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Abstract. A recent NFS attack against pairings made it necessary to increase the key
sizes of the most popular families of pairings : BN, BLS12, KSS16, KSS18 and BLS24. The
attack applies to other families of pairings but not to all. In this paper we compute the key
sizes required for more than 150 families of pairings to verify if there are any other families
which are better than BN. The security estimation is not straightforward because it is not
a mathematical formula, but rather one has to instantiate the Kim-Barbulescu attack by
proposing polynomials and parameters for each pairing friendly elliptic curve.
After estimating the practical security of an extensive list of families, we compute the complexity
of the optimal Ate pairing at 128, 192 and 256 bits of security. For some of the families the
optimal Ate has never been studied before. We show that a number of families of embedding
degree 9, 14 and 15 are very competitive with BN , BLS12 and KSS16 at 128 bits of security.
We identify a set of candidates for 192 bits and 256 bits of security.
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1 Introduction

Pairings are a crucial ingredient in a series of public-key protocols. After Joux’ [Jou00] tri-partite
Diffie-Hellman key echange and the identity-based encryption scheme of Boneh and Franklin [BF01],
it became clear that pairings can have applications which could not be obtained with any other math-
ematical primitives. Many more public-key protocols followed, including short signatures [BLS04], a
wide variety of aggregate, instance and verifier-local revocation signatures [BGLS03,BBS04,JN09],
broadcast encryption [BGW05], cloud computing [AFGH06], privacy enhancing environments [She10],
deep package inspection over encrypted traffic [SLPR15,CDK+17] and many others. The NIST [MC11]
pilots a project dedicated to pairings. Efficient implementations of pairings [BLM+09], [BGDM+10],
[GAL+12], [UW14], [KNG+17] made them interesting for industrial development [Tea05,Cha08].

At a high level, a pairing is a non-degenerate and bilinear map, e : G1 × G2 → G3, where G1

and G2 are subgroups of an elliptic curve and G3 is a multiplication sub-group of a finite field.
The security of pairing-based cryptography relies on one side on the discrete logarithm problem

(DLP) over G1 (and consecutively over G2) which are elliptic curves, we call this the curve side security
and note that it is very well understood on the classical computers (pairing-based cryptography is
not resisting to quantum computers, whose feasibility is not known to this day). On the other side,
it relies on the discrete logarithm problem over G3 which is the multiplicative group of a finite field,
this is the field side security.

The hardness of computing discrete logarithms in a finite field is difficult to evaluate. In a first
time one used the approximation that its cost is the same as of that of factoring, which is done



with a variant of the same algorithm : the number field sieve (NFS). Hence, the first key sizes
proposed for pairings [Len01] were such that log2 #G3 matches the required bitsize for an RSA
module offering the same security level (the RSA hypothesis). In a second time, one computed the
cost using a theoretical upper bound [MSS16],[SG18] (the asymptotic hypothesis). In a recent article,
Barbulescu and Duquesne [BD18] made a precise real-life analysis with no theoretical assumption
(this is practical estimation). Hence, they found the optimal parameters for each variant of NFS
and obtained key sizes which can be used in a future standardization for 5 families of pairing
friendly elliptic curves. Many more families exist and our article, together with very recent other
works [GS19],[GMT19], extends these key evaluations to other families.

The use of approximations was not a problem before 2013. Indeed, the difficulty of the DLP in
fields Fp with p prime is the same as that of factoring an RSA module of the same bit size as p. The
NFS variants used to attack pairings were either analogies of the one used for Fp, as the function field
sieve for the pairings of small characteristic, or cumbersome adaptations of NFS to the case of Fpk
when p is non-small and k > 1. However, the small characteristic pairings are now forbidden [Eur13,
page 32] because of a series of attacks culminating with a quasi-polynomial algorithm [BGJT14]. A
series of new variants of NFS between 2013 and 2016 [JP13,BGGM15,BGK15] showed that the finite
fields Fpk can actually be easier than the prime case, from an asymptotic point of view. Kim and
Barbulescu proposed a variant of NFS which either encompass the previous variants or it improves
on them [KB16]. The Kim-Barbulescu attack depends highly on two specific pairing-friendly elliptic
curves parameters: on one side on the parametrization of the characteristic and on the other side on
the embedding degree. The precise estimation of Barbulescu and Duquesne [BD18] concluded that
also from a practical point of view, certain pairings require a larger bitsize than prime fields for the
same level of security. In this work we extend the list of pairing families from 5 in [BD18] to over
150 families.

The starting point of our work is the remark that the fastest pairings before the Kim-Barbulescu
attack, as BN, KSS and BLS, are precisely those which are the most affected by the attack. Indeed,
the complexity of the NFS variants is well-expressed using the L-notation:

LN [c] = exp((c/9)
1
3 (logN)

1
3 (log logN)

2
3 )1+o(1).

The constant c takes various values depending on the variant of NFS, a list of these variants being
made in Section 3.2. We have then four situations for the DLP in a field Fqk , represented in Figure 1:

– When k is prime and q doesn’t have a polynomial form, at a constant bit size of qk, c is 64 when
k is small (TNFS or NFS-GJL) and 96 when k is large (NFS-Conj).

– When k is prime and q has a special form, at a constant bit size of qk, c is 32 when k is small
(STNFS or Joux-Pierrot) and 64 otherwise (Joux-Pierrot).

– When k is composite and q doesn’t have a polynomial form, at a constant it size of qk, c is 64
when k is small (NFS-GJL or TNFS) and 48 when k is large (exTNFS-Conj).

– When k is composite and q has a polynomial form, c is always 32 (STNFS or Joux-Pierrot if k
is small and SexTNFS otherwise).

Hence, the most popular pairings (BN, KSS16, KSS18, BLS12 and BLS24) have q of polynomial
form and k composite, so they correspond to the value c = 32, which is the lowest in the diagram.
Note that the Appendix B of [BD18] gives arguments to support that no variant of NFS can have a
lower value of c.

Our main purpose is to analyze the efficiency of the new attack [KB16] when applied to less
popular pairings. We identify families where the real-life cost of the Kim-Barbulescu attack is higher
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Fig. 1: Representation of the four cases of finite fields Fqk with respect to the constant c such that
the complexity of the fastest NFS attack is L[c].

than for BN, KSS and BLS and hence one can use smaller key sizes for the same security level.
Further, smaller key sizes correspond to shorter computation loops and faster real-life timings.

Our contribution

We make an extensive literature inspection to find as many pairing-friendly families as possible.
The main reference is the taxonomy [FST10] whose title we copy, but we discovered some fam-
ilies [DCC05],[LZZW08] which weren’t included in that work. We also add a small number of
families which were published after the taxonomy : [Dry11],[SG18]. Before the key sizes had to
be corrected, the BN family was much faster and received much more attention than the other
families in the taxonomy, some of which remained to the status of theoretical formulae. Three recent
works [FK18,ZX18,FM18] tackle the problem of proposing numerical examples of elliptic curves
from each family which correspond to classical levels of security (128, 192 and 256). However, they
still make the asymptotic hypothesis that we explained above. We make an extensive analysis of
more than 150 families and find the exact parameters for each of them. We emphasize that for some
families of high embedding degree it is impossible to find small parameters so one cannot have 128
bits of security without having a larger number, say 150 bits. With the precise key sizes in hand
we proposed precise implementation algorithms for all the afore mentioned families. For some of
them, for example of prime embedding degree, we are in virgin territory as these families have been
considered to be slow; we concluded that they still are. For many families the asymptotic hypothesis
gives sizes which are close to being enough and it is no problem to slightly increase the parameters
in order to fill the contract of the security level. For other families, like BLS k=27, the corrected key
sizes with the practical estimation are smaller than the ones obtained with the RSA hypothesis or
the asymptotic hypothesis. This allows us to find a series of families which are faster than BN.
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The article is organized as follows. In Section 2, we recall the basic notations on pairings, present
the classical optimizations of the implementation and recall the various constructions of pairings. In
Section 3, we draw the big lines of the NFS algorithm, recall what are the choices for an attacker
and compute the updated key sizes for a large number of families. For each family, we construct
pairings and evaluate the cost of Miller’s loop, first in arithmetic then in binary operations, at 128
bits (Section 4) and respectively 192 and 256 bits of security (Section 5). Then, in Section 6 we
present the final exponentiation complexity for the Optimal Ate pairings in some of proposed curves,
and obtain the overall cost. We conclude in Section 7.

2 Some background on pairings

2.1 Definition of pairings

We briefly recall here elementary definition on pairings [Wei40]. Let E be an elliptic curve defined
over a finite field Fq, with q a large prime integer. We denote by O the neutral element of the
additive group law over E. The elliptic curve is described in the Weierstrass model:

E(Fq) = {(x, y), y2 = x3 + ax+ b, a, b ∈ Fq}.
Let r be a large prime divisor of the group order ]E(Fq) and k the embedding degree of E with

respect to r, i.e. the smallest integer k such that r divides qk − 1.
The Weil [Wei40] and the Tate [Tat63] pairings are constructed using the Miller algorithm [Mil04].

For the Ate, twisted Ate [HSV06], optimal pairing [Ver10] and pairing lattices [Hes08], the most
efficient pairings are constructed on the Tate model. Hence, we only recall here the definition of the
reduced Tate pairing, a more complete definition being given in [BSS99, §IX.5].

Definition 1 (Tate pairing). Let E(Fq) be an elliptic curve over the finite field Fq for q a large
prime number. Let r be a prime divisor of card(E(Fq)). Let k be the embedding degree of E relatively
to r. Let G1 = E(Fq)[r], G2 = E(Fqk)/rE(Fqk) and G3 = {µ ∈ Fqk such that µr = 1}. The reduced
Tate pairing is defined as

eT : G1 ×G2 → G3,

(P,Q)→ fr,P (Q)
qk−1
r

where fr,P (Q) is the Miller function defined by the divisor D = r(P )− (rP )− (r − 1)(O).

The Miller function is computed through the Miller’s algorithm [Mil04], which is constructed on
the double and add scheme using the construction of rP and based on the notion of divisors. We
only give here the essential elements for the pairing computation.

The Miller algorithm constructs the rational function fr,P associated to the point P , where P is
a generator of G1; and at the same time, it evaluates fr,P (Q) for a point Q ∈ G2 ⊂ E(Fqk).

The final exponentiation is used to ensure the uniqueness of the resulting value of two equal
pairing computations (e.g. e(P, [2]Q) = e([2]P,Q)). The final exponentiation maps the result of the
Miller algorithm into the group formed by the rth roots of unity in F∗qk .

2.2 Optimizations for pairings

The optimisations of pairings rely on an accurate choice of the embedding degree, the parametrization
family of elliptic curves, the use of a twist for E(Fqk), the research for particular curves inside the
chosen family.
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Choice of the embedding degree The most general optimisations for a pairing implementation
are obtained when k is chosen to have only small prime factors, more particularly when k is a product
of powers of 2 and 3 [EJ17]. This property allows the extension field Fqk to be constructed using
tower field extensions. The interest of using tower field extensions is an optimization of the arithmetic.
In particular, the multiplication over Fqk can be constructed using intermediate multiplications on
the floor of the tower field extension.

The pairing friendly elliptic curves which are the most interesting for implementation purposes
are obtained from families, a taxonomy of which was made by Freeman, Scott and Teske in [FST10],
to which we add a very recent construction [SG18].

Existence of twisted elliptic curve An important trick when computing a Tate-like pairing is
the elimination of denominators. This is possible when k is a multiple of 2 [KM05] or 3 [LZZW08]
together with the use of a twisted elliptic curve. An elliptic curve E/Fq of embedding degree k is
said to have a twist of degree d if d is a factor of k and there exists an elliptic curve E′/Fqk/d which
is Fqk -birationally isomorphic to E/Fqk/d . The larger d is, the faster the pairing is because one
can replace the operations over E(Fqk) by operations over E(Fqk/d) using the embedding map into
E(Fqk). The existence of a twist relies on the value of the DM discriminant ∆ (if D is the squarefree
part of t2 − 4q we set ∆ = −D if D ≡ 1 (mod 4) and −4D otherwise; D il also call discriminant
abusively). If ∆ = 3 and 3 (resp. 6) divides k, we can use a twist of degree 3 (resp. 6). If ∆ = 4 and
4 divides k, then we can use a quartic twist d = 4. Else, if k is even, we can use a quadratic twist
d = 2.

Choice of parameters inside a family A family of pairing friendly elliptic curves with embed-
ding degree k is given by a triple (q(x), r(x), t(x)) of polynomials with coefficients in Q. In this
representation, q(x) is the characteristic of the finite field, r(x) a prime factor of Card(E(Fq)) and
t(x) is the trace of the elliptic curve. If u is an integer such that q(u) and r(u) are prime numbers,
then there exists an elliptic curve with embedding degree k and parameters (q(u), r(u), t(u)). The
integer u is used in the exponent in the Miller loop, in the final exponentiation, and it can have
a great impact on the Fqk arithmetic [DEHR18]. For this reason, u should have a NAF weight as
small as possible in order to improve the efficiency of the pairing computation. Once we have found
an integer u such that q(u) and r(u) are prime integers, we have to construct the equation of the
elliptic curve. This can be done thanks to the complex multiplication (CM) method [FST10]. There
exists several models for elliptic curves, but the most efficient computation of pairings are obtained
using Weierstrass model: E : y = x3 + ax+ b with a ∈ {0,−3} and b ∈ Fq.

As the final exponentiation is the same for every pairings, the goal is to obtain the shortest
Miller loop. In practice, the reduction of Miller’s loop is performed using the definition of optimal
pairing [Ver10]. For example, the best results of implementation were obtained for the optimal Ate
pairing over BN curves and parameters of Hamming weight at most four [UW14,KNG+17,AFG+17].
When different curves made difficult the decision of which one is more efficient, we discuss on log2(qk).
Indeed, this value is the size of the extension field in which we perform the final exponentiation, but
it is also a rough estimation of the size of the exponent. As a consequence, the smaller size should
be the better.

Last but not least, when choosing the elliptic curve, one must take into consideration the subgroup
security problem [BCM+15]. This can demand to modify the value of the parameter u and doesn’t
modify the performances.
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2.3 Construction of pairing-friendly elliptic curves

The construction of pairing-friendly elliptic curve is difficult. An elliptic curve E/Fq is pairing-
friendly when the the embedding degree is not too large and #E(Fq) admits a large prime divisor.
Furthermore, in order to resist to the subgroups attack, the order of the elliptic curve should
not admit small prime factors [BCM+15]. Such elliptic curves are rare and needs very specific
construction. The article [FST10] is a nice survey and, to our knowledge, the only complements in
the literature are [Dry11] and [SG18].

Let us briefly recall the existing constructions. In order to construct pairings of embedding degree
k one starts by searching for integers q, r, t and D such that q and r are primes, there exists integers
t and y such that 4q = Dy2 + t2 and r divides both Φk(t + 1) and q + 1 − t. These integers are
used to compute the equation of an elliptic curve E/Fq which has a point of order r over Fq and
embedding degree k using the CM method [Mor91]. Since the cost of this last step grows rapidly
with D one usually fixes D to integer values in [−3, 3]. Hence all the pairings in the taxonomy fits
in one of the following categories:

– Supersingular curves (Sec. 3 of the taxonomy). k ≤ 2 or small characteristic and k ∈ {4, 6, 12}.
– Cocks-Pinch and Dupont-Enge-Morain (Sec 4. of the taxonomy) One can use it for any pair

(k,D), but for security levels between 128 and 256 the number of pairings is small and there
might be no pairing for certain values of k. Note also that log q ≈ 2 log r.

