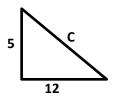

Date: Period:

The Pythagorean Theorem is named after a Greek mathematician named Pythagoras (however, there are records of its use in northern Africa hundreds of years before Pythagoras lived).

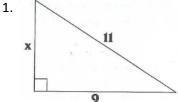
The Pythagorean Theorem - In a right triangle, the square of the length of the hypotenuse is equal to the sum of the squares of the lengths of the legs.

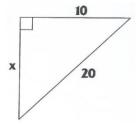

Pythagorean Theorem: $a^2 + b^2 = c^2$

Pythagorean Triple - a set of three positive integers, a, b, and c, that satisfy the Pythagorean Theorem $a^2 + b^2 = c^2$

Example #1: Show that 3, 4, and 5 is a Pythagorean triple since

Example #2: Show that the 3 sides of the triangle are a Pythagorean triple.

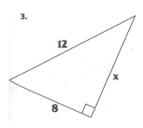


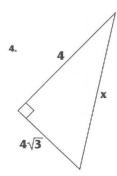

Example #3: Decide whether the numbers are a Pythagorean triple.

a. 9, 40, 41

b. 10, 49, 50

Example #4: Find the unknown side length. Do the lengths form a Pythagorean triple?



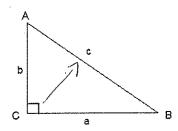


Geometry
Guided Notes
Pythagorean Theorem

Name:	
Data.	Davie d.

Date: ______ Pe

Example #5: A baseball diamond is a square with sides of 90 feet. What is the shortest distance, to the nearest tenth of a foot, between first base and third base?

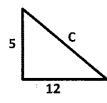

Example #6: Two joggers run 8 miles north and then 5 miles west. What is the shortest distance, to the nearest tenth of a mile, they must travel to return to their starting point?

Name:	Key	
Date:	V	Period:

The Pythagorean Theorem is named after a Greek mathematician named Pythagoras (however, there are records of its use in northern Africa hundreds of years before Pythagoras lived).

The Pythagorean Theorem - In a right triangle, the square of the length of the hypotenuse is equal to the sum of the squares of the lengths of the legs.

Pythagorean Theorem: $a^2 + b^2 = c^2$



Pythagorean Triple - a set of three positive integers, a, b, and c, that satisfy the Pythagorean Theorem $a^2 + b^2 = c^2$

Example #1: Show that 3, 4, and 5 is a Pythagorean triple since '

$$3^2 + 4^2 = 5^2$$

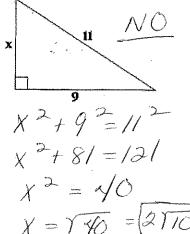
Example #2: Show that the 3 sides of the triangle are a Pythagorean triple.

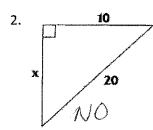
$$5^{2} + 12^{2} = C^{2}$$

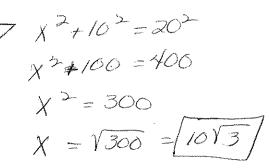
$$25 + 144 = C^{2}$$

$$169 = C^{2}$$

$$C = 13$$

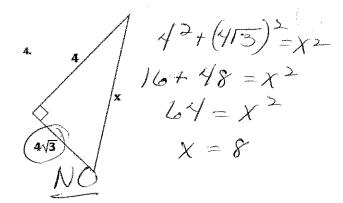

Example #3: Decide whether the numbers are a Pythagorean triple.

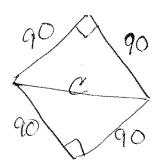

a. 9, 40, 41 $92 + 40^{2} = 41^{2}$


b. 10,49,50 NO 10²+49²=50² 100 +240/ = 2500

8/ +1600 = 168/ = 168/ = 2500Example #4: Find the unknown side length. Do the lengths form a Pythagorean triple?

1.





Period:

NO	X +8 = 122
12	X2+64=144
/x	X = 80
8	$\chi = \sqrt{80} =$

Example #5: A baseball diamond is a square with sides of 90 feet. What is the shortest distance, to the nearest tenth of a foot, between first base and third base?

$$90^{2} + 90^{2} = C^{2}$$

$$16200 = C^{2}$$

$$C = 127.3 f$$

Example #6: Two joggers run 8 miles north and then 5 miles west. What is the shortest distance, to the nearest tenth of a mile, they must travel to return to their starting point?