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Abstract 

An efficient and robust method based on two moving average filters followed by a dynamic event 

duration threshold has been developed to detect a and b waves in the acceleration 

photoplethysmogram signals. The detection of a and b waves is  affected by the quality of the 

photoplethysmogram recordings, especially for the heat stressed collection. The developed a 

method detects a and b waves in Arrhythmia APG Signals that suffer from: 1) non-stationary 

effects, 2) low signal-to-noise ratio, The performance of the proposed method was tested on 27 

records collected in normal and heat-stressed conditions resulting in 99.68 percent sensitivity and 

99.57 percent positive predictivity. 
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1. Introduction 

It has been shown that atherosclerosis, the underlying cause of coronary heart disease, can 

occur even in children and adolescents. (Kimm et al.[1]; Strong et al. [2].; Leeson et al [3].). This 

fact leads to the belief that the primary prevention of atherosclerosis should commence in 

childhood. Monitoring arterial vascular walls as well as risk factors such as hypertension, 

hypercholesterolemia and other blood biochemical profiles can potentially help to identify 

individuals having an increased risk of developing atherosclerosis in adulthood. 

Pulse-wave analysis has been shown to provide valuable information on aortic stiffness and 

elasticity (Chrife et al.[4]; Kelly et al.[5], O'Rourke et al.[6]), and it has been widely used to 

evaluate the vascular effects of aging, hypertension and atherosclerosis (Darne et al.[7]; Kelly et 

al.[8], Takazawa et al. [9]; Bortolotto et al.[10]). 

Photoelectric plethysmography, also known as photoplethysmography and its acronym in some 

literature, is (PPG/PPG) and when it is called digital volume pulse, the acronym is  

(DVP). In this paper, the abbreviation PPG is going to be used according to Elgendi’s 

recommendation [11]. 

Fingertip photoplethysmography mainly reflects the pulsatile volume changes in the finger 

arterioles, has been recognized as a noninvasive method of measuring arterial pulse waves in 

relation to changes in wave amplitude (Fichett [12]). However, the wave contour itself has not 

been analysed because of the difficulty in detecting minute changes in the phase of the 

inflections. Previous attempts at PPG analysis showed that such delicate changes in the waves 

were emphasized and easily quantified by quadratically differentiating the original PPG signal 
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with respect to time (Seki [13]; Ozawa [14]). Accordingly, the second derivative of the PPG 

(APG) was developed as a method allowing more accurate recognition of the inflection points 

and easier interpretation of the original plethysmogram wave. In this paper, the abbreviation APG 

for the second derivative photoplethysmogram will be used based on Elgendi’s recommendation 

[11]. 

As shown in Fig.1, The waveform of the APG consists of four systolic waves (a, b, c and d 

waves) and one diastolic wave (e wave) Takazawa et al.[15]. The height of each wave was 

measured from the baseline, with the values above the baseline being positive and those under it 

negative. 

This convenient and objective technique for analyzing the PPG wave has recently been 

performed more frequently than the conventional recordings. Several epidemiological studies 

have demonstrated that the information extracted from the APG waveform is associated closely 

with age and other risk factors for atherosclerotic vascular disease (Takada et al. [16]; Imanaga et 

al. [17]; Takazawa et al. [9]).  

Although the clinical significance of APG measurement has been thoroughly discussed, there is 

still a lack of studies focusing on the automatic detection of a, b waves in APG signals. 

Therefore this investigation, the first of its kind, aimed to develop a fast and robust algorithm to 

detect a, b waves in APG signals.  

