or product inference.
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Fig. 29. The overall output fuzzy set obtained using the max
t-conorm: (a) minimum inference, and (b) product inference.

Gaussian and triangular. The broader these functions are,
the greater is the uncertainty about x’.

What happens to (36) in the case of nonsingleton fuzzi-
fication? Substituting (34) and (35) into (36), making use
of the fact that all unions (denoted by 37) in A, and R®),
over i (k = 1,...,p) are over the same spaces, we can
write the output membership function for the fuzzy set for
the Ith rule, as [53], [54]

ppi(y) = suppx, (z1) % - % px, ()
xeU

*up (@) x o x pp () * pe(y). (37)

Since the supremum is only over x € U, then by the
commutativity and monotonicity properties of a t-norm,
we can rewrite pupi(y) as:

1p(y) = pely) * Suppex, (1) % -+ % pux, (2p)
xelU
*[LFl((.’ljl)*"-*/AF’t)(;L'p). (38)

This means that we only need to compute one supremum
rather than m suprema (m is the number of discrete points
in the universe of discourse of B). Because a ¢-norm is a
two-place function from [0, 1] x [0, 1], we can consider
every t-norm in (38) to be acting on a pair of membership
functions; hence,

up(y) = pe(y) *igg[uxl (21) * ppe (21))]

* ook [, (Tp) % try(zp)]. 39)
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Fig. 30. Example for which mean of maximum defuzzification
makes no sense.

By the monotonicity property of a ¢-norm, that supremum
is attained when each term in braces in (39) attains its
supremum.

Example 23: When the t-norm is the product, and all
membership functions are Gaussian, then it is straightfor-
ward to carry out the supremum computations in (39) [53],
[54]. The kth input fuzzy set and the corresponding rule
antecedent fuzzy sets are assumed to have the following
forms: px, (wx) = exp{—1/2[(zx — mx,)/ox,]*} and
pr(zx) = exp{=1/2{(zx —mg;) /o p]*}. By maximizing
the function

pa (o) 2 px, () (k) (40)

we find that it is maximum at
— .2 2 2 2 41
Tk,max — (g-)ik mFIf ka)/(UXk + D'Fli ) ( )

In the special but important case when all input points
for each input variable have the same level of uncertainty,
the spreads of the input sets will be the same, in which case
ox, 2 in (41) is a constant. Usually we choose the mean of
the fuzzy input sets, mx, , as the crisp measured input, T4
hence, under these conditions, (41) simplifies to

Tk max = (ox mp + ffF,f,zib';c)/(UX2 + UF;Z)- 42)

This formula can be interpreted as a prefiltering of the noisy
data z,. A FLS has a built-in front-end mechanism for such
prefiltering, namely the fuzzifier. A neural network does
not.

Substituting (41) [or (42)] and (40) into (39), the latter
becomes

P
J23:2 (y) = HG’(y) H ﬂQfc (mk,max)‘ (43)
k=1

When the uncertainty of the input becomes zero (i.e.,
ox? = 0), then (42) reduces to the singleton case, i.e.,
Tkmax = T, for which each px, (Zkmax = zy) =
exp{—1/2[(z}, — =})/ox]*} = L(k = 1,...,p), so that
el (wk,max) = HKF} (-Tk,max) = HF} («L}k)

D. Defuzzifier
Defuzzification produces a crisp output for our FLS

from the fuzzy set that is the output of the inference
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block in Fig. 2. Many defuzzifiers have been proposed
in the literature; however, there are no scientific bases
for any of them (i.e., no defuzzifier has been derived
from a first principle, such as maximization of fuzzy
information or entropy); consequently, defuzzification is
an art rather than a science. Because we are interested in
engineering applications of FL, one criterion for the choice
of a defuzzifier is computational simplicity. This criterion
has led to the following candidates for defuzzifiers:

1) Maximum Defuzzifier: This defuzzifier examines the
fuzzy set B and chooses as its output the value of
y for which pp(y) is a maximum. It can lead to
peculiar results or can get hung up. The former occurs
for the situation depicted in Fig. 29(b), in which the
maximum defuzzifier would choose § = 40 as the
output of the FLS; this value totally ignores the fact
that p2p(8) is distributed from 6 = 8 to § = 40. The
latter occurs for the situation depicted in Fig. 29(a),
in which the maximum of pg(€) occurs for a range
of 6 values rather than at a unique point.

