A Tutorial on Amortized Local Competitiveness in Online Screduling

Sungjin Im* Benjamin Moseley Kirk Pruhst
Computer Science Department Computer Science Department
University of lllinois Urbana-Champaign University of Pittsburgh
May 3, 2011

1 Introduction

Recently the use of potential functions to analyze onlifredaling algorithms has become popular [19, 7,
29, 13, 31, 4, 30, 3, 21, 15, 14, 28, 12, 2, 5, 6, 9, 11, 23, 338247, 16, 25, 1, 20, 26, 22, 18]. These
potential functions are used to show that a particular erdlgorithm is locally competitive in an amortized
sense. Algorithm analyses using potential functions aneesiones criticized as seeming to be black magic
as the formal proofs do not require, and commonly do not éongay discussion of the intuition behind
the design of the potential function. Sometimes, as in tise &ar the first couple uses of potential functions
in the online scheduling literature, this is because thba@starrived at the potential function by trial and
error, and there was not a cohesive underlying intuitiodigugj the development. However, now that tens of
online scheduling papers have used potential functiorescan see that a “standard” potential function has
emerged that seems to be applicable to a wide range of preblEme use of this standard potential function
to prove amortized local competitiveness can no longer Imsidered to be magical, and is a learnable
technique. Our main goal here is to give a tutorial teachimgtechnique to readers with some modest prior
knowledge of scheduling, online problems, and the conciepbost-case performance ratios.

Online Scheduling: We consider online scheduling problems where jobs/taskeat a server (e.g. aweb
server, a database server, an operating system, etc.)imeerlthroughout this papéy will denote the total
number of jobs and jobs are indexéd /o, . . ., Jn. If there is more than one unfinished task at a particular
time, then the online scheduldrmust determine which task to process. In the schedyi® that results

on inputl, each job (or more strictly speaking the client that sutedithe job) has a resulting quality of
service. For example, the most common quality of servicesomeafor a job is the flow/response tinig
which is the difference between tindg, when jobJ; is completed, and time;, when jobJ; arrived in the
system. One can then measure the quality of the schedulerbicimg the quality of service measures
of the jobs in some way. For example, the most common qudliservice measure for a schedule is the
average flow time) ;. y; Fi/N.

Competitiveness:An online scheduled does not have knowledge of the future and, due to this, in most
settings it is not possible for the online scheduler to got@®that the resulting schedule is optimal for the
quality of service measure under consideration. Thus onerg#y seeks an algorithm guaranteeing that

*Partially supported by NSF grants CCF-0728782 and CCF-a846
TPartially supported by NSF grants CCF-0728782 and CCF-8846
tSupported in part by NSF grant CCF-0830558 and an IBM Facuitgrd.

ACM SIGACT News 1 September 2003 Vol. 34, No. 3

the degradation in the quality of service measure relatv@tne benchmark is modest/minimal/bounded.
The most obvious benchmark is the optimal schedul&l'(1). For a minimization problem, an algorithm
is said to be:-competitive, or have competitive ratipif

Go(I) <

where in this setting=,(I) and G,(I) refer to the value of the scheduling objective in the aldonits
schedule and the optimal solution’s, respectively. Theeptpat is perhaps most responsible for popularizing
this line of online scheduling research is [34]. For surnass [38, 37].

In many settings, it is not possible for the scheduler to Hamended competitiveness relative to the
optimal schedule. In such cases, a commonly used weakehipank than the optimal schedule is the
optimal schedule on a slightly slower processor. An alganit is s-speed:-competitive if the algorithm is
c-competitive given a processstimes faster than the optimal solution’s processor. Thisiked resource
augmentation analysis, and was introduced in [27], andtémelard terminology was later coined in [36]. To
understand the motivation for resource augmentation aigalyote that it is common for systems to possess
the following (informally defined)hreshold propertyThe input or input distributions can be parameterized
by a load), and the system is parameterized by a capacifihe system then has the property that its QoS
would be very good when the loadis at most 90% of the system capagitybut degrades unacceptably if
A exceeds 110% qf. Figure 1 gives such an example of the QoS curve for a systanh#s this kind of
threshold property. Figure 1 also shows the performance ohdine algorithmA and an optimal algorithm
is similar in the sense that they have close thresholdschlbtiwever that the competitive ratioafrelative
to the optimal is very large when the load is near capacithnother natural way of comparison would be
to compare the performance dfto the optimal with the load that istimes the load tha#l is given. Notice
that multiplying the load by a factor afis equivalent to slowing the system down by a factos.oHence
we would like to comparel with an s times faster processor to the optimal schedule.

Performance

Load A "

Figure 1: QoS curves of an scalable online algoritArand the optimal algorithm for a system with the
threshold property.

The informal notion of an online scheduling algoritbkhibeing “reasonable” is then generally formalized
as A having bounded competitiveness for some small constaetspegmentation. Usually the ultimate
goal is to find an algorithm where the speed augmentationinefjio achieveO(1)-competitiveness is
arbitrary close to one. Such an algorithm is cakedlable Intuitively, a scalable algorithm performs very
close to the optimal schedule, since it would guarantee #esysapacity arbitrarily close to the optimal
capacity, while also ensuring that the QoS remains compa(alithin a constant factor).

It is instructive to note the similarities and differencetveen results obtained from competitive analy-
sis and analogous results in the queuing theory literakoeexample, we will show later that the algorithm

ACM SIGACT News 2 September 2003 Vol. 34, No. 3

Shortest Job First (SJF) is scalable, more preci€ely €)-speedO(1/¢)-competitive, for the objective of
average flow time. A standard result from the queuing theibeyature is that for an/|M |1 queue the
average flow time for SJF (or any scheduler) with a unit speedgssor is at moﬁﬁ if the load is at most

1 — € [32]. Both results can be interpreted as stating that if §etesn is not too heavily loaded then the
performance of the scheduler should be reasonable. In & afacompetitive analysis the measure of
reasonable is relative and, in the queuing theory analysaneasure of reasonable is absolute.