 

 

Figure 1 Signal Measurements [18] (a) fingertip photoplethysmogram (b) second derivative wave of 

photoplethysmogram. The photoplethysmogram waveform consists of one systolic wave and one 

diastolic wave while the second derivative photoplethysmogram waveform consists of four systolic 

waves (a, b, c, and d waves) and one diastolic wave (e wave). 
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The APG waveform was measured in a population-based sample of healthy males. Heat stress 

exercise changes the APG waveform pattern and as consequence will affect the detection of a and 

b waves. Because of the low amplitude of a or b waves, distinguishing the morphology of a or b 

waves in noisy APG signals is considered challenging. However, there was an a serious attempt 

in 2009 by Matsuyama [19] to detect a waves in APG signals using nine QRS algorithms of 

Friesen’s ECG algorithms [20] after modifying the sampling rates and threshold values. The 

detection rate was below 63 per cent for all nine algorithms when tested on the PPG−Army Heat 

Stress Dataset. Matsuyama [19] observed that ‘a new algorithm should be more robust against 

noise and should be applicable to both APG and ECG signals’. Therefore, this investigation aims 

to develop a numerically efficient and robust algorithm to detect a and b waves in APG signals. 

 

2. Data 

There are currently no standard PPG databases available to evaluate the developed algorithms. 

However, Charles Darwin University has a PPG dataset measured at rest and after exercise, as 

shown in Figure 2. Two independent annotators annotated a and b waves in APG signal. 
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Figure 2 PPG signals: 20-seconds recording for the same volunteer, measured (a) at rest and (b) after 

exercise. It is clear that the heart rate after exercise is higher than at rest. This issue makes it 

challenging to detect heartbeats from APG signals. 

(a) 

(b) 



 

 

The PPG data were collected as a minor part of a joint project between Charles Darwin 

University, the Defence Science and Technology Organisation (DSTO) and the Department of 

Defence. The background of the entire project can be found in [19]. 

PPGs of 27 healthy volunteers (males) with a mean±SD age of 27±6.9 were measured using a 

photoplethysmography device (Salus PPG), with the sensor located at the cuticle of the second 

digit of the left hand. Measurements were taken while the subject was at rest on a chair. PPG data 

were collected at a sampling rate of 200Hz. The duration of each data segment is 20 seconds.  

Annotations is a difficult task due to inter-annotator discrepancy, as the two annotators will 

never agree completely on what and how to annotate the a wave. Despite the annotation process 

being significantly time-consuming, discrepancies can be found in many records. Three cases will 

be discussed below to show how the discrepancies were adjudicated: 

 Case 1:  

Annotator 1 agrees with Annotator 2 on all of the a wave positions within an 

APG record.  When both annotators have no discrepancies, it is an optimal 

situation. 

 Case 2:  

Both annotators agree on most of the a wave positions except the first a wave at 

far left and the last a wave at the far right. 

 Case 3:  

Annotator 2 considered these two waves a waves while Annotator 1 did not. 

One annotation file has been saved to present the two annotated a waves by considering the a 

waves that have been missed by one of the annotators, or perhaps isolating a wave that is not 

consistent with the beat rhythm within the APG recording. The same process applied to b wave. 

 

3. Methodology 

The proposed a and b waves detection algorithm consists of three main stages: pre-processing 

(bandpass filtering, second derivative and squaring), feature extraction (generating potential 

blocks using two moving averages) and classification (thresholding). The structure of the 

algorithm is shown in Figure 3.  

 

Bandpass Filter 

To design an efficient bandpass filter, two types of challenging noise are addressed: 

i) High-frequency noise: this noise is could be due to the instrumentation amplifiers, 

the recording system pickup of ambient electromagnetic signals or other noises exist 

above 7 Hz, as shown in Figure 4 (a). High-frequency noise is usually caused by 

interference from mains power sources being induced onto the recording leads of the 

PPG. This phenomenon introduces a sinusoidal component into the recording. In 

Australia, this component is at a frequency of 50 Hz.  

ii) Low-frequency noise:  this noise is created by poor contact to the fingertip photo 

sensor. In addition, variations in temperature and bias in the instrumentation 

amplifiers can cause baseline drift. Regarding the PPG database used in this paper, 

the body movement was limited due short measurement time (20 seconds) and the 

fixed position of the arm during the PPG signal collection.  

The low-frequency noise can be removed using a high-pass filter. As shown in Figure 

4 (b), the low frequencies that cause baseline wandering exist up to 0.5 Hz. 