– Sparse families (Sec. 5 of the taxonomy and Drylo [Dry11]). One can use it for k ∈ {2, 3, 4, 6, 8, 9,
10, 12, 15, 28, 30} but the values of D are either restricted or are different for each pairing.

– Complete families (Sec. 6 of the taxonomy [FST10] and the work of Scott and Guillevic [SG18]).
Any pair (k,D) is possible, the generation is fast. The prime q is equal to q(u) where q is a
polynomial. The values u which give pairings become more rare when k increases.

2.4 Existence of twists

As recalled in Section 2.2, twists determine the speed of Miller’s algorithm. The number of twists is
given by the following rules (cf. Prop 2 in [HSV06]):

– ∆ = 3 and 3 (resp. 6) divides k, we can use a twist of degree 3 (resp. 6).

– ∆ = 4 and 4 divides k, then we can use a quartic twist d = 4.

– when k is even, we can at least use a quadratic twist d = 2, otherwise a quartic or sextic.

– For others combination we cannot use a twist, in particular for prime embedding degree.
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construction in [FST10] embedding degree k CM discriminant twist degree d

construction 6.2 k ≡ 2[4] ∆ = 4 d = 2
k ≡ 1[4] ∆ = 4 d = 1

construction 6.3 k ≡ 2[4] ∆ = 4 d = 2
k ≡ 1[4] ∆ = 4 d = 1

construction 6.4 k ≡ 4[8] ∆ = 4 d = 4

construction 6.6(BLS) k ≡ 0[6] ∆ = 3 d = 6
k ≡ 3[6] ∆ = 3 d = 3
k ≡ 2, 4[6] ∆ = 3 d = 2
k ≡ 1, 5[6] ∆ = 3 d = 1

construction 6.7 k ≡ 0[6] ∆ = 8 d = 2
k ≡ 3[6] ∆ = 8 d = 1

construction 6.8 (BN) k = 12 ∆ = 3 d = 6

construction 6.11 (KSS16) k = 16 ∆ = 4 d = 4

construction 6.12 (KSS16) k = 18 ∆ = 3 d = 6

construction 6.13 (KSS32) k = 32 ∆ = 4 d = 4

construction 6.14 (KSS36) k = 36 ∆ = 3 d = 6

construction 6.15 (KSS40) k = 40 ∆ = 4 d = 4

Scott-Guillevic (KSS54) k = 54 ∆ = 3 d = 6

construction 6.20 k ≡ 1[4] ∆ 6∈ {3, 4} d = 1

construction 6.24 k ≡ 0[4] ∆ 6∈ {3, 4} d = 2

construction 5.3 k = 10 ∆ 6∈ {3, 4} d = 2
Drylo [Dry11] k ∈ {10, 12, 28, 30} ∆ 6∈ {3, 4} d = 2

k ∈ {9, 15} ∆ 6∈ {3, 4} d = 1

3 Overview of the NFS attacks

The extended tower number field sieve (exTNFS) encompasses all the variants of NFS. Let us present
briefly the algorithm with a special care on the choices that can be made by an attacker.

3.1 Big lines of the algorithm

At a high level, exTNFS on Fqk proceeds as follows. Let κ and η be two divisors of k so that k = κη.
Let h(t) be a polynomial in Z[t] which is irreducible modulo q of degree η, and call ω a root of h(t)
in Fq[t]/〈h〉. Then select two polynomials f(t, x) and g(t, x) in Z[t, x] such that f(ω, x) and g(ω, x)
have a common irreducible factor of degree κ in Fq(ω) = Fqη . This step, called polynomial selection,
takes a negligible time but determines the cost of the whole algorithm.

In the sieving stage, for a given parameter A, one considers the pairs (a(t), b(t)) ∈ Z[t]2 of
degree less than η such that max(‖a‖∞, ‖b‖∞) ≤ A. We call norms of (a, b) the integers Nf (a, b) =
Rest(Resx(a(t)− xb(t), f(t, x)), h(t)) and Ng(a, b) = Rest(Resx(a(t)− xb(t), g(t, x)), h(t)). Given a
parameter B, the sieving stage outputs the list of (almost) all pairs (a, b) such that Nf (a, b) and
Ng(a, b) are B-smooth, i.e. all their prime factors are less than B.

In the linear algebra stage, the goal is to solve a linear system having twice as many elements as
primes less than B (the number of prime ideals in the number fields of f and g of norm less than B).
This is done in two steps : filtering where the size of the matrix is greatly reduced and the proper
linear algebra computations where the obtained linear system is solved. Due to heuristic arguments
in [BD18], the filtering stage reduces the size of the matrix by a factor log2B and the cost of the
linear algebra is 27B2/(log(B) log2B)2.
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The results of the linear algebra allow to compute any discrete logarithm in Fqk . Since this step
is much faster than the sieving and the linear algebra stages, we neglect it in the complexity analysis.

3.2 Identifying the best attacks

According to Barbulescu and Duquesne [BD18], the cost of (S)exTNFS is described by the following
equation:

cost =
2B

A logB
ρ

(
log2(Nf )

log2(B)

)−1
ρ

(
log2(Ng)

log2(B)

)−1
+ 27

B2

A2(logB)2(log2(B))2
, (1)

where ρ is Dickman’s function and A is the number of automorphisms of h multiplied by the number
of commun number of automorphisms of f and g (which can be upper bounded by ηκ/ gcd(η, κ)).
The validity condition is that the number of relations is larger than the cardinality of the factor
base, which is as follows:

(2A+ 1)2η

2w
· ρ
(

log2(Nf )

log2(B)

)
ρ

(
log2(Ng)

log2(B)

)
≥ 2B

log(B)
, (2)

where ω is the half of the number of roots of unity of h.
We are almost done except that we didn’t see how to select f , g and h. The values of A and ω

are a consequence and their choice is explained in [BD18].

Polynomial selection The choice of the polynomials f and g for NFS in Fqk was the object of
many works. When q has a polynomial form one can obtain a product NfNg which is much smaller
than in the general case. This is emphasized by putting an S, for special, before the name of each
version of NFS : SNFS, STNFS or SexTNFS.

The special case Let P ∈ Z[x] and u ∈ Z be such that q = P (u) and ‖P‖∞ = O(log(qk)). When
k is small or prime one can use STNFS [BGK15], i.e. h an irreducible polynomial of degree k,
f = P (x) and g = x − u, or Joux-Pierrot [JP13], i.e. h = x (no tower), f = P (xk + S(x)) and
g = xk + S(x)− u where S(x) is a polynomial of degree less than k. When k is large and can be
written as k = κη, one can use SexTNFS [KB16]: one chooses h to be an irreducible polynomial of
degree η, f(t, x) = P (xκ + S(x) + t) and g(t, x) = xκ + S(x) + t− u. When gcd(κ, η) = 1 one can
drop t in the definition of f and g.

The case of arbitrary finite fields All primes q, of polynomial or non-polynomial form, must withstand
the variants of NFS for the general case. When k is small or prime one uses either TNFS [BGK15],
i.e. h is an irreducible polynomial of degree k and f and g are chosen by the “base m” method or
the two algorithms of Kleinjung [Kle06],[Kle08], or one uses a classical variant, i.e. h = x (no tower)
and any of the methods of polynomial selection: GJL [BGGM15, Sec. 3.2],[Mat06], JLSV1 [JLSV06,
Sec 3.2], JLSV2 [JLSV06, Sec 3.1], Sarkar and Singh’s algorithms A,B,C,D [SS16a,SS16c,SS16b] and
the Conjugation method [BGGM15, Sec 3.3]. When k is large and can be written as k = κη, one
uses exTNFS [KB16]: one selects f and g adequated for DLP computations in Fqκ using the afore
mentioned methods and then sets h equal to an irreducible polynomial of degree η. If gcd(κ, η) 6= 1,
one follows [JK16] and replaces the polynomials with f(x+ t) and g(x+ t).
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Optimizing parameters of for NFS attacks For each construction of pairings and for each
of the security levels 128, 192 and 256, we generated pairings which guarantee that security on
the curve side. Then, for each possible choice of h, f and g, we solved the optimization problem
consisting in minimizing the cost in Equation (1) under the validity condition of Equation (2).
For each value of log2(A) and log2(B) up to a precision of 0.01 we estimated experimentally Nf
and Ng on a sample of 3000 pairs (a, b) chosen randomly in the sieving space. If the field side
security is not sufficient, we increase the size of log2 r and start over. The complete computations
took more than 1 CPU year. We summarize the results in the electronic complement available
here https://webusers.imj-prg.fr/~razvan.barbaud/Pairings/security.html, as well as in
the next section in the tables associated to each family.

3.3 An example of key size computations : MNT of embedding degree 6

Let us consider the family of Section 3.3 of the taxonomy [FST10] : the base field is Fq where q
is a prime of the form q(u) = 4u2 + 1, the elliptic curve order #E(Fq) is r(u) = 4u2 − 2u + 1
and the embedding degree equals 6, so the target of the pairing is the multiplicative group of Fq6 .
The polynomial form of q is important, and we must compute all the manners to write q(u) as a
polynomial with small coefficients. In the case of MNT 6 we take, v = 2u and P (v) = v2 + 1 so that
P (v) ≡ 0 (mod q(u)). For many families one takes v = u2 or v = u+ 1

u but the only manner to find
all the possibilities is to compute the subfields of the number field of q(u).

Given a security level s, e.g. 128 bits, we compute the real roots of the polynomial r(u)− 2s. For
integers u close to such a root, we compute integers q(u) until we find primes. For the families of
large embedding degree, the bit size of u might be increased in order to find primes; this is not the
case for MNT. Then we test all the possible choices of polynomials f , g, h. For example, at 128
bits of security, we find that the best choice is h = t2 − t − 1, f = P (x3) and g = x − v(u). For
each bit size of log2(A) and log2(B) up to a precision of 0.1, we compute the size of log2(Nf ) and
log2(Ng) using a sample of 3000 pairs (a(t), b(t)) ∈ Z[x] with coefficients bounded by A and degree
less than deg h. We obtain that log2(A) = 31.2 and log2B = 54 corresponds to log2(Nf ) = 369.8
and log2(Ng) = 439.8, which satisfies Equation (2). Plugging everything in Equation (1), we find a
cost 295.17. Since the security on the field side is not enough, we increase the security level on the
curve side until we find a security of 2128. This occurs when the field size log2(q6) equals 4032, or
equivalently log2(q) = 672 and log2(u) = 334. This corresponds perfectly with the results in the
seminar talk of Guillevic [GS19].

For the larger security levels one can use the same choice of polynomials. One can tune the
parameters in an automatic manner and obtain for example that SexTNFS with these polynomials
on a field of 9216 bits has a cost of 2192 (this is also in accordance with Guillevic and Singh’s results).
However, one can also use a different choice : h = t (no tower), f = P (x6) and g = x6 − v which is a
Joux-Pierrot construction. We obtain that a field of 9216 bits has 190.5 bits of security. We need to
increase a bit the field size and obtain that 9742 is enough. The situation is once again different for
256 bits of security, where the best choice is the Conjugation method with κ = 6 and h = t2 − t− 1 :
the key size is 20770.

Among the more than 150 families studied, almost no two were the same : each has a different
combination of polynomials h, f and g to be used. Instead of a blind program to guess the polynomials
automatically, we made all the choices manually using our experience on computation records of
discrete logarithms. It is a good research project to write a program which reproduces or adjusts
our choices.
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3.4 Security results

We keep the model of security of Barbulescu and Duquesne [BD18] which is conservative in that
it assumes perfect conditions for an attacker (sieving in TNFS for which no computation record
is available, perfect matrix reduction in the filtering step, no memory limitation, ECM having the
same performances for slightly larger smoothness bounds). The results are more precise than these
obtained by forgetting the o(1) term in the complexity as in [FK18] and [DGS17] because we don’t
omit any term in Equation (1). The analysis is also more precise than that of Menezes, Sarkar and
Singh [MSS16] because we evaluate numerically the size of the norms Nf and Ng instead of using
the mathematical upper bound.

In the following table we list the known families of pairings with 9 ≤ k ≤ 54, which is a safety
margin since the choices among BN, BLS and KSS have k between 12 and 24. The labels follow
the format k, value of k,m, a two or three digits number which designs the construction number
in the taxonomy [FST10], e.g. k9m62 denotes the family having k = 9 in the section 6.2 of the
taxonomy, whereas k11m620 denotes the family of k = 11 of section 6.20 in the taxonomy. The sizes
of the Dupont-Enge-Morain (DEM) construction also apply for Cocks-Pinch (CP). To verify the
results one has to use Equation 1 and compute the best values of log2A and log2B (we provide
our results and scripts on demand and we will maintain an online taxonomy together with the files
which determine the security results).

security level
family 128 bits 192 bits 256 bits

log2(qk), field side security when min(field,curve) security level = required level, algorithm, κ

k9DEM 8622. 185 exTNFS-Conj k=3 9234. 192 exTNFS-Conj k=3 16070. 256 exTNFS-Conj k=3
k10DEM 5100. 161 exTNFS-Conj k=2 7660. 200 exTNFS-Conj k=2 11980. 257 exTNFS-Conj k=2
k11DEM 5610. 179 TNFS-base m k=1 8426. 226 TNFS-base m k=1 11240. 272 TNFS-base m k=1
k12DEM 6120. 163 exTNFS-Conj k=4 10540. 194 exTNFS-Conj k=4 16010. 256 exTNFS-Conj k=3
k13DEM 6630. 200 TNFS-base m k=1 9958. 240 TNFS-base m k=1 13290. 294 TNFS-base m k=1
k14DEM 7140. 195 exTNFS-Conj k=2 10720. 241 exTNFS-Conj k=2 14310. 285 exTNFS-Conj k=2
k15DEM 7650. 182 exTNFS-Conj k=5 11490. 200 exTNFS-Conj k=5 20370. 258 exTNFS-Conj k=5
k16DEM 8160. 193 exTNFS-Conj k=4 12260. 230 exTNFS-Conj k=4 17250. 257 exTNFS-Conj k=4
k17DEM 8670. 243 TNFS-base m k=1 13020. 300 TNFS-base m k=1 17370. 339 TNFS-base m k=1
k18DEM 9180. 211 exTNFS-Conj k=3 13790. 252 exTNFS-Conj k=3 18400. 269 exTNFS-Conj k=6
k19DEM 9690. 261 TNFS-base m k=1 14550. 330 TNFS-base m k=1 19420. 371 TNFS-base m k=1
k20DEM 10200. 219 exTNFS-Conj k=4 15320. 257 exTNFS-Conj k=4 20440. 292 exTNFS-Conj k=4

k9method62 4356. 134 SNFS k=1 13460. 194 SNFS k=1 25340. 257 SNFS k=1
k10method62 4460. 133 SNFS k=1 14400. 196 SexTNFS k=2 27980. 256 SexTNFS k=2
k11method62 3697. 173 SNFS k=1 7128. 192 SNFS k=1 24860. 256 SNFS k=1
k13method62 4265. 325 SNFS k=1 6216. 210 SNFS k=1 16350. 259 SNFS k=1
k14method62 5516. 159 SNFS k=1 9800. 195 SNFS k=1 19120. 256 SNFS k=1
k15method62 8131. 207 SNFS k=1 12210. 263 SNFS k=1 16290. 280 SNFS k=1
k17method62 5152. 254 SNFS k=1 7776. 291 SNFS k=1 10300. 281 SNFS k=1
k18method62 8677. 197 SNFS k=1 12640. 225 SNFS k=1 16990. 304 SNFS k=1
k19method62 6709. 245 SNFS k=1 8740. 329 SNFS k=1 11940. 292 SNFS k=1
k21method62 10680. 257 exTNFS-Conj k=3 15420. 294 exTNFS-Conj k=3 21210. 315 exTNFS-Conj k=3
k22method62 7394. 253 exTNFS-Conj k=2 11400. 284 exTNFS-Conj k=2 14830. 293 TNFS-base m k=1
k23method62 9778. 279 TNFS-base m k=1 10370. 289 TNFS-base m k=1 13770. 305 TNFS-base m k=1
k25method62 11820. 268 exTNFS-Conj k=5 13490. 303 exTNFS-Conj k=5 17590. 309 exTNFS-Conj k=5
k26method62 8528. 228 exTNFS-Conj k=2 12430. 297 exTNFS-Conj k=2 17110. 322 exTNFS-Conj k=2
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security level
family 128 bits 192 bits 256 bits

