
  

  

 
Abstract—Firefly algorithm is one of the evolutionary 

optimization algorithms, and is inspired by fireflies behavior in 
nature. Each firefly movement is based on absorption of the 
other one. In this paper to stabilize firefly’s movement, it is 
proposed a new behavior to direct fireflies movement to global 
best if there was no any better solution around them. In 
addition to increase convergence speed it is proposed to use 
Gaussian distribution to move all fireflies to global best in each 
iteration. Proposed algorithm was tested on five standard 
functions that have ever used for testing the static optimization 
algorithms. Experimental results show better performance and 
more accuracy than standard Firefly algorithm. 
 

Index Terms— Algorithm, optimization, Global search, Local 
search.  

I. INTRODUCTION 
The meaning of optimization is finding a parameter in a 

function that makes a better solution. All of suitable values 
are possible solutions and the best value is optimum solution 
[1]. Often to solve optimization problems, optimization 
algorithms are used. Classification of optimization algorithm 
can be carried out in many ways. A simple way is looking at 
the nature of the algorithms, and this divides the algorithms 
into two categories: deterministic algorithm, and stochastic 
algorithms. Deterministic algorithms follow a rigorous 
procedure, and its path and values of both design variables 
and the functions are repeatable. For stochastic algorithms, in 
general we have two types: heuristic and metaheuristic. 
Nature-inspired metaheuristic algorithms are becoming 
powerful in solving modern global optimization problems. 
All metaheuristic algorithms use certain tradeoff a 
randomization and local search [2], [3], [4].  

Stochastic algorithms often have a deterministic 
component and a random component. The stochastic 
component can take many forms such as simple 
randomization by randomly sampling the search space or by 
random walks. Randomization provides a good way to move 
away from local search to the search on global scale. Most 
stochastic algorithms can be considered as metaheuristic and 
good examples are Genetic Algorithm (GA) [5], [6]. Many 
modern metaheuristic algorithms were developed based on 
the swarm intelligence in nature like PSO and AFSA [7], [8],  
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[9]. 
 
For example, Firefly algorithm is developed by the 

Xin-She Yang shows its superiority over some traditional 
algorithms [10], [11]. Firefly algorithm is inspired by fireflies 
in nature. Fireflies in nature are capable of producing light 
thanks to special photogenic organs situated very close to the 
body surface behind a window of translucent cuticle [12]. 

Firefly algorithm has some disadvantage such as trapping 
into several local optimums. Firefly algorithm do local search 
as well and sometimes can’t get rid of them. Firefly algorithm 
parameters are set fixed and they do not change by the time. 
In addition Firefly algorithm does not memorize any history 
of better situation for each firefly and this causes they move 
regardless of it, and they miss their situations. 

This paper aims to formulate a new Firefly algorithm and 
to provide the comparison study of the new-firefly with 
standard Firefly algorithm. The rest of this paper is organized 
as follows: it outlines the Firefly algorithm in section II, and 
then describes random walk is described in section III, new 
Firefly algorithm is introduced in section IV. Experimental 
settings and results are presented in section V. Section VI 
concludes the paper. 

II. FIREFLY ALGORITHM 
The Firefly algorithm was developed by Xin-She Yang 

[13], [14] and it is based on idealized behavior of the flashing 
characteristics of fireflies. For simplicity, we can summarize 
these flashing characteristics as the following three rules: 

All fireflies are unisex, so that one firefly is attracted to 
other fireflies regardless of their sex. 

Attractiveness is proportional to their brightness, thus for 
any two flashing fireflies, the less bright one will move 
towards the brighter one. The attractiveness is proportional to 
the brightness and they both decrease as their distance 
increases. If no one is brighter than a particular firefly, it will 
move randomly. 

The brightness of a firefly is affected or determined by the 
landscape of the objective function to be optimized [15], [16]. 