 



 
 

Figure 3 Flowchart for a new a wave detection algorithm. This a wave time-domain detection 

algorithm consists of three main stages: pre-processing, feature extraction and 

classification. 
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Figure 4 Demonstrating the PPG signals frequency bands (a) PPG signal, (b) Fourier 

transform (spectrum) of the PPG signal. The spectrum illustrates peaks at the 

fundamental frequency of 50 Hz, as well as the second and third harmonics at 100 

Hz respectively. The spectrum shows that the main energy of the PPG signal lies up 

to 7 HZ. 

 

 

(b) 

(a) 



 

 

The periodic interference is clearly displayed as a spike in Figure 4 (b) not only at its 

fundamental frequency of 50 Hz, but also as spikes at 100 Hz and the higher harmonics.  

Extracting the main energy of a and b waves can be done using a bandpass filter which is 

typically a bidirectional Butterworth implementation [21], as it offers good transition-band 

characteristics at low coefficient orders making it efficient to implement [21]. 

A second-order Butterworth filter with bandpass 0.5−7 Hz has implemented by cascading 

a high- and low-pass filters to remove the baseline wander and high frequencies that do not 

contribute to the a and b waves. Since one complete heart cycle takes approximately one 

second, the frequencies below 0.5 Hz can be considered noise (baseline wander). The 7 Hz is 

chosen because most of the energy of the PPG signal is below 7 Hz, as shown in Figure 4 

(b). 

 

Figure 5 Demonstrating the zero-phase filtering in PPG signals 

 

 

The bidirectional Butterworth filter is implemented as shown in Figure 5. The S[n] output 

will be a filtered version of PPG[n] with no phase distortion. The same Butterworth filter is 

used twice in this scheme: the time reversal step is a straight left−right flipping of the time-

domain sequence, to produce zero-phase filtering, as follows:  
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Figure 6 Algorithm structure for PPG data measured from ‘at rest’ (Part 1) (a) Original 

PPG signal, (b) filtered PPG signal with Butterworth bandpass filter which is ][nS , 

(c) second derivative of PPG (APG) which is ][nZ . (Record B1-Before Exercise / 

Army database). 
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Figure 7 Algorithm structure for PPG data measured ‘at rest’ (Part 2) (d) Squaring, (e) 

generating blocks of interest using two moving averages PeakMA  and OneBeatMA  ,(f) 

the final result of the proposed algorithm to detect a and b waves. (record B1: 

before exercise / army database) 
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Figure 8 Algorithm structure for PPG data measured ‘after exercise’ (Part 1) (a) Original 

APG signal, (b) filtered PPG signal with Butterworth bandpass filter, which is ][nS  

(c) second derivative of PPG (APG), which is ][nZ . (record C3:after exercise / 

army database). 
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Figure 9 Algorithm structure for PPG data measured ‘after exercise’ (Part 2) (d) Squaring, 

(e) generating blocks of interest using two moving averages PeakMA  and OneBeatMA , 

(f) the final result of the proposed algorithm to detect a and b waves. (Record C3: 

after exercise / army database). 
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Second Derivative 

To obtain the APG signals ][nZ , the second derivative will be applied to the filtered PPG 

][nS in order to analyse the APG signals. Equations 3 and 4 represent a non-causal filter; the 

three-point centre derivative creates with a delay of only two samples. 
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where T is the sampling interval and equals the reciprocal of the sampling frequency, and n is the 

number of data points. Figures 6 (c) and 8 (c) show the second derivative of the filtered PPG 

signal (APG signal) measured at rest and after exercise respectively. 

b wave Cancellation 

At this stage the a wave of the APG needs to be emphasised to distinguish it clearly for 

detection. This can be done by setting the negative parts of the signal equal to zero  

 

Squaring 

Squaring emphasises large differences resulting from the a-wave segment; the small 

differences arising from c, e and d waves are suppressed: 

2])[(][ nZny       Eq. 5 

 

This step is important to improve the accuracy in demarcating the ab complex in APG signals. 