log2(qk), field side security when min(field,curve) security level = required level, algorithm, κ

k27method62 14810. 289 exTNFS-Conj k=3 17200. 317 exTNFS-Conj k=3 23460. 409 exTNFS-Conj k=3
k29method62 10920. 338 TNFS-base m k=1 15960. 372 TNFS-base m k=1 18580. 406 TNFS-base m k=1
k30method62 16260. 181 exTNFS-GJL k=5 24420. 233 exTNFS-GJL k=5 32580. 398 exTNFS-GJL k=6
k31method62 11870. 273 TNFS-base m k=1 16430. 384 TNFS-base m k=1 18650. 419 TNFS-base m k=1
k33method62 19600. 387 exTNFS-Conj k=3 23490. 389 exTNFS-Conj k=3 30140. 453 exTNFS-Conj k=3
k34method62 10300. 248 exTNFS-Conj k=2 15550. 372 exTNFS-Conj k=2 20610. 430 exTNFS-Conj k=2
k35method62 17250. 374 exTNFS-Conj k=5 24210. 425 exTNFS-Conj k=5 29560. 437 exTNFS-Conj k=5
k37method62 14960. 327 TNFS-base m k=1 19140. 455 TNFS-base m k=1 23660. 499 TNFS-base m k=1
k38method62 13420. 285 exTNFS-Conj k=2 17480. 388 exTNFS-Conj k=2 23880. 465 exTNFS-Conj k=2
k39method62 20530. 427 exTNFS-Conj k=3 29920. 446 exTNFS-Conj k=3 35220. 459 exTNFS-Conj k=3
k41method62 18290. 359 TNFS-base m k=1 18290. 381 TNFS-base m k=1 29050. 515 TNFS-base m k=1
k42method62 21370. 459 exTNFS-Conj k=5 30840. 488 exTNFS-GJL k=6 42420. 503 exTNFS-Conj k=3
k43method62 31020. 477 TNFS-base m k=1 31020. 413 TNFS-base m k=1 31020. 515 TNFS-base m k=1
k45method62 31000. 361 exTNFS-Conj k=5 34740. 448 exTNFS-Conj k=5 47120. 496 exTNFS-Conj k=5
k46method62 19560. 408 exTNFS-Conj k=2 20740. 435 exTNFS-Conj k=2 27540. 472 exTNFS-Conj k=2
k47method62 33070. 510 TNFS-base m k=1 33070. 459 TNFS-base m k=1 33070. 515 TNFS-base m k=1
k49method62 23110. 547 exTNFS-Conj k=7 34720. 574 exTNFS-Conj k=7 42560. 654 exTNFS-Conj k=9
k50method62 23640. 418 exTNFS-Conj k=5 26970. 632 exTNFS-Conj k=5 35180. 519 exTNFS-Conj k=5
k10method63 4460. 134 SexTNFS k=2 12580. 192 SexTNFS k=2 23080. 256 SexTNFS k=2
k14method63 5516. 148 SNFS k=1 8036. 206 SNFS k=1 21640. 258 SexTNFS k=2
k18method63 8676. 294 SexTNFS k=2 12640. 275 SNFS k=1 16990. 292 SexTNFS k=2
k22method63 7409. 387 SexTNFS k=2 11400. 273 exTNFS-Conj k=2 14830. 351 SexTNFS k=2
k26method63 8568. 416 SNFS k=1 12440. 288 exTNFS-Conj k=2 17110. 347 exTNFS-Conj k=2
k30method63 16270. 547 SNFS k=1 24420. 351 exTNFS-GJL k=6 32580. 434 exTNFS-GJL k=6
k34method63 10460. 670 SNFS k=1 15560. 348 exTNFS-Conj k=2 20680. 409 exTNFS-Conj k=2
k38method63 13530. 316 exTNFS-Conj k=2 17560. 393 exTNFS-Conj k=2 23940. 459 exTNFS-Conj k=2
k42method63 21340. 411 exTNFS-Conj k=6 30920. 470 exTNFS-Conj k=6 42500. 515 exTNFS-GJL k=7
k46method63 13900. 332 exTNFS-Conj k=2 21450. 405 exTNFS-Conj k=2 27740. 452 exTNFS-Conj k=2
k50method63 22680. 415 exTNFS-GJL k=5 27080. 462 exTNFS-Conj k=5 35170. 486 exTNFS-GJL k=5
k54method63 25130. 476 exTNFS-Conj k=6 34870. 1880 SNFS k=1 46980. 570 exTNFS-GJL k=9
k12method64 9192. 172 SNFS k=1 24460. 192 SexTNFS k=2 43180. 258 SexTNFS k=2
k20method64 7640. 208 SNFS k=1 11480. 227 SNFS k=1 19160. 257 SNFS k=1
k28method64 9800. 412 SexTNFS k=2 14280. 345 SNFS k=1 19210. 310 SNFS k=1
k36method64 15770. 517 SexTNFS k=2 22970. 368 SNFS k=1 30890. 379 SNFS k=1
k44method64 13650. 412 SNFS k=1 21030. 431 SNFS k=1 27370. 436 SNFS k=1
k52method64 15920. 575 SNFS k=1 23200. 502 exTNFS-Conj k=4 31930. 594 SNFS k=1
k9method66 4810. 129 SNFS k=1 6178. 196 SNFS k=1 20070. 258 SNFS k=1
k10method66 5104. 166 SNFS k=1 12780. 192 SNFS k=1 25420. 261 SNFS k=1
k11method66 3421. 339 exTNFS-GJL k=1 5263. 216 TNFS-base m k=1 6846. 241 SNFS k=1
k12method66 5525. 128 SexTNFS k=2 12580. 192 SexTNFS k=2 26120. 256 SexTNFS k=2
k13method66 4008. 155 TNFS-base m k=1 5806. 229 TNFS-base m k=1 11990. 259 TNFS-base m k=1
k14method66 4906. 175 SNFS k=1 7594. 197 exTNFS-Conj k=7 9610. 232 SNFS k=1
k15method66 5736. 175 SNFS k=1 8616. 192 SNFS k=1 11500. 222 SNFS k=1
k16method66 5608. 258 SNFS k=1 8422. 202 exTNFS-Conj k=4 15810. 256 exTNFS-Conj k=4
k17method66 5914. 202 TNFS-base m k=1 7426. 237 TNFS-base m k=1 9784. 259 exTNFS-Conj k=2
k19method66 6411. 217 TNFS-base m k=1 8397. 233 TNFS-base m k=1 11390. 274 TNFS-base m k=1
k20method66 7013. 331 SNFS k=1 14050. 244 exTNFS-Conj k=4 17130. 257 exTNFS-Conj k=4
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security level
family 128 bits 192 bits 256 bits

log2(qk), field side security when min(field,curve) security level = required level, algorithm, κ

k21method66 7359. 250 SNFS k=1 10720. 227 exTNFS-Conj k=3 14410. 262 exTNFS-Conj k=3
k22method66 8008. 136 exTNFS-Conj k=2 12320. 269 exTNFS-Conj k=2 16020. 314 exTNFS-Conj k=2
k23method66 9614. 236 TNFS-base m k=1 11160. 293 TNFS-base m k=1 13500. 340 TNFS-base m k=1
k24method66 7642. 171 SNFS k=1 12440. 195 SNFS k=1 24680. 259 SNFS k=1
k25method66 12160. 249 exTNFS-Conj k=5 14220. 257 exTNFS-Conj k=5 16880. 294 exTNFS-Conj k=5
k26method66 7972. 226 exTNFS-Conj k=2 11610. 267 exTNFS-Conj k=2 15980. 319 exTNFS-Conj k=2
k27method66 8062. 249 exTNFS-GJL k=9 11840. 259 exTNFS-Conj k=3 15620. 349 exTNFS-GJL k=3
k28method66 10460. 289 exTNFS-Conj k=7 15190. 261 exTNFS-Conj k=4 20900. 300 exTNFS-Conj k=4
k29method66 18650. 363 TNFS-base m k=1 18650. 382 TNFS-base m k=1 18650. 370 TNFS-base m k=1
k30method66 11470. 216 exTNFS-Conj k=3 17230. 256 exTNFS-Conj k=5 22990. 297 exTNFS-Conj k=5
k31method66 14600. 347 TNFS-base m k=1 14600. 362 TNFS-base m k=1 21780. 410 TNFS-base m k=1
k32method66 8984. 355 exTNFS-Conj k=2 13010. 414 exTNFS-Conj k=2 17360. 305 exTNFS-Conj k=4
k33method66 10260. 267 exTNFS-Conj k=3 15790. 302 exTNFS-Conj k=3 20540. 328 exTNFS-Conj k=3
k34method66 12050. 355 exTNFS-Conj k=2 16280. 328 exTNFS-Conj k=2 21730. 391 exTNFS-Conj k=2
k35method66 20780. 381 exTNFS-Conj k=5 20780. 344 exTNFS-Conj k=5 31060. 390 exTNFS-Conj k=5
k37method66 20320. 404 TNFS-base m k=1 20320. 422 TNFS-base m k=1 22680. 442 TNFS-base m k=1
k38method66 13550. 355 exTNFS-Conj k=2 16800. 339 exTNFS-Conj k=2 22740. 405 exTNFS-Conj k=2
k39method66 12020. 273 exTNFS-Conj k=3 17420. 327 exTNFS-Conj k=3 23960. 361 exTNFS-Conj k=3
k40method66 14780. 371 exTNFS-Conj k=5 22490. 383 exTNFS-Conj k=5 29380. 406 exTNFS-Conj k=5
k41method66 33370. 485 TNFS-base m k=1 33370. 503 TNFS-base m k=1 33370. 522 TNFS-base m k=1
k42method66 14720. 297 exTNFS-Conj k=3 21440. 356 exTNFS-Conj k=3 28830. 398 exTNFS-Conj k=3
k43method66 17050. 399 TNFS-base m k=1 30940. 499 TNFS-base m k=1 30940. 516 TNFS-base m k=1
k44method66 14910. 335 exTNFS-Conj k=2 20640. 379 exTNFS-Conj k=2 26340. 453 exTNFS-Conj k=2
k45method66 15800. 357 exTNFS-Conj k=5 22980. 386 exTNFS-Conj k=5 31610. 431 exTNFS-Conj k=5
k46method66 14590. 335 exTNFS-Conj k=2 22560. 401 exTNFS-Conj k=2 29000. 476 exTNFS-Conj k=2
k47method66 26130. 466 TNFS-base m k=1 26130. 485 TNFS-base m k=1 29360. 523 TNFS-base m k=1
k48method66 13750. 304 exTNFS-Conj k=3 20660. 366 exTNFS-Conj k=3 27570. 404 exTNFS-Conj k=3
k49method66 29930. 496 TNFS-base m k=1 29930. 518 TNFS-base m k=1 34520. 566 TNFS-base m k=1
k50method66 21820. 433 exTNFS-Conj k=5 26420. 445 exTNFS-Conj k=2 33820. 459 exTNFS-Conj k=5
k52method66 20800. 387 exTNFS-Conj k=2 27500. 460 exTNFS-Conj k=2 33620. 491 exTNFS-Conj k=2
k53method66 48570. 582 TNFS-base m k=1 48570. 610 TNFS-base m k=1 48570. 631 TNFS-base m k=1
k9method67 4564. 266 SNFS k=1 6598. 198 exTNFS-GJL k=9 9081. 287 SNFS k=1
k12method67 5340. 148 SNFS k=1 8028. 199 SexTNFS k=2 20120. 256 SexTNFS k=2
k15method67 14520. 217 SNFS k=1 14520. 217 SNFS k=1 15810. 431 SNFS k=1
k18method67 7540. 192 exTNFS-Conj k=3 10900. 273 exTNFS-GJL k=1 14990. 276 exTNFS-Conj k=3
k21method67 12560. 259 exTNFS-Conj k=3 15190. 276 exTNFS-Conj k=3 19910. 312 exTNFS-Conj k=3
k24method67 9144. 324 SexTNFS k=2 13750. 357 SexTNFS k=2 18360. 499 SexTNFS k=2
k27method67 14360. 220 exTNFS-Conj k=5 18360. 315 exTNFS-Conj k=3 24770. 346 exTNFS-Conj k=3
k30method67 16510. 263 exTNFS-Conj k=6 20900. 292 exTNFS-Conj k=6 27760. 375 exTNFS-GJL k=6
k33method67 21880. 310 exTNFS-Conj k=3 21880. 352 exTNFS-Conj k=3 30310. 395 exTNFS-Conj k=3
k36method67 13540. 260 exTNFS-Conj k=3 19480. 348 exTNFS-Conj k=3 26820. 383 exTNFS-Conj k=3
k39method67 29090. 354 exTNFS-Conj k=3 29090. 406 exTNFS-Conj k=3 35570. 438 exTNFS-Conj k=3
k42method67 28040. 365 exTNFS-Conj k=3 28040. 423 exTNFS-Conj k=3 36340. 450 exTNFS-Conj k=3
k45method67 40400. 444 exTNFS-Conj k=3 40400. 522 exTNFS-Conj k=3 67960. 587 exTNFS-GJL k=6
k48method67 16760. 301 exTNFS-Conj k=3 25200. 426 exTNFS-Conj k=3 33650. 451 exTNFS-Conj k=3
k51method67 64050. 553 exTNFS-Conj k=3 64050. 725 exTNFS-Conj k=3 64050. 644 exTNFS-Conj k=3
k54method67 23080. 356 exTNFS-Conj k=3 32600. 499 exTNFS-Conj k=3 46960. 516 exTNFS-Conj k=6
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security level
family 128 bits 192 bits 256 bits

log2(qk), field side security when min(field,curve) security level = required level, algorithm, κ

BN 5534. 128 SexTNFS k=2 13120. 192 SexTNFS k=3 25310. 256 SexTNFS k=3
k16methodKSS 5281. 154 SNFS k=1 8161. 192 SNFS k=1 18240. 257 SNFS k=1
k18methodKSS 6401. 156 SNFS k=1 11730. 195 SNFS k=1 26270. 260 SexTNFS k=2
k32methodKSS 11030. 395 SNFS k=1 14870. 370 SNFS k=1 19470. 394 SNFS k=1
k36methodKSS 11560. 370 exTNFS-GJL k=6 17110. 421 exTNFS-GJL k=6 22150. 521 exTNFS-GJL k=6
k40methodKSS 15070. 411 exTNFS-GJL k=6 22080. 400 exTNFS-GJL k=8 29120. 531 exTNFS-GJL k=6
k11method620 5258. 128 SNFS k=1 16870. 192 SNFS k=1 32980. 256 SNFS k=1
k15method620 7650. 171 SNFS k=1 11490. 209 SNFS k=1 33330. 256 SNFS k=1
k26method624 8546. 191 SNFS k=1 12180. 212 SNFS k=1 17270. 260 SNFS k=1
k34method624 10740. 289 SNFS k=1 15650. 270 SNFS k=1 20490. 315 SNFS k=1

k3MNT 4127. 128 exTNFS-Conj k=3 9191. 192 exTNFS-Conj k=3 16120. 256 SexTNFS k=3
k4MNT 4240. 128 exTNFS-Conj k=4 10520. 192 exTNFS-Conj k=4 19040. 256 exTNFS-Conj k=4
k6MNT 4620. 128 SexTNFS k=3 15000. 192 SexTNFS k=6 20760. 256 exTNFS-Conj k=6

k9methodLZZW 5314. 128 SNFS k=1 11510. 192 SNFS k=1 20650. 256 SNFS k=1
k12methodDCC 10790. 177 SexTNFS k=2 14390. 199 SexTNFS k=2 25910. 262 SexTNFS k=2
k15methodDCC 5745. 285 SNFS k=1 8985. 192 exTNFS-Conj k=3 20140. 256 exTNFS-Conj k=5
k24methodDCC 7656. 196 SNFS k=1 11500. 248 exTNFS-Conj k=3 15340. 269 exTNFS-Conj k=6
k48methodDCC 13780. 352 exTNFS-Conj k=3 20690. 523 exTNFS-Conj k=6 27600. 560 exTNFS-Conj k=6

k2rho1 3460. 129 exTNFS-Conj k=2 7200. 195 exTNFS-Conj k=2 12200. 259 exTNFS-Conj k=2

Our results can be downloaded at:

https://webusers.imj-prg.fr/~razvan.barbaud/Pairings/Pairings.html

4 Complexity of the Miller’s algorithm at 128 bits of security

In this section, we make an extensive comparison among a large number of families in the literature.
Our comparison is not optimized enough to be directly implemented for each of the over 150 families,
but is optimized enough to make apparent the good families of pairings. The criterion of comparison
is the binary cost of the Ate pairing computation (Miller loop and final exponentiation).