Assume continuous optimization problem where the task is 
to minimize cost function f(x) for x Є S ؿ  R୬ i.e. find  xכ 
such as: 

 
݂ሺכݔሻ ൌ ݉݅݊௫Єௌ݂ሺݔሻ                                       (1) 

 
For solving an optimization problem by Firefly algorithm 

iteratively, there is a swarm of m agents (fireflies) and x୧ 
represents a solution for firefly i in whereas  fሺx୧ሻ denotes its 
cost. 

Initially all fireflies are dislocated in S (randomly or 
employing some deterministic strategy). S୩ሺk ൌ 1, … , dሻ In 
the d dimensions should be determined by the actual scales of 
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the problem of interest. For simplicity we can assume that the 
attractiveness of a firefly is determined by its brightness or 
light intensity which in turn is associated with the encoded 
objective function. In the simplest case for an optimization 
problem, the brightness I of a firefly at a particular position x 
can be chosen asIሺxሻα fሺxሻ. However, the attractiveness β is 
relative, it should vary with the distance r୧୨ between firefly i 
and firefly j. As light intensity decreases with the distance 
from its source and light is also absorbed in the media, so we 
should allow the attractiveness to vary with degree of 
absorption [19], [12]. 

The light intensity Iሺrሻ  varies with distance r 
monotonically and exponentially. That is: 

 
ܫ ൌ  ଴݁ିఊ௥                                       (2)ܫ 

 
Where ܫ଴ the original light intensity and γ is is the light 

absorption coefficient. As firefly attractiveness is 
proportional to the light intensity seen by adjacent fireflies, 
we can now define the attractiveness β of a firefly by Eq. (3) 
[17], [15]. 

 
ߚ  ൌ  ଴݁ିఊ௥మ                                        (3)ߚ 

 
Where r is the distance between each two fireflies and  ߚ଴ 

is their attractiveness at r= 0 i.e. when two fireflies are found 
at the same point of search space S [12], [18]. In general 
଴Єሾ0,1ሿߚ  should be used and two limiting cases can be 
defined: when ߚ଴ ൌ 0 , that is only non-cooperative 
distributed random search is applied and when β଴ ൌ 1 which 
is equivalent to the scheme of cooperative local search with 
the brightest firefly strongly determining other fireflies 
positions, especially in its neighborhood[13]. 

The value of γ determines the variation of attractiveness 
with increasing distance from communicated firefly. Using 
γ=0 corresponds to no variation or constant attractiveness and 
conversely setting γ→∞ results in attractiveness being close 
to zero which again is equivalent to the complete random 
search. In general γЄሾ0,10ሿ could be suggested [13]. 

It is worth pointing out that the exponent γr  can be 
replaced by other functions such as γr୫ when m ൐ 0. The 
distance between any two fireflies i and j at x୧ and x୨ can be 
Cartesian distance in Eq (4). 

 

௜ݔ௜௝=ฮݎ െ ݔ௝ฮ
ଶ

ൌ  ට∑ ሺݔ௜,௞ െ ௝,௞ሻଶௗݔ
௞ୀଵ       (4) 

 
The firefly i movement is attracted to another more 

attractive (brighter) firefly j is determined by: 
 

௜ݔ ൌ ௜ݔ  ൅ ଴݁ିఊ௥೔ೕߚ
మ

൫ݔ௝ െ ௜൯ݔ ൅  ௜               (5)ߝߙ
 

Where the second term is due to the attraction, while the 
third term is randomization with the vector of random 
variable ε୧ being drawn from a Gaussian distribution and (α 
Є [0,1]) [11], [14]. In [15] a Lévy distribution is used instead 
of Gaussian one. Schematically, the Firefly algorithm can be 
summarized as the pseudo code in pseudo code 1. 

