1405.3866v1 [cs.CV] 15 May 2014

arXiv

JADERBERG, VEDALDI, AND ZISSERMAN: SPEEDING UP CONVOLUTIONAL ... 1

Speeding up Convolutional Neural Networks
with Low Rank Expansions

Max Jaderberg Visual Geometry Group
max@robots.ox.ac.uk University of Oxford
Andrea Vedaldi Oxford, UK

vedaldi@robots.ox.ac.uk

Andrew Zisserman
az@robots.ox.ac.uk

Abstract

The focus of this paper is speeding up the evaluation of convolutional neural networks.
While delivering impressive results across a range of computer vision and machine learn-
ing tasks, these networks are computationally demanding, limiting their deployability.
Convolutional layers generally consume the bulk of the processing time, and so in this
work we present two simple schemes for drastically speeding up these layers. This is
achieved by exploiting cross-channel or filter redundancy to construct a low rank basis of
filters that are rank-1 in the spatial domain. Our methods are architecture agnostic, and
can be easily applied to existing CPU and GPU convolutional frameworks for tuneable
speedup performance. We demonstrate this with a real world network designed for scene
text character recognition, showing a possible 2.5x speedup with no loss in accuracy,
and 4.5x speedup with less than 1% drop in accuracy, still achieving state-of-the-art on
standard benchmarks.

1 Introduction

Many applications of machine learning, and most recently computer vision, have been dis-
rupted by the use of convolutional neural networks (CNNs). The combination of an end-
to-end learning system with minimal need for human design decisions, and the ability to
efficiently train large and complex models, have allowed them to achieve state-of-the-art
performance in a number of benchmarks [3, 10, 17, 29, 32, 36, 37]. However, these high
performing CNNs come with a large computational cost due to the use of chains of several
convolutional layers, often requiring implementations on GPUs [14, 17] or highly optimized
distributed CPU architectures [39] to process large datasets. The increasing use of these net-
works for detection in sliding window approaches [9, 26, 32] and the desire to apply CNNs
in real-world systems means the speed of inference becomes an important factor for appli-
cations. In this paper we introduce an easy-to-implement method for significantly speeding
up pre-trained CNNs requiring minimal modifications to existing frameworks. There can
be a small associated loss in performance, but this is tunable to a desired accuracy level.
For example, we show that a 4.5 x speedup can still give state-of-the-art performance in our
example application of character recognition.

(© 2014. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{{Alsharif} and {Pineau}} 2014

Citation
Citation
{Goodfellow, Bulatov, Ibarz, Arnoud, and Shet} 2013{}

Citation
Citation
{Krizhevsky, Sutskever, and Hinton} 2012

Citation
Citation
{Razavian, Azizpour, Sullivan, and Carlsson} 2014

Citation
Citation
{Sermanet, Eigen, Zhang, Mathieu, Fergus, and LeCun} 2013

Citation
Citation
{Taigman, Yang, Ranzato, and Wolf} 2014

Citation
Citation
{Toshev and Szegedy} 2013

Citation
Citation
{Jia} 2013

Citation
Citation
{Krizhevsky, Sutskever, and Hinton} 2012

Citation
Citation
{Vanhoucke, Senior, and Mao} 2011

Citation
Citation
{Farabet, Couprie, Najman, and LeCun} 2012

Citation
Citation
{Oquab, Bottou, Laptev, and Sivic} 2014

Citation
Citation
{Sermanet, Eigen, Zhang, Mathieu, Fergus, and LeCun} 2013

2 JADERBERG, VEDALDI, AND ZISSERMAN: SPEEDING UP CONVOLUTIONAL ...

While a few other CNN acceleration methods exist, our key insight is to exploit the
redundancy that exists between different feature channels and filters [6]. We contribute
two approximation schemes to do so (Sect. 2) and two optimization methods for each scheme
(Sect. 2.2). Both schemes are orthogonal to other architecture-specific optimizations and can
be easily applied to existing CPU and GPU software. Performance is evaluated empirically
in Sect. 3 and results are summarized in Sect 4.

Related work. There are only a few general speedup methods for CNNs. Denton et al. [7]
use low rank approximations and clustering of filters achieving 1.6x speedup of single con-
volutional layers (not of the whole network) with a 1% drop in classification accuracy. Ma-
malet ef al. [20] design the network to use rank-1 filters from the outset and combine them
with an average pooling layer; however, the technique cannot be applied to general network
designs. Vanhoucke er al. [39] show that 8-bit quantization of the layer weights can result in
a speedup with minimal loss of accuracy. Not specific to CNNs, Rigamonti et al. [31] show
that multiple image filters can be approximated by a shared set of separable (rank-1) filters,
allowing large speedups with minimal loss in accuracy.

Moving to hardware-specific optimizations, cuda-convnet [17] and Caf fe [14] show
that highly optimized CPU and GPU code can give superior computational performance in
CNNs. [21] performs convolutions in the Fourier domain through FFTs computed efficiently
over batches of images on a GPU. Other methods from [39] show that specific CPU architec-
tures can be taken advantage of, e.g. by using SSSE3 and SSSE4 fixed-point instructions and
appropriate alignment of data in memory. Farabet et al. [8] show that using bespoke FPGA
implementations of CNNs can greatly increase processing speed.