For each family, we compute parameters u with a small NAF weight, if it is possible. Otherwise,
we use random parameters u of the required bit size, but in some cases of large embedding degree
even this is impossible. Indeed, some of the families, for example those of prime degree have never
been investigated numerically, e.g. BLS-26.

4.1 Notation and arithmetic

In the following we use the classical notations Mq, Sk and Iq for the binary cost of the multiplication,
squaring and respectively inversion over Fq. We denote by Mk, Sk and Ik the binary cost of the
multiplication, squaring and inversion in the field Fqk . For our level of optimization, the crude
estimation Mq = Sq is enough. When a multiplication by an element of Fq is necessary (for instance
a multiplication by a, denoted da, in the doubling of points) we make the coarse estimation that
da = Mq.
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In any case one can use the estimation Mk ≤ k2Mq, but when q is a prime of 500 to 5000 bits
we use the formulae of multiplication in tower fields:

– when k = 2 Karatsuba’s trick [Knu97] gives M2 = 3Mq;
– when k = 3 Toom-Cook’s trick [Knu97] gives M3 = 5Mq;
– when k = 5, 6, 7, we use the formulae in [EGI11]: M5 = 9Mq, M6 = 11Mq and M7 = 13Mq

as the implementations in [EGI11] demonstrate that the arithmetic in this article is the more
efficient.

– when we use a twist of degree d = 2 (resp. 3, 4, 6) we count Mk = 3Me (resp. Mk = 5Me,
Mk = 9Me, Mk = 11Me) for e = k/d [Knu97,EGI11];

– when k = 22, 26, 34, 46 and we have a twist of degree d = 2, we consider that Me = (k/2)2Mq

where e = k/d.

We use the
We go from the arithmetic complexity to the binary complexity using the estimate that Mq

counts for w2 word multiplications, where w is the number of machine words of q. We denote by
m32 (resp. m64) the cost of a word multiplication on a 32-bit (resp 64-bit machine). A comparison
of hardware implementation is beyond the scope of this article because it is much more difficult to
take into account the dedicated architectures.

4.2 Construction 6.2 from [FST10]

In this metafamily of curves we can construct curves whose embedding degree is odd. The curves
admit a discriminant D = −1 (we abusively replace D in the sequel by its absolute value), so we
have no twist.

The general expression of Ate pairing for construction 6.2 is defined as follow:

G1 ×G2 → G3,(P,Q)→
(
fx2,Q(P )× lqQ,x2Q(P )

v(x2+q)Q(P )

) qk−1
r

The Ate pairing computation is composed of one execution of the Miller algorithm for log2(u2)
iterations, without the denominator elimination. The Ate pairing expression cannot be simplified:

G1 ×G2 → G3,(P,Q)→
(
fx2,Q(P )× lqQ,x2Q(P )

v(x2+q)Q(P )

) qk−1
r

.

Its complexity is log2(u2) doubling step, plus HW (u2) addition step and an extra doubling step

for the evaluation of
lqQ,x2Q(P )

v(x2+q)Q(P ) .

To our knowledge, there is no reference in the literature to pairing computations without twists.
We computed new formulae and we obtain the arithmetic cost of each step in Table 2.

Operation Complexity affine Complexity projective Complexity Jacobian

Doubling step 2Mk + Sk + Ik 3kMq + 12Mk + 7Sk 3kMq + 10Mk + 8Sk
Addition step 5Mk + 2Sk + Ik 3kMq + 16Mk + 2Sk 3kMq + 19Mk + 14Sk

Table 2: Complexity of Miller’s steps without twist

We use the estimation Mk = Sk and find that the doubling step in projective coordinates has a
cost of 3kMq + 19Mk. Compare this to that in Jacobian coordinates which is 3kMq + 18Mk. For the
addition step, the difference between the two types of coordinates is more important : in projective
coordinates we obtain 3kMq + 18Mk and in Jacobian ones we get 3kMq + 33Mk. As our goal is to
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give a first estimation of the pairing complexity, we do not search especially for parameters with
very small Hamming weight. Note that the affine coordinates could be more interesting than the
projective ones if the complexity of the inversion in Fqk is smaller than 20Mk. This coarse estimation
is obtained by considering that Mk = Sk and kMq = Mk. The expected gain is not important
enough, so we don’t continue with a precise estimation in this case.

k min(log2(q)) min(log2(u)) u (log2(q)) Miller’s cost ≈
9 484 22 −1+23+24+25+29+210+222 482 44DBL+20Add+1DBL+Mk+Ik 31 155Mq + Ik
11 336 13 −1 + 28 + 214 363 28DBL+4Add+1DBL+Mk+Ik 65 316Mq + Ik
13 328 1+2+23+24+28+210+214+220 599 20DBL+14Madd+1DBL+Mk+Ik 110 085Mq + Ik
15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35 complexity higher than 203 985Mq + Ik
37, 39, 43, 45 no value for u below 211

Table 3: Method 6.2, 128 bits of security, no twist, pairing estimation

Best choice for the method 6.2 According to the results in Table 3, the curves of embedding
degree 9 are the champion among the curves of construction 6.2 without twists. Yet, they are no
match for the curves admitting twists in following constructions.

4.3 Construction 6.3 from [FST10]

Using this construction, we obtain elliptic curve having an embedding degree k = 2k′, for k′ an odd
number. Those curves have a discriminant D = 1, they admit a twist of degree 2.

The expression of the optimal Ate pairing for this family is the following:
(
fx2,Q(P )× l−qQ,x2Q(P )

) qk−1
r .

The optimal Ate pairing for curves constructed using method 6.3 consists in one Miller’s algorithm
indexed over x2, plus an extra line evaluation.

The Table 4 presents the value that we find by a quick research and using very large estimation
for the cost of arithmetic in the tower field. We used the estimation cost from Table ?? as we are
working on elliptic curve with discriminant 1 and quadratic twist.

k u (log2(q)) Miller’s cost ≈Mq

10 1 + 23 − 25 + 210 + 213 + 231 432 62DBL+14Madd+Le+Mk 11 938

14 1−22+26+29−212−215−219+222 390 22DBL+7Madd+Le+Mk 6 894

18 1+2+23+25+27+28+210+212+213+222 482 44DBL+11Madd+Le+Mk 23 458

22 1 + 2 + 24 + 214 + 215 403 30DBL+9Madd+Le+Mk 78 423

26 1 + 28 + 212 360 24DBL+5Madd+Le+Mk 81 248

30 1 + 22 + 23 − 210 + 214 + 216 552 32DBL+11Madd+Le+Mk 26 687

34 1− 24 + 210 + 214 533 28DBL+6Madd+Le+Mk 165 138

38 1 + 23 + 29 + 211 + 217 713 34DBL+11Madd+Le+Mk 268 200

42 1 + 24 + 27 + 28 + 210 + 211 539 24DBL+7Madd+Le+Mk 225 150

46 1 + 2 + 29 + 210 + 213 660 26DBL+9Madd+Le+Mk 315 415

50 1 + 24 − 27 + 210 + 211 + 214 746 28DBL+9Madd+Le+Mk 50 603

54 1 + 2 + 23 + 25 + 28 + 29 + 211 664 23DBL+9Madd+Le+Mk 74 466

Table 4: Method 6.3, 128 bits of security
15



The smallest number of iterations for Miller’s algorithm could be reached for the curve with
k = 38, but unfortunately, in practice, we do not find a value of u that makes p and q prime below
15 bits.

The smallest size for Fq is theoretically obtained for the curve with embedding degree 26, 34 and
46. Together with the theoretically smallest number of iterations during the Miller algorithm. In
practice, the less expensive Miller’s algorithm corresponds to k = 14. For this value we also have the
smallest finite field Fq. As a consequence, the best choice for the method 6.3 using a quadratic twist
at the 128 bits of security should be the curve with k = 14.

4.4 Construction 6.4 from [FST10]

In this metafamily of curves, we construct curves with embedding degrees 4k′ where k′ is an odd
integer. The discriminant is D = 1, consequently, curves in this family admit a twist of degree 4.

The expression of the optimal Ate pairing for this family is the following:

OptAte6.4 : G1 ×G2 → G3,

(P,Q)→
(
fx,Q(P )× l−qQ,x2Q(P )

vqQ(P )v(x−q)Q(P )

) qk−1
r

As we can use a quadratic twist, the denominator vqQ(P )v(x−q)Q(P ) vanishes during the final
exponentiation. Thus the expression of the optimal Ate pairing can be simplified as:

OptAte6.4 : G1 ×G2 → G3,

(P,Q)→
(
fx,Q(P )× l−qQ,x2Q(P )

) qk−1
r .

k min(log2(q)) min(log2(u)) u (log2(q)) Miller’s cost ≈Mq

12 510 63, 7 1 + 2 + 23 + 28 + 29 + 211 + 264 510 64DBL+6Madd+Le+Mk 10 141

20 382 31, 8 1 + 24 + 216 + 232 383 32DBL+3Madd+Le+Mk 9 116

28 350 21, 8 1 + 2 + 23 + 24 + 28 + 29 + 222 350 22DBL+6Madd+Le+Mk 10 278

36 438 21, 9 1 + 22 + 210 + 214 + 216 + 222 438 22DBL+5Madd+Le+Mk 18 901

44 310 12, 9 1 + 27 + 28 + 212 + 214 342 14DBL+4Madd+Le+Mk 59480

52 306 10, 9 1− 26 + 29 + 212 + 213 380 13DBL+4Madd+Le+Mk 81134

Table 5: Method 6.4, 128 bits of security, twist of degree 4

The optimal Ate pairing for curves constructed using method 6.4 is composed by one Miller’s
algorithm indexed over x, plus an extra line evaluation. The Table 5 presents some examples of
values for u that minimize the number of addition steps during Miller’s algorithm. In this Table, we
do not include the column giving the number of bits of u, as it can be deduced by the number of
doubling step we count.

We compare the curves with approximately 10 000 Mq (k = 12, 20, 28) and the curve with the
smallest field Fq (k = 44). On a 32 bits architecture, it seems that the curves constructed by method
6.4 with k = 28 provides the most efficient pairing, on a 64 bits architecture, it should be the curve
with k = 20. Of course, those results highly depends on the architecture and the implementation.
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k log32(q) Miller’s in m32 log64(q) Miller’s in m64

12 16 2 596 096 8 649 024

20 12 1 312 704 6 328 176

28 11 1 243 638 6 370 008

44 11 7 197 080 6 2 141 280

Table 6: Method 6.4, Comparison of the best candidates

4.5 Construction 6.6 from [FST10]

In this metafamily of curves, also called BLS, we can construct curves with discriminant D = 3.
Hence, in this case the elliptic curves can admit a twist of degree 3 or 6. The method of construction
depends on the residue of k modulo 6, and we studied all the families from k = 9 to k = 53, all
being possible except those for which 18 divides k, i.e. 18, 36 and 54.

Curves admitting a twist of degree 6 When k = 0 mod 6, then the elliptic curve admits a twist
of degree 6. The corresponding embedding degrees are k ∈ {12 (i.e. BLS12), 24 (i.e. BLS24), 30, 36, 42, 48}.

The expression of the optimal Ate pairing is the following:
OptAte6.6d6 : G1 ×G2 → G3,

(P,Q)→
(
fx,Q(P )×l−qQ,xQ(P )
vQ(P )v(x−q)Q(P )

) qk−1
r

.

Since these curves admit a twist of degree 6, we can use the denominator elimination in order to
simplify the expression of the pairing:
OptAte6.6d6 : G1 ×G2 → G3,

(P,Q)→ (fx,Q(P )× l−qQ,xQ(P ))
qk−1
r .

We use the most efficient formulas in the literature in order to estimate the algebraic complexity
of a Miller’s execution. We recall them in Table 7.

Operation Complexity

Doubling step [CLN10] (2k/d)Mq + 3Me + 5Se +Mk + Sk
Addition step [CLN10] (2k/d)Mq + 14Me + 2Se + 1dc +Mk

Mixed addition [CLN10] (2k/d)Mq + 10Me + 2Se + 1dc +Mk

Final line evaluation 2k/dMq + 5Me

Table 7: Complexity of Miller’s steps using sextic twist

The smallest number of operation over Fq is obtained for k = 12, but the smallest field is obtained
for k = 24.

k min(log2(q)) min(log2(u)) u (log2(q)) Miller’s cost ≈Mq

12 461 64 −277 + 250 + 233 460 77DBL+2Madd+Le+Mk 7 438

24 318 32 −232 + 228 + 212 319 32DBL+2Madd+Le+Mk 9 381

30 383 32 4294991881 383 32DBL+4Madd+Le+Mk 9 887

42 350 22 −222 + 218 + 26 349 22DBL+2Madd+Le+Mk 9 738

48 286 16 26 + 211 + 213 + 214 + 216 296 17DBL+4Madd+Le+Mk 17 042

Table 8: Method 6.6 (BLS), 128 bits of security, twist of degree 6
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In order to compare those two curves, we have to estimate the complexity of the Miller algorithm
in terms of machine word. The Table 9 presents our estimation. We consider that a multiplication
over Fq is computed using the schoolbook multiplication.

k log32(q) Miller’s in m32 log64(q) Miller’s in m64

12 15 1 673 550 8 476 032

24 10 938 100 5 234 525

Table 9: Method 6.6, Comparison of the best candidates

According to our estimation, the optimal Ate pairing seems to be more efficient on BLS24 than
on BLS12 curves.