 

 
 
 

1. Objective function f(x), x=(x1,x2,…,xd)T 
2. Initialize a population of fireflies ݔ௜ሺ݅ ൌ 1,2, . . , ݊ሻ 
3. Define light absorption coefficient γ 
4. While (t<MaxGeneration) 
5.     For i=1:n     (all n fireflies) 
6.         For j=1:i 
7.              Light intensity ܫ௜ ܽݔ ݐ௜ is determined by ݂ሺݔ௜ሻ 
8.              If (ܫ௜ ൐  (௝ܫ
9.                   Move firefly i towards j in all d dimensions     

(Apply Eq. (5)) 
10.               Else  
11.                    Move firefly i randomly    
12.               End if  
13.          Attractiveness varies with distance r via expሾെݎߛଶሿ       

ߚ) ൌ ଴݁ିఊ௥೔ೕߚ
మ
) 

14.           Evaluate new solutions and update light intensity 
15.          End for j 
16.      End for i 
17.      Rank the fireflies and find the current best 
18. End while 
19. Postprocess results and visualization. 

 
Pseudo Code 1 Standard Firefly Algorithm 

III. RANDOM WALK 
A random walk is a process that consists of a series of the 

consecutive random step. From the view of the mathematic, if 
SN shows the sum of the consecutive random step Xi then SN 
forms a random step length that is shown in Eq. (6). 

 
ܵே ൌ ∑ ௜ܺ

ே
௜ୀଵ ൌ ଵܺ ൅ ڮ ൅ ܺே            (6) 

 
 
That Xi is a random walk that is drawn from a random 

distribution. This relation can be shown as a recursive 
equation like Eq. (7). 

   
 ܵே ൌ ∑ ൅ ܺே

ேିଵ
௜ୀଵ ൌ ܵேିଵ ൅ ܺே        (7) 

 
In Eq. (7), the next value for SN is just depends on the 

current value of the SN-1 and the movement of  XN from 
current state to next state. 

Step length in a random walk can be fixed or variable. This 
movement can be in two directions front or back. Suppose a 
multi-dimensional movement that can occur in any 
directions, so a random walk can be defined as Eq. (8). 

 
ܵ௧ାଵ ൌ  ܵ௧ ൅  ௧                             (8)ݓ

 
That St is a current position or state in t and Wt is a step or a 

random variable form a distribution. If each step occurs in n 
dimensional space, a random movement is defined as Eq. (9). 

 
ܵே ൌ ∑ ௜ܺ

ே
௜ୀଵ                                  (9) 

 
That is a random walk in high dimension. In addition there 

isn’t any reason to exist a fixed step length but step length can 
be according to a particular distribution. If this distribution is 
a Gaussian distribution, random walk is a Brawnian 
movement [13]. 



  

IV. PROPOSED ALGORITHM 
In this section we propose a new firefly algorithm called 

GD-FF (Gaussian Distribution Firefly) algorithm. This new 
algorithm applies three behaviors to improve performance of 
firefly algorithm. The first behavior is an adaptive step length 
that changes random step length by the time and the other one 
is personal behavior or directed movement that directs 
random movement to towards global best.  The last behavior 
is a social behavior that change the position of each fireflies 
based on a Gaussian distribution. In following sections we 
will define these behaviors. 

A. Adaptive Step Length 
In standard Firefly algorithm, firefly movement step length 

is a fixed value. So all the fireflies move with a fixed length in 
all iterations. Due to the fixed step length, the algorithm will 
miss better local search capabilities and sometimes it traps 
into several local optimums. It is better that Firefly algorithm 
do search in space globally in first iterations and in the end of 
iterations it exploit the particular place to extract better 
solutions. In proposed algorithm, it is defined a weight for α 
that depends on iterations and it always produce a value less 
than one. This coefficient is determined by Eq. (10). 