1.1 Notation

Consider an objective and a problem instance. Fix an ahlyarfor this problem and an optimal solution.
Throughout this paped will denote the algorithm. Lefi(¢) andO(t) denote the unsatisfied jobs at time
in the algorithm’s and optimal solution’s queue, respetyivThe total number of jobs is denoted/ss The
completion time of jobJ; is C¢* andC? in the algorithm’s schedule and optimal schedule, respagtiThe
arrival time of job.J; is r;. The work/size of jolyJ; is p;. If the jobs have weights then; denotes the weight
of job J; andd; = ‘p”— is the density of/;. LetG,(I) andG,(I) denote the algorithm’s objective and the
optimal objective. ThéI) will be dropped when the instance is clear. The valug/¢f) andp?(t) denote
the remaining work of jolJ; in the algorithm’s schedule at tinteand the optimal schedule, respectively.

1.2 Obijective Functions

As mentioned, the goal of the scheduler is to optimize thdityuat service that the jobs receive. Recall that
the flow time of a jobJ; is C* — r;, the total time the job waits to be satisfied in the system. @itlee most
popular objectives considered is minimizing the total feglently average) flow tim@iem(q@ —r;).
This objective is equivalent to minimizingfo |A(t)|dt . Another popular objective is minimizing the total
weighted flow time. In this setting each jobhas a weightv; and the goal is to minimizgiem wi(CF —
r;). This objective is equivalent to minimizinf™ w,(t)dt , wherew,(t) is the sum of the weights of the
unsatisfied jobs at timein the schedule.

1.3 Fractional Objectives

A popular technique used in obtaining a resource augmemt@getitive online algorithm for an (integral)
objective is to first obtain an algorithm that is competifioea fractional objective. The fractional objective

for an algorithm is defined to be),c v /i, 2 %t gt whereG(t, J;) is the total cost of job
J; up to timet. The fractional objective is usually considered wh@ft, J;) depends only on the flow
time of job J;. As an example. consider the objective of weighted flow. Traetfonal weighted flow
time of a jobJ; is ch wimdt wherep?(t) is the remaining work of jobJ; by algorithm A at time

pi
t. We call p—t) the remaining fraction of/; at time¢. The total weighted fractional flow time objective

p

is ft‘fo ZJieA(t) wi%t)dt . An interpretation of the fractional weighted flow time otijee is that a job
contributes to the objective in proportion to the amountesfiaining work the job has. Notice that the total
fractional weighted flow time of any schedule is at most thegral weighted flow time of the schedule.

The concept of fractional objectives has proved to be ufefinalyzing online scheduling algorithms.
Generally it is easier for an online algorithm to be compatifor fractional objectives. Further, fractional
objectives are often easier to reason about. To the bestrdnowledge, the use of fractional objectives to
aid in the analysis of online scheduling algorithms orig@serom [10]. It is generally possible to convert a

schedulerd that is good for a fractional objective into an algorithththat is good for an integer objective

ACM SIGACT News 3 September 2003 Vol. 34, No. 3

with minimal speed augmentation in the following way: Thgaalthm A’ always schedules the exact same
jobs asA at any time, except él + ¢) factor faster in rate of speed, unless the job has been ctedple
A”’s schedule. IfA is s-speedc-competitive for a fractional objective then generallyis (1 + ¢)s-speed
O(c/e)-competitive for the corresponding integer objective.

1.4 Popular Algorithms

We give a quick overview of some of the most popular schedwdigorithms.

e Shortest Remaining Processing Time Fi&RPT): Always processes the job with the least remaining
work.

e Shortest Job Firsi§JF): Always schedules the job with the least initial work.
¢ Highest Density FirstfDF): Always schedules the jol; such thatl; = ‘p”— is maximized.
e Round Robin RR): At each instantaneous time processes all alive jobs Bqual

e Shortest Elapsed Time FirsSETF): Works on the job that has been processed the least. If #iere
ties the algorithm round robins the jobs that have been geatkthe least.

e FirstIn First Out FIFO): Always schedules the oldest job.

e Late Arrival Processor SharingAPS): Shares the processing equally among the latest arriving ¢
stant fraction of the jobs.

2 Local Competitiveness

In this section we discuss an analysis technique known & émtnpetitiveness. Until relatively recently,
this has been the most popular technique used for worst cadgses of scheduling algorithms. Lét
denote some objective and I&t,(¢) be the cumulative objective in the schedule for algorithmp to time

t. S0 f°° dG“(t)dt — G, is the final objective ofi. For example, whet¥ is total ﬂowthen‘% |A(t)]
andG,(7) = [, |A(t)|dt . WhenG is the total fractional rowtheﬂ%‘;—(t DoTEA®) o D andG, (r)=
Iy ZJieA(t) ”p—(it)dt . The algorithmA is said to bdocally c-competitivef for all times t,
dG,(t) dG,(t)
<ec.
dt = Tt @

Most of the early competitive analyses of online schedulitgprithms used local competitiveness. For
instance the following theorems were shown using local atitipeness. Generally, a proof of local com-
petitiveness uses one of the following techniques: (1) Shpwnduction on time an invariant concerning
the algorithm’s queue and the optimal solution’s queue2pF{x an arbitrary time and, by examining the
history, show that optimal does not have have enough primzpsapability to prevent the online algorithm
from being locally competitive at time

Theorem 1. SRPT is optimal for total/average flow time.