Curves admitting a twist of degree 3 Among the elliptic curves constructed by method 6.6,
those for which k = 3 mod 6 admit a twist of degree 3. The expression of the optimal Ate pairing
depends on the embedding degree. For each embedding degree k ∈ {15, 21, 27, 33, 39, 45, 51}, we
obtain a different short vector that should be used in order to compute the pairing. The expression
of the pairing follows a common pattern for k ∈ {15, 33, 51}, respectively for k ∈ {27, 45}; and for
k ∈ {21, 39}.

For k ∈ {15, 33, 51} using the construction 6.6, we obtain the same pattern for a short vector:
[x,−1, 0, . . . 0,−1, 0, . . . , 0].

We give here the definition of an optimal Ate pairing for k = 15.
We choose [x,−1, 0, 0, 0, 0,−1, 0, . . . , 0] as short vector. The expression of the optimal Ate pairing

using this vector is the following:
OptAtek156.6d3 : G1 ×G2 → G3,

(P,Q)→
(

(
fx,Q

vq+q
6

Q

ls1Q,xQ
vs0Q

ls2Q,−qQ
vs1Q

)(P )

) qk−1
r

, where s0 = x− q − q6, s1 = −q − q6 and s2 = −q6.

When using a twist of degree 3, the vertical line does not vanish during the final exponentiation.
We can however simplify the pairing expression. Zhang and Lin in [ZL12] proposes the latest record
for the computation of pairings over curves with a twist of degree 3. They barely improve the result
of [CLN10] but the method is very helpful for the simplification of the optimal Ate pairing in our
case. We use Zhang and Lin formulas for the complexity of Miller’s algorithm’s step 10.

Applying the method developed by Zhang and Lin in [ZL12], we can make the following

transformation 1
(vQ) (P ) =

X2
Q+XQZQxp+x

2
q

Z2
Q

.

Indeed, using the method developed by Zhang and Lin in [ZL12], we can transform the fraction
ls1Q,xQ
vs0Q

into

X2
s0Q − Zs1QZxQ(Zs1QXxQ −Xs1QZxQ)2(Zs1QYxQ − Ys1QZxQ)(Ys0Q − Zs0QyP )+

Xs0QZs0QxP + Z2
s0Qx

2
q

which correspond to an extra addition step s0Q = s1Q+ xQ. We can apply the same method

to the other fraction
ls2Q,−qQ
vs1Q

. The Miller algorithm output the point xQ. We remark that s1Q =

s2Q+ (−Qq), thus the evaluation of
ls2Q,−qQ
vs1Q

correspond to the addition step between s2Q and −Qq.
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We also can notice that s0Q = s1Q+ xQ, we then obtain that
ls1Q,xQ
vs0Q

correspond to the addition

step between s1Q and xQ the output of Miller’s algorithm.In order to perform these computations,
we have to precompute the points s2Q = −Qq6 , s1Q = −Qq +Qq

6

and s0Q = xQ−Qq +Qq
6

. Those
computations correspond to two Frobenius Qq and Qq

6

. We follow the example of [BD18] the coarse
estimation that a Frobenius evaluation cost (k − 1)Mq.

We want to simplify the evaluation of 1
(vQ)q+q6

. The power q+q6 could be split into two Frobenius

evaluation. We will modify the expression of 1
(vQ) by the following way:

1

(vQ)
(P ) =

1

xQ − xP
we begin with affine coordinates

=
(y2Q − y2q )

(xQ − xP )(y2Q − y2q )
,

=
x2Q + xQxP + x2q

y2Q − y2q
.

Using a twist of degree 3, we have that y2Q− y2q belongs to Fqk/d and as a consequence will vanish
during the final exponentiation.

In [ZL12], the authors made the assumption that affine coordinates should be more efficient than
projective one as long as Ik ≤ 5.6Mk. In order to be the more general, we will consider only the
projective coordinates. We than transform the affine expression into the following projective one:

1

(vQ)
(P ) =

X2
Q +XQZQxp + x2q

Z2
Q

.

When using a twist, the coordinates ZQ belongs to Fqk/d .

As a consequence, the evaluation of 1
(vQ) is composed by Sq + kMq + Sk/d +Mk/d operations.

We need two Frobenius maps (one by p and one by q6) plus Mk in order to compute 1
(vQ)q+q6

.

Finally the total complexity of (
fx,Q

vq+q
6

Q

ls1Q,xQ
vs0Q

ls2Q,−qQ
vs1Q

)(P ) is the computation of Miller’s algorithm

plus (5k − 4)Mq + Sq + Sk/d +Mk/d + 2Madd+ 2Mk. We present in Table 11 the estimation of the
Miller algorithm when k ∈ {15, 33, 51}.

Operation Complexity in projectives coordinates

Doubling step [ZL12] M3b + kMq + 3Me + 9Se +Mk + Sk
Mixed addition [ZL12] kMq + 12Me + 5Se +Mk

Final line evaluation (5k − 4)Mq + Sq + Sk/d +Mk/d + 2Madd

Table 10: Complexity of Miller’s steps using twist of degree 3

For k ∈ {27, 45} we obtain a short vector on the pattern [x, 0, . . . 0, 1, 0, . . . , 0]. The optimal Ate

pairing expression is then
(
fx,Q

lq10Q,xQ
v(x+q10Q) (P )

) qk−1
r

. An alternative family for the BLS 27 family was

proposed by Zhang and Lin [ZL12]. They used a substitution of x by −1/x. The optimal Ate pairing
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expression is simplified into (fx,Q)
qk−1
r . Another advantage to the Zhang and Lin family for BSL27

is the existence of x such that q and r are both prime.

For k = 45, the fraction is
lq16Q,xQ
v(x+q16Q)

.

As a consequence, for k ∈ {27, 45} the pairing complexity is one Miller execution, plus one
addition step.

For k = 21, we obtain this short vector [0, 0, 0, 0, 0, 0, x2,−x, 1, 0, 0, 0] and for k = 39 this one
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, x2,−x, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0].

We obtain the following expressions for the pairings

(
fq

6

x2,Q

fq
7

x,Qv
q7

xQ

ls7Q,x2Q
vs6Q

ls8Q,−xqQ
vs7Q

vQ
vs8Q

(P )

) qk−1
r

,

where s6 = x2q6−xq7 +q8, s7 = −xq7 +q8 and s8 = q8 and

(
fq

12

x2,Q

fq
13

x,Qv
q13

xQ

ls13Q,x2Q
vs12Q

ls14Q,−xqQ
vs13Q

vQ
vs14Q

) qk−1
r

,

where s12 = x2q12 − xq13 + q14, s13 = −xq13 + q14 and s14 = q14.

The pairing computation consists in one Miller execution as its result, fx,Q, is an intermediate
step of the computation of fx2,Q. The point xQ can also be saved during the execution of fx2,Q.

The output is the point x2Q. We must perform 6 Frobenius. The computation of
ls13Q,x2Q
vs12Q

ls14Q,−xQ
vs13Q

are two extra addition steps. The denominators vs13Q and vs14Q cost 2(Sq + kMq + Sk/d +Mk/d).
The complexity of the pairing computation for k = 21 and k = 39 is then one Miller execution fx2,Q

plus the extra computations 26(k − 1)Mq + 2Madd+ 2(Sq + kMq + Sk/d +Mk/d) + 5Mk + Ik.

k min(log2(q)) min(log2(u)) u (log2(q)) Miller’s cost ≈
15 382, 4 31, 8 1+22+212+216+232 383 32DBL+4Madd+Le+Mk 8 216Mq

21 350, 4 21, 9 24+26+29+212+215+222 351 44DBL+11Madd+ extra computation 19160Mq + Ik
27 298, 5 15, 1 23+24+211+215 300 15DBL+3Madd 6 401Mq

33 311 13 1+2+27+29+214 336 14DBL+4Madd+Le+Mk 54 320Mq

39 308 11 24+27+210+211+213 375 26DBL+9Madd+ extra computation 145 000Mq + Ik
45 351 11 1+2−23+28+210+211 373 12DBL+8Madd+Madd+Mk 17 832Mq

51 no value for u below 211

Table 11: Method 6.6 (BLS), 128 bits of security, twist of degree 3.

The Table 11 presents our results. The best candidates among those curves are for k = 15 and
k = 27.

Curves admitting a twist of degree 2 The curves constructed using method 6.6 admits a twist of
degree 2, when k mod 6 ∈ {2, 4}. This means that k ∈ {14, 16, 20, 22, 26, 28, 32, 34, 38, 40, 44, 46, 50, 52}.

The optimal pairing expression depends on the value of k mod 6. For every k = 2 mod 6 we
find the same short vector: [x2, x, 1, 0, . . . 0]. The expression of the optimal Ate pairing is then(
fx2,Qf

q
x,Q

ls1Q,x2Q
vs0Q

ls2Q,xqQ
vs1Q

) qk−1
r

, where s0 = x2 + xq + q2, s1 = −xq + q2 and s2 = q2.

The denominators are eliminated by the final exponentiation. As the results xQ and fx,Q are
computed during the computation of fx2,Q we count only one Miller evaluation. Two line evaluations
plus 3 Frobenius and 3Mk are also necessary. The Table 12 presents the cost of the Miller execution.
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k min(log2(q)) min(log2(u)) u (log2(q)) Miller’s cost ≈
14 350 21, 9 −1+26+27+29+210+213+217+222 352 44DBL+11Madd+2Le+3πq+3Mk 11 173Mq

16 350, 5 16 23+25+26−28+211−214+217 369 66DBL+4Madd+2Le+3πq+3Mk+Ik 28 282Mq + Ik
20 350, 65 16 1+26+217 372 34DBL+4Madd+2Le+3πq+3Mk 15 990Mq

22 364 13 25+217 474 34DBL+2Madd+2Le+3πq+3Mk+Ik 64 426Mq + Ik
26 306, 6 10, 9 22+23+25+27+213+214 407 28DBL+8Madd+2Le+3πq+3Mk 91 242Mq

28 373 10, 9 −22+27+28+210+214 478 28DBL+8Madd+2Le+3πq+3Mk+Ik 21 778Mq + Ik
32 280 8, 3 2+24+25+29 309 20DBL+6Madd+2Le+3πq+3Mk 32 990Mq

34 354 8, 8 2+23+25+210 400 20DBL+3Madd+2Le+3πq+3Mk+Ik 102 102Mq + Ik
38 356 8, 9 1+22+24+26+27+210 409 20DBL+9Madd+2Le+3πq+3Mk 152 518Mq

40 370 8 −23+27+210 466 20DBL+3Madd+2Le+3πq+3Mk+Ik 28 984Mq + Ik
44, 46, 50, 52 no value for u below 212

Table 12: Method 6.6 (BLS), 128 bits of security, twist of degree 2

When k = 4 mod 6, one short vector is [x2, 0, . . . , 0,−x, 0, . . . , 0, 1, 0, . . . , 0]. For instance, for
k = 16, the optimal Ate pairing is then(

fx2,Q

fq
3

x,Q

ls1Q,x2Qls2Q,−xq3Q

) qk−1
r

, where s0 = x2 +xq3 + q6, s1 = −xq3 + q6 and s2 = q6. The cost

is one Miller execution, plus 3 Frobenius, two line evaluations, 3Mk and one inversion over Fqk .

Curves without twists The remaining elliptic curves (k = 1 or 5 mod 6) do not admit twists.
As we have seen for construction 6.2, even if the theoretical dimension of Fqk is smaller for prime
embedding degree than for not prime embedding degrees, the lack of denominator elimination is a
heavy drawback.

The expression of optimal Ate pairing according to the short vector [x2,−x, 1, 0, . . . , 0] is valuable
for k ∈ {11, 17, 23, 29, 35, 41, 47, 53}.
OptAtek116.6 : G1 ×G2 → G3,

(P,Q)→
(
fx2,Qf

q
−x,Q

ls1Q,x2Q
vs0Q

lq2Q,−xqQ
vs1Q

) qk−1
r

, where s0 = x2 − xq + q2, s1 = −xq + q2.

The complexity of this computation is one Miller’s algorithm execution, two extra addition steps,
two Frobenius, hence a total of 5Mk + Ik operations.

k min(log2(q)) min(log2(u)) u (log2(q)) ≈
11 311 13 24 + 26 + 27 + 29 + 210 + 214 338 84 538Mq + Ik
13 308 11 24 + 27 + 210 + 211 + 213 376 125 722Mq + Ik
29 643 10, 7 24 − 27 + 210 + 211 690 511 589Mq + Ik
17, 19, 23, 25, 31, 35, 37, 41, 43, 47, 49, 51, 53 no value for u below 212

Table 13: Method 6.6 (BLS), 128 bits of security, without twists

Comparison among the 6.6 (BLS) families of curve We compare in Table 14 the complexity
of Miller’s algorithm for the curves constructed using method 6.6.

The curve BLS27 in the version of Zhang and Lin provides the smallest field Fq and the smallest
number of operation over Fq. This curve seems to provide the most efficient choice when considering
the Miller loop among the BLS families. We analyse the final exponentiation in Section 6. The curves
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Twist k u (log2(q)) ≈ m32 m64

6 12 −277 + 250 + 233 460 7 438Mq 1 673 550 476 032

6 24 −232 + 228 + 212 319 9 381Mq 938 100 234 525

3 27 23 + 24 + 211 + 215 300 6 401Mq 640 100 160 025

3 15 1 + 22 + 212 + 216 + 232 383 8 216Mq 1 183 104 295 776

2 14 −1 + 26 + 27 + 29 + 210 + 213 + 217 + 222 352 11 173Mq 1 351 933 402 228

none 11 24 + 26 + 27 + 29 + 210 + 214 338 84 538Mq + Ik − −

Table 14: Comparison of the best candidates for method 6.6 at 128 bits of security

BLS 24 seems to provide the second most efficient Miller loop. Considering that, the BLS 24 curves
have a degree 6 twist and that log2(qk24) = 7656 (when log2(qk27) = 8058), the comparison with the
final exponentiation will decide between this two curves. Potentially, the BLS 15 curves could also be
a competitor if a nice arithmetic over Fp5 can be deployed. Indeed, if we compare log2(qk15) = 5745
and log2(qk24) = 7656, which is roughly the size of the exponent for the final exponentiation, the
BLS15 curve provide smaller field but the BLS24 curve can be implemented using the compressed
squarings when no practical optimization are available in the literature for k = 15. As a conclusion, a
precise implementation and analysis is necessary, in order to choose one between those three families.

4.6 Construction 6.7 from [FST10]

In this metafamily, we can construct curves with discriminant D = 2. They admit a twist of degree
2 if k is even, and no twist otherwise.

Curves admitting a twist of degree 2 The optimal Ate pairing is different for k = 12, k = 24
and respectively k ∈ {18, 30}.

For k = 12, it is (
(
fx2,Ql−qQ,x2Q)(P )

) qk−1
r .

For k = 24, it is ((fx,Ql−pQ, xQ)(P ))
qk−1
r .

For k ∈ {18, 30}, it is (
(
fx4,Ql−qQ,x4Q)(P )

) qk−1
r .

k min(log2(q)) min(log2(u)) u (log2(q)) Miller’s cost ≈Mq

12 445 32 1 + 214 + 217 + 232 445 64DBL+9Madd+Le+Mk 13 976

24 381 4.4 1 + 22 + 28 + 29 + 232 381 32DBL+4Madd+Le+Mk 20 192

30 550 10 1 + 2 + 25 − 27 + 212 691 48DBL+25Madd+Le+Mk 56 133

36 541 16 1 + 23 + 25 − 28 + 211 + 213 + 216 547 32DBL+13Madd+Le+Mk 56 963

42 667 9 no value for u below 211

48 525 24 1 + 23 + 25 + 26 + 28 + 210 + 214 + 224 525 24DBL+7Madd+Le+Mk 72 348

Table 15: Method 6.7, 128 bits of security, quadratic twist

Curves without twists The optimal Ate pairing is different for k = 15 and k ∈ {9, 21, 27}.
For k = 15, the shortest vector found is [x4 − 1, 1, 0,−1, 1,−1, 0, 1], the cost of the optimal Ate

pairing in this case is the evaluation of fx4−1,Q, plus 6 addition steps, hence a total of 10Mk + Ik.
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For k ∈ {9, 21, 27}, it is
(
fx4,Q

lq5Q,x4Q
v[x4+q5]Q

) qk−1
r

.