It is clear from Figures 7 (d) and 9 (d) that applying the square to APG signals measured at rest 

and after exercise magnifies a waves compared to the other APG features. 

Generating Blocks of Interest 

Since the a wave shape and duration is similar to the QRS complex in ECG signals, the onset 

and offset of the potential a waves will be demarcated using two moving averages [22-25]: 

i) First moving average ( PeakMA ): is used to emphasise the a wave area, shown as the 

dotted line in Figure 7 (e) for APG signal measured before exercise, and in Figure 9 (e) 

for the APG signals measured after exercise. 
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where SFW1 *ms111 , which is the window width of the average a wave duration. 

Its value is rounded to the nearest odd integer. 

 

ii) Second Moving Average ( OneBeatMA ): is a threshold for the first moving average, 

shown as the solid line in Figure 7 (e) and 9 (e) for APG signal measured before and after 

exercise. 
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1
nMA 22

2

OneBeat ][][....][][    Eq. 7 

 

where SFW2 *ms694  is the window width of approximately one beat duration. Its 

value is rounded to the nearest odd integer. 

 

The moving averages alignment 

At rest, the signals generated from the two filters are not aligned as shown in Figure 6 

(e); however, the signals are aligned as shown in Figure 9 (e). This means that the 

window size ( 2W ) of the second moving average ( OneBeatMA ) is slightly large for the 

APG signal measured at rest. The heart beat interval decreases with exercise when the 

heart rate increases. The window size 2W  is adjusted to 597 ms (as done for QRS 

complex detection) to demarcate heartbeats in the APG signals before and after exercise. 

The different alignment between PeakMA  and OneBeatMA , as shown in Figure 7 (e), did 

not affect the beat demarcation process. Conversely, it demarcated the a waves 

successfully, as shown in Figure 7 (f).  

 

Thresholding 

An offset will be used to improve the detection accuracy [22-25]. The equation that determines 

the offset level ( ) is z  , where   is 10 per cent, as used for ECG signal algorithms, 

while z  is the statistical mean of the squared filtered APG signal ( z ).  

The first dynamic threshold value THR1is calculated by shifting the OneBeatMA  signal with 

an offset level  , as follows: 

 ][nMATHR1 OneBeat     Eq. 8 

 

In this stage, the blocks of interest will be generated by comparing the PeakMA signal with 

THR1. If a block is higher than THR1, it is classified as a block of interest containing an APG 

feature (a wave or e wave) or perhaps noise. As the algorithm ignores the signal below the zero 

level, the blocks will almost never contain b, c, or d waves, as shown in Figure 10 (b). 



 

Figure 10 Demonstrating the effectiveness of using two moving averages to detect a and b waves. (a) 
Filtered APG signal with Butterworth bandpass filter (b) generating blocks of interest 

after using two moving averages: the solid line is the first moving average and the dotted 

line is the second moving average (c) the detected a and b waves after applying the 

thresholds. 
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By this stage, many blocks of interest have been generated. Therefore, the next step is to reject 

the blocks that result from noise. The rejection should be related to the anticipated block width.  

In this paper, the undesired blocks are rejected using a threshold called THR2 , which rejects 

the blocks that contain d wave and noise. By applying the THR2  threshold, the accepted blocks 

will contain a waves only. 

1WTHR2      Eq. 9 

 

As discussed, threshold THR2 corresponds to the anticipated a-wave duration. If a block is 

higher than THR2 , it is classified as an a wave. If not, it will be classified as noise. The last stage 

is to find the maximum absolute value within each block to detect the a-peaks. 

Two consecutive aa intervals are shown in Figure 10 (b) to demonstrate the idea of using two 

filters to generate blocks of interest. Not all of the blocks are potential a waves; some blocks are 

caused by noise and need to be eliminated.  

The blocks associated with small width are considered blocks caused by noise. Blocks that are 

less than half of the expected size for the a wave duration are rejected. The expected size for the a 

wave duration is based on the statistics for healthy adults, as described above. Blocks that are 

smaller than the expected width for the a wave duration will be rejected. The rejected blocks are 

considered as noisy blocks and the accepted blocks are considered to contain an a wave. 