2) Mean of Maxima Defuzzifier: This defuzzifier exam-
ines the fuzzy set B and first determines the values of
y for which pg(y) is a maximum. It then computes
the mean of these values as its output. Unfortunately,
it can also lead to some peculiar results. If the
maximum value of pg(y) only occurs at a single
point, then the mean of maximum defuzzifier reduces
to the maximum defuzzifier, and our discussion about
Fig. 29(b) applies to it. Fig. 30 depicts a situation
where pp(y) is described by two separated triangles
that both have the same peak amplitudes. The mean
of the maximum defuzzifier assigns a value to the
output of the FLS midway between the two triangles,
at which point the membership function pp(y) has
zero value. This makes no engineering sense.

3) Centroid Defuzzifier: This defuzzifier determines the
center of gravity (centroid), §, of B and uses this
value as the output of the FLS. From calculus, we
know that

g= { [unstwas] / [ [ e @

where S denotes the support of p5(y). Frequently, S
is discretized, so that i can be approximated by the
following formula which uses summations instead of
integrations:

I I
= [Z yiﬂB(yi)} / {Z I»LB(yi)]- (45)
=1 i=1

The centroid defuzzifier is unique; however, it is
usually difficult to compute. For an interpretation of
4 as a conditional expectation, see [40].

Pacini and Kosko [56] prove that for product in-
ference and additive combining of rules, § can be
computed using centroid information about the indi-
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vidual M rules. While this result does not extend to
other ¢-norms and ¢-conorms, it does provide some ad
hoc justification for what is probably the most widely
used form of defuzzification, height defuzzification.

4) Height Defuzzifier: Let §i' denote the center of gravity
of the fuzzy set B! (which is associated with the
activation of rule R®)). This defuzzifier first evaluates
gt (y) at ' and then computes the output of the FLS
as

M M
Yh = [Z 7 (Q')}/[Z ust(ﬂl)]- (46)
1=1 i=1

It is very easy to use (46) because the centers of
gravity of commonly used membership functions are
known ahead of time. Regardless of whether mini-
mum (Fig. 17) or product (Fig. 18) inference is used,
the center of gravity of B! for: a symmetric triangular
consequent membership function is at the apex of the
triangle; a Gaussian consequent membership function
is at the center value of the Gaussian function; and,
a symmetric trapezoidal membership function is at
the midpoint of its support. Equation (46) is easily
derived from calculus applied to the situation that
is depicted in Fig. 31. Although (46) and (45) look
alike, they are different.

Although (46) is easy to use, it suffers from a
deficiency that is not at all obvious to the newcomer.
Whereas y;, makes use of the entire shape of each
antecedent’s membership function, because this in-
formation is embodied in g (5'), it does not make
use of the entire shape of the consequent membership
function. It only uses the center of the support, 7', of
the consequent membership function. Regardless of
whether or not the consequent membership function
is very narrow, which indicates a very strong belief
in that rule, or is very broad, which indicates much
less belief in that rule, the height defuzzifier gives the
same result. This has led to our last defuzzifier, the
modified height defuzzifier.

5) Modified Height Defuzzifier [22], [73]: As in height
defuzzification, we let 3! denote the center of gravity
of the fuzzy set B'. The modified height defuzzifier
first evaluates pp/(y) at §' and then computes the
output of the FLS as

M M
Zy’uBf@’)/&“] / {Zuaz(ﬂ’)/é‘z]
i=1 =1

(47)
where 6' is a measure of the spread of the consequent
for rule R("). For triangular and trapezoidal member-
ship functions, 8’ could be the support of the triangle
or trapezoid, whereas, for Gaussian membership func-
tions, 5' could be its standard deviation. The modified
height defuzzifier is also easy to use, although the
6! parameters must be specified as well as ' and
np (7).

Ymh =
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Fig. 31. Discrete masses that are located at the centroids of
the membership functions for each rule. Each mass equals the
peak value of the activated consequent membership function for
RO, uBt(yl) (see (49)). An unactivated rule has zero value for
gt (§'). Centroids do not have to appear in chronological order.

For additional discussions on defuzzifiers, see [20], [22],
[691, [80], [81].