For k = 21, there are very few possible values for u, so that we could not provide a realistic
example of such pairing,

k min(log2(q)) min(log2(u)) u (log2(q)) Miller’s cost ≈
9 507 11 2607 520 48DBL+ 15Madd+Madd+Mk + Ik 31 369Mq + Ik
15 607 9 22165 950 56DBL+ 34Madd+ 6Madd+ 10Mk + Ik 85 050Mq + Ik
21 598 7 7315 1100 52DBL+ 23Madd+Madd+Mk + Ik 97 135Mq + Ik
27 465 4 2941 1218 48DBL+ 16Madd+Madd+Mk + Ik 157 460Mq + Ik

33, 39, 45 no value for u below 210

Table 16: Method 6.7, 128 bits of security, without twists

Best candidate for method 6.7 The cost of Miller’s loop for the curves without twists is much
more expensive than the cost for curve with a quadratic twist. Among the curves with quadratic
twists, the curves with k = 12 and k = 24 are the most promising. With k = 12 we have the
least number of operation over Fq, with k = 24 the smallest field Fq. We compare the two pairings
using a coarse estimation on the number of machine word operation in Table 17. According to our
estimation, the most efficient pairing for curves constructed with method 6.7 should be implemented
over the curve with k = 12.

k log32(q) Miller’s in m32 log64(q) Miller’s in m64

12 14 2 739 296m32 7 684 824m64

24 12 2 907 648m32 6 726 912m64

Table 17: Method 6.7, Comparison of the best candidates at 128 bits of security.

4.7 Construction 6.20, 6.24 and ”+” from [FST10]

We denote by ”+” the construction described in [FST10] that relies on the application of Theorem
6.19 [FST10]. The method is to use one construction among 6.2, 6.3, 6.7, 6.20 or 6.24 and made the
substitution x2 → αx2 in the definition of q and r, where α is a square free positive integer. The best
choices for α are described in the Algorithm for Generating Variable-Discriminant Families [FST10].
The ”+” doesn’t change the security because (and hence doesn’t change the key sizes) because we
obtain the same values of k, log2 q and polynomials in the SexNFS attacks. Indeed, if the fastest
SexTNFS attack against a family uses two polynomials f and g, one could use either the same
polynomials or f(αx2) and g(αx2) for the ”+” family. However, the degree of f and g is ”too high”
for all the families tested, so an attacker is bound to continue to use f and g.

For example , using the ”+” method, we generate values of u such that log2(u) = 13 for k = 11
and construction 6.20, but for 128 bits of security u should be at least 20 bits. One can use our
results and try to generate curves with nice discriminant. It is very important to remark that using
the construction ”+”, we can construct elliptic curve with any discriminant. For instance, in the
construction 6.2, when k = 3 mod 6, we cannot use any twist, but with construction ”6.2+”, we can
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generate curves with discriminant D = 3 and then use twists in order to improve the computation.
By the same way, when k = 0 mod 6, the construction 6.2 allows a quadratic twist, while the
construction ”6.2+” allows a sextic twist.

Using construction 6.20 and 6.24, we obtain elliptic curves with discriminant D = 1. As a
consequence, if k is even, we have a quadratic twist, otherwise we do not have a twist. For some
embedding degrees, q(x) is reducible so we had to apply the ”+” construction.

The only drawback of the ”+” method is that instead of searching for parameters u of a given
bit size b we search for parameters y0 of approximately b/2 bits. This gives less choices and we could
not find parameters of low NAF weight for the constructions 6.20+ and 6.24+. We leave it as an
open problem the generation of nice parameters and curves using the ”+” method.

4.8 KSS families from [FST10]

The KSS families of elliptic curve was introduced by [KSS08]. It is a promising complete family for
specific values of k. They are defined for k = 16, 18, 32, 36, 40 in [KSS08]. Scott and Guillevic [SG18]
found a similar family with k = 54.

The KSS16 and KSS18 were already studied in the literature, we use the recent results
from [BD18].

For k = 32, an expression of the optimal Ate pairing is fx,Qf
q
−3,Qf

q8

2,Qls1Q,xQl2q8Q,−3Q, with

s1 = −3q + 2q8. This is almost the same expression for KSS36 curves, the difference is that the
power of p is 7 and not 8. For both KSS32 and KSS36 curves, we search for a value u such that the
most significant bits are both 1, this will guarantee that the computation of 3Q is the first addition
step during the computation of fx,Q. As a consequence the cost of this optimal Ate pairing is one
Miller execution fx,Q plus 3πq + 2Le+ 4Mk + Ik.

For k = 40, fx,Qf
q11

2,Qls1Q,xQl2q11Q,−Q, with s1 = −q+2q11. The cost is fx,Q plus 2πq+2Le+3Mk.

For k = 54, fq
9+1
x,Q lq9xQ+q10Q,xQlq10Q,q9xQ [SG18].

k min(log2(q)) min(log2(u)) u (log2(q)) ≈ Miller’s cost

16 330 33 −234 + 227 − 223 + 220 − 211 + 1 340 7 534Mq

18 356 44 244 + 222 − 29 + 2 352 9 431Mq

32 344 19 25 + 210 + 211 + 219 + 220 349 19 321Mq + Ik
36 321 23 1 + 2 + 24 + 29 + 214 + 217 + 223 + 224 329 10 771Mq + Ik
40 376 17 1 + 24 + 27 + 28 + 213 + 218 377 18 254Mq

54 315, 9 15, 7 23 + 27 + 211 + 215 + 216 348 20 427Mq

Table 18: KSS families, 128 bits of security

4.9 MNT curves

The MNT curves [MNT00] are ordinary curves with embedding degree k = 3, 4, 6. In [LEHT19],
Phong et al. extended the original construction by Miyaji et al. [MNT00].

We find the following vectors and optimal Ate expression for the MNT curves:

– k = 3, [6x− 2, 1], eMNT3(P,Q) = (f6x−2,Q(P ))(q
k−1)/r;
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– k = 4, [x, 1], eMNT3(P,Q) = (fx,Q(P ))(q
k−1)/r;

– k = 6, [2x, 1], eMNT3(P,Q) = (f2x,Q(P ))(q
k−1)/r.

In [PSV06,SB06,LEHT19], some examples of MNT curves are given. These parameters are more
rare than for the complete families and the algorithms to compute them are more costly, so it is
beyond the scope of this article to propose numerical values of u. A non exhaustive list is available
in[Lyn]. In our work, we estimate the cost of Miller’s loop for this curves in Table 19. We consider
that for k = 3 we do not have a twist, but for k = 4 and k = 6 we consider that we have a degree 2
and 6 twist. The MNT curve with k = 6 would provide the most efficient pairing among the MNT
families. But when considering Table 9, the MNT family is not at all competitive.

k min(log2(q)) min(log2(u)) ≈ Miller ≈ Miller m32 m64

3 1375 687 687DBL+ 10Madd 78 711Mq > 144.106 > 37.106

4 1060 530 530DBL+ 10Madd 24 907Mq > 26.106 > 6.106

6 770 385 385DBL+ 10Madd 30 131Mq > 17.106 > 4.106

Table 19: MNT curves, 128 bits of security

4.10 Other families

The article [FST10] presents a non exhaustive list of pairing-friendly elliptic curve constructions at
the beginning of 2010.

There were other constructions like [DCC05,LZZW08] not included in [FST10]. In 2010, the ρ
value was important when considering the efficiency of pairings. The curves constructed in [DCC05]
have embedding degree already included in [FST10] but with larger ρ. It could be a reason why the
results from [DCC05] were not included in [FST10]. However, the curve with embedding degree 15
in [DCC05] resists better the Kim-Barbulescu attack and we choose to evaluate them in our study.
In [DCC05], other families are constructed with embedding degree k = 12, 13, 14, 24, 48. They do not
provided efficient pairings, either because of the lack of discriminant D = 3 (k = 13, 14) or because
the Kim-Barbulescu attack is very efficient and the required bit sizes make the pairing less efficient
than others families (k = 12, 24, 48).

The k=9 family from [LZZW08] and the k=15 family from [DCC05] were studied in [FEP16],
where Fouotsa et al. evaluate the cost the optimal Ate pairing computation for curves with odd

embedding degree. The expression of the optimal pairing for this family is nice: (fx,Q)
qk−1
r . It is the

same expression for the family with embedding degree 9 studied by Lin et al. in [LZZW08]. Their
results were that the k = 9 family is a little bit more expensive than the BN family.

We report in Table 20 the estimation of the Miller loop for those families at the 128 bits security
level.

k min(log2(q)) min(log2(u)) u (log2(q)) (log2(qk)) ≈ Miller m32 m64

9 590 73 274 + 235 − 222 + 3 590 5 310 8 808Mq 2 050 048 512 512

15 383 31, 9 2 + 210 + 216 + 219 + 232 383 5 745 6 836Mq 984 384 246 096

Table 20: The k=9 family of [LZZW08] and the k=15 family of [DCC05], 128 bits of security
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Between those two curves, the construction from [DCC05] with k = 15 is the more efficient when
considering the Miller loop. We provide in Section 6 the expression of the final exponentiation in
order to decide between those two families.

4.11 Comparison of the best candidates between each constructions

We select one promising family for each method of construction and compare them all together in
Table 21. It seems that the BLS 27 curve provides the most efficient Miller’s loop. It is mandatory
to check if the final exponentiation confirm this prediction.

Method k u (log2(q)) (log2(qk)) ≈Mq m32 m64

6.2 10 1+24+25+28+29−215+232 446 4 460 10 971 2 150 31 537 579

6.2 14 −1− 24 + 27 − 211 + 215 + 222 394 5 516 12 228 2 066 532 599 172

6.3 14 1− 22 + 26 + 29 − 212 − 215 − 219 + 222 390 5 460 6 894 1 165 086 248 184

6.4 20 1 + 24 + 216 + 232 383 7 660 9 116 1 312 704 328 176

6.4 28 1 + 2 + 23 + 24 + 28 + 29 + 222 350 9 800 10 278 1 243 638 370 008

6.6 12 −277 + 250 + 233 461 5 520 7 438 1 673 550 476 032
6.6 15 1 + 22 + 212 + 216 + 232 383 5 745 8 216 1 183 104 295 776
6.6 24 −232 + 228 + 212 319 7 656 9 381 938 100 234 525
6.6 27 23 + 24 + 211 + 215 300 8 058 6 401 640 100 160 025

6.7 12 1 + 214 + 217 + 232 445 5 340 13 976 2 739 296 684 824

KSS 16 −234 + 227 − 223 + 220 − 211 + 1 340 5 540 7 534 911 614 271 224

DCC 15 2 + 210 + 216 + 219 + 232 383 5 745 6 836 984 384 246 096

Table 21: Comparison of the best candidates for 128 bits of security

We select one promising family by each method of construction and compare them all together
in Table 21. The cost of Miller’s algorithm together with the bit size of the target field offer a good
hint about the fastest ones, but we cannot declare a clear winner. Efficient arithmetic is available
for k = 12, 16, 24, but there is room for improvement for k = 14, 15, 20, 27, 28. At a higher level
of refinement, BLS24, BLS27 and KSS16 were less studied than the other families. This makes a
short list of fast pairings. Specific implementations are necessary to decide the overall champion
and, depending on the application of pairings (short signature, identity based encryption, etc.) there
might be several champions.

5 Complexity of Miller’s loop at higher levels of security

In this section, we search for nice parameters for the optimal Ate pairing in order to make a
comparison between all families at the 192 and 256 bits security level.

5.1 Complexity of the Miller’s algorithm at 192 bits security level

We only provide here our most efficient curves for each construction.
We select one promising family by method of construction and compare them all together in

Table 22.
It seems that the curve with k = 27 and construction 6.6 version Zhang Lin could provide the

most efficient Miller’s algorithm at the 192 bits security level. Other good candidates could be BLS

26



Method k u (log2(q)) ≈Mq m32 m64

6.2 14 1− 23 + 27 + 28 + 211 + 240 718 21 940 11 606 260 3 159 360

6.4 28 −231 − 213 − 21 − 1 494 13 250 3 392 000 848 000

6.6 15 1 + 27 + 28 + 212 + 215 + 248 574 11 649 3 774 276 943 569

6.6(ZL) 27 222 + 214 + 29 + 28 + 24 + 23 + 2 438, 5 16 178 2 734 082 792 722

6.6 24 −256 − 243 + 29 − 26 518 16 368 4 730 352 1 325 808

6.7 24 −248 + 212 + 242 + 1 572 38 871 12 594 204 3 148 551

KSS 16 22 + 25 − 29 + 222 − 223 + 251 500 24 795Mq 6 347 520 1 586 880
KSS 18 2− 25 + 29 + 211 + 214 + 282 652 13 488Mq 5 948 208 1 632 048

DCC 15 250 − 240 + 215 + 213 + 211 + 210 598 8 975 3 239 975 897 500

Table 22: Comparison of the best candidates for 192 bits security level

15, BLS 24 k = 28 construction 6.4 and DCC 15. The final exponentiation could shuffle this ranking.
In Section 6 we compare the cost of the final exponentiation in order to determine which curve will
provide the most efficient optimal Ate pairing.

5.2 Miller’s complexity at 256 bit security level

We choose to give the estimation of the pairing computation for the curves such that log2(qk) is not
greater then 15 000 and of course to the curves that provide efficient pairing implementation at 128
and 192 bits security level.

The curves providing log2(qk) ≤ 15000, are curves without twist and/or expensive pairing
computation. We found out that even if the extension field Fqk is not very large, the estimation cost
for the Miller loop (see Table 23) is much more expensive than curves admitting twists reported in
Table 24.

Method k u (log2(q)) ≈Mq m32 m64

6.2 17 1 + 2 + 24 − 27 − 211 + 215 564 387 184 125.106 31.106

6.2 19 −1 + 24 + 25 − 27 + 211 + 215 631 > 190.103 > 76.106 > 19.206

6.3 22 of ≈ 26 bits of ≈ 674 bits 108 955 > 103.106 > 13.106

6.6 11 of ≈ 47, 9 bits of ≈ 622 bits 134 046 > 53.106 > 13.106

6.7 9 1 + 23 − 25 − 210 + 213 + 214 + 220 + 221 990 61 373 58 979 453 15 711 488

Table 23: Comparison of the possibles exotic candidates for 256 bits security level

According to Table 24, the most efficient Miller’s loop would be for the curves k = 28 construction
6.4 in [FST10], BLS15 and BLS27. Those curves correspond to the families such that log(q) is
smaller than 1 000 bits.