To speed up test-time in a sliding window context for a CNN, [13] shows that multi-scale
features can be computed efficiently by simply convolving the CNN across a flattened multi-
scale pyramid. Furthermore search space reduction techniques such as selective search [38]
drastically cut down the number of times a full forward pass of the CNN must be computed
by cheaply identifying a small number of candidate object locations in the image.

Note, the methods we proposed are not specific to any processing architecture and can be
combined with many of the other speedup methods given above.

2 Filter Approximations

Filter banks are used widely in computer vision as a method of feature extraction, and when
used in a convolutional manner, generate feature maps from input images. For an input
x € RV the set of output feature maps ¥ = {y1,v2,...,yv}, yu € RE " are generated
by convolving x with N filters F = {f;} Vi € [1...N] such that y; = f; xx. The collection
of filters F can be learnt, for example, through dictionary learning methods [16, 18, 30] or
CNNs, and are generally full rank and expensive to convolve with large images. Using a
direct implementation of convolution, the complexity of convolving a single channel input
image with a bank of N 2D filters of size d x d is O(d?NH'W'). We next introduce our
method for accelerating this computation that takes advantage of the fact that there exists
significant redundancy between different filters and feature channels.

One way to exploit this redundancy is to approximate the filter set by a linear combination
of a smaller basis set of M filters [31, 34, 35]. The basis filter set S = {s;} Vi € [1...M] is used
to generate basis feature maps which are then linearly combined such that y; ~ ZkM: | QikSk * X.
This can lead to a speedup in feature map computation as a smaller number of filters need be

Citation
Citation
{Denil, Shakibi, Dinh, and deprotect unhbox voidb@x penalty @M {}Freitas} 2013

Citation
Citation
{Denton, Zaremba, Bruna, LeCun, and Fergus} 2014

Citation
Citation
{Mamalet and Garcia} 2012

Citation
Citation
{Vanhoucke, Senior, and Mao} 2011

Citation
Citation
{Rigamonti, Sironi, Lepetit, and Fua} 2013

Citation
Citation
{Krizhevsky, Sutskever, and Hinton} 2012

Citation
Citation
{Jia} 2013

Citation
Citation
{Mathieu, Henaff, and LeCun} 2013

Citation
Citation
{Vanhoucke, Senior, and Mao} 2011

Citation
Citation
{Farabet, LeCun, Kavukcuoglu, Culurciello, Martini, Akselrod, and Talay} 2011

Citation
Citation
{Iandola, Moskewicz, Karayev, Girshick, Darrell, and Keutzer} 2014

Citation
Citation
{vanprotect unhbox voidb@x penalty @M {}de Sande, Uijlings, Gevers, and Smeulders} 2011

Citation
Citation
{Kavukcuoglu, Sermanet, Boureau, Gregor, Mathieu, and LeCun} 2010

Citation
Citation
{Lee, Grosse, Ranganath, and Ng} 2009

Citation
Citation
{Rigamonti, Brown, and Lepetit} 2011

Citation
Citation
{Rigamonti, Sironi, Lepetit, and Fua} 2013

Citation
Citation
{Song, Zickler, Althoff, Girshick, Fritz, Geyer, Felzenszwalb, and Darrell} 2012

Citation
Citation
{Song, Darrell, and Girshick} 2013

JADERBERG, VEDALDI, AND ZISSERMAN: SPEEDING UP CONVOLUTIONAL ... 3

convolved with the input image, and the final feature maps are composed of a cheap linear
combination of these. The complexity in this case is O((d’M +MN)H'W'), so a speedup

can be achieved if M < d‘ZNN.

As shown in Rigomonti et al. [31], further speedups can be achieved by choosing the
filters in the approximating basis to be rank-1 and so making individual convolutions sepa-
rable. This means that each basis filter can be decomposed in to a sequence of horizontal
and vertical filters s; % x = v; * (h; xx) where s; € R¥*¢, v; € R*! and h; € R4, Using
this decomposition, the convolution of a separable filter s; can be performed in O(2dH'W')
operations instead of O(d*H'W').

The separable filters of [31] are a low-rank approximation, but performed in the spatial
filter dimensions. Our key insight is that in CNNs substantial speedups can be achieved
by also exploiting the cross-channel redundancy to perform low-rank decomposition in the
channel dimension as well. We explore both of these low-rank approximations in the sequel.

Note that the FFT [21] could be used as an alternative speedup method to accelerate indi-
vidual convolutions in combination with our low-rank cross-channel decomposition scheme.
However, separable convolutions have several practical advantages: they are significantly
easier to implement than a well tuned FFT implementation, particularly on GPUs; they do
not require feature maps to be padded to a special size, such as a power of two as in [21];
they are far more memory efficient; and, they yield a good speedup for small image and filter
sizes too (which can be common in CNNs), whilst FFT acceleration tends to be better for
large filters due to the overheads incurred in computing the FFTs.

