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What is the relationship between the following angles, 18º, 36 º, 54º, 72º and 
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]? Can you identify each of these angles in this pentogram? 

 
Question: 
Use the compound and double angle formula to write the following in terms of 
A only:  

a. sin(3A) using sin(A) only 
b. cos(3A) using cos(A) only. 

 

 
 

Answer: 
a. sin(3A) = sin(2A + A)  = sin(2A)cos(A) + cos(2A)sin(A)  

= [sin(A+A)]cos(A) + [cos(A+A)]sin(A)  
= [2sin(A)cos(A)]cos(A) + [cos2(A) – sin2(A)]sin(A) 
= 2sin(A)cos2(A) + [cos2(A)sin(A) – sin3(A)] 
= 3sin(A)cos2(A) – sin3(A) 
= 3sin(A)[1 – sin2(A)] – sin3(A) 
= 3sin(A) – 4sin3(A) 
 

b. cos(3A) = cos(2A + A) = cos(2A)cos(A) – sin(2A)sin(A)  
= [cos(A+A)]cos(A) – [sin(A+A)]sin(A)  
= [cos2(A) – sin2(A)]cos(A)  – [2sin(A)cos(A)]sin(A)  
= cos3(A) – sin2(A)cos(A) – 2sin2(A)cos(A) 
= cos3(A) – 3sin2(A)cos(A)  
= cos3(A) – 3[1 – cos2(A)]cos(A)  
= 4cos3(A) – 3cos(A)  

 
Extension: What is tan(3A) using tan(A) only? 
 
How can you calculate exactly cos(π/5) × cos(2π/5)? 
Let A = cos(π/5) × cos(2π/5) 
Since sin(2x) = 2sin(x) × cos(x) then cos(x) = ½sin(2x)/sin(x) → (1 ) 
When x = π/5 then cos(π/5) = ½sin(2π/5)/sin(π/5)  
 
From Equation (1 ) [sin(2π/5) × cos(2π/5)] = ½sin (4π/5)  
since A   = cos(π/5) × cos(2π/5)  



= ½sin(2π/5) × cos(2π/5)] /sin(π/5)  
= ½[sin (4×π/5] / [2 × sin(π/5)] 

But sin(4π/5) = sin (π – π/5)  
          = sin(π)× cos(π/5) – cos(π)× sin(π/5)  
          = sin(π/5) 

Since A = ½[sin (4×π/5)] / [2 × sin(π/5)]  
= ½[sin(π/5)]/[2 × sin(π/5)]  
= ¼  

As π/5 + 4π/5 = π it follows that sin π/5 = sin(4π/5) 
 

Find the exact values of cos(2π/5) and cos(4π/5)? 

cos(5x) = 16cos5(x) – 20cos3(x) + 5cos(x) 

Solving this quintic16x5 – 20x3 + 5x – 1 = 0  

There is no general solution for a 5th order polynomial.  

However, the half and double angle formulae can be used 

to solve either problem.  

Solving for cos(π/5) will give you the desired answer. 

Note: sin(3×π/5) = sin(2×π/5) 

The triple angle sine formula is:  

sin(3x) = 4sin(x) × cos2(x) – sin(x) 

The double angle sine formula is: sin(2x) = 2 sin(x) × cos(x) 

Since sin(3x) = sin(2x) when x = π/5 

4sin(x) × cos2(x) – sin(x) = 2 in(x) × cos(x) 

Divide out the sin(x) term gives 4cos2 (x) – 1 = cos(x) 

Giving a simple quadratic in cos(x),  

substituting y = cos(π/5) gives: 

4y2 – 2y – 1 = 0 and solving for y gives 2 solutions:  

y = (1 + √5)/4 and y = (1  –  √5)/4.  

Since cos(π/5) is positive then cos(π/5) = (1 + √5)/4  

Use the double angle formula:  

cos(2x) = 2cos2(x) – 1 

cos(2π/5) = 2×(1 + √5)/4)2 – 1 = (√5 – 1)/4 

Note: cos(4π/5) = – cos(π/5) so cos(4π/5) = – (1 + √5)/4 

  

If sin(3π/10) = (1 + √5)/4, find the exact value of cos(π/5) 

Note that ½π = 3π/10 = π/5 and that cos(½π – x) = sin(x) using x = 3π/10 

cos(π/5) = cos[(½π) – (3π/10)] 

cos(π/5) = cos(½π) × cos(3π/10) + sin(π/2) × sin(3π/10) 

cos(π/5) = sin(3π/10) 

cos(π/5) = (1 + √5)/4 

For further tips, more helpful information and software support visit our websites 
www.casio.edu.monacocorp.co.nz  or http://graphic-technologies.co.nz 