ACM SIGACT News 4 September 2003 Vol. 34, No. 3

Sketch.One can prove this induction on time that the following in&at holds: for allk, the aggregate
remaining work of thé: jobs with the most remaining work time is always greater fRPS than any other
algorithm. O

Theorem 2. [35] SRPT is 2-approximate for average stretch.

Sketch. The stretch objective focuses on minimizing ., pii((]i —r;). Thisis the same as weighted flow

time whenw,; = pi One can prove by induction on time that the following ingatiholds: the sum of the
weights (which are reciprocals of the work) of the jobs which not being scheduled in SRPT’s queue is
bounded by the total weight of the optimal solution’s queue. O

Theorem 3. [10] HDF is scalable for weighted flow time.

Sketch.To show this theorem, first it is shown that HDF is locally o for fractional weighted flow time.
The conversion between fractional and integral flow timeloansed to get an algorithm that is scalable for
integral weighted flow time. O

3 Examples Where Local Competitiveness Arguments Won't Wk

Unfortunately, local competitiveness cannot be used fanynealine scheduling problems. This s illustrated
by the following examples.

Broadcast Scheduling: Consider the broadcast scheduling problem with the objedt average flow. In
the broadcast problem there is a set of pages stored at the s®quests for pages arrive over time. In a
unit time step the server can broadcast a page and all regioeshe page that have arrived to the server
are satisfied by the single broadcast because clients amnaddo be connected to the sever via a multicast
channel. To see why local competitiveness will not work iis #etting even when the algorithm is given
(1 + €) resource augmentation, consider the following adversstriategy. There are requests that arrive

at time 0, each for a distinct page. At tim¢2, a new request arrives for each of th@ + ¢)/2 pages that
the online algorithmA has previously broadcasted. Thus by broadcasting the jrafes opposite order of

A, itis possible to have satisfied all requests by tithe- €)n, but A still has about:/2 unsatisfied requests

at this time. Therefore, at time= (1 + ¢)n we haved%e®) — (n) and 4%t — o,

Speed Scalingin the speed scaling scheduling setting, the processodsaeebe dynamically scaled over

time. The power, energy used per unit time, of the processardonvex function of the speed. In this
setting, the scheduler needs to set the speed of the proc€sswmider the objective of total flow time plus

the energy. Intuitively, the optimal scheduler will spenteaunit of energy if it results in a decrease in at
least one unit of flow time. In this cas%% is power used at timeplus the number of unfinished jobs. It

is obviously not possible for a local competitiveness argninto work in this setting as one has to deal with
the possibility that the optimal solution has previouslydired all the jobs, by using a lot of power in the
past, and is currently idling, so that the local cost for teadhmark schedule is zero.

Arbitrary Speed Up Curves: This is a popular parallel scheduling model. Due to spacstcaimts, we
give only a simplified version of the model; for the generald®lp see [21, 23]. Say we hawd proces-
sors/cores, and each jab is either parallel or sequential. If jolfy is parallel, it is processed at radd’
when assigned/’ cores. A job is sequential if it is processed at a rate of ogartdess of how many cores
it is assigned to. It is assumed that the algorithm does nowkhe parallelizability of each job (parallel
or sequential) nor its work. Consider the objective of téiml time and the following instance. At time

ACM SIGACT News 5 September 2003 Vol. 34, No. 3

0, supposé! — 1 unit sized sequential jobs and one parallel job with sizere released. Clearly, there

is a schedule that completes all jobs by time 1 by allocatihgpaes to the parallel job. Now consider any

scheduling algorithm with &1 + €) resource augmentation. Since the algorithm does not knaahvybb

is parallel, it must have wasted most of its processing déifab working on sequential jobs. So at time

1, the algorithm has the parallel job left. Recall that théropl schedule does not have any job at time 1.
Thus the algorithm’s queue size cannot be bounded by thmapsiolution’s queue size at time

4 Amortized Local Competitiveness

For problems where local competitiveness is not possible aiternative form of analysis is amortized local
competitiveness. To prove that an online scheduling algiorid is c-competitive using an amortized local
competitiveness argument, it suffices to give a potentiattion ®(¢) such that the following conditions
hold.

Boundary condition: & is zero before any job is released alds non-negative after all jobs are finished.

Completion condition: Summing over all job completions by the optimal solution &hne algorithm,®
does not increase by more than G, for somes > 0. Most commonlysg = 0.

Arrival condition: Summing over all job arrivalsp does not increase by more than Gopr for some
a > 0. Most commonlyx = 0.

Running condition: At any timet when no job arrives or is completed,

dGa(t) dd(t) _ dGo(t)
gt " at =S¢ Tat 2)

Integrating these conditions over time one gets at- (0) + ®(o0) < (a+ 3 +¢) - G, by the boundary,
arrival and completion conditions. Note that wheiis identically 0, equation (2) is equivalent to the local
competitiveness equation (1). Generally the value of themg@l ®(¢) depends only on the state (generally
how much work is left on each of the jobs) of the online aldoritand the optimal schedule at tihe

The value of the potential function can be thought of as a adount. If the increase in the online
algorithm’s objective,dc(’;‘;(t), is less tham times the increase in the benchmark’s objectﬂ%ﬂ(—t), then the
algorithm can save some money in the bank. Otherwise, itdrdtlis some money from the bank to pay for
its cost,dc(’;‘;(t). Because of the boundary condition that guarantees a ngetine deposit at the end, the
total amount of money that the algorithm withdraws neveeexss its total deposit.

The concept of using a potential function to prove compatitess goes back at least to the seminal pa-
pers by Sleator and Tarjan [39, 40]. The first use of a potdutiation to use a amortized local competitive
argument was in [7]; although, the origination of the idescéis back to [19]. [19] contains a “potential
function” but the potential at timedepends not only on the states of the online algorithm andptienal
schedule at time, but also on the future job arrivals and future schedulesar§aably the amortization
argument in [19] is probably closer to a charging argumean tio a potential function argument.