 

 

Figure 11 Flowchart for detecting a waves. This loop searches for the maximum absolute 

amplitude within each accepted block to be considered as an a wave. 
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7) Detect a Wave 

The maximum absolute value within each accepted block is considered the a peak. As shown in 

Figure 11, the a wave detection loop starts with the first block, when 1i until it finishes all 

accepted blocks provided from the previous step. Each time a block is processed, the maximum 

amplitude value within is considered an a wave. The result of this loop will be that all detected a 

waves will be stored in array A. 

 

8) Detect b Wave 

As shown in Figure 12 (a), the b wave in a healthy person is the global minimum. In an 

unhealthy person (see Figure 12 (b)), the d wave is the global minimum. However, in both cases, 

the b wave is the first local minimum after the a wave. The b wave can therefore be detected by 

finding the local minimum, as follows:  

 

 |1)APG(||)APG(|  ii and  |1)APG(||)APG(|  ii  

 

where APG is the current aa interval (see Figure 12)  and ‘ i ’ is the samples counter. 

 

 

Figure 12 Demonstrating the local minimum and global minimum of the b wave in the APG signal 

[26]. (a) In a healthy person, the b wave is the global minimum, (b) in an unhealthy 

person, the b wave is the local minimum. 
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As discussed above, the normal limit of the b wave width for a healthy adult is 97±13 ms. 

Therefore, the samples counter ‘ i ’ starts with 8 ms after the a peak and ends with 81 ms, as 

shown in Figure 13. Once the local minima has been found the loop ends. 

 

Figure 13 Flowchart for b waves detection. This loop searches for b waves regarding the a 

wave location. The first minimum value is considered the b wave, for both healthy 

and unhealthy candidates. The variable ‘j’ is a counter for a waves, while the 

variable ‘i’ is a counter to search for b waves, where SF is the sampling frequency 

of the processed signal. 
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Table 1 A Rigorous optimisation over all parameters of the a detection algorithm: 

frequency band, W1, W2, and the offset. All possible combinations of parameters 

(5,610 iterations) have been investigated and sorted in descending order according 

to their overall accuracy. The database used is PPG-Firefighters Heat Stress 

database. The overall accuracy is the average value of SE and +P. 

Iterations 
Frequency 

Band 
W1 W2 

Offset 

(per cent) 

SE  

(per cent) 

+P  

(per cent) 

Overall 

Accuracy 

(per cent) 

1 0.5-7 Hz 40 250 10 98.72 99.46 99.09 

2 0.5-7 Hz 40 250 8 98.61 99.57 99.09 

3 0.5-7 Hz 40 250 9 98.61 99.57 99.09 

4 0.5-7 Hz 40 250 7 98.53 99.57 99.05 

5 0.5-8 Hz 40 250 9 98.62 99.46 99.04 

6 1-8 Hz 40 250 10 98.62 99.36 98.99 

7 0.5-8 Hz 40 250 9 98.27 99.70 98.99 

8 0.5-8 Hz 40 250 7 98.39 99.57 98.98 

9 0.5-8 Hz 40 250 8 98.39 99.57 98.98 

10 1-8 Hz 40 250 8 98.18 99.70 98.94 

11 0.5-7 Hz 35 250 9 98.16 99.70 98.93 

12 0.5-7 Hz 35 250 10 98.16 99.70 98.93 

13 1-9 Hz 40 250 10 98.37 99.49 98.93 

14 0.5-8 Hz 40 250 6 98.16 99.70 98.93 

15 1-8 Hz 40 250 10 98.35 99.49 98.92 

16 0.5-8 Hz 35 250 10 98.14 99.70 98.92 

17 0.5-9 Hz 35 250 8 98.14 99.70 98.92 

18 0.5-7 Hz 40 250 6 98.18 99.57 98.88 

19 0.5-8 Hz 40 250 5 98.05 99.70 98.87 

20 0.5-9 Hz 35 250 9 98.14 99.59 98.87 

. . . . . . . . 