6 The Computation of the final exponentiation

The computation of Tate pairing and its derivatives requires two steps. After computing Miller’s
loop as described in Sections 4 and 5, we have to carry out an extra step for the overall cost. This
second step is called the final exponentiation where the result of Miller loop must be raised to the

power qk−1
r .
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Method k u (log2(q)) ≈Mq m32 m64

6.2 14 1+2+24+27−212+215−273+276 1362bits 38 523 > 71.106 18 645 132

6.3 14 of ≈ 85, 8 bits of ≈ 1545 bits 35 959 > 82.106 > 20.106

6.4 20 1+23−26+210−212+215+277+278+279 956 22 480 20 232.103 5 058.103

6.4 28 1+2+26+28+29−212+215+240+241+242 683 18 759 9 079 356 2 269 839

6.6 15 1+25+27+29+211+214+264 766 11 796 6 794 496 1 698 624

6.6 24 2103−2101+268+250 1024 37 126 38 017 024 9 504 256

6.6 27 1+2+24+26+27+29+210+212+229 578 20 800 6 739 200 1 684 800

6.7 12 −1+24+29−212+215+2119 1663 57 279 > 154.106 > 38.106

KSS 16 2+22−212+215+2114 1132 30 750 39 852 000 9 963 000

KSS 18 2186−275−222+24 1484 37 437 82 698 333 21 563 712

DCC 15 1+2+23+25+26−28+215+2112 1342 22 435 39 575 340 10 775 835

Table 24: Comparison of the best candidates for 256 bits security level

In this section, we present the complexity of computing the final exponentiation. Indeed the
final exponentiation has become a significant component of the global computation. Thanks to the
cyclotomic polynomial, the final exponentiation can be broken down into two components as follows:

qk − 1

r
=
qk − 1

φk(q)
× φk(q)

r
.

In this work, we are only interested in the computation of the second part of the final exponentiation.

This part is called the hard part since computing
qk − 1

φk(q)
is the easy part of the final exponentiation

and its computation requires some Frobenius (2 if k is even), some multiplications and an inversion in
Fqk . Due to the results given in Section 4, we will not consider all elliptic curves in our computation of
the final exponentiation. Therefore, we focus on elliptic curves of embedding degree k = 9, 15, 12, 16;
20; 24 and 28 for the 128 bits security level. For the security levels 192 and 256, we use the same
method presented below, we have just to change the parameter u. Recall that the embedding degree
is the most significant complexity parameter of a pairing friendly elliptic curve.

Through this part, we denote by d the hard part of the final exponentiation, i.e, d =
φk(q)

r
and d′ a

multiple of d with r not dividing d′.
We keep the notations Mq, Sq, Iq for the cost of the multiplication, of the squaring and of the

inversion in Fq and similarly Mk, Sk and Ik for the operations in Fqk as they were introduced in
Section 4.1. When it is clear from the context we drop the k index and write M , S and I for Mk,
Sk and Ik. We add the notations Eu for an exponentiation by the parameter u and Fk for the cost
of a Frobenius map in Fqk .

6.1 The case of k = 9

The elliptic curves of embedding degree k = 9 have not been intensively examined in the literature.
The final exponentiation can be presented as follows:

q9 − 1

r
= (q3 − 1)× q6 + q3 + 1

r
.

In this paragraph, we will only consider the construction presented in [FEP16] (recalled in Section
4.10) since it gives the most efficient computation of the final exponentiation by comparing to
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constructions 6.2 and 6.7.
This family of elliptic curves is defined by the following q and r.

q = ((u+ 1)2 + ((u− 1)2(2u3 + 1)2)/3)/4 and r = (u6 + u3 + 1)/3.

The representation of the hard part of the final exponentiation, i.e, q
6+q3+1
r in basis q does not

give the optimal vector. Therefore, we tried to find a new multiple of the second part of the final
exponentiation that can be computed easily. For computational efficiency, a linear combination with
a maximum number of zero coefficients is desired. We apply the LLL [LLL82] algorithm to the
8× 48 integer matrix M, constructed as in [FKR11]). The most efficient vector is u3d, which is the
same as the one given in [FEP16]. This is illustrated as follows:

d′(u) = λ0 + λ1q + λ2q
2 + λ3q

3 + λ4q
4 + λ5q

5 with

λ0 = −u4 + 2u3 − u2 λ1 = −u3 + 2u2 − u
λ2 = −u2 + 2u− 1 λ3 = u7 − 2u6 + u5 + 3
λ4 = u6 − 2u5 + u4 λ5 = u5 − 2u4 + u3.

The computation of the hard part of the final exponentiation requires 2 exponentiations by (u− 1)
(since λ2 = −(x − 1)2), 5 exponentiations by u, 7 multiplications, one squaring, q, q2, q3, q4, q5-
Frobenius maps and two inversions. All these operations are performed in the cyclotomic subgroup of
Fp9 . When considering the parameter u = 274 + 235− 222, the overall cost of the final exponentiation
is then 519 S+ 25 M9+ 3 Icyc+ I9+ q, q2, q3, q4, q5. In terms of multiplications in Fq, the overall
cost of the final exponentiation is 14043M + I.

6.2 The case of k = 10

In this paragraph, we give the cost of computing the final exponentiation of the optimal Ate pairing
on elliptic curves of embedding degree k = 10. That is, it is better to present the final exponentiation
as follows since it is more efficient than considering the cyclotomic polynomial in our development:

q10 − 1

r
= (q5 − 1)× q5 + 1

r
.

We are interested on computing the hard part of the final exponentiation, i.e, the computation of
q5+1
r , since the first one consists only on one inversion, on multiplication and a q5-Frobenius map.

Considering construction given in Section 4.10, the parametrization of these elliptic curves is given
by the following q and r polynomials of u ∈ Z:{

q = (u14 + 2u12 + u10 + u4 − 2u2 + 1)/4
r = u8 − u6 + u4 − u2 + 1.

The decomposition of a multiple of the hard part in basis q is given by λ0 + λ1q + λ2q
2 + λ3q

3,
where the λi, 0 ≤ i ≤ 3 are presented as follows:{

λ0 = −(u6 + 3u4 + 3u2 + 1); λ′0 = λ0u
2; λ3 = λ′0u

2

λ1 = −λ2u2 + λ3; λ2 = −λ1 + λ3 + λ0 + λ′0

Then, the overall cost of the final exponentiation when considering the parameter u = 1 + 24 + 25 +
28 + 29 − 215 + 222 is then 8612 multiplications in Fq.
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6.3 The case of k = 12

We showed in Section 4 that for computing Miller loops in the case of elliptic curves of embedding
degree k = 12, it is better to consider BLS12 than BN curves. In this paragraph, we compare the
cost of the final exponentiation of Optimal Ate pairing in both curves. Recall that

q12 − 1

r
= (q6 − 1)× (q2 + 1)× q4 + q2 + 1

r
.

The computation of the first part of the final exponentiation, i.e: the result of Miller loop raised
to power (q6 − 1) × (q2 + 1), has almost the same cost for the two families (2 q−Frobenius, 2
multiplications and one inversion in Fqk a finite field of 5535 bits for BN curves and respectively
5532 bits for BLS curves).

We present now the cost of computing the second part.

BN curves: We briefly present the BN elliptic curve [BN05] which is defined over Fq by E : y2 = x3+b,
where b 6= 0 is neither a square nor a cube and by a parameter u such that

r = 36u4 + 36u3 + 18u2 + 6u+ 1 and q = 36u4 + 36u3 + 24u2 + 6u+ 1.

The parameter u is chosen such that both q and r are prime numbers, we consider the parameter
suggested in [BD18]: u = 2114 + 2101 − 214 − 1.

From the given expressions of q and r, the hard part of the final exponentiation can be written
as a function of u:

q4 − q2 + 1

r
= λ0 + λ1q + λ2q

2 + λ3q
3 with


λ0 = −36u3 − 30u2 − 18u− 2
λ1 = −36u3 − 18u2 − 12u+ 1
λ2 = 6u2 + 1
λ3 = 1

.

There are many efficient methods for computing the hard part of the final exponentiation presented
in [SBC+09], [DSD07], [FKR11] and in [DG16]. In this paragraph we present our new development
of the multiple of this part presented by Fuentes et al. in [FKR11], which makes the computation of
the part in question more efficient (we know that an exponent of a pairing is a pairing). So we give
the following presentation.

2u
(
6u2 + 3u+ 1

) q4(u) + q2(u) + 1

r(u)
=
(
12u2(u+ 1)− 6u2 + 4u− 1)q3 + (12u2(u+ 1)− 6u2 + 6u

)
q2

+
(
12u2(u+ 1)− 6u2 + 4u)q + (12u2(u+ 1) + 6u+ 1

)
.

=′3 q
3 + λ′2q

2 + λ′1q + λ′0

with,


λ′0 = (12u2(u+ 1) + 6u) + 1 = c+ 1
λ′1 = (α2 − 2u)
λ′2 = c− 6u2

λ′3 = α1 − 1

Since the parameter u is odd, an exponentiation by u+1 is more efficient than by u since WH(u+
1) < WH(u). Therefore, our algorithm for computing the hard part of the final exponentiation, is
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more efficient than the methods presented in [DG16] and [BD18]. Our algorithm requires 2Eu +
Eu+1+9M12+3S12+3F12. The overall cost of the final exponentiation is 3Eu+10M12+3S12+5F12.
In term of complexity in Fq, our method for computing the final exponentiation requires 7381M + I
when we use the cyclotomic squaring and 5598M + 4I in the case of considering the compressed
squaring in the cyclotomic subgroup.

BLS12 curves: BLS12 [BLS02] are defined over Fq by E : y2 = x3 + b and by a parameter u ∈ Z
such that:  q = (u− 1)2(u4 − u2 + 1)/3 + u

r = u4 − u2 + 1
t = u+ 1

For computing the hard part of the final exponentiation, we refer to the algorithm presented in
[GF18] and we adapted it to the parameter u = −277 + 250 + 233. Then, in terms of complexity in Fq,
the final exponentiation requires 8151M + I when we use the cyclotomic squaring and 6188M + 6I
in the case of considering the compressed squaring in the cyclotomic subgroup.
Then comparing the final exponentiation complexity when considering these two curves is presented
in the following table.

Curve Using Cyclotomic squarings Using Compressed squarings

BN 7 381M + I 5 598M + 4I
(m32) 1 660 725 + I 1 259 550 + 4I
(m64) 472 384 + I 358 272 + 4I

BLS12 8 151M + I 6 188M + 6I
(m32) 1 833 975 + I 1 392 300 + 6I
(m64) 521 664 + I 396 032 + 6I

Table 25: Final Exponentiation Complexity for k = 12

6.4 The case of k = 14

Computing the Optimal Ate pairing over elliptic curves of embedding degree k = 14 is not studied
in literature. We showed in Section 4 that such curves are a good candidate for the 128 security
level when considering constructions 6.2 and 6.3. Therefore, for the final exponentiation we will
present the computation of these two methods. The final exponentiation consists of computing
q14−1
r = (q7 − 1)× (q + 1)× q6−q5+q4−q3+q2−q+1

r . We are interested in computing the hard part of
the final exponentiation since computing (q7 − 1)× (q + 1) is considered easy. Then, we write it in
basis q as follows:

q6 − q5 + q4 − q3 + q2 − q + 1

r
= λ0 + λ1q + λ2q

2 + λ3q
3 + λ4q

4 + λ5q
5.

Considering the construction 6.2 An elliptic curve of embedding degree k = 14 is defined over Fp by
E : y2 = x3 + ax+ b and by a parameter u such that:p = (u16 + u15 + u14 − u9 + 2u8 − u7 + u2 − 2u+ 1)/3

r = u12 + u11 − u9 − u8 + u6 − u4 − u3 + u+ 1
t = u8 − u+ 1.
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The hard part of the final exponentiation is given by the following λi, 0 ≤ i ≤ 5:

λ0 = u16 + 2u14 + u12 − u4 − 2u2 − 5 λ1 = u14 + 2u12 + u10 + u4 + 2u2 + 1
λ2 = u12 + 2u10 + u8 − u4 − 2u2 − 1 λ3 = u10 + 2u8 + u6 + u4 + 2u2 + 1
λ4 = u8 + 2u6 − 2u2 − 1 λ5 = u6 + 3u4 + 3u2 + 1.

By doing some simplifications, we get the following expressions:

λ0 = u2 × λ1,0 − λ5,1 − 4 λ1 = u2 × λ2,0 + λ5,1 = λ1,0 + λ5,1
λ2 = u2 × λ3,0 + λ5,1 = λ2,0 − λ5,1 λ3 = u2 × λ4,0 + λ5,1 = λ3,0 + λ5,1
λ4 = u2 × λ5,0 − λ5,1 = λ4,0 − λ5,1 λ5 = u2 × (u2 + 1)2 + (u2 + 1)2 = λ5,0 + λ5,1
λ5,0 = u2 × (u2 + 1)2 λ5,1 = (u2 + 1)2.

For computing the hard part of the final exponentiation, we need two exponentiations by (u+ 1),
an exponentiation by u2 and 1 multiplication for computing λ5. Then, for computing each of λ1,
λ2, λ3 and λ4 we need an exponentiation by u2 and one multiplication. The computation of λ0
requires one exponentiation by u2, 2 squarings and 2 multiplications in Fq14 . We need also q, q2,
q3, q4 and q5 Frobenius maps and 5 multiplications to multiply terms together to get the coherent
result. When we consider the parameter u = −1− 2+27 − 211 + 215 + 222 proposed in Section 4, the
computation of the final exponentiation requires then 17702 multiplications in Fq.

In this section we will only consider construction 6.2 since it is more efficient than the other
constructions. We studied all of them but in this paper we give only the efficient method for
computing the Optimal Ate pairing.

6.5 The case of k = 15

In this paragraph, we give the cost of computing the final exponentiation of the Optimal Ate pairing
on elliptic curves of embedding degree k = 15. That is, it is better to present the final exponentiation
as follows since it is more efficient than considering the cyclotomic polynomial in our development:

q15 − 1

r
= (q5 − 1)× q10 + q5 + 1

r
.

We are interested on computing the hard part of the final exponentiation, i.e, the computation of
q10+q5+1

r , since the first one consists only on one inversion, on multiplication and a q5-Frobenius
map.
Considering construction given in Section 4.10, the parametrisation of these elliptic curves is given
by the following q and r polynomials of u ∈ Z:{

q = q = (u12 − 2u11 + u10 + u7 − 2u6 + u5 + u2 + 2u+ 1)/3
r = u8 − u7 + u5 − u4 + u3 − u+ 1.

The decomposition of a multiple of the hard part in basis q is given by λ0+λ1q+λ2q
2+. . . · · ·+λ9q9,

where the λi, 0 ≤ i ≤ 9 are presented in [FEP16] as follows:
λ2 = (((u− 1)2)(u2 + u+ 1)); λ1 = λ2u; λ0 = λ1u
λ9 = λ0u; λ8 = λ9u; λ7 = λ8u
λ6 = λ7u; λ5 = λ6u+ 3; λ4 = M − λ1 − λ7;
λ3 = M − λ0 − λ6 − λ9; with, M = λ2 + λ5 + λ8
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Then, the final exponentiation of the Optimal Ate pairing over this construction of elliptic curve
of embedding degree k = 15 requires 2 exponentiations by (u − 1), 9 exponentiations by u, 20
multiplications, one cyclotomic squaring, 4 inversions in the cyclotomic subgroup of in Fq15 and q,
q2, q3, q4, q5, q6, q7, q8 and q9 Frobenius maps. By using the parameter u = 23 + 24 + 215 + 218 + 232,
we have to perform 288 Scyc, 56 M15, 5 Icyc, I15 and q, q2, q3, q4, q5, q6, q7, q8, q9 Frobenius
maps. By using the arithmetic results given in [EGI09] and in [FEP16], the overall cost of the final
exponentiation is then 19190 multiplications in Fq.