E. Possibilities

From our detailed discussions about the four elements
which comprise the Fig. 2 FLS, we see that there are many
possibilities to choose from. We must decide on the type of
fuzzification (singleton or nonsingleton), functional forms
for membership functions (triangular, trapezoidal, Gauss-
ian, piecewise linear), parameters of membership functions
(fixed ahead of time, tuned during a training procedure),
composition (max-min, max-product), inference (minimum,
product), and defuzzifier (centroid, height, modified height).
Just choosing among the parenthetical possibilities leads to
2!3= 32 768 different FLS’s. This demonstrates the richness
of FLS’s and that there is no such thing as the FLS.

F. Formulas for Specific FLS’s: Fuzzy Basis Functions

The geometric interpretation we have provided for the
inference block of our FLS (e.g., see Figs. 26-29) is infor-
mative; however, it does not provide us with a complete
description of our FLS. For such a description, we need
a mathematical formula that maps a crisp input x into a
crisp output ¥ = f(x). From Fig. 2, we see that such a
formula can be obtained by following the signal x through
the fuzzifier, where it is converted into the fuzzy set Ay,
into the inference block, where it is converted into the
fuzzy set B, and finally into the defuzzifier, where it is
converted into f(x). In order to write such a formula,
we must make specific choices for fuzzifier, membership
functions, composition, inference and defuzzifier.

Example 24: [71], [73] When we choose singleton fuzzi-
fication, max-product composition, product inference, and
height defuzzification, leaving the choice of membership
functions open, it is easy to show that

M p M p
y=fo(x) = [Z?leﬂpj(wi)]/[ZHM@(%)]-
=1 7

i=1 1=1 =1
(48)
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To obtain (48), we started with (46) and substituted for
ppi (g, where

P
np(@) = pams,7) = [H s (zi)] n ()
) =1
= [T ur @), (49)
1=1

and we have assumed that membership functions are nor-
malized, so that uc«(g') = 1. Additionally, for notational
simplicity, we have relabeled z to z;, so that we write
fo(x') as fo(x).

When we choose singleton fuzzification, max-min com-
position, minimum inference, and height defuzzification,
then following the same procedure that we used to derive
(48), we obtain

fo(x)

M
{Z g‘ mini=1,...,p{uF: (ﬁz)}j| /
=1

M
[Z mini=1,...p{1p (ri)}] : (50)

=1

Y

i

When Gaussian membership functions are used
pp(T:) = exp{—[(x; — z)/0l]?}, where i = 1,2,.
and | = 1,2,..., M (recall that p equals the dimension of
x, and M equals the number of rules).

Example 25: 53], [54] This is a continuation of Exam-
ple 23. When we choose nonsingleton fuzzification, max-
product composition, product inference, and the Gaussian
membership functions for px, [zx] and pp [zk], then we
know that g (y) is given by (43). When we also choose
height defuzzification, we must first determine which el-
ement from the fuzzy set B’ is going to be used by the
defuzzifier. If, as assumed, pg:(y) is Gaussian, then its
value at y = 3 is unity; hence,

g (G H 1t (Th,max) 629!

Substituting (51) into (46), we obtain

y = fus(x)
M P M p
Z 37[ H Kot (.’Iik,max)] / [Z H i} (Tk,max } .
=1 k=1 I=1 k=1

(52)

serve the strong similarity between the structures of
<) in (48) and fns(x) in (52). O
he FLS’s in (48) and (52) can also be represented as
drop the subscript “s” or “ns” on f(x), for notational

iplicity]

M
=Y 7'x) (53)
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where ¢;(x) are called fuzzy basis functions (FBF’s) [76]
and are given by

x) = 1—[;11?{(1z /[ZH[IF! z;) } (54a)

=1 i=1
for singleton fuzztﬁcanon

P
d)l(x) = H /J'Ql Tk max)/ |: H /—"QiT (xk,max):}
k=1 =1 k=1

for nonsingleton fuzzification (54b)

where | = 1,2,..., M. We can now refer to our FLS as
a fuzzy basis function expansion. Doing this is very useful,
because it places a FLS into the more global perspective of
function approximation. Remember though that the FBF’s
in (54) are valid only for very specific choices made about
fuzzifier, membership functions, composition, inference and
defuzzifier. Change any of these and (54a) and (54b) are no
longer valid; but the interpretation of a FLS as a fuzzy basis
function expansion still is. Formulas that are comparable to
(54) can be derived for many other possibilities.

