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LECTURE 5
SIMULTANEOUS EQUATIONS IV: LIMITED INFORMATION ML (LIML)

In this lecture, we consider ML estimation of a single equation which is a part of the system of simultaneous
equations. Without loss of generality, we can focus on the first equation:
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where Y7 ; and Z; ; are the vectors of included endogenous and exogenous regressors respectively, as defined
in Lecture 2. For the included endogenous regressors we have the following reduced form equation

Yl,i = HlZl,i + HQZQ,,' + Vl,i-

Note that we ignore Y7";, the vector of endogenous variables excluded from the first equation. The two above
equations can be written together as
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similarly to the derivation of equation (3) in Lecture 4, we obtain that the concentrated log-likelihood for
Yi,i is
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where the last equality follows from the fact that due to restricted structure of fl,

fl‘ —1.

Thus, the LIML is a special case of FIML with properly defined matrices of parameters. However, again,
due to the restricted structure of I'y, tl}ere exists a closed form expression for the LIML estimator. Let d;
be the LIML estimator of §; = ('y’l, ,6”1) , then using the matrix notation of Lecture 2, we can write

01 = (X4 (I, = AM) X1) " X4 (I, — AM) 1,



where

M I, — P,
P = z(Z2z)' 7,

and P is the projection matrix onto the space spanned by the exogenous variables Z;’s (included and excluded
from the first equation),
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and M, projection matrix onto space orthogonal to that spanned by Z; ;’s, the exogenous variables included
in the first equation. (As defined above, \ is actually the smallest eigenvalue of W; W 1))

Next, we will show the asymptotic equivalence of LIML and 2SLS estimators. First, we will show that
A> 1.
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Since Z7 is a part of Z, PZ; = Z1, and, therefore, PP, = P;. Hence,
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idempotent and, therefore, positive definite. Thus, /Wit — Wt > 0 for any ¢t and A > 1.
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Thus,
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Next,
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Hence, the difference between the LIML and 2SLS estimators is given by
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