B. Adaptive Step Length 
 

௜ܹ௧௥ ൌ ܺ ൅ ሺ௜௧௥೘ೌೣି௜௧௥ሻ೙

ሺ௜௧௥೘ೌೣ ሻ೙ ൅ ሺܻ െ ܺሻ     (10) 

 
Where n>=1. In Eq. (6), weight of ௜ܹ௧௥ is defined based on 

current iteration number and the last iteration number. Value 
of W୧୲୰ is between X and Y, and reduces by the time. Because 
α Є [0, 1], so X=0 and Y=1. n could be a linear or non-linear 
coefficient and itr୫ୟ୶ is maximum number of iteration and 
itr is iteration i [18].  

In Eq. (10) n parameter changes by dimension of each 
fireflies and its value determined by: 

 
n = 10  (-dimension)                                     (11) 

 
In Eq. (11) when dimension is high, n is a low value to 

produce a low value for Witr too, and algorithm can search 
more accurate.  

This strategy make an adaptive methods to change step 
length by the time and move fireflies with a long step in first 
iteration and make strong local search in final iteration. 

C. Directed Movement 
In addition in standard Firefly algorithm, firefly movement 

is based on light intensity and comparing it between each two 
fireflies. Thus for any two fireflies, the less bright one will 
move towards the brighter one. If no one is brighter than a 
particular firefly, it will move randomly. In proposed 
algorithm this random movement is directed, and that firefly 
moves towards best solution with better cost in that iteration. 
The firefly i movement is attracted to best solution that is 
more attractive (brighter). This causes that if there was no 
local best in each firefly’s neighborhood; they move towards 
best solution and make better position for each firefly for next 
iteration and they will get more near to global best. Firefly’s 
movement in this model is exactly similar to Eq. (5) in 
standard Firefly algorithm. 

D. Social Behavior 
Random walk is a random process which consists of taking 

a consecutive random step series of consecutive random 
steps. Here the step size or length in a random walk can be 
fixed or varying. If the step length obeys the Gaussian 
distribution, the random walk becomes the Brownian motion 
[13]. In standard Firefly algorithm, agents move by just a 
predefined movement that guides them to better position in 
their neighborhood. In order to move all fireflies in a same 
manner, it is used random walk concepts to move all of the 
agents based on a Gaussian distribution. In proposed 
algorithm, at the end of each iteration, it is introduced normal 
Gaussian distribution that is shown in Eq. (12). 

 

݌ ൌ ݂ሺݔ|µ, ሻߜ ൌ ଵ
ఋ√ଶగ

݁
షሺೣషµሻమ

మഃమ            (12) 
 

Where x is an error between best solution and fitness value 
of firefly i. 

 
ݔ ൌ ݂ሺ݃௕௘௦௧ሻ െ  ݂ሺݔ௜ሻ                     (13) 

 
µ is mean and δ is standard deviation. Because of using 

standard normal distribution, it is set to µ=0 and δ=1. Then a 
random number will be drawn from this Gaussian 
distribution that is related to each firefly probability (pሻ. 
Social behavior of fireflies is introduced by: 

 
௜ݔ ൌ ௜ݔ ൅ ߙ  כ ሺ1 െ ሻ݌ כ ܷሺݔ,  ሻ   (14)ݕ

 
That U(x, y) in Eq. (14) is a random number between [0,1]. 

In addition for social behavior But firefly i new position 
causes better cost, it will move to that new position. New 
firefly algorithm can be summarized as the pseudo code is 
shown in pseudo code 2. This strategy makes a social 
behavior for all fireflies and they move towards global best. 

 
1. Objective function f(x), x=(x1,x2,…,xd)T 
2. Initialize a population of fireflies ݔ௜ሺ݅ ൌ 1,2, . . , ݊ሻ 
3. Define light absorption coefficient γ 
4. While (t<MaxGeneration) 
5.      For i=1:n     (all n fireflies) 
6.           For j=1:i 
7.               Light intensity  is determined by f(xi) 
8.              If (Ii > Ij) 
9.                    Move firefly ݅ towards j in all d dimensions 
10.               Else 
11.                    Move firefly ݅ towards best solution in that iteration 
12.               End if 
13.               Attractiveness varies with distance via  exp(-γr2)) 
14.             End for j  
15.        End for i 
16.        Rank the fireflies and find the current best 
17.        Define normal distribution 
ܚܗ܎ .18 k ൌ 1: n all n fireflies 
19.             Draw a random number from defined distribution   
20.             And apply Eq. (14). 
21.             Evaluate new solution(new_cost(k)) 
22.            If((new_cost(k)<cost(i))&&(new_cost(k)< 
                        last_cost_iteration(k))) 
23.                Move firefly ݅ towards current best 
24.             End if 
25.          End for k 
26. End while 
27. Postprocess results and visualization 