2.1 Approximating Convolutional Neural Network Filter Banks

CNNss are obtained by stacking multiple layers of convolutional filter banks on top of each
other, followed by a non-linear response function. Each filter bank or convolutional layer
takes an input which is a feature map z;(u,v) where (u,v) € ; are spatial coordinates and
zi(u,v) € R contains C scalar features or channels z¢(u,v). The output is a new feature map
zip1 € REWXN quch that 2y = hi(Win %2 + bin) ¥n € [1...N], where W, and b;, denote
the n-th filter kernel and bias respectively, and 4; is a non-linear activation function such as
the Rectified Linear Unit (ReLU) h;(z) = max{0,z}. Convolutional layers can be intertwined
with normalization, subsampling, and pooling layers which build translation invariance in
local neighbourhoods. Other layer types are possible as well, but generally the convolutional
ones are the most expensive. The process starts with z; = x, where x is the input image, and
ends by, for example, connecting the last feature map to a logistic regressor in the case of
classification. All the parameters of the model are jointly optimized to minimize a loss over
the training set using Stochastic Gradient Descent (SGD) with back-propagation.

The N filters W, learnt for each layer (for convenience we drop the layer subscript i) are
full rank, 3D filters with the same depth as the number of channels of the input, such that
W, (u,v) € RC. For example, for a 3-channel color image input, C = 3. The convolution
W, * z of a 3D filter W,, with the 3D image z is the 2D image W, xz = f: 1 Wy xz°, where
W¢ € R?*4 is a single channel of the filter. This is a sum of 2D convolutions so we can think
of each 3D filter as being a collection of 2D filters, whose output is collapsed to a 2D signal.
However, since N such 3D filters are applied to z, the overall output is a new 3D image with
N channels. This process is illustrated for the case C = 1,N > 1 in Fig. 1 (a). The resulting
computational cost for a convolutional layer with N filters of size d x d acting on C input
channels is O(CNd*H'W').

Citation
Citation
{Rigamonti, Sironi, Lepetit, and Fua} 2013

Citation
Citation
{Rigamonti, Sironi, Lepetit, and Fua} 2013

Citation
Citation
{Mathieu, Henaff, and LeCun} 2013

Citation
Citation
{Mathieu, Henaff, and LeCun} 2013

4 JADERBERG, VEDALDI, AND ZISSERMAN: SPEEDING UP CONVOLUTIONAL ...

dxlxl lxdxl IXIXM

<ond,

dx]xl

=20 =0

20
4

a

Figure 1: (a) The original convolutio(na?l layer act-
ing on a single-channel input i.e. C=1. (b) The
approximation to that layer using the method of y

Scheme 1. (c¢) The approximation to that layer us- | 2 ﬂ < N
ing the method of Scheme 2. Individual filter di-

mensions are given above the filter layers. (c)

(b)

dxlxK

We now propose two schemes to approximate a convolutional layer of a CNN to reduce
the computational complexity and discuss their training in Sec. 2.2. Both schemes follow the
same intuition: that CNN filter banks can be approximated using a low rank basis of filters
that are separable in the spatial domain.

Scheme 1. The first method for speeding up convolutional layers is to directly apply the
method suggested in Sect. 2 to the filters of a CNN (Fig. 1 (b)). As described above, a single
convolutional layer with N filters W,, € R?*?*C requires evaluating NC 2D filters F = {W¢ €
R4 pc[1...N],c€ [C]}. Note that there are N filters {W, : n € [1...N]} operating
on each input channel z¢. These can be approximated as linear comb1nat1ons of a basis of
M < N (separable) filters S¢ = {s¢, :m € [1...M]} as WS ~¥M_ 49"s¢ . Since convolution
is a linear operator, filter reconstruction and image convolutlon can be swapped, yielding
the approximation W, xz =Y Wz = Y& ¥M 4o (s¢ % z¢). To summarize, the direct
calculation involves computlng NC 2D filters Wy z With cost O(NCd>H'W'), while the
approximation involves computing MC 2D filters s¢, *z¢ with cost O(MC(d*+N)H'W') — the
additional MCNH'W' term accounting for the need to recombine the basis response linearly.
Due to the second term, the approximation is efficient only if M < d, i.e. if the number of
filters in the basis is less than the filter area.

The first cost term CMd>H'W' would also suggest that efficiency requires the condition
M < N; however, this can be considerably ameliorated by using separable filters in the basis.
In this case the approximation cost is reduced to O(MC(d + N)H'W'); together with the
former condition, Scheme 1 is then efficient if M < d min{d,N}.

Note that this scheme uses C filter basis S',$2, ..., SC as each operates on a different input
channel. In practice, we choose S! = §? = ... = §¢ = § because empirically there is no actual
gain in performance and a single channel basis is simpler and more compact.

Scheme 2. Scheme 1 focuses on approximating 2D filters. As a consequence, each input
channel z¢ is approximated by a particular basis of 2D separable filters. Redundancy among
feature channels is exploited, but only in the sense of the N output channels. In contrast,
Scheme 2 is designed to take advantage of both input and output redundancies by considering
3D filters throughout. The idea is simple: each convolutional layer is factored as a sequence
of two regular convolutional layers but with rectangular (in the spatial domain) filters, as
shown in Fig. | (c). The first convolutional layer has K filters of spatial size d x 1 resulting
in a filter bank {v; € R?*!*C: k ¢ [1...K]} and producing output feature maps V such that
V(u,v) € RK. The second convolutional layer has N filters of spatial size 1 x d resulting in
a filter bank {h, € R"*?*K .5 € [1...N]}. Differently from Scheme 1, the filters operate on
multiple channels simultaneously. The rectangular shape of the filters is selected to match a