. . . . . . . . 

. . . . . . . . 
5606 0.5-7 Hz 20 200 1 55.38 99.41 77.39 

5607 0.5-9 Hz 20 200 0 55.35 99.31 77.33 

5608 1-8 Hz 20 200 0 54.75 99.51 77.13 

5609 0.5-8 Hz 20 200 0 54.46 99.31 76.89 

5610 0.5-7 Hz 20 200 0 53.84 99.31 76.58 

 

The detected a and b waves are compared to the annotated a and b waves to determine 

whether they were detected correctly. 

The following statistical parameters were used to evaluate the algorithm:  

 

 
a/ba/b

a/b
a/b

FNTP

TP
Se


      Eq. 10 

 
a/ba/b

a/b
a/b

FPTP

TP
P


      Eq. 11 

 

True positive ( a/bTP ):  a/b wave classified as a/b wave. 

False positive ( a/bFP ): non- a/b wave classified as a/b wave. 

False negative ( a/bFN ): a/b wave misclassified. 

 



The sensitivity a/bSe  is the percentage of true a/b waves that were correctly detected by the 

algorithm. The positive predictivity a/bP  is the percentage of detected a/b waves that are real 

a/b waves.  

 

Remarks on the a wave detection algorithm: 

Any change in the a wave algorithms’s parameters (frequency band, event duration and offset 

 ) will affect the overall performance of the proposed algorithm. A rigorous investigation of all 

interrelated parameters is shown in Table 1. Optimisations of the beat detector’s spectral window 

for lower frequency were within 0.5−1 Hz with higher frequency within 7−15 Hz. All 

combinations of the frequency band 0.5−15 Hz have been explored. The window size of the first 

moving average (W1) changed from 55 ms to 111ms, whereas the window size of the second 

moving average (W2) changed from 555 ms to 694 ms. The offset tested over the range 0−10 per 

cent of the mean value of the squared filtered ECG signal. 

 

It is clear from Table  1 that the optimal frequency range for the a detection algorithm over the 

PPG-Firefighters database is 0.5−7 Hz, as proposed by Benitez et al. [27]. Moreover, the optimal 

values for the moving averages and offset are 40*111  SFmsW1 , 250*694  SFmsW2  

and z*1.0 . 

The proposed algorithm was tested on the PPG−Army Heat Stress Dataset. As mentioned 

above, this dataset contains 27 APG recordings measured before and after exercise. The main 

objective behind testing the algorithm against the APG measured after exercise is to test the 

robustness of the algorithm against non-stationary effects, low SNR, and high heart rate. All the 

reasons for detection failure are described in detail, as follows. 

 

1) Stationarity. analysing a stationary APG signals is straightforward. As a waves have similar 

amplitudes, the signal’s statistical characteristics (i.e. mean and standard deviation) do not change 

with time, and a simple level threshold can effectively detect a and b waves. Figures 14 (a) and 

15 (a) represent the APG signals with stationarity effects for volunteer I2 (before exercise) and 

G2 (after exercise) (all a waves are almost straight-lined).  

It is anticipated that a simple detection algorithm can detect a and b waves in stationary APG 

signals at rest and after exercise. The proposed algorithm detected the a and b waves correctly in 

stationary APG signals, as expected. 

 

2) Non-stationarity. processing non-stationary APG signals is difficult, as the statistical 

characteristics’ standard deviation changes with time (a waves amplitude vary with time and 

simple level thresholds cannot optimally detect a and b waves). This will undoubtedly have a 

negative effect on the performance of the detection algorithm used. However, the proposed 

algorithm detected the a and b waves correctly in non-stationary APG signals before exercise (as 

shown in Figures 14 (c,d)), and after exercises (as shown Figures  15 (c,d)). It is clear that non-

stationarity in APG signal processing is challenging, especially with APG signals after exercises. 