Pseudo code 2 GD-FF Algorithm 
 



  

All of proposed behavior, direct fireflies direct to global 
best better and they shrinks to optimum solution. In GD-FF, 
random step is directed and is replaced by a movement that is 
more accurate than standard Firefly algorithm. 

V. EXPERIMENTAL RESULTS 
Performance of GD-FF algorithm is tested on a number of 

benchmark functions (table 1) which have been extensively 
used [19]. The benchmark functions include two unimodal 
functions, Rosenbrock and Sphere, and three multimodal 
functions, Rastrigin, Griewank and Ackley. The Rastrigin 
function has many local optima around the global optima and 
no correlation among its variables. The Ackely function is the 
only function, which introduces correlation between its 
variables. Table 1 shows the values that have been used for 
the dimension of these functions, the range of the 
corresponding initial position of the fireflies, and the goal for 
each function that has to be achieved by the algorithms [20], 
[21], [22], [23]. 

Table I Standard Test Functions 

 
In entire proposed algorithm population size is set to 30, 

and all of the fireflies are located in search space randomly. 
All of the results are in 10, 20 and 30 dimensions. The 
interval of this random search space is limited to the function 
that is applied for testing the proposed algorithm. Results are 
the mean fitness of the best value founded in 30 times 
separated run with independent seeds. In order to make a 
normal attractiveness, β0 is set to1 and for standard Firefly 
algorithm to do local search, γ is set to 1, initially and itrmax = 
1000. In GD-FF algorithm the initial value of α is 0.7 and 
value of n changes by dimension of each fireflies and its 
value determines by Eq. (11). 

Simulation results are shown in table II-VI and results of 
GD-FF is compared with standard Firefly algorithm and PSO 
and PSO-TVIW [24]. Table II shows better performance for 
GD-FF than other algorithms. Because of directing random 
movement GD-FF can get rid of trapping into several local 
optimums.  

In standard Firefly algorithm when there is no any better 
solution in search space fireflies moves randomly and 
explore whole landscape, but sometimes this movement 
makes worse situation for them because they do not check 
their next position and move from current state to next state. 
So in GD-FF because each fireflies doesn’t move except in a 
condition that their next state better than current state, so we 
can get sure they don’t leave better state and go to worse one.  

Also Gaussian distribution can produce accurate value of P 

for each fireflies for example for a firefly that is far from 
global best P is a less value and it’s normalization value (1-P) 
in Eq. (14) becomes high, therefore it moves by a long step 
length so can get more near to global best. By this method, 
away fireflies can shrinks to global best and locate in a better 
place for next iteration. Unlike for fireflies that are more near 
to global best, this step length is lower to get near to it. By this 
strategy GD-FF algorithm can direct all fireflies to better 
state than last state and it can get better result than other 
mentioned algorithms. 

Adaptive step make a balance between exploration and 
exploitation property. In primary iteration GD-FF has long 
step length and explores search space and find better situation 
and in the last iteration it can exploit a special search space to 
extract better solution. As shown in table II GD-FF algorithm 
has better performance than standard Firefly algorithm that 
shows it can get rid of Firefly algorithm disadvantages.  

 
Table II Average and standard deviation of best found result in 30 

independent runs for F1 function. 