JADERBERG, VEDALDI, AND ZISSERMAN: SPEEDING UP CONVOLUTIONAL ... 5

separable filter approximation. To see this, note that convolution by one of the original filters
W, xz=YC | W¢*z° is approximated by

K C

K
Wz hyxV = th*Vk Zhn* vexz) =Y h *ka* —Z[Zhﬁ*vl‘;]*zc (H
= k=1

which is the sum of separable filters 4 * v;. The computational cost of this scheme is
O(KCdH'W) for the first vertical filters and O(NKdH'W') for the second horizontal filter.
Assuming that the image width W > d is significantly larger than the filter size, the out-
put image width W ~ W' is about the same as the input image width W’. Hence the total
cost can be simplified to O(K(N + C)dH'W'). Compared to the direct convolution cost of
O(NCd?H'W'), this scheme is therefore convenient provided that K(N + C) < NCd. For
example, if K, N, and C are of the same order, the speedup is about d times.

In both schemes, we are assuming that the full rank original convolutional filter bank
can be decomposed in to a linear combination of a set of separable basis filters. The differ-
ence between the schemes is how/where they model the interaction between input and output
channels, which amounts to how the low rank channel space approximation is modelled. In
Scheme 1 it is done with the linear combination layer, whereas with Scheme 2 the channel
interaction is modelled with 3D vertical and horizontal filters inducing a summation over
channels as part of the convolution.

2.2 Optimization

This section deals with the details on how to attain the optimal separable basis representation
of a convolutional layer for the schemes. The first method (Sec. 2.2.1) aims to reconstruct
the original filters directly by minimizing filter reconstruction error. The second method
(Sec. 2.2.2) approximates the convolutional layer indirectly, by minimizing reconstruction
error of the output of the layer.

2.2.1 Filter Reconstruction Optimization

The first way that we can attain the separable basis representation is to aim to minimize the
reconstruction error of the original filters with our new representation.

Scheme 1. The separable basis can be learnt simply by minimizing the L, reconstruction
error of the original filters, whilst penalizing the nuclear norm ||s,, || of the filters s,,. In fact,
the nuclear norm ||s,,| is a proxy for the rank of s,, € R¥*“ and rank-1 filters are separable.
This yields the formulation:

M

Y s,

m=1

+l Z [- 2

m=1

{Sm} {“n

This minimization is biconvex, so given s, a unique a, can be found, therefore a minimum
is found by alternating between optimizing s,, and a,. For full details of the implementation
of this optimization see [31].

Scheme 2. The set of horizontal and vertical filters can be learnt by explicitly minimizing the
L, reconstruction error of the original filters. From (1) we can see that the original filter can

Citation
Citation
{Rigamonti, Sironi, Lepetit, and Fua} 2013

6 JADERBERG, VEDALDI, AND ZISSERMAN: SPEEDING UP CONVOLUTIONAL ...

Sep2 Se] 2 Se 3
() D
Conv2 Conv2 Conv3

(a) (b)
Figure 2: Example schematics of how to optimize separable basis approximation layers in a data
reconstruction setting. (a) Approximating Conv2 with Sep2. (b) Approximating Conv3 with Sep3,
incorporating the approximation of Conv2 as well.

be approximated by minimizing the objective function

N C 2

min ZZ

{308 ==

3

K
Wy — Z e 6
k=1 5
This optimization is simpler than for Scheme 1 due to the lack of nuclear norm constraints,
which we are able to avoid by modelling the separability explicitly with two variables. We
perform conjugate gradient descent, alternating between optimizing the horizontal and verti-
cal filter sets.

2.2.2 Data Reconstruction Optimization

The problem with optimizing the separable basis through minimizing original filter recon-
struction error is that this does not necessarily give the most optimized basis set for the end
CNN prediction performance. As an alternative, one can optimize a scheme’s separable basis
by aiming to reconstruct the outputs of the original convolutional layer given training data.
For example, for Scheme 2 this amounts to

x| N c K 2
W *CI)I 1)C, Z Zh’,‘l*vi*cbl_l(xi)
c=1k=1

min Z Z @

{hﬁ}v{vi} i=1n=1

2

where [is the index of the convolutional layer to be approximated and ®;(x;) is the evalu-
ation of the CNN up to and including layer / on data sample x; € X where X is the set of
training examples. This optimization can be done quite elegantly by simply mirroring the
CNN with the un-optimized separable basis layers, and training only the approximation layer
by back-propagating the L, error between the output of the original layer and the output of
the approximation layer (see Fig. 2). This is done layer by layer.

There are two main advantages of this method for optimization of the approximation
schemes. The first is that the approximation is conditioned on the manifold of the training
data — original filter dimensions that are not relevant or redundant in the context of the train-
ing data will by ignored by minimizing data reconstruction error, but will still be penalised
by minimizing filter reconstruction error (Sec. 2.2.1) and therefore uselessly using up model
capacity. Secondly, stacks of approximated layers can be learnt to incorporate the approxi-
mation error of previous layers by feeding the data through the approximated net up to layer
[rather than the original net up to layer / (see Fig. 2 (b)). This additionally means that all the
approximation layers could be optimized jointly with back-propagation.