  

3) Low amplitude. the APG signals for volunteers O2 (before exercise) and for volunteer B2 

(after exercise) have low amplitude. The normal level for APG signals is usually in volts (as 

shown in Figures 14 (a,c) and 14 (a-d)). However, the amplitudes are occasionally in millivolts 

(as shown in Figures 14 (b,d)). Certainly, applying a simple level threshold is not a valid solution. 

The proposed algorithm handled very poor amplitudes very well (as shown in Figure 14 (b)). It is 

clear that the proposed algorithm is amplitude-independent and is able to detect the a and b waves 

in millivolts and microvolts. 
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Figure 14 Detected a and b waves in APG signals before exercise. It contains (a) Stationary 

signals, (b) low amplitudes, (c) irregular heart rhythm, (d) high-frequency noise. 

‘*’ represents the a wave and ‘+’ represents the b wave. 

(a) 

(c) 

(b) 

(d) 
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Figure 15. Detected a and b waves in APG signals after exercise. It contains (a) Stationary 

signals, (b) low amplitudes, (c) irregular heart rhythm, (d) high-frequency noise. 

‘*’ represents the a wave and ‘+’ represents the b wave. 

 

(a) 

(c) 

(b) 

(d) 



4) Regular heart rhythm. this is called NSR in ECG signals [28]. A normal heartbeat is called 

regular when the rhythm is constant and the occurrence of the next beat is predictable. The 

analysis of a regular heart rhythm is simple, as the a waves are repeated with an equally spaced 

pattern. This regularity helps the time-domain threshold methodologies to detect a and b waves 

successfully.  

The proposed algorithm detected the a and b waves correctly in APG signals with a regular 

heart rhythm as shown in Figures 14 (a,d) and 15 (a,d), even in records with low amplitudes, as 

shown in Figures 14 (b) and 15 (b). 

 

5) Irregular heart rhythm. the sensation of an irregular heart rhythm is usually related to either 

premature beats or atrial fibrillation. The proposed algorithm successfully detected the a and b 

waves with premature beats in both conditions―at rest and after exercise (see Figures 14 (c) and 

15 (c)).  

 

6) High frequency noise. Figures 14 (d) and 15 (d) illustrate the robustness of the proposed 

algorithm against noise. 

Although the duration of the a and b waves changed dramatically after exercise, the proposed 

algorithm succeeded in detecting the a and b waves efficiently.  

As discussed above, the proposed method successfully detected a and b waves in APG signals 

with a low SNR, non-stationarity, irregular heart rhythms, and before and after exercise (see 

Figures 14 and 15). 

 
 

Table 2 a, b wave detection performance on PPG−Army Heat Stress Database 

 Before Exercise After Exercise 

Record 
No of 

beats 
TPa/b FPa/b FNa/b Se (%) +P (%) 

No of 

beats 
TPa/b FPa/b FNa/b Se (%) +P (%) 