Before introducing the standard potential function, itristructive to consider an intuitive candidate
potential function that does not work: the potential is tidiree algorithm’s future cost minustimes the
optimal solution’s future cost, assuming no more jobs arri\urther consider this potential within the
context of the problem of scheduling unit jobs with resithssignment on uniform parallel machines with
the objective of total fractional flow time. Here there areed &f machines and each job is restricted to

ACM SIGACT News 6 September 2003 Vol. 34, No. 3

be scheduled on some subset of the machines. We will use thgamr: andy to refer to machines. Let
mq . denote the total remaining work of jobs that are assignedichmez in the algorithmA’s schedule.
Likewise definem, . for the optimal schedule. At any timte m,, ..(¢)? is roughly the online algorithm’s
future cost at time for jobs assigned to machineassuming that no more jobs arrive and the algorithm
is given1 speed. Usually, the estimate of the future cost used in tiengal function assumes that the
algorithm is given no resource augmentation. Thus the datelpotential function in this setting would be

> (mi 4 (1) — emp (1) ©)

wherec is some constant. Although this potential function is basethe right intuition, this potential will
not satisfy the arrival condition. To see this consider wjzdn.J; arrives and is assigned to machindy
the algorithm and, by the optimal schedule. The change in the potentiéhis . (¢) + 1)* — m2 ,(t) —
c(moy(t) +1)% + em? ,(t). The termmy . (t) can be much larger than,,,(¢), making the increase in the
potential not bounded b PT.

We are now ready to introduce, the standard potential fancfihe first use of a potential function that
clearly was of this standard form was in [9].

Semi-Formal Definition of the Standard Potential Function: The potential is the future online cost as-
suming that (1) no more jobs arrive and (2) that each job sézéhe lag for that job, that is, how far the
online algorithm is behind the optimal solution schedul¢éhi@ work processed.

Let us return to the problem of scheduling unit jobs with nieibn on uniform machines with the
objective of total fractional flow time. The standard potalfunction in this case is then:

¢ Z(ma,r(t) — Mo (t))? 4)

Comparing the standard potential function in (4) to the tbteptial function in (3) one can see that in
some sense the standard potential function is the “costeodlifference”, instead of “the difference in the
costs”. We consider the algorithGireedy that assigns an arriving job to the machinsuch thatn,, , is
minimized, and that schedules jobs in a FIFO fashion on eadhme. In the following theorem we show
how this potential function can be used to prove the scatgloif Greedy. This is a special case of a more
general result for scheduling on unrelated processorslij [1

Theorem 4. The algorithmGreedy is scalable, more specificallyl + ¢)-speed(2 + %)-competitive, for
scheduling unit jobs with restricted assignment consteagm uniform machines with the objective of frac-
tional average flow time.

Proof. For the analysis we will compai@reedy against a fixed optimal schedule that schedules each job
on exactly one machine. We will further assume without Idsgemerality that the optimal solution runs
the jobs assigned to a machine in FIFO order. Consider thenfiat function (4). We now consider various
cases.

Boundary ConditionsThe boundary conditions are trivially satisfied as the @hitiotential is clearly zero,
and the potential is never negative.

Completion ConditionConsider when a jold; is completed by the algorithm at tinie@nd say that this job
is assigned to machinein the algorithm’s schedule. When this job is completedrétaaining work i<0.
Therefore this job is no longer contributingita, ,.(¢). Thus there is no change #(¢). The case when the
optimal solution completes a job is similar.

ACM SIGACT News 7 September 2003 Vol. 34, No. 3

Arrival Condition: Now consider when a job; arrives and the algorithm assigns this job to machine
and the optimal solution assigns the job to machjnd he change in the potential due to the algorithm'’s
assignment islg(mw(t) — M u(t) +1)% - %(mw(t) — Mo r(t))? = %(2mw(t) —2my4(t) +1). The
change in the potential due to the optimal solution’s assigmt is< (1, (t) — My (t) — 1)% — L (mg 4 () —
Moy (t))? = —1(2maqy(t) —2me,y (t) —1). We know thatn, ,(t) < m, ,(t) because the algorithm assigns
a job to the machine which has the least load on it and the jolildwave been scheduled on either machine
z or machiney. Hence, the increase in potential is at mé&tu, ,,(t) + 1). This is exactly? times the flow
time of job J; in the optimal solution schedule, since the optimal sohutgassumed to be running FIFO
and it assigned; to machiney. Thus, by summing over all job arrivals, the increase is ael;lnéciimes the

optimal cost.

Running Condition:Consider a time intervdk, ¢ + dt]. For a machiner, the change in the potential
due to the algorithm’s processing is?(1 + €)(mq4(t) — Mo (t))dt since the algorithm processes a
job on machiner at a speed ofl + ¢). The change due the optimal solution’s processing on machin
z is 2(mq.(t) — mo(t))dt since the optimal solution processes a job at a speedasf machinex.
Thus the total change in potential for the jobs due to therédlyn’s and optimal solution’s processing on
machinex is —2(my ;(t) — m, »(t))dt . The value ofm, . (t)dt is exactly the fractional increase in the
algorithm’s objective duringt, ¢ + dt] for jobs assigned to machinein its schedule; likewisen,, . (¢)dt
is the fractional increase in the optimal solution’s ohbjeefor jobs assigned to machinein the optimal
schedule. By summing over all machines, we h%\%@@+d§—t(t) = (Mg z(t) =2(Mqz(t) =M (1)) <
dGo(t)

Yo 2me i (t) = 2m,(t) < 2- =g-~. Combining each of the conditions shows thatedy is (1 + ¢)-speed

(2 + 2/¢)-competitive. O

As another warm-up example of an amortized local competitags argument, we prove that HDF is
scalable for fractional weighted flow. Note that this analys weak as HDF is in fact optimal.