Although the index ! on the FBF seems to be associated
with a rule number, ie., [ = 1,2,..., M, each FBF is
affected by all of the rules because of the denominator in
¢1(x); hence, it is only partially correct to associate the jth
FBF with the jth rule. Of course, if we add or remove a
rule, thereby increasing or decreasing M, then we add or
remove a FBF from the FBF expansion. It is in that sense
that it is correct to associate the jth FBF with the jth rule.

The relationships between FBF’s and other basis func-
tions have been extensively studied in [29]. They are more
general than radial basis functions, generalized radial basis
functions, and hyper-basis functions [57]. For very special
choices of their parameters and singleton fuzzification, they
bare structural resemblance to generalized regression neural
networks [63] and Gaussian sum approximations [2]. The
latter two begin by assuming that the measured data is ran-
dom and that an estimate is desired of another random quan-
tity. This bares no resemblance to our starting point for a
FLS where no asumption about randomness has been made.

The denominators in (54a) and (54b), which are a result
of the height defuzzifier, serve to normalize the numerators
of the FBF’s. The numerators are radially symmetric;
hence, one could also refer to our FBF’s as normalized
radial basis functions. Such basis functions were originally
suggested by Moody and Darkin [52] as a means for
sharing infomation across radial basis functions. Tao [68]
has compared normalized and unnormalized radial basis
functions, and demonstrated, by means of examples, the
superiority of the former over the latter. It is important to
remember that our FBF’s are normalized not by abstraction,
but rather by design of our overall FLS.

Example 26: What do the FBF’s in (54a) and (54b)
look like? We shall consider two situations, equally spaced
and unequally spaced Gaussian antecedent membership
functions and Gaussian fuzzy numbers. In order to visualize
the FBF’s in two dimensions, we choose dim x = p =
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Fig. 32. Fuzzy basis functions for five rules in singleton (solid lines) and nonsingleton (dash-dot
lines) FLS’s. (a) Equally spaced and (b) unequally spaced Gaussian antecedent membership functions

and Gaussian fuzzy numbers.

1, so that ¢;(x) = ¢i(x). We also choose the number of
rules, M, equal to 5. Standard deviations for all Gaussian
antecedent membership functions, as well as for the fuzzy
input are set equal to 10.

In the equally spaced situation, we choose mp = 20,
mpz = 35, mpa = 50, mF4 = 65, and mFs = 80.
F1g 32(a) dep1cts the five FBF's. Observe that the three
interior FBF’s are radially symmetric, whereas the two
exterior FBF’s are sigmoidal. These FBF’s seem to com-
bine the advantages of both radial basis functions, which
are good at characterizing local properties, and sigmoidal
neural networks, which are good at characterizing global
properties. Observe, also, that the FBF’s for nonsingleton
fuzzification have longer tails and are broader than their
singleton FBF counterparts. This means that more of them
will be activated in the nonsingleton case than in the
singleton case for a specific input value. For example, a
vertical line at « = 30 in Fig. 32(a) intersects three of
the singleton FBF’s and four of the nonsingleton FBF’s.
Input uncertainty activates more FBF’s, which means that
decisions are more distributed in the nonsingleton case than
in the singleton case.

Lest one believe that radial symmetry must occur for
interior FBF’s, we next consider the nonequally spaced
situation, where we choose mpr =20 mp2 =25, m =
50, Mps = 62, and mps = 80. Fig. 32(b) deplcts the five
FBF’s. Observe that the three interior FBF’s are no longer
radially symmetric, whereas the two exterior FBF’s are still
approximately sigmoidal. These figures should dispel the
notion that fuzzy basis functions are radial basis functions.
They are not; they are nonlinear functions of radial basis
functions.

Equally spaced FBF's are possible only if the mean
values (centers) of the antecedent membership functions
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can be chosen by the designer. If these values are estimated
by means of a training procedure, so that they adapt to the
data that is associated with the rules, then unequally spaced
FBF’s are the norm rather than the exception. O