A1 26 26 0 0 100.00 100.00 45 44 1 0 100.00 97.78 

A2 24 24 0 0 100.00 100.00 44 44 0 0 100.00 100.00 

B1 17 17 0 0 100.00 100.00 36 36 0 0 100.00 100.00 

B2 26 26 0 0 100.00 100.00 43 43 0 0 100.00 100.00 

C2 20 20 0 0 100.00 100.00 33 33 0 0 100.00 100.00 

C3 20 20 0 0 100.00 100.00 30 30 0 0 100.00 100.00 

D2 22 22 0 0 100.00 100.00 33 33 0 0 100.00 100.00 

D3 19 19 0 0 100.00 100.00 23 23 0 0 100.00 100.00 

E1 22 22 0 0 100.00 100.00 25 25 0 0 100.00 100.00 

E2 22 22 0 0 100.00 100.00 25 25 0 0 100.00 100.00 

E3 19 19 0 0 100.00 100.00 34 34 0 0 100.00 100.00 

G2 30 30 0 0 100.00 100.00 48 40 8 0 100.00 83.33 

G3 19 19 0 0 100.00 100.00 33 33 0 0 100.00 100.00 

H3 23 23 0 0 100.00 100.00 31 31 0 0 100.00 100.00 

I1 22 22 0 0 100.00 100.00 30 30 0 0 100.00 100.00 

I2 17 17 0 0 100.00 100.00 28 28 0 0 100.00 100.00 

J2 23 23 0 0 100.00 100.00 36 36 0 0 100.00 100.00 

L2 24 24 0 0 100.00 100.00 36 36 0 0 100.00 100.00 

L3 24 24 0 0 100.00 100.00 35 35 0 0 100.00 100.00 

N2 18 18 0 0 100.00 100.00 23 23 0 0 100.00 100.00 

N3 20 20 0 0 100.00 100.00 29 29 0 0 100.00 100.00 

O1 24 24 0 5 82.76 100.00 29 29 0 0 100.00 100.00 

O2 17 17 0 0 100.00 100.00 32 32 0 0 100.00 100.00 

P1 26 26 0 0 100.00 100.00 35 35 0 0 100.00 100.00 

P2 20 20 0 0 100.00 100.00 29 29 0 0 100.00 100.00 

Q1 22 21 1 0 100.00 95.45 27 27 0 0 100.00 100.00 

Q2 18 18 0 0 100.00 100.00 33 33 0 0 100.00 100.00 

27 
volunteers 584 583 1 5 99.36 99.83 885 876 9 0 100.00 99.30 

 



Table 2 represents the a and b wave detection rates respectively. As the detection of b waves 

depends on the detection of a waves, one table will therefore contain both results.  

As shown in Table 2, few FNs occur. Record Q1 (before exercise) has relatively high-

frequency noise, resulting in one FN. The number of FPs were 8 because of high amplitude of e 

waves. The overall average sensitivity for a and b wave detection (before and after exercise) was 

99.68 per cent and positive predictivity was 99.57 per cent. 

Due to the dominant a peaks and merged c,d, and e waves in APG signals measured after 

exercise, the algorithm performed more efficiently with recordings measured after exercise 

compared to records measured at rest. 

 

 

Comparison of a Detection Performance on PPG-Army Dataset  

 

The performance of the proposed algorithm is compared to the nine algorithms used by 

Matsuyama [19] and applied to the same database. As shown in Table 3, the proposed algorithm 

scored the highest sensitivity and positive predictivity rates among the nine algorithms. 

 

Table 3 a wave detection rates using the nine algorithms with optimal thresholds [19] 

Algorithm 
TPa 

(%) 

FNa 

(%) 

FPa 

(%) 

Sea 

(%) 

+Pa 

(%) 

Threshold Values 

Th1 Th2 Th3 

Proposed 

algorithm 
99 0.7 0.4 99.68 99.57 Dynamic event related threshold 

AF1 69.5 7.5 30.5 90.25 69.5 0.31 0.0001 -0.001 

AF2 0.018 0.27 99.98 6.25 0.018 0.21 0.75 - 

AF3 0 0 100 NA 0 62 - - 

FD1 0.27 2.8 99.73 8.79 0.27 0.099 - - 

FD2 0 0 100 NA 0 150 - - 

DF1 0 0 100 NA 0 21 - - 

DF2 48.8 14.2 51.2 77.46 48.8 1 0.06  

FS1 2.42 0.3 97.58 88.97 2.42 154.5 - - 

FS2 

 

42.46 6.9 57.54 86.02 42.46 0.55 0.47 - 

 

 

Conclusion 

The detection algorithms of a and b waves in APG signals can hardly be found in litrature. 

However, a promising algorithm has been proposed to detect a and b waves simulternously and 

robustly against high-frequency noise, low amplitude, non-stationary effects and irregular 

heartbeats in APG signals measured before and after exercise. This numerically-efficient 

algorithm was evaluated using 27 records, containing 1,469 heartbeats resulting in 99.68 percent 

sensitivity and 99.57 percent positive predictivity.  

The accurate detection of a and b waves in the APG offers a non-invasive method of evaluating 

cardiac functioning. The usage of APG can be useful for heart-rate-variability analysis and 

identification of individuals at risk and may replace the existing some of the current traditional 

cardiovascular diagnostic tools. 
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