Theorem 5. The algorithm HDF is scalable for the objective of fractibmaighted flow.

Proof. For simplicity, assume that all jobs have distinct densitiRecall that the densit}; of job J; is ‘p”—
Let z;(t) = pd(t) — p?(t) be the lag for the online algorithm on jok. The potential function is defined as

follows:)
(t) = - S dim(t) Y z(t)
JiEA)UO(t) J; € A(t)UO(t)
d; > d;
Notice that if no jobs were to arrive in the futurg, ; . 4,y dip{(t) 22 5 c a1),a,>q, P (t) is the future cost
of HDF at timet¢ if HDF was givenl-speed. To see this, note thap$(¢) is the fractional weight for
job J;, and ZJjeA(tLdedi pg(t) is the work of the higher density jobs that it will have to wiait. Also,
note that it is possible for the potential function to be riega The boundary condition is easy to check.
When a jobJ; arrives, the value ob(¢) does not change, sineg(t) = 0. When a jobJ; is finished by
both A andO PT, the terms for jobJ; disappear, but they have value 0. Hence job completion does n
change the potential function value. We now turn to the mgmiondition. We will give a sketch only for
the most interesting casdj, > di whereJ, andJ,, are the jobs thatl andOPT are working on at the

current timet respectively; the other cases are left as exercises. Nat@%‘g@ = D seaw dipj (t) and

ACM SIGACT News 8 September 2003 Vol. 34, No. 3

dGo(t

= >_s.co @ipf(t). The rate of change a(t) due toA’s processing/j, is

1 + € a (o] a (o]
e LD DR GRS 10) E SR A OB O]
Jj € A(t) U O(t) Ji € A(t) U O(t)
dj > dy d; < dy
€ a O (o]
= [Yoodp't)— D Al - D dip (t)}

Ji€A(t) Jj € O(t) Ji € O(t)
dj > dy d; < dy

[Sinced; > d}, in the second summatipn (5)

1+ erdGa(t) dGo(t)
S_e[dt _dt}

On the other hand, the rate of changebgt) due toO PT"’s processing/y is

ST SR IORS 0 R DTG R I0)

Jj € A(t) U O(t) Ji € A(t) UO(t)
dj > dj di < djps
1 1dGa(t)
< - ’ < —_ 7
< [T a0+ T < 1% 0
Jj € A(t) Ji € A(t)
dj > dyy d;i < dps

Hence we have thaft@el) | 420 < (1 | 1)3%(0) The other cases left as exercises also give similar
running conditions. Comblnlng all condltlons we concldidat HDF is scalable.

Finally we note that in Equation (5), to simplify our anakysive assumed that no job @(t) has
densitydy. Likewise, in Equation (6) we assumed that no jobdift) has densityl;,. These simplifying
assumptions can be easily removed by a careful calculation. O

We now turn to the speed scaling setting.

Theorem 6. Assume that the processor uses powés) = s, for some constant > 1, when running
at speeds. Assume that all jobs are unit size. Then any non-idling algm that uses power equal to
the current total fractional weightu,(t) is O(1)-competitive for the objective of minimizing fractionalflo
time plus energy.

Proof. Note that the algorithm runs at the speed,(t))'/* by using powenn,(t), and henc (t)
2m,(t). Knowing the the fractional weight of the jobs in the algbnit's queue isn,(t), and that the ratio
ma(t)/(mq(t))Y/is arough estimate of time that the algorithm will have torgpe finish all jobs inA(t),
we can approximate the future costdfasmq(t) - mq(t)/(mq ()" = (mq(t))>~/*. Letm,(t) be the
fractional remaining work of the jobs in the optimal solut®queue at time. By replacingm,, (¢) with the
lag z(t) = max(m,(t) — m,(t),0) (and multiplying by a constant factor), we obtain the patritinction:

®(t) := 8(z(t)) >~/

Notice that the lag in this case was chosen to be based ontihe g@meue and not on individual jobs.

It is easy to check the boundary, arrival and completion @@rts. As for the running condition, we
consider two cases: (&), (t) > 2m,(t) and (b)m,(t) < 2m,(t). We prove only the more interesting case
(a) leaving the other case (b) as an exercise. Notedtfigt> 0, and A’s processing decreas@st) in this

ACM SIGACT News 9 September 2003 Vol. 34, No. 3

case because,(t) > 2m,(t). Let P,(t) denote the power used I6YP1" at timet. The change rate @(¢)

due toOPT’s processing is(% d“&‘t’(t) < 16(mq(t)) =Y (P,(t))}/*. We further consider two cases:

P,(t) < ™= or not. For the second cagg(t) > ™2, by ignoring the decrease @(t) due toA's pro-
cessing, we havgc(’;‘;—(t) + d‘é’—ft) < 20 P (1) 4+ 2913 P, (t) < 29T4P, (1) < 2“+4d%—‘;(t). We now consider
the first caseP, (t) < el Noticing thatOPT runs at a rate of at mogtn, (t))!/*/2, we havés —
d dz —1/a «a «a —1/a «
90 < 8(2 1 /a0) (2(1)) 7/ (ma(£) Y+ (ma (1) %/2) < ~8(ma(t)/2)' = (ma(1)) /)2 <

—2m,(t). Hence it follows tha%(t) + d‘é’—ft) < 2mg(t) — 2mq(t) < 0. O

We now give an analysis of Round Robin that is a variation efghalysis in [21].
Theorem 7. RR is(2 + ¢)-speedD(1)-competitive for the objective of total integral flow time.