Rules can come from numerical data or they can come
from expert linguistic knowledge. Each rule contributes
a basis function to the FBF expansion. It is convenient,
therefore, to decompose f,(x) or f,,s(x) into the sum of two
terms, one associated with FBF’s that are associated with
rules that come from numerical data and the other that is
associated with rules that come from linguistic information,
ie, y = f(x) = fn(x) + fL(x). If we have a higher
degree of belief in one set of rules over the other, then
we can combine fx(x) and fi(x) in the following way:
y=f(x) =afn(x)+ (1 - a)fr(x) where 0 < a < I.
When o = 0, then y = fr(x), which means, of course,
that we are only using linguistic information. On the other
hand, if & = 1, then y = fy(x), which means we are
only using numerical information. It is only when 0 <
a < | that we are combining linguistic and numerical
information. This is not the only way that we can combine
linguistic and numerical information. One of its deficiencies
is that it does not produce a strong coupling between
the linguistic and numerical FBF’s. Such coupling occurs
when the denominators of all the basis functions are made
dependent on both linguistic and numerical information. We
illustrate how to do this next for singleton fuzzification. We
begin by rewriting (53) as

y=f(x)
M ) Mn M,
=D Fhi(X) =D gndni(¥) + Y Frsbrp(x)
i=1 i=1 k=1

(55)
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Yig. 33. Generic membership functions for the fuzzy sets positive, positive big, negative, negative
iz and near zero. Step functions may be more appropriate for the fuzzy sets positive and negative.

where there are My FBF’s associated with numerical data
and M; FBF’s associated with linguistic information, and
My + My = M. The FBF’s are given by

P i (%)
) M p
::H}LF;((ITS)/ ZHqu(ws) i=1,2,...,Mn
e=1 j=1s=1
(56)
@r4(x)

p M p
::H,w(ms)/ ZH;LFSJ(:CS) k=1,2,...,Mf.

(67

Cibserve that the FBF’s in (56) and (57) are normalized
by information that is associated with both numerical and
linguistic information, because their denominators depend
on M, where M = My + My.

Example 27: Here we develop FBF’s for the four linguis-
tic rules in the ball and beam Example 18. Let us assume
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that in addition to these four rules, we have D data training
pairs; hence, there will be M = D+ 4 FBF’s. In order to
simplify notation, let 1 = r(t), z2 = dr(t)/dt,z3 =
6(t), and x4 = db(t)/dt.

We need membership functions for the fuzzy sets
positive, positive big, near zero, negative, and negative
big. Fig. 33 depicts generic membership functions for
all of these. Sigmoidal functions [e.g., u(z) = 1/[1 +
exp(—az)]] or shifted sigmoidal functions are used for
pposiTIvE(2), prositive-pic(4), unecative(z), and
UNEGATIVE—BIG(1), whereas a Gaussian function is used
for ungar zero(z). The exact locations of the midpoint
of the sigmoidal functions for pposiTive-pic(u) and
UNEGATIVE-BIG(u) depend on the domain of values over
which u varies. Suppose that u € [-0.5, 0.5]. Then the break
point for the pposiTivE-BIG (¢) shifted sigmoidal function
is chosen to be at v* = 0.4, whereas the break point for the
UNEGATIVE-BIG (1) shifted sigmoidal function is chosen to
be at u* = -0.4. Specific formulas for all these membership
functions are left to the reader.

Let ¢1,1(x),¢r,2(X),¢r3(x), and ¢ 4(x) be the
FBF's that are associated with RV, R?, R®, and RY,

PROCEEDINGS OF THE IEEE, VOL. 83, NO. 3, MARCH 1995



respectively; then from (57), we find, for example, that:

¢1,1(%) = [uposITIVE(Z1) UNEAR ZERO (T2) tPOSITIVE (T3)
M 4

unearzero(za)] / Y]] tops ()

7=1s=1
#r.4(x) = [unecaTIVE(Z1 )uNEAR ZERO(Z2) bPOSITIVE(T3)

M 4
HNEAR ZERO(Z4)] Z H HEi (xs)

j=1s=1

(58a)

(58b)

where M = D+ 4, and the piz,(x,), j =1, 2, 3, 4, are
easily identified with the numerator membership functions
in each of the FBF’s. We leave the construction of ¢ 2(x)
and ¢ 3(x) to the reader.

Note that, although we have carefully described the
membership functions in Fig. 33 for the control variable,
u, they do not enter into the FBF’s, because they are
associated with the consequent of each rule. Examining
the four rules and Fig. 33, we set gz« in (55) (M = 4)
0 Jrw = —Ua Jrz = Ua,Jr3 = ug, and Jrs = —ug,
respectively. It is only in the final formula for the FBF
expansion that the control membership functions have any
effect. a

We have shown, therefore, that a FLS is a function ap-
proximator in which the basis functions of the approximator
derive from either numerical or linguistic information. Each
numerical rule leads to a fuzzy basis function, as does each
linguistic rule. Unlike some of the classical basis functions
(e.g., Laguerre polynomials, trigonometric functions) which
are inherently orthogonal, fuzzy basis functions are not
orthogonal. To date, FBF’s are the only basis functions that
can include numerical information as well as linguistic in-
formation; this makes them quite unique among all function
approximation techniques.