6.6 The case of k = 16

As showed in [BD18] and in [KNG+17], the elliptic curves of embedding degree k = 16 are a good
candidate for computing Optimal Ate pairing for 128-bits security level. In this paragraph, we just
recall the cost of the final exponentiation given in [GF16]. Before that, recall that an elliptic curve
of embedding degree k = 16 is defined over Fp by the equation of the form y2 = x3 + ax and by the
parameter u such that t = 1/35

(
2u5 + 41u+ 35

)
r = u8 + 48u4 + 625
q = 1

980

(
u10 + 2u9 + 5u8 + 48u6 + 152u5 + 240u4 + 625u2 + 2398u+ 3125

)
.

The final exponentiation is based on computing q16−1
r = (fq

8−1
1 )

q8+1
r . In [GF16], authors suggested

to compute the following multiple of the hard part of the final exponentiation:

u3/125× q8 + 1

r
=

φ(16)−1∑
i=0

λip
i = λ0 + λ1q + λ2q

2 + · · ·+ λ7q
7 with


λ0 = 2u3A+ 55u2B; λ4 = u3A+ 10u2B
λ1 = −4u2A− 75uB; λ5 = 3u2A+ 100uB
λ2 = −2uA− 125B; λ6 = −11uA− 250B
λ3 = −u4A− 24u3B + 196; λ7 = 7A

and

A = u3B + 56; B = (u+ 1)2 + 4.

So for computing the hard part of the final exponentiation we need to perform 7 exponentiations by
u, 2 exponentiations by (u + 1), 34 cyclotomic squarings in Gφ2(q8), 32 multiplications in Fq16 , 3
cyclotomic cubings in Fq16 and q, q2, q3, q4, q5, q6, q6, q7, q8-Frobenius maps.
By considering the arithmetic given in [ZL12], the overall cost of the final exponentiation is then
18514M + I when considering the cyclotomic squaring.

6.7 The case of k = 20

The elliptic curves of embedding degree k = 20 have not been considered before in literature. In our
estimation for Miller loop’s costs, we showed that this curve may be a good candidate for computing
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the Optimal Ate pairing.
Using Construction 6.4 of the taxonomy we have:{

q = (u12 − 2u11 + u10 + u2 + 2u+ 1)/4
r = u8 − u6 + u4 − u2 + 1

In this case, the final exponentiation consists of raising the result of the Miller loop to power
q20−1
r . This can be simplified thanks to the cyclotmic polynomial as follows.

q20 − 1

r
= (q10 − 1)× (q2 + 1)× q8 − q6 + q4 − q2 + 1

r
.

In our computation of the Miller loop in Sections 4 and 5 we considered constructions 6.4, 6.6
and 6.7. But for the final exponentiation we will only consider construction 6.4 since it yields the
most efficient decomposition in basis q of the hard part of the final exponentiation which is presented
as follows:

q8 − q6 + q4 − q2 + 1

r
=

φ(20)−1∑
i=0

λiq
i = λ0 + λ1q + λ2q

2 + · · ·+ λ7q
7,

where


λ0 = u11 − 3u10 + 4u9 − 3u8 + 4u6 − 6u5 + 4u4 − u3 − u2 + 2u+ 3
λ1 = u10 − 3u9 + 4u8 − 3u7 + 4u5 − 6u4 + 5u3 − 3u2 + u
λ2 = u9 − 3u8 + 4u7 − 3u6 + 4u4 − 6u3 + 5u2 − 3u+ 1
λ3 = u8 − 3u7 + 4u6 − 3u5 + 3u3 − 4u2 + 3u− 1
λ4 = u7 − 3u6 + 4u5 − 3u4 + u3 + u2 − 2u+ 1
λ5 = u6 − 3u5 + 4u4 − 4u3 + 3u2 − u
λ6 = u5 − 3u4 + 4u3 − 4u2 + 3u− 1
λ7 = u4 − 2u3 + 2u2 − 2u+ 1.

For more efficiency for computing the hard part of the final expression, we propose the following
development:

λ0 = λ1u− λ7 + 4; λ1 = λ2u
λ2 = λ3u+ λ7 λ3 = λ4u− λ7
λ4 = λ5u− λ7 λ5 = λ6u

λ6 = λ7u− λ7 λ7 = (u− 1)2 + (u(u− 1))
2

By this development, the hard part of the final exponentiation then requires 9 Eu, 2Eu−1, 2 squarings,
7 Frobenius maps, 14 multiplications and one inversion in the cyclotomic subgroup of Fq20 . In terms
of multiplications in Fq and by using the parameter u = 1 + 24 + 216 + 232 proposed in Section 4,
the final exponentiation requires 29250 multiplications in Fq.

6.8 The case of k = 24

BLS curves of embedding degree 24 are important candidates for computing Optimal Ate pairing
for both of the 128 and 192 security levels [BD18]. Recall that BLS24 curves are families of elliptic
curves defined over Fq by the parametrization: q = (u− 1)2(u8 − u4 + 1)/3 + u

r = u8 − u4 + 1
t = u+ 1
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The final exponentiation for BLS24 curves is decomposed into two parts thanks to the cyclotomic
polynomial

q24 − 1

r
=
(
q12 − 1

) (
q4 + 1

) q8 − q4 + 1

r
.

The hard part of the final exponentiation can be decomposed in basis q [SBC+09] as:

q8 − q4 + 1

r
=

φ(24)−1∑
i=0

λiq
i = λ0 + λ1q + λ2q

2 + · · ·+ λ7q
7,

where 

λ0 = u9 − 2u8 + u7 − u5 + 2u4 − u3 + 3
λ1 = u8 − 2u7 + u6 − u4 + 2u3 − u2
λ2 = u7 − 2u6 + u5 − u3 + 2u2 − u
λ3 = u6 − 2u5 + u4 − u2 + 2u− 1
λ4 = u5 − 2u4 + u3

λ5 = u4 − 2u3 + u2

λ6 = u3 − 2u2 + u
λ7 = u2 − 2u+ 1.

The best result in the literature to our knowledge is the one presented in [GF18]. In their work, the
hard part of the final exponentiation is presented as follows:

λ0 = λ1u+ 3 λ1 = λ2u
λ2 = λ3u λ3 = λ4u− λ7
λ4 = λ5u λ5 = λ6u
λ6 = λ7u λ7 = u2 − 2u+ 1

The overall cost of the hard part of the final exponentiation is then 8 exponentiations by u, one
exponentiation by u/2 (since u is even), one squaring, 10 multiplications and 7-Frobenius operations
in Fq24 . Then, we need to add two Frobenius operations, two multiplications and one inversion
in Fq24 to compute the final exponentiation. By using the arithmetic presented in [AFK+12] and
the parameter u = −232 + 228 + 212 proposed in Section 4 the final exponentiation requires 18732
multiplications and 10 Inversions in Fq when considering the compressed squaring and 23400
multiplications and one inversion when considering the cyclotomic squaring.

6.9 The case of k = 27

Elliptic curves of embedding degree k = 27 are suitable for computing Miller loop. In this paragraph,
we give the computation of the final exponentiation on this category of curves which is defined by
the parameter u as follow [ZL12] q = 1/3(u− 1)2(u18 + u9 + 1) + u

r = 1/3(u18 + u9 + 1)
t = u+ 1.

In this case, the final exponentiation consists on computing

q27 − 1

r
= (q9 − 1)

q18 + q9 + 1

r
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Then, the representation of the hard part of the final exponentiation can be given as described in
[ZL12] as follow.

(u1)2 × (q9 + u9 + 1)× (q8 + uq7 + u2q6 + u3q5 + · · ·+ u7q + u8) + 3

This decomposition requires one inversion in Fq27 , 17 exponentiations by u, 2 exponentiations by
(u− 1), 11 multiplications, 2 q9, q, q2, q3, q4, q5, q6, q7 and q8 Frrobenius maps. When considering
our parameter u = 23 + 34 + 211 + 215 given in Section 4 the overall cost of the final exponentiation
is then 76980 multiplications and one inversion in Fq.

6.10 The case of k = 28

In Sections 4 and 5 we obtained elliptic curves of embedding degree k = 28 have an efficient
computation of the Miller loop. In this paragraph, we are interested in the final exponentiation.
These elliptic curves are defined by the parameter u such that q and r are two polynomials of u. In
the case of construction 6.4, q and r are defined as follows:

 q = (u16 − 2u15 + u14 + u2 + 2u+ 1)/4
r = u12 − u10 + u8 − u6 + u4 − u2 + 1
t = u+ 1.

Note that we consider only this construction since it is more efficient than the others.
The final exponentiation in this case is based on computing

q28 − 1

r
=
(
q14 − 1

) (
q2 + 1

) q12 − q10 + q8 − q6 + q4 − q2 + 1

r

The representation of the hard part in basis p gives:

q12 − q10 + q8 − q6 + q4 − q2 + 1

r
=

11∑
i=0

λiq
i = λ0 + λ1q + λ2q

2 . . . · · ·+ λ11q
11 with

λ0 = u15 − 2u14 + u13 − u3 + 2u2 − u+ 4 λ1 = u14 − 2u13 + u12− u2 + 2u− 1
λ2 = u13 − 2u12 + u11 + u3 − 2u2 + u λ3 = u12 − 2u11 + u10 + u2 − 2u+ 1
λ4 = u11 − 2u10 + u9 − u3 + 2u2 − u λ5 = u10 − 2u9 + u8 − u2 + 2u− 1
λ6 = u9 − 2u8 + u7 + u3 − 2u2 + u λ7 = u8 − 2u7 + u6 + u2 − 2u+ 1
λ8 = u7 − 2u6 + u5 − u3 + 2u2 − u λ9 = u6 − 2u5 + u4 − u2 + 2u− 1
λ10 = u5 − 2u4 + 2u3 − 2u2 + u λ11 = u4 − 2u3 + 2u2 − 2u+ 1.

To have a more efficient computation, we present the following presentation of the λi with
0 ≤ i ≤ 11.

λ0 = λ1u+ 4 λ1 = λ2u− λ11 λ2 = λ3u
λ3 = λ4u+ λ11 λ4 = λ5u λ5 = λ6u− λ11
λ6 = λ7u λ7 = λ8u+ λ11 λ8 = λ9u

λ9 = λ10u− λ11 λ11 = (u− 1)2 + (u(u− 1))
2
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This computation requires 13 exponentiations by u, 2 exponentiations by (u− 1) 17 multiplica-
tions, one squaring, q, q2, q3, q4, q5, q6; q7, q8, q9, q10 and q11− Frobenius in Fq28 . For the overall cost
of the final exponentiation, we add the cost of the easy part which is one inversion, 2 multiplications
and q2 and q14−Frobenius in Fq28 . In terms of multiplications in the finite field Fq, the computation
of the final exponentiation, when considering the parameter u = 1 + 2 + 23 + 24 + 28 + 29 + 222,
requires 50302 multiplications.

In the following Table, we summarize the cost of the final exponentiation of the Optimal Ate
pairing in the target elliptic curves.

Method k u (log2(q)) (log2(qk)) ≈Mq m32 m64

6.2 10 1+24+25+28+29−215+232 446 4 460 8 612 + I 1 687 952 + I 421 988 + I

6.2 14 −1− 24 + 27 − 211 + 215 + 222 394 5 516 17 702 + I 2 991 638 867 398

6.4 20 1 + 24 + 216 + 232 383 7 660 29 250 + I 4 212 000 1 053 000

6.4 28 1 + 2 + 23 + 24 + 28 + 29 + 222 350 9 800 50 302 + I 6 086 542 1 810 302

6.7 12 −277 + 250 + 233 460 5 520 6 188 + 6I 1 833 975 396 032
6.6 15 1+2+212+216+232 383 5 745 19 738 + I 2 842 272 + I 41061 + I
6.6 24 −232 + 228 + 212 319 7 656 18 732 + 10I 1 873 200 674 352
6.6 27 23 + 24 + 211 + 215 300 8 058 76 980 + I 7 698 000 2 771 280

KSS 16 −234 + 227 − 223 + 220 − 211 + 1 340 5 540 18 514 + I 2 240 194 666 504

DCC 15 2 + 210 + 216 + 219 + 232 383 5 745 19 190 + I 2 763 360 690 840

BN 12 2114 + 2101 − 214 − 1 462 5 532 5 598 + 4I 1 259 550 358 272

Table 26: Comparison of the best candidates for 128 bits of security for the Final Exponentiation

6.11 The Overall cost

In this section we compare the cost of the Optimal Ate pairing in several elliptic curves for the
128 bits security level. For the 192 and 256 security, it is sufficient to consider the appropriate
parameters u.

Method k u Miller Final.Expo ≈Mq m32 m64

6.2 10 1+24+25+28+29−215+232 10 971 8 612 + I 19 538 + I 3 838 262 + I 959 567 + I

6.2 14 −1−24+27−211+215+222 12 228 17 702 + I 29 931 + I 5 058 339 + I 1 466 619 + I

6.4 20 1+24+216+232 9 116 29 250 + I 38 366 + I 5 524 704 + I 1 381 176 + I

6.4 28 1+2+23+24+28+29+222 10 278 50 302 + I 60 580 + I 7 330 180 + I 2 968 420 + I

6.6 12 −277+250+233 7438 6 188 + 6I 13 626 + 6I 2 887 182 + 6I 779 538 + 6I
6.6 15 1+2+212+216+232 11 173 19 738 + I 30 911 + I 4 451 184 + I 1 112 796 + I
6.6 24 −232+228+212 9 381 18 732 + 10I 28 113 + 10I 2 811 300 + 10I 908 877 + 10I
6.6 27 23+24+211+215 6 401 76 980 + I 83 381 + I 8 338 100 + I 2 931 305 + I

KSS 16 −234+227−223+220−211+1 7 534 18 514 + I 26 048 + I 3 151 808 + I 937 728 + I

DCC 15 2+210+216+219+232 6 836 19 190 + I 26 026 + I 3 747 744 + I 936 936 + I

BN 12 2114+2101−214−1 12 068 5 598 + 4I 17600 + 4I 3 960 900 + 4I 1 126 604 + 4I

Table 27: Overall cost of the optimal Ate pairing for 128 bits of security
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7 Conclusion

In this work we extended the work of Barbulescu and Duquesne [BD18]. We give the parameters
sizes for the Kim-Barbulescu attack for more than 150 families of pairing friendly elliptic curves from
the literature. We highlight some families which used to be ignored and which became interesting
after the attack. A precise implementation is necessary in order to determine the new champion
depending on the application of pairings.

Among our candidates for an efficient pairing implementation at 128, 192 or 256 bits security
levels, several present an unbalanced complexity between the Miller part and the final exponentiation.
So according to the application of pairings (signature schemes, identity based cryptography, broadcast
encryption, cloud computing, privacy enhancing environments) the choice of the family could be
very different. Given our estimation for Miller and final exponentiation complexity, for instance for a
signature scheme one could use a BLS12 or BLS24 curve, whereas for an application of multipairing
scheme one could use the BLS 27 curve (see Table 27).

We note that one should not restrict the search to pairings with ρ := log2(q)/ log2(r) equal to 1.
Indeed, at 128 bits of security, the bit size of log2(qk) required to have a safe field side is often in
the range 4000-5500. If ρ = 1 this requires k to be in the range 16-22. Some families like BN and
Freeman’s k=10 sparse family, cannot have k in this range, which gives the possibility to have a
better speed with families of small k and large ρ.

We also note that for many families with embedding degree larger than 30 we have to increase
the size of the pairings not for security reasons, but because no parameters u of the required size
can guarantee that both q(u) and r(u) are prime. If new families are explored for 192 bits, they
would lead to have k between 24 and 54, divisible by 6 and have deg(q) between 10 and 20. Indeed,
for small values of q the SexTNFS algorithm has a small estimated cost while, for large values, the
parameters are rare.
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