Proof. Let z;(t) = max{p{(t) — pJ(t), 0} be the lag of the online algorithm on jok. Then consider the

potential function
B(t) = % S min{z(t), ()
Ji, JEA(Y)
Notice that this potential function is always non-negatlves worth noting thaEJ,eA(t) min{pf{ (t), pj(t)}
is exactly the amount of time that joh has to wait to be completed by RR without resource augmemntati
if no more jobs arrive in the future. Thus, summing this oMéjads gives the future cost. As usual, in
obtaining®(¢), the remaining worl?(¢) is replaced with the lag;(t).

The boundary condition is trivially satisfied. Job arrivdésnot change the potential function value. Job
completion does not increadet). Recall that for integral flow time‘% = |A(t)] anddc(’;—‘;(t) = 0(t)].
For the running condition, we consider two cases:|(&))| < ¢|A(t)| and (b)|O(t)| > §|A(t)[. We first
consider case (a). Note that the temim{z;(t), z;(t)} in ®(¢) is non-zero ifO PT completed both jobsd;
andJ;, i.e. J;, J; ¢ O(t). Hence there are at least — ¢/8)(] A(t)|)? positive termsmin{z;(¢), z;(t)},
and RR decreases each positive term at a rat@ ef ¢)/|A(t)|]. The change rate ob(¢) due to RR’s
processing is at most (1 — ¢/8)2(|A(t))2(2 + €)/|A(t)] < —(1 + 8)|A(t)| when0 < € < 1. For
simpler argument, we can assume that the optimal scheduleswa only one job at timé. SinceOPT
can increase at mo&tA(t)| termsmin{z;(t), z;(t)} in ®(¢) at a rate of 1, the maximum change rate of

®(t) due toOPT’s processing is|A(t)|. Hence we obtaiﬁ‘%“T(t) + d‘é’—ft) < 0. For case (b), we ignore

decrease ob(¢) due to RR’s processing. Knowing t t(t) < 8|A(t)| due toOPT’s processing, we have
dGalt) | 920 < 810(1)| + 8|O(t)| = 229%(1) Ccombining all conditions together, we have shown that

€

RR is(2 + ¢)-speed’Z-competitive. O

The standard potential function is generally only usefuewlthe online algorithm has some resource
augmentation. To see why this is the case, consider thedisitughere optimal has a much lower current
cost than the online algorithm, but the adversary is prangdhe same job as the online algorithm. Then
because the online algorithm and optimal have the same gpeedssor, there is no change in the lags
of any of the jobs. And thus there is no decrease in the pateatipay for the online algorithm'’s cost.
In this situation, the online algorithm needs resource armgation to decrease the lag on the job that it is
running. The one example that we know where a potential foné$ used without resource augmentation,
and one of the few examples of a potential function in thediigre that is not of the standard form, occurs
in [3] in the speed scaling setting for the objective of flomgpkenergy. [3] makes use of the fact that,
given fixed processing resources, SRPT does not fall fultbleind optimal, even if SRPT is in a different
state/configuration than optimal.

ACM SIGACT News 10 September 2003 Vol. 34, No. 3

Notice that in the preceding examples there are some sulffdeetices in the potential functions, al-
though all potential functions are designed around estilgaihe algorithm'’s future cost as if the lags of the
jobs are their sizes. Two issues usually arise when degjghim potential function. First is determining
whether to allow the lags to go negative. For instance, inofdma 5 the lags are allowed to go negative,
while in Theorem 7 the lags are always kept non-negative.gRlyuspeaking, the issue here is that if the
lags go negative then the potential can increase on theabhamd completion of jobs. However, if the po-
tential does not go negative, then the running conditiorstone algorithms is difficult to show. The other
subtle difference is determining which jobs are summed ovéhe potential function. In Theorem 5 the
summation is over all jobs in the algorithm’s queue and thtintad solution’s queue, while in Theorem 7
the summation is only over jobs in the algorithm'’s queue. qinestion of which jobs to take the summation
over is intimately tied to whether or not the potential cannggative, how the potential changes on job
arrival and completion, and the algorithm considered. Imegal these two conditions need to be tailored to
the specific problem and algorithm. It would be useful to habetter understanding of these two issues.

As anillustration of these issues, consider changing therpial function from the proof of Theorem 5:

@(t):% S odn Y 50

Ji€A(L) J;€A(t),d;>d;

Recall thatz;(¢) = p(t) — pj(t). Note that this potential function can be negative, and satys over jobs

in the algorithm’s queue. Now when a jok is completed by HDF, the change in the potential function
is roughly—%zi(t) ZJjeA(t) d;z;i(t) since HDF always completes the highest density job in its queue.
However, thez variables can be negative or positive and therefore thitddoel a positive increase in the
potential that is not straightforward to bound without kriogvthe structure of the optimal solution. One
way around this would be to not allow thevariables to go negative, thatis(t) = max{p}(t) — pj(t), 0}.
Now there is no increase on the arrival and completion of.joHewever, the running condition causes
issues. Consider the case where the optimal solution hgsooeljobJ; at timet¢ and the algorithm has a
lot of jobs. In this case, the algorithm cannot charge to thtémal solution’s local cost and must use the
potential function. Further, assume thitis the job with the highest density in HDF’s schedule andhas
been processed a lot by the algorithm and none by the optohaien. In this case;(t) = 0. Therefore,

at timet HDF will processJ; and it will not change the variable (¢). Thus there is no negative change
in the potential function at timeand HDF cannot charge to the optimal solution’s local cose lunning
condition cannot be shown in this setting.

5 More Examples and Exercises

Here we give several exercises of algorithm analysis thabeaperformed by a relatively straightforward
amortized local competitiveness argument using the stdrmtstential function.