G. Fuzzy Logic Systems Are Universal Approximators

How well does a FL.S approximate an unknown function?
This is an important question that is asked about all types of
function approximations, including the popular feedforward
neural network (FFNN). Cybenko [15], Hornik er al. [25],
Hornik [24], as well as others (e.g., Blum [6]) demonstrated
that a FFNN is a universal approximator, which means that
a FFNN can uniformly approximate any real continuous
nonlinear function to arbitrary degree of accuracy. Hornik
et al. [25] used the Stone-Weirstrass theorem from real
analysis to prove this result.

The same result has been proven using the Stone-
Weirstrass theorem, by Wang and Mendel [76] and Wang
[72] for a singleton FLS that uses product inference, product
implication, Gaussian membership functions and height de-
fuzzification. Kosko [37], [39] proved a similar result for an
additive FLS, one that uses singleton fuzzification, centroid
defuzzification, product inference and product implication
(referred to by Kosko [36] as correlation product inference),
using the concept of fuzzy patches. Mouzouris and Mendel
[54] also do this, but for a nonsingleton FLS that uses
a range of t-norms, arbitrary membership functions and
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modified height defuzzification. Their proof does not use
the Stone—Weirstrass theorem. See also [8] and [83].

Because no universal approximation theorem has been
proved for arbitrary FLS’s, we can expect to see many more
FLS universal approximator theorems and proofs appearing
in the FL literature, as has been the case for FFNN’s.

A universal approximation theorem is an existence the-
orem. It helps to explain why FLS’s are so successful in
engineering applications; however, it does not tell us how
to specify a FLS. The same is true for FFNN universal
approximation theorems, which do not indicate how many
layers of neurons should be used, how many neurons should
be used in each layer, or how interconnected the neurons
should be. Universal approximation theorems imply that
by using enough layers, enough neurons in each layer,
and enough interconnectivity, the FFNN can uniformly
approximate any real continuous nonlinear function to
arbitrary degree of accuracy.

We have already seen the enormous number of possibil-
ities for FL.S’s. The design degrees of freedom that control
the accuracy of a FLS are, number of inputs, number of
rules and number of fuzzy sets for each input variable.
Consider the ¢th input variable z;, where z; € U, =
[X;, X;"]. Itis intuitively obvious that dividing the interval
[X;, X] into 100 overlapping regions will lead to greater
resolution, and consequently greater accuracy, than dividing
the interval [X;, X;T] into, say, 10 overlapping regions.
Kosko [37], [39] describes this in terms of smaller fuzzy
patches versus larger fuzzy patches.

If there are p input variables, each of which is divided
into 7 overlapping regions, then a complete fuzzy rule
bank must contain p” rules. As resolution parameter r
increases, the size of the fuzzy rule bank becomes enormous
(complex). There must, therefore, be a practical tradeoff
between resolution and complexity. In actual practice, one
almost never needs a complete fuzzy rule bank of p” rules.
This is because, in practical applications of FLS’s there
are large regions of the input space that are never seen
during the actual operation of a system; hence, rules are
not needed for such regions. In short, one important way
to achieve high resolution and low complexity is to design
the FLS using representative data that is collected for a
specific application.

VI. DESIGNING Fuzzy LOGIC SYSTEMS

Because of the large number of possibilities for FLS’s,
some guidelines are necessary for their practical designs.
Linguistic rules are -easily converted into their subset of
FBF’s, using fuzzy logic, as we have demonstrated in
Example 27. Numerical rules, and their associated FBF’s,
must be extracted from numerical training data. Ultimately,
after we have chosen the type of fuzzification, inference,
implication, defuzzification, and membership functions, we
must fix the parameters of the membership functions. Prior
to 1992, all FLS’s reported in the open literature fixed
these parameters somewhat arbitrarily, e.g., the locations
and spreads of the membership functions were chosen by
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the designer independent of the numerical training data.
Then, at the first IEEE Conference on Fuzzy Systems, held
in San Diego, in 1992, three different groups of researchers
(Wang and Mendel [77], Jang [27]. and Horikowa er al.
[23]) presented the same idea: tune the parameters of a FLS
using the numerical training data. Since that time, quite a
few adaptive training procedures have been published.