An obvious alternative optimization strategy would be to replace the original convolu-
tional layers with the un-optimized approximation layers and train just those layers by back-
propagating the classification error of the approximated CNN. However, this does not actu-
ally result in better classification accuracy than doing L, data reconstruction optimization —
in practice, optimizing the separable basis within the full network leads to overfitting of the
training data, and attempts to minimize this overfitting through regularization methods like

JADERBERG, VEDALDI, AND ZISSERMAN: SPEEDING UP CONVOLUTIONAL ...

7

[Layer name [Filter size [In channels [Out channels [Filters [Maxout groups [

Time

l

Convl 9x9 1 48 96 2 0.473ms (8.3%)
Conv2 9x9 48 64 128 2 3.008ms (52.9%)
Conv3 8x8 64 128 512 4 2.160ms (38.0%)
Conv4 Ix1 128 37 148 4 0.041ms (0.7%)
Softmax - 37 37 - - 0.004ms (0.1%)

Table 1: The details of the layers in the CNN used with the forward pass timings of each layer.

dropout [12] lead to under-fitting, most likely due to the fact that we are already trying to
heavily approximate our original filters. However, this is an area that needs to be investigated
in more detail.

3 Experiments & Results

In this section we demonstrate the application of both proposed filter approximation schemes
and show that we can achieve large speedups with a very small drop in accuracy. We use a pre-
trained CNN that performs case-insensitive character classification of scene text. Character
classification is an essential part of many text spotting pipelines such as [3, 4, 22, 23, 24, 25,
27, 28, 40, 42].

We first give the details of the base CNN model used for character classification which
will be subject to speedup approximations. The optimization processes and how we attain the
approximations of Scheme 1 & 2 to this model are given, and finally we discuss the results
of the separable basis approximation methods on accuracy and inference time of the model.

Test Model. For scene character classification, we use a four layer CNN with a softmax
output. The CNN outputs a probability distribution p(c|x) over an alphabet C which includes
all 26 letters and 10 digits, as well as a noise/background (no-text) class, with x being a grey
input image patch of size 24 x 24 pixels, which has been zero-centred and normalized by
subtracting the patch mean and dividing by the standard deviation. The non-linearity used
between convolutional layers is maxout [11] which amounts to taking the maximum response
over a number of linear models e.g. the maxout of two feature channels z} and z7 is simply
their pointwise maximum: ;(z;(u,v)) = max{z} (u,v),z?(u,v)}. Table I gives the details of
the layers for the model used, which is connected in the linear arrangement Conv1-Conv2-
Conv3-Conv4-Softmax.

Datasets & Evaluation. The training dataset consists of 163,222 collected character samples
from a number of scene text and synthesized character datasets [1, 2, 5, 15, 19, 33, 41]. The
test set is the collection of 5379 cropped characters from the ICDAR 2003 training set after
removing all non-alphanumeric characters as in [3, 40]. We evaluate the case-insensitive
accuracy of the classifier, ignoring the background class. The Test Model achieves state-of-
the-art results of 91.3% accuracy compared to the next best result of 89.8% [3].

Implementation Details. The CNN framework we use is the CPU implementation of Caf fe [14],
where convolutions are performed by constructing a matrix of filter windows of the input,
im2col, and using BLAS for the matrix-matrix multiplication between the filters and data
windows. We found this to be the fastest CPU CNN implementation attainable. CNN train-

ing is done with SGD with momentum of 0.9 and weight decay of 0.0005. Dropout of 0.5 is
used on all layers except Convl to regularize the weights, and the learning rate is adaptively
reduced during the course of training.

Citation
Citation
{Hinton, Srivastava, Krizhevsky, Sutskever, and Salakhutdinov} 2012

Citation
Citation
{{Alsharif} and {Pineau}} 2014

Citation
Citation
{Bissacco, Cummins, Netzer, and Neven} 2013

Citation
Citation
{Neumann and Matas} 2010

Citation
Citation
{Neumann and Matas} 2011

Citation
Citation
{Neumann and Matas} 2012

Citation
Citation
{Neumann and Matas} 2013

Citation
Citation
{Posner, Corke, and Newman} 2010

Citation
Citation
{Quack} 2009

Citation
Citation
{Wang, Babenko, and Belongie} 2011

Citation
Citation
{Yang, Quehl, and Sack} 2012

Citation
Citation
{Goodfellow, Warde-Farley, Mirza, Courville, and Bengio} 2013{}

Citation
Citation
{icd}

Citation
Citation
{kai}

Citation
Citation
{deprotect unhbox voidb@x penalty @M {}Campos, Babu, and Varma} 2009

Citation
Citation
{Karatzas, Shafait, Uchida, Iwamura, Mestre, Mas, Mota, Almazan, deprotect unhbox voidb@x penalty @M {}las Heras, etprotect unhbox voidb@x penalty @M {}al.} 2013

Citation
Citation
{Lucas} 2005

Citation
Citation
{Shahab, Shafait, and Dengel} 2011

Citation
Citation
{Wang, Wu, Coates, and Ng} 2012

Citation
Citation
{{Alsharif} and {Pineau}} 2014

Citation
Citation
{Wang, Babenko, and Belongie} 2011

Citation
Citation
{{Alsharif} and {Pineau}} 2014

Citation
Citation
{Jia} 2013

8 JADERBERG, VEDALDI, AND ZISSERMAN: SPEEDING UP CONVOLUTIONAL ...

10t

g

g

g g

g

g

Conv2 Reconstruction Error
Conva Reconstruction Error

10 20 30 20 2 4 6 © 10 1 1 16 0 20 30 40 50 5 10 15 2 25 30
Conv2 Theoretical Speedup Conv2 Actual Speedup Conva Theoretical Speedup Conv3 Actual Speedup

Figure 3: Reconstruction error for the theoretical and actual attained speedups on test data for Conv2
& Conv3. We do not go below 10x theoretical speedup for Scheme 1 as computation takes too long.