Weighted Round Robin: At each time, the algorithm Weighted Round Robin (WRR) disties its pro-
cessing to jobs in proportion to their weight. Formally, WRRcesses job; at a rate ofw;/ ZieA(t) W;.
Show that WRR ig2 + €)-speedD(1/¢)-competitive for minimizing the total weighted flow time.

Another Variation of Round Robin: If a job j has been released but not completed at tinthen de-

finer ank(j) to be one more than the number jobs released strictly befahet are still unfinished at time
t. For simplicity assume that no two jobs are released at time seme. Consider the scheduling algorithm

ACM SIGACT News 11 September 2003 Vol. 34, No. 3

that shares the processing proportionally to the rank ofeéleased but unfinished jobs. So if there are 3
released but unfinished jobs, the earliest arriving of thelse would get 1/(1+2+3) fraction of the proces-
sor, the second arriving job would get 2/(1+2+3) fractiorha processor, and the latest arriving job would
get 3/(1+2+3) fraction of the processor. Show that the @eflow time for this scheduling algorithm is
O(1)-competitive with the optimal scheduler with as little sp@@igmentation as possible. (Hint: Use the
potential functiond(¢) := Y-, 4, 2 (t)r ank (j) wherez;(t) = max{p;'(t) — p{(¢),0)}.)

Greedy on Related Machines:Consider the problem of scheduling unit sized jobs on rdlatachine

to minimize the average fractional flow time. In the relateachine setting, each machimeuns at some

speedsz and any job can be scheduled on any machine. The total pingesfob requires on machine
. For this problem, consider th@reedy algorithm that always assigns a jdbto the machine: such

that Mo Z(t) is minimized whenJ; arrives at time. For the jobs assigned to a machidg;eedy schedules
thejobs in a FIFO order. Fix the optimal nonmigratory schedand assume the optimal solution processes
jobs in FIFO order on each machine. Generalize the potdntiation given in the proof of Theorem 4 to
this setting and show that tliereedy algorithm is scalable.

SJF on Uniform Machines: Consider the problem of scheduling varying sized jobs\éndentical ma-
chines to minimize the total fraction flow time. For this plein consider the algorithm SJF that at anytime
schedules thé/ jobs with shortest original work on th&/ machines. Here a job cannot be processed si-
multaneously on two machines, but migration between psmress allowed. The goal is to show that SIF
is O(1)-competitive with as little resource augmentation as fgmesLetV, ;(t) = ZJieA(thpj pé(t) be

the total remaining work of jobs with original work less thanat timet in the algorithm’s schedule. Let
V,,;(t) be defined similarly for OPT. Consider the potential functio

e 3 B L Vi) Vost0) + 8510

jeA(r) P

wherec > 1 is some constant. Notice thgtV; ;(t) is the amount of time that jol3; will have to wait to be
satisfied if the algorithm was running SJF on a single macbirspeed)/. For the arrival condition, accept
without proof the fact that at any time it is the case that(t) — V;, ;(t) < Mp, for any jobJ; and thatJ;
has fractional flow time at leadf in the optimal schedule.

Acknowledgments: We thank our many collaborators for discussions that haea redispensable to de-
velopment of our understanding in this area. We also thardn@fa Chekuri for his comments on this
paper.

References

[1] Lachlan L. H. Andrew, Minghong Lin, and Adam Wierman. @pdlity, fairness, and robustness in
speed scaling designs. BIGMETRICSpages 3748, 2010.

[2] Lachlan L. H. Andrew, Adam Wierman, and Ao Tang. Optimpéed scaling under arbitrary power
functions.SIGMETRICS Performance Evaluation Revi&®(2):39-41, 2009.

[3] Nikhil Bansal, David P. Bunde, Ho-Leung Chan, and KirkuRs. Average rate speed scaling. In
LATIN, pages 240-251, 2008.

ACM SIGACT News 12 September 2003 Vol. 34, No. 3

[4] Nikhil Bansal, Ho-Leung Chan, Tak Wah Lam, and Lap-KeieLeScheduling for speed bounded
processors. INCALP (1) pages 409-420, 2008.

[5] Nikhil Bansal, Ho-Leung Chan, and Kirk Pruhs. SpeedisgpWvith an arbitrary power function. In
SODA pages 693-701, 20009.

[6] Nikhil Bansal, Ho-Leung Chan, Kirk Pruhs, and Dmitriy &&a Improved bounds for speed scaling in
devices obeying the cube-root rule. IDALP (1), pages 144-155, 2009.

[7] Nikhil Bansal, Tracy Kimbrel, and Kirk Pruhs. Speed saglto manage energy and temperatule.
ACM, 54(1), 2007. Preliminary version FOCS2004.

[8] Nikhil Bansal, Ravishankar Krishnaswamy, and Viswéiidagarajan. Better scalable algorithms for
broadcast scheduling. ICALP, 2010.

[9] Nikhil Bansal, Kirk Pruhs, and Clifford Stein. Speed kg for weighted flow time SIAM J. Compult.
39(4):1294-1308, 2009. Preliminary versiorS@DA2007.

[10] Luca Becchetti, Stefano Leonardi, Alberto March&giaccamela, and Kirk Pruhs. Online weighted
flow time and deadline scheduling. Discrete Algorithms4(3):339-352, 2006. Preliminary version
in APPROX2001.

[11] Jivitej S. Chadha, Naveen Garg, Amit Kumar, and V. N. Blighara. A competitive algorithm for
minimizing weighted flow time on unrelatedmachines withexsbaugmentation. IBTOG pages 679—
684, 2009.

[12] Ho-Leung Chan, Joseph Wun-Tat Chan, Tak Wah Lam, LapkKe, Kin-Sum Mak, and Prudence
W. H. Wong. Optimizing throughput and energy in online desslschedulingACM Transactions on
Algorithms 6(1), 2009. Preliminary version 8ODA2007.