Space does not permit us to describe the different training
approaches in detail. Here we very briefly outline two of
them in connection with the following problem: we are
given a collection of N input-output numerical data training
pairs, (x(P @y (=2 2 @) o (xM) 2 yN), where
x is the vector input and y is the scalar output of our FLS.
Our goal is to completely specify a FLS using the training
data. See also [67] and [65].

For illustrative purposes, all designs assume singleton
fuzzification, Gaussian membership functions, product in-
ference and implication, and, height defuzzification; hence,
our FLS is described by (53) and (54a). Note that the basic
principles used in each design procedure carry over to many
other FLS’s.

To begin, we must explain how the training data can
be interpreted as a collection of IF-THEN rules. Each
rule is of the form IF u, is F} and --- and u, is Fy,
THEN v is G*, ¢ = 1,2,..., N, where F} are fuzzy sets,
which are associated with the elements of x(%), and are de-
scribed by Gaussian membership functions, ie., pp [zx] =
exp{-=1/2{(xx —mpt)/op:]*} k= 1,...,p. Each design
method establishes how to specify the parameters Lo
and ot of these membership functions, as well as the
centers of the consequent membership functions, the 7"’
in (53), using the training pairs (x(1 : D) (x®

y @, (x )y (),

In the least-squares design procedure [71], [73], [76] all
of the parameters in the FBF’s are fixed by the designer, and
only the centers of the consequent membership functions,
the 7's in (53), are tuned. The number of FBF’s (i.e.,
the number of rules), M, must also be specified. An
orthogonal least-squares (OLS) procedure is used to select
the most significant FBF’s. The detailed formulas for the
OLS procedure can be found in [73], [76]; they are based
on the works of [10] and [l1]. Linguistic information
can be incorporated as a subset of the FBF’s. The OLS
procedure will then establish the simultaneous significance
of linguistically based and data-based FBF’s. For example,
in the ball and beam example, the OLS procedure would
establish whether or not the four linguistic rules contribute
important FBF’s. We have found that when there is not a lot
of numerical training data, the linguistic information is very
important; but, when there is a lot of numerical training
data, linguistic rules become less important. The main
drawback to this procedure is its computational intensity,
due to the optimization of M. A second drawback is that
it only seeks to optimize a subset of all the parameters that
characterize a FLS.

In the backpropagation design procedure [71], [73], [77]
all of the parameters in the FLS are optimized. There are
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M7 parameters, Mpymg: parameters and M p0 F! parame-
ters; hence, there are + 2M, parameters that describe
our FLS. For even modest values of M and p, M + 2M,
can be a large number, e.g., 5 inputs and 50 rules lead
to 550 parameters. One way to reduce the number of
parameters is to assume op = 0. Doing this reduces the
number of parameters to M +M + 1. For our example, we
would then have 301 parameters, which still may be a lot
of parameters. Clearly, the dominant term in the number
of parameters is the product M. In order to reduce the
total number of parameters to a manageable number we
must reduce the total number of rules, or the dimension
of the input vector to the FLS, or both. The OLS design
procedure can help to accomplish the former. Reducing the
number of inputs, p, is very problem dependent, and is
usually accomplished by trial and error. Finally, note that
a feedforward neural network, which is also a universal
approximator, also contains a lot of weights which must
be optimized during a training procedure. Thousands of
weights are not uncommon in practical applications.

The output of the FLS, when the kth training input
vector, x*), is applied to it, is f(x(¥)). The error between
F(x¥)) and the desired output, ¥*), is used as the basis
for the backpropagation design procedure. Let e 1 /2 x
[f(x®) — y®)]2 k =1,2,...,N. In the backpropagation
design procedure, we fix the number of rules, M, and
choose the design parameters, ', m F and OFis such that
er 15 minimized. This is done using a steepest descent
algorithm in which the derivatives of ey, with respect to
all of the parameters, can be explicitly computed, because
we can express ep as an explicit function of the design
parameters, using (53), (54a) and the formula for p F! [zx]-
In essence, this training procedure involves a forward
and a backward flow of the data. In the forward flow,
f(x®)) is computed for a given x*). In the backward
flow, f(x®)) — 4*) ig computed and propagated into the
backpropagation equations for ', m Fl and OFi. Results in
Chu and Mendel [12] demonstrate that a FLS can be trained
much faster than a feedforward neural network.