Scheme 1 Scheme 2

0 0
—Filter reconstruction —Filter reconstruction
— Data reconstruction — Data reconstruction
— Joint data reconstruction —Joint data ion|
J -
0 0
1 2 3 4 5 1 2 3 4 5 6 7
(a) Full net speedup factor (b) Full net speedup factor (C)

Figure 4: (a) A selection of Conv?2 filters from the original CNN (left), and the reconstructed versions
under Scheme 1 (centre) and Scheme 2 (right), where both schemes have the same model capacity
corresponding to 10x theoretical speedup. Visually the approximated filters look very different with
Scheme 1 naturally smoothing the repesentation, but both still achieve good accuracy. (b-c) The percent
loss in performance as a result of the speedups attained with Scheme 1 (b) and Scheme 2 (c).

»-
i

i
S

i
S

Percent loss in accuracy
Percent loss in accuracy

For filter reconstruction optimization, we optimize a separable basis until a stable mini-
mum of reconstruction error is reached. For data reconstruction optimization, we optimize
each approximated layer in turn, and can incorporate a fine-tuning with joint optimization.

For the CNN presented, we only approximate layers Conv2 and Conv3. This is because
layer Conv4 has a 1 x 1 filter size and so would not benefit much from our speedup schemes.
We also don’t approximate Convl due to the fact that it acts on raw pixels from natural
images — the filters in Convl are very different to those found in the rest of the network
and experimentally we found that they cannot be approximated well by separable filters (also
observed in [7]). Omitting layers Conv1 and Conv4 from the schemes does not change overall
network speedup significantly, since Conv2 and Conv3 constitute 90% of the overall network
processing time, as shown in Table. 1.

Layer-wise Performance. Fig. 3 shows the output reconstruction error of each approxi-
mated layer with the test data. It is clear that the reconstruction error worsens as the speedup
achieved increases, both theoretically and practically. As the reconstruction error is that of
the test data features fed through the approximated layers, as expected the data reconstruction
optimization scheme gives lower errors for the same speedup compared to the filter recon-
struction. This generally holds even when completely random Gaussian noise data is fed
through the approximated layers — data from a completely different distribution to what the
data optimization scheme has been trained on.

Looking at the theoretical speedups possible in Fig. 3, Scheme 1 gives better reconstruc-
tion error to speedup ratio, suggesting that the Scheme 1 model is perhaps better suited for
approximating convolutional layers. However, when the actual measured speedups are com-
pared, Scheme 1 is actually slower than that of Scheme 2 for the same reconstruction error.
This is due to the fact that the Caffe convolution routine is optimized for 3D convolu-
tion (summing over channels), so Scheme 2 requires only two im2col and BLAS calls.
However, to implement Scheme 1 with Caf fe style convolution involving per-channel con-

Citation
Citation
{Denton, Zaremba, Bruna, LeCun, and Fergus} 2014

JADERBERG, VEDALDI, AND ZISSERMAN: SPEEDING UP CONVOLUTIONAL ... 9

......

Input o Original CNN 3.5x speedup 6.7x speedup
Figure 5: Text spotting using the CNN character classifier. The maximum response map over the char-
acter classes of the CNN output with Scheme 2 indicates the scene text positions. The approximations
have sufficient quality to locate the text, even at 6.7 x speedup.

volution without channel summation, means that there are many more costly im2col and
BLAS calls, thus slowing down the layer evaluation and negating the model approximation
speedups. It is possible that using a different convolution routine with Scheme 1 will bring
the actual timings closer to the theoretically achievable timings.

Full Net Performance. Fig. 4 (b) & (c) show the overall drop in accuracy as the speedup
of the end-to-end network increases under different optimization strategies. Generally, joint
data optimization of Conv2 and Conv3 improves final classification performance for a given
speedup. Under Scheme 2 we can achieve a 2.5x speedup with no loss in accuracy, and a
4.5 x speedup with only a drop of 1% in classification accuracy, giving 90.3% accuracy — still
state-of-the-art for this benchmark. The 4.5 x configuration is obtained by approximating the
original 128 Conv2 filters with 31 horizontal filters followed by 128 vertical filters, and the
original 512 Conv3 filters with 26 horizontal filters followed by 512 vertical filters.

This speedup is incredibly useful for sliding window schemes, allowing fast generation
of, for example, detection maps such as the character detection map shown in Fig. 5. There is
very little difference with even a 3.5 x speedup, and when incorporated in to a full application
pipeline, the speedup can be tuned to give an acceptable end pipeline result.