[13] Ho-Leung Chan, Wun-Tat Chan, Tak Wah Lam, Lap-Kei Le@-Bum Mak, and Prudence W. H.
Wong. Energy efficient online deadline schedulingSIBDA pages 795-804, 2007.

[14] Ho-Leung Chan, Jeff Edmonds, Tak Wah Lam, Lap-Kei Ledbefto Marchetti-Spaccamela, and Kirk
Pruhs. Nonclairvoyant speed scaling for flow and energ TACSpages 255-264, 2009.

[15] Ho-Leung Chan, Jeff Edmonds, and Kirk Pruhs. Speedragalf processes with arbitrary speedup
curves on a multiprocessor. 8PAA pages 1-10, 2009.

[16] Ho-Leung Chan, Tak Wah Lam, and Rongbin Li. Tradeoffdmxtn energy and throughput for online
deadline scheduling. M/AOA pages 59-70, 2010.

[17] Sze-Hang Chan, Tak Wah Lam, and Lap-Kei Lee. Non-ctgiant speed scaling for weighted flow
time. INESA (1) pages 23-35, 2010.

[18] Sze-Hang Chan, Tak Wah Lam, and Lap-Kei Lee. Schedditingreighted flow time and energy with
rejection penalty. I8 TACS2011.

[19] Jeff Edmonds. Scheduling in the daftheor. Comput. S¢i235(1):109-141, 2000. Preliminary version
in STOC1999.

ACM SIGACT News 13 September 2003 Vol. 34, No. 3

[20] Jeff Edmonds, Sungjin Im, and Benjamin Moseley. Onbealable scheduling for thig-norms of
flow time without conservation of work. IBODA 2011.

[21] Jeff Edmonds and Kirk Pruhs. Scalably scheduling pgees with arbitrary speedup curves Sl@DA
pages 685-692, 20009.

[22] Kyle Fox and Benjamin Moseley. Online scheduling omitileal machines using srpt. BODA 2011.

[23] Anupam Gupta, Sungjin Im, Ravishankar KrishnaswamgnjBmin Moseley, and Kirk Pruhs.
Scheduling jobs with varying parallelizability to reduaaiance. I'SPAA'10: 22nd ACM Symposium
on Parallelism in Algorithms and Architecturegz010.

[24] Anupam Gupta, Ravishankar Krishnaswamy, and Kirk Bruh Scalably scheduling power-
heterogeneous processorsI@ALP (1), pages 312—-323, 2010.

[25] Xin Han, Tak Wah Lam, Lap-Kei Lee, Isaac Kar-Keung ToddPrudence W. H. Wong. Deadline
scheduling and power management for speed bounded progestbeor. Comput. S¢i.411(40-
42):3587-3600, 2010. Preliminary versioniiAPSP2009.

[26] Sungjin Im and Benjamin Moseley. An online scalableoaitim for minimizing?;.-norms of weighted
flow time on unrelated machines. 8ODA 2011.

[27] Bala Kalyanasundaram and Kirk Pruhs. Speed is as pahasfclairvoyancel. ACM 47(4):617-643,
2000. Preliminary version iROCS1995.

[28] Tak Wah Lam, Lap-Kei Lee, Hing-Fung Ting, Isaac Kar-iKgulo, and Prudence W. H. Wong. Sleep
with guilt and work faster to minimize flow plus energy. IIBALP (1), pages 665-676, 2009.

[29] Tak Wah Lam, Lap-Kei Lee, Isaac Kar-Keung To, and Pruge®. H. Wong. Energy efficient deadline
scheduling in two processor systemsI®MAC pages 476—-487, 2007.

[30] Tak Wah Lam, Lap-Kei Lee, Isaac Kar-Keung To, and Prugew. H. Wong. Competitive non-
migratory scheduling for flow time and energy. 3fPAA pages 256—-264, 2008.

[31] Tak Wah Lam, Lap-Kei Lee, Isaac Kar-Keung To, and Prugev. H. Wong. Speed scaling functions
for flow time scheduling based on active job countEBA pages 647—-659, 2008.

[32] John D. C. Little. A Proof for the Queuing Formula: = AW. Operations Researcl®(3):383—-387,
1961.

[33] Benjamin Moseley. Scheduling to minimize energy andvftame in broadcast schedulingCoRR
abs/1007.3747, 2010.

[34] Rajeev Motwani, Steven Phillips, and Eric Torng. Ndaikwoyant schedulingTheor. Comput. Sqi.
130(1):17-47, 1994. Preliminary version$®DA1993.

[35] S. Muthukrishnan, Rajmohan Rajaraman, Anthony Shahered Johannes Gehrke. Online scheduling
to minimize average stretchSIAM J. Comput.34(2):433—-452, 2004. Preliminary versionR@©CS
1999.

[36] Cynthia A. Phillips, Clifford Stein, Eric Torng, and dboWein. Optimal time-critical scheduling via
resource augmentatioAlgorithmicg 32(2):163—200, 2002. Preliminary versionSmOC1997.

ACM SIGACT News 14 September 2003 Vol. 34, No. 3

[37] Kirk Pruhs. Competitive online scheduling for servgstems. SIGMETRICS Perform. Eval. Rev.
34(4):52-58, 2007.

[38] Kirk Pruhs, Jiri Sgall, and Eric Torngdandbook of Scheduling: Algorithms, Models, and Perforogan
Analysis chapter Online Scheduling. 2004.

[39] Daniel Dominic Sleator and Robert Endre Tarjan. Anmati efficiency of list update and paging rules.
Commun. ACW28(2):202—-208, 1985.

[40] Daniel Dominic Sleator and Robert Endre Tarjan. Sdifiating binary search treesJ. ACM
32(3):652-686, 1985.

ACM SIGACT News 15 September 2003 Vol. 34, No. 3