 Dimensions 
Algorithm 10 20 30 

Std.PSO 0.001 0.001 0.001 
 

PSO-TVIW 
 

0.001 
 

0.001 
 

0.001 

Std.Firefly 

 
1.45 

(0.39) 
 

 
4.23 

(0.52) 

 
7.08 
(062) 

GD-FF 3.59e-056 
(1.96e-055) 

3.96 e-035 
ሺ2.63 e-035) 

7.04 e -033 
ሺ7.98 Ee-033) 

 
Table III Average and standard deviation of best found result in 30 

independent runs for F2 function. 
 Dimensions 
Algorithm 10 20 30 

Std.PSO 
21.71 

(40.16) 
52.21 

(148.32) 
77.61 

(81.17) 

 
PSO-TVIW 

 
16.21 

(14.98) 

 
42.73 

(72.61) 

 
61.78 

(48.93) 

Std.Firefly 

 
24.64 
(3.76) 

 
42.73 

(72.61) 

 
335.16 
(35.46) 

 

GD-FF 
5.55 

ሺ0.99) 
18.33 
ሺ1.06) 

29.62 
ሺ1.76) 

 
Table IV Average and standard deviation of best found result in 30 

independent runs for F3 function. 

 Dimensions 
Algorithm 10 20 30 

Std.PSO 
2.33 

(2.30) 
13.81 
(3.50) 

6.65 
(21.82) 

 
PSO-TVIW 

 
2.1184 
(1.56) 

 
16.36 
(4.42) 

 
24.346 
(6.32) 

Std.Firefly 

 
4.80 

(1.67) 

 
11.49 
(2.05) 

 
26.13 
(2.81) 

 

GD-FF 
3.38 

ሺ2.61) 
5.87 

ሺ4.29) 
10.38 
ሺ7.13) 

Function Range 

F1 Sphere=  ∑ ௜ݔ
ଶ௡

௜ୀଵ  േ100 

F2 Rosenbrock= ෌ ሺ100ሺx୧ାଵ െ x୧
ଶሻ௡ିଵ

௜ୀଵ
2+(xi-1)2) േ50 

F3 Rastrigin=∑ ሺݔ௜
ଶ െ 10 cosሺ2ݔߨ௜ሻ ൅ 10ሻ௡

௜ୀଵ  േ5.12 

F4 Griewank=∑ ቀ ୶౟
మ

ସ଴଴଴
ቁ െ ∏ cos ቀ୶౟

√୧
ቁ ൅ 1୬

୧ୀଵ
୬
௜ୀଵ  േ600 

F5 Ackley= 20 ൅ ݁ െ 20 כ ݁ି଴.ଶටభ
೙ ∑ ௫೔

మ೙
೔సభ െ

݁
1

݊
∑ cos ሺ2݅ݔߨሻ

݊
݅ൌ1  

േ32



  

 
Table V Average and standard deviation of best found result in 30 

independent runs for F4 function. 
 

 Dimensions 
Algorithm 10 20 30 

Std.PSO 
0.16 

(0.10) 
0.25 

(0.13) 
0.0678 
(0.24) 

 
PSO-TVIW 

 
0.092 

(0.021) 

 
0.1212 
(0.52) 

 
0.1486 
(0.12) 

Std.Firefly 

 
1.04 

(0.001) 

 
1.56 

(0.004) 

 
1.93 

(0.003) 
 

GD-FF 6.227e-008 
ሺ9.93e-008) 

1.7199e-007 
ሺ1.94e-007) 

1.5784e-006 
ሺ1.4680e-006) 

 
 
Table VI  Average and standard deviation of best found result in 30 

independent runs for F5 function. 
 Dimensions 
Algorithm 10 20 30 

Std.PSO 
0.41 

(1.42) 
0.57 

(3.10) 
1.89 

(2.21) 

 
PSO-TVIW 

 
0.238 

(1.812) 

 
0.318 

(1.118) 

 
0.63 

(2.065) 

Std.Firefly 

 
1.75 

(0.01) 

 
1.78 

(0.01) 

 
1.81 

(0.01) 
 

GD-FF 8.9410e-015 
ሺ3.08e-015) 

3.11e-014 
ሺ6.77e-015) 

1.3204e-014 
ሺ5.25e-015) 

 
In this paper, because of more enhanced performance of 

GD-FF than others, some plots of its operation are shown on 
test functions in Figs. 1-3. This figures show influence of 
GD-FF behavior on a best firefly to direct it to optimum 
value.  