Comparing to an FFT based CNN [21], our method can actually give greater speedups.
With the same layer setup (5x5 kernel, 16 x 16 x 256 input, 384 filters), Scheme 2 gives
an actual 2.4 x speedup with 256 basis filters (which should result in no performance drop),
compared to 2.2x in [21]. Comparing with [7], simply doing a filter reconstruction approx-
imation with Scheme 2 of the second layer of OverFeat [32] gives a 2x theoretical speedup
with only 0.5% drop in top-5 classification accuracy on ImageNet, far better than the 1.2%
drop in accuracy for the same theoretical speedup reported in [7]. This accuracy should be
further improved if data optimization is used.

4 Conclusions

In this paper we have shown that the redundancies in representation in CNN convolutional
layers can be exploited by approximating a learnt full rank filter bank as combinations of a
rank-1 filter basis. We presented two schemes to do this, with two optimization techniques
for attaining the approximations. The resulting approximations require significantly less op-
erations to compute, resulting in large speedups observed with a real CNN trained for scene
text character recognition: a 4.5 speedup, only a drop of 1% in classification accuracy.

In future work it would be interesting to experiment with other arrangements of separable
filters in layers, e.g. a horizontal basis layer, followed by a vertical basis layer, followed by a

Citation
Citation
{Mathieu, Henaff, and LeCun} 2013

Citation
Citation
{Mathieu, Henaff, and LeCun} 2013

Citation
Citation
{Denton, Zaremba, Bruna, LeCun, and Fergus} 2014

Citation
Citation
{Sermanet, Eigen, Zhang, Mathieu, Fergus, and LeCun} 2013

Citation
Citation
{Denton, Zaremba, Bruna, LeCun, and Fergus} 2014

10 JADERBERG, VEDALDI, AND ZISSERMAN: SPEEDING UP CONVOLUTIONAL ...

linear combination layer. Looking at the filter reconstructions of the two schemes in Fig. 4 (a),
it is obvious that the two presented schemes act very differently, so the connection between
different approximation structures could be explored. Also it should be further investigated
whether these model approximations can be effectively taken advantage of during training,
with low-rank filter layers being learnt in a discriminative manner.

Acknowledgements. Funding for this research is provided by the EPSRC and ERC grant
VisRec no. 228180.

References

[1] http://algoval.essex.ac.uk/icdar/datasets.html.
[2] http://www.iapr-tc11.org/mediawiki/index.php/kaist_scene_text_database.

[3] O. Alsharif and J. Pineau. End-to-End Text Recognition with Hybrid HMM Maxout
Models. In International Conference on Learning Representations, 2014.

[4] A. Bissacco, M. Cummins, Y. Netzer, and H. Neven. PhotoOCR: Reading text in un-
controlled conditions. In International Conference of Computer Vision, 2013.

[5] T. de Campos, B. R. Babu, and M. Varma. Character recognition in natural images.
2009.

[6] M. Denil, B. Shakibi, L. Dinh, and N. de Freitas. Predicting parameters in deep learning.
In Advances in Neural Information Processing Systems, pages 2148-2156, 2013.

[7] E. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus. Exploiting linear structure
within convolutional networks for efficient evaluation. arXiv preprint arXiv: 1404.0736,
2014.

[8] C. Farabet, Y. LeCun, K. Kavukcuoglu, E. Culurciello, B. Martini, P. Akselrod, and
S. Talay. Large-scale fpga-based convolutional networks. Machine Learning on Very
Large Data Sets, 2011.

[9] C. Farabet, C. Couprie, L. Najman, and Y. LeCun. Scene parsing with multiscale feature
learning, purity trees, and optimal covers. arXiv preprint arXiv:1202.2160, 2012.

[10] L. J. Goodfellow, Y. Bulatov, J. Ibarz, S. Arnoud, and V. Shet. Multi-digit number
recognition from street view imagery using deep convolutional neural networks. In
International Conference on Learning Representations, 2013.

[11] L. J. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and Y. Bengio. Maxout
networks. arXiv preprint arXiv:1302.4389, 2013.

[12] G. E. Hinton, N. Srivastava, A. Krizhevsky, 1. Sutskever, and R. R. Salakhutdinov.
Improving neural networks by preventing co-adaptation of feature detectors. arXiv
preprint arXiv:1207.0580, 2012.

[13] F. Iandola, M. Moskewicz, S. Karayev, R. Girshick, T. Darrell, and K. Keutzer.
Densenet: Implementing efficient convnet descriptor pyramids. arXiv preprint
arXiv:1404.1869, 2014.

JADERBERG, VEDALDI, AND ZISSERMAN: SPEEDING UP CONVOLUTIONAL ... 11

[14] Y. Jia. Caffe: An open source convolutional architecture for fast feature embedding.
http://caffe.berkeleyvision.org/, 2013.

[15] D. Karatzas, F. Shafait, S. Uchida, M. Iwamura, S. R. Mestre, J. Mas, D. F. Mota,
J. Almazan, L. P. de las Heras, et al. ICDAR 2013 robust reading competition. In
Document Analysis and Recognition (ICDAR), 2013 12th International Conference on,
pages 1484-1493. IEEE, 2013.

[16] K. Kavukcuoglu, P. Sermanet, Y. Boureau, K. Gregor, M. Mathieu, and Y. LeCun.
Learning convolutional feature hierarchies for visual recognition. In NIPS, volume 1,
page 5, 2010.