Of course, a better backpropagation algorithm, or perhaps
a totally different training algorithm, such as an extended
Kalman filter [62], [26] or a Newton algorithm [78], may
greatly speed up the training procedure for the neural
network. Whatever better backpropagation algorithm, or
different training algorithm that is used for a neural network
can also be used by the FLS. Success of any neural network
training algorithm depends on the initial values chosen for
the weights. These weights have no physical meaning for
the neural network; hence, they usually must be chosen
randomly. The parameters of a FLS are associated with
membership functions for physically meaningful quantities;
hence, it is possible to obtain very good initial values for
them.

C. Comments

It is possible to work with these two design methods in
an iterative manner, thereby capturing the strong points of
both methods. For example, by using the backpropagation
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method first, we can obtain a good set of basis function
parameters. Then the OLS design procedure can be used
to reduce the number of basis functions, after which we
can rerun the backpropagation design procedure in order to
retune all of the FLS parameters.

The OLS and backpropagation design procedures are by
no means the only ones that have been developed for tuning
a FLS. Other procedures include: nearest neighborhood
clustering procedure [73], which is useful when there is
a lot of training data; determining membership function
shapes that fit the input-output data, but for a FLS that
is somewhat different from the one we have presented in
this article [66]; and, supervised ellipsoidal learning [16]
for tuning the parameters of an additive FLS. Parameters
of a FLS can also be trained on-line using reinforcement
learning [4]. Past issues of the JEEE Transactions on Fuzzy
Systems, as well as the Proceedings of the 1992-1994 IEEE
Conferences on Fuzzy Systems contain many other design
procedures. See also [81] and the article by R. Jang in this
issue of the IEEE Proceedings.

VII. CONCLUSIONS

We have demonstrated that a fuzzy logic system (FLS)
is a nonlinear system that maps a crisp input vector into
a crisp scalar output. We have provided mathematical
formulas that describe this system, have shown that it
can be expressed as a linear combination of fuzzy basis
functions, and have explained that a FLS is a universal
function approximator, which makes it a competitor to all
other function approximators that share this property (e.g.,
feedforward neural networks). We have also demonstrated
that the fuzzy basis function expansion is unique among
all other basis function expansions, in that it can derive its
basis functions in a unified manner from either numerical
data (as can the other expansions) or linguistic knowledge
(as can none of the other expansions).

The architecture of a FLS is determined by a careful
understanding of fuzzy sets and fuzzy logic, and is rich with
possibilities, i.e., there is no one FLS, there are many. As a
user of a FLS, we must decide on the type of fuzzification
(singleton or nonsingleton), functional forms for member-
ship functions (triangular, trapezoidal, Gaussian, piecewise
linear), parameters of membership functions (fixed ahead
of time, tuned during a training procedure) composition
(max-min, max-product), inference (minimum, product),
and defuzzifier (centroid, height, modified height).

In order to derive our FLS we had to make the very
strong but engineering-meaningful assumption of causality.
Doing this caused us to deviate from the usual propositional
logic definition of implication, so as to reach engineering
implications, which were first introduced in the 1970’s by
engineers who successfully applied FL to control problems.
These engineering implications lead to FLS’s that work well
in practice; however, they bare very little resemblance to
more traditional logical implications. If this is viewed as a
weakness of our FLS’s, so be it. We prefer to view it as a
triumph of engineering.
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We conclude with a short comparison of FLS’s and
feedforward neural networks (FFNN’s), because they can
both be used to solve similar problems. Both are model
free, i.e., all the information they are given is contained in
some examples from which they are required 1o learn so
as to give correct or successful outputs when new inputs
are presented. They are given the same information and
asked to perform the same task; but, linguistic knowledge
can only be used by a FLS whereas it cannot yet be
used by a FFNN. Such knowledge can be invaluable,
especially if there is not a lot of numerical training data.
Tuning a FLS can be done much faster than tuning a
FFNN because the parameters of the FLS can be initialized
smartly, whereas the parameters of FFNN must usually be
initialized randomly. Finally, the fuzzification subsystem
within the FLS lets us handle uncertainty in a very natural
way, totally within the framework of FLLS’s. To date there
does not seem to be a comparable way to handle uncertainty
in a FFNN.
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