Figure 1 Comparison of simulation results of GD-FF in all functions in 10 
dimensions. 

 
Figure 2 Comparison of simulation results of GD-FF in all functions in  20 

dimensions. 

 
Figure 3 Comparison of simulation results of GD-FF in all functions in  30 

dimensions. 
 
As shown in Fig.1-3, GD-FF algorithm can get near to 

optimum solution in all test functions. But in sphere function 
it can perform better than the other functions because it 
doesn’t have any local optimum and there is just a global 
optimum. Griewank function has local many local optimums 
and its figure is too hard so GD-FF can’t get rid of local 
optimum as well. For comparison of the standard firefly 
algorithm and GD-FF algorithm, their performance is shown 
in Fig. 4 and Fig. 5 for two sphere and Ackley function in 30 
dimensions. 

 
Figure 4 Comparison of GD-FF and standard Firefly algorithm behavior for 

sphere function. 
 
 



  

 
Figure 5 Comparison of GD-FF and standard Firefly algorithm behavior for 

Ackley function. 
 

As shown in Fig. 4-5, standard Firefly algorithm traps into 
local optimum but GD-FF algorithm can get rid of it well.  

 

VI. CONCLUSION 
In this paper, three approaches are presented for improving 

standard Firefly algorithm. In first approach, initial value of 
the step length of movement is assumed to be big that this 
causes increasing speed of movement towards global 
optimum and prevent to trap into local optimum. After some 
iteration this parameter shrinks that causes focus on global 
optimum. By this method fireflies explore search space in 
primary iterations, and in the last iterations step length will 
get shorter so fireflies can exploit search a particular space 
and extract better solutions. 

     In proposed algorithm, if a firefly can’t find any better 
firefly that is brighter in its neighborhood, it will move 
towards global best in that iteration so fireflies movement 
will direct to better solution and algorithm can guide them to 
better state, so they can get near to optimum solution at the 
end of iteration. Moving fireflies by a Gaussian distribution 
as a social behavior causes a better position for each of them 
for next iteration and fireflies with worse cost have more 
chance to move to global best with a longer step length. 
Simulation results show a better performance than standard 
Firefly algorithm. 

 

REFERENCES 
[1] Y. Liu and K. M. Passino, “Swarm Intelligence: A Survey”, 

International Conference of Swarm Intelligence, 2005. 
[2] T. Baeck, D. B. Fogel and Z. Michalewicz, “Handbook of Evolutionary 

Computation”, Taylor & Francis, 1997. 
[3] X. S. Yang, “Nature-Inspired Metaheuristic Algorithms”, Luniver 

Press, 2008. 
[4] X. S. Yang, “Engineering Optimization: An Introduction with 

Metaheuristic Applications”, Wiley & Sons, New Jersey, 2010. 
[5] I. H. Holland, “Adaptation in natural and Artifical Systems”, 

University of Michigan, Press, Ann Abor, 1975. 
[6] D. E. Goldberg, “Genetic Algorithms in Search, Optimisation and 

Machine Learning, Reading, Mass”, Addison Wesley, 1989. 
[7] J. Kennedy, R. C. Eberhart, “Particle swarm optimization”, IEEE 

International Conference on Neural Networks, Piscataway, NJ., pp. 
942-1948, 1995. 

[8] J. Kennedy J., R. Eberhart and Y. Shi, “Swarm intelligence”, Academic 
Press, 2001. 