[17] A. Krizhevsky, 1. Sutskever, and G. E. Hinton. ImageNet classification with deep con-
volutional neural networks. In NIPS, volume 1, page 4, 2012.

[18] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng. Convolutional deep belief networks for
scalable unsupervised learning of hierarchical representations. In Proceedings of the
26th Annual International Conference on Machine Learning, pages 609-616. ACM,
2009.

[19] S. Lucas. ICDAR 2005 text locating competition results. In Document Analysis and
Recognition, 2005. Proceedings. Eighth International Conference on, pages 80-84.
IEEE, 2005.

[20] F. Mamalet and C. Garcia. Simplifying convnets for fast learning. In Artificial Neural
Networks and Machine Learning—ICANN 2012, pages 58—65. Springer, 2012.

[21] M. Mathieu, M. Henaff, and Y. LeCun. Fast training of convolutional networks through
ffts. CoRR, abs/1312.5851, 2013.

[22] L. Neumann and J. Matas. A method for text localization and recognition in real-world
images. In Proc. Asian Conf. on Computer Vision, pages 770-783. Springer, 2010.

[23] L. Neumann and J. Matas. Text localization in real-world images using efficiently
pruned exhaustive search. In Proc. ICDAR, pages 687-691. IEEE, 2011.

[24] L. Neumann and J. Matas. Real-time scene text localization and recognition. In Proc.
CVPR, volume 3, pages 1187-1190. IEEE, 2012.

[25] L. Neumann and J. Matas. Scene text localization and recognition with oriented stroke
detection. In 2013 IEEE International Conference on Computer Vision (ICCV 2013),
pages 97-104, California, US, December 2013. IEEE. ISBN 978-1-4799-2839-2. doi:
10.1109/ICCV.2013.19.

[26] M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Learning and transferring mid-level image
representations using convolutional neural networks. In Computer Vision and Pattern
Recognition (CVPR), 2014.

[27] I. Posner, P. Corke, and P. Newman. Using text-spotting to query the world. In Proc. of
the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2010.

[28] T. Quack. Large scale mining and retrieval of visual data in a multimodal context. PhD
thesis, ETH Zurich, 2009.

http://caffe.berkeleyvision.org/

12 JADERBERG, VEDALDI, AND ZISSERMAN: SPEEDING UP CONVOLUTIONAL ...

[29] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson. Cnn features off-the-shelf:
an astounding baseline for recognition. arXiv preprint arXiv:1403.6382, 2014.

[30] R. Rigamonti, M. A. Brown, and V. Lepetit. Are sparse representations really relevant
for image classification? In Computer Vision and Pattern Recognition (CVPR), 2011
IEEE Conference on, pages 1545-1552. IEEE, 2011.

[31] R. Rigamonti, A. Sironi, V. Lepetit, and P. Fua. Learning separable filters. In Computer
Vision and Pattern Recognition (CVPR), 2013 IEEE Conference on, pages 2754-2761.
IEEE, 2013.

[32] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun. Overfeat:
Integrated recognition, localization and detection using convolutional networks. arXiv
preprint arXiv:1312.6229, 2013.

[33] A. Shahab, F. Shafait, and A. Dengel. ICDAR 2011 robust reading competition chal-
lenge 2: Reading text in scene images. In Proc. ICDAR, pages 1491-1496. IEEE, 2011.

[34] H. O. Song, S. Zickler, T. Althoff, R. Girshick, M. Fritz, C. Geyer, P. Felzenszwalb,
and T. Darrell. Sparselet models for efficient multiclass object detection. In Computer
Vision—-ECCV 2012, pages 802-815. Springer, 2012.

[35] H. O. Song, T. Darrell, and R. B. Girshick. Discriminatively activated sparselets. In
Proceedings of the 30th International Conference on Machine Learning (ICML-13),
pages 196204, 2013.

[36] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. Deep-Face: Closing the gap to human-
level performance in face verification. In IEEE CVPR, 2014.

[37] A. Toshev and C. Szegedy. DeepPose: Human pose estimation via deep neural net-
works. arXiv preprint arXiv:1312.4659, 2013.

[38] K. van de Sande, J. Uijlings, T. Gevers, and A. Smeulders. Segmentation as selective
search for object recognition. In Computer Vision (ICCV), 2011 IEEE International
Conference on, pages 1879-1886. IEEE, 2011.

[39] V. Vanhoucke, A. Senior, and M. Z. Mao. Improving the speed of neural networks on
cpus. In Proc. Deep Learning and Unsupervised Feature Learning NIPS Workshop,
2011.

[40] K. Wang, B. Babenko, and S. Belongie. End-to-end scene text recognition. In Proc.
ICCV, pages 1457-1464. IEEE, 2011.

[41] T. Wang, D. J. Wu, A. Coates, and A. Y. Ng. End-to-end text recognition with con-
volutional neural networks. In Pattern Recognition (ICPR), 2012 21st International
Conference on, pages 3304-3308. IEEE, 2012.

[42] H. Yang, B. Quehl, and H. Sack. A framework for improved video text detection and
recognition. In Int. Journal of Multimedia Tools and Applications (MTAP), 2012.