[9] L. X. Li, Z. J. Shao and J. X. Qian, “An optimizing Method based on 
Autonomous Animals: Fish Swarm Algoritm”, System Engineering 
Theory & Practice, 2002. 

[10] X. S. Yang, “Firefly algorithms for multimodal optimization”, 
Stochastic Algorithms:Foundations and Appplications (Eds O. 
Watanabe and T. eugmann), SAGA 2009, LectureNotes in Computer 
Science, 5792, Springer-Verlag, Berlin, pp. 169-178, 2009. 

[11] S. L. ukasik and AK. SÃlawomirZ, “Firefly algorithm for Continuous 
Constrained Optimization Tasks”, 1st International Confernce on 
Computational Collective Intelligence, Semantic Web, Social 
Networks and Multiagent Systems, Springer-Verlag Berlin, 
Heidelberg, pp.169-178, 2009. 

[12] B. G. Babu and M. Kannan, “ Lightning bugs”, Resonance, Vol. 7, No. 
9, pp. 49-55, 2002. 

[13] X. S. Yang, “Firefly algorithms for multimodal optimization”, in 
Stochastic Algorithms Foundations and Applications, Stochastic 
Algorithms: Foundations and Applications (SAGA ’09), Vol. 5792 of 
Lecture Notes in Computing Sciences, pp. 169-178, Spriger, October 
2009. 

[14] X. S. Yang, (2010). “Firefly Algorithm Stochastic Test Functions and 
Design Optimization”.  Int. J. Bio-Inspired Computation, vol.2, No. 2, 
pp.78-84, 2010. 

[15] X.-S. Yang, “Firefly Algorithm, Lévy Flights and Global 
Optimization”, Research and Development in Intelligent Systems XXVI 
(Eds M. Bramer, R. Ellis, M. Petridis), Springer, pp. 209-218, 2010. 

[16] X. S. Yang, “Engineering Optimization: An Introduction with 
Metaheuristic Applications”. Wiley & Sons, New Jersey, 2010. 

[17] K. Krishnand, K, Ghose, and D, “Glowworms swarm based 
optimization algorithm for multimodal functions with collective 
robotics applications”, Int. J. of Multiagent and Grid Systems, Vol. 2, 
No. 3, pp. 209-222, 2006. 

[18] D. Yazdani,  and  M. R. Meybodi, “AFSA-LA: A New Model for 
Optimization”, Proceedings of  the 15th Annual CSI Computer 
Conference(CSICC'10), Feb. 20-22, 2010. 

[19] S. Janson, M. Middendorf, “ A hierarchical particle swarm optimizer 
and its adaptive variant”, IEEE Trans. on Systems, Man and  
Cybernetics, Part B, Vol. 35, pp. 1272–1282, 2005. 

[20] F. van den Bergh, A.P. Engelbrecht, “Effects of swarm size on 
cooperative particle swarm optimizers”, in: Genetic and Evolutionary 
Computation Conference, San Francisco, CA, USA, 892–899, 2001. 

[21] R. Mendes, J. Kennedy, J. Neves,  “The fully informed particle swarm". 
simpler, maybe better”, IEEE Trans. On Evolutionary Computation 8, 
pp. 204–210, 2004. 

[22] D Bratton, J. Kennedy, “Defining a standard for particle swarm 
optimization”, IEEE Swarm Intelligence Symposium, Honolulu, 
Hawaii, USA, pp. 120–127, 2004. 

[23] R. Mendes, J. Kennedy, J. Neves, “Avoiding the pitfalls of local optima: 
how topologies can save the day”, 12th Conference Intelligent Systems 
Application to Power Systems (ISAP2003), Lemnos, Greece, 2003. 

[24] Y. Li, A. Sun and H. T. Loh, “Adnaces of Computational Intelligence 
in Industrial Systems (ISAP2003), IEEE World Congress on 
Computational Intelligence (International Joint Conference on Neural 
Networks), Vol. 116, pp.  8834-8838, 2008.  

 


