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Preface

This book is an introduction to the quantitative treatment of differential equa­
tions that arise from modeling physical phenomena in the area of chemical
engineering. It evolved from a set of notes developed for courses taught at
Virginia Polytechnic Institue and State University.

An engineer working on a mathematical project is typically not interested
in sophisticated theoretical treatments, but rather in the solution of a model and
the physical insight that the solution can give. A recent and important tool in
regard to this objective is mathematical software-preprogrammed, reliable
computer subroutines for solving mathematical problems. Since numerical meth­
ods are not infallible, a "black-box" approach of using these subroutines can be
dangerous. To utilize software effectively, one must be aware of its capabilities
and especially its limitations. This implies that the user must have at least an
intuitive understanding of how the software is designed and implemented. Thus,
although the subjects covered in this book are the same as in other texts, the
treatment is different in that it emphasizes the methods implemented in com­
mercial software. The aim is to provide an understanding of how the subroutines
work in order to help the engineer gain maximum benefit from them.

This book outlines numerical techniques for differential equations that either
illustrate a computational property of interest or are the underlying methods of
a computer software package. The intent is to provide the reader with sufficient
background to effectively utilize mathematical software. The reader is assumed
to have a basic knowledge of mathematics, and results that require extensive
mathematical literacy are stated with proper references. Those who desire to
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viii Preface

delve deeper into a particular subject can then follow the leads given in the
references and bibliographies.

Each chapter is provided with examples that further elaborate on the text.
Problems at the end of each chapter are aimed at mimicking industrial mathe­
matics projects and, when possible, are extensions of the examples in the text.
These problems have been grouped into two classes:

Class 1: Problems that illustrate direct numerical application of the formulas
in the text.

Class 2: Problems that should be solved with software of the type described
in the text (designated by an asterisk after the problem number).

The level of this book is introductory, although the latest techniques are
presented. The book can serve as a text for a senior or first-year graduate level
course. At Virginia Polytechnic Institute and State University I have successfully
used this material for a two-quarter sequence of first-year graduate courses. In
the first quarter ordinary differential equations, Chapter 1 to 3, are covered.
The second quarter examines partial differential equations using Chapters 4 and
5.

I gratefully acknowledge the following individuals who have either directly
or indirectly contributed to this book: Kenneth Denison, Julio Diaz, Peter Mer­
cure, Kathleen Richter, Peter Rony, Layne Watson, and John Yamanis. I am
especially indebted to Graeme Fairweather who read the manuscript and pro­
vided many helpful suggestions for its improvement. I also thank the Department
of Chemical Engineering at Virginia Polytechnic Institute and State University
for its support, and I apologize to the many graduate students who suffered
through the early drafts as course texts. Last, and most of all, my sincerest
thanks go to Jan Chance for typing the manuscript in her usual flawless form.

I dedicate this book to my wife, who uncomplainingly gave up a portion of
her life for its completion.

Mark E. Davis
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Numerical Methods
and Modeling

for Chemical Engineers



Initlal..Value Problems for Ordinary
Differential Equations

INTRODUCTION

The goal of this book is to expose the reader to modern computational tools for
solving differential equation models that arise in chemical engineering, e.g.,
diffusion-reaction, mass-heat transfer, and fluid flow. The emphasis is placed
on the understanding and proper use of software packages. In each chapter we
outline numerical techniques that either illustrate a computational property of
interest or are the underlying methods of a computer package. At the close of
each chapter a survey of computer packages is accompanied by examples of
their use.

BACKGROUND

Many problems in engineering and science can be formulated in terms of dif­
ferential equations. A differential equation is an equation involving a relation
between an unknown function and one or more of its derivatives. Equations
involving derivatives of only one independent variable are called ordinary dif­
ferential equations and may be classified as either initial-value problems (IVP)
or boundary-value problems (BVP). Examples of the two types are:

IVP: y" = -yx (l.la)

yeO) = 2, y'(O) 1 (l.lb)

BVP: y" = -yx (l.2a)

yeO) = 2, y(l) = 1 (l.2b)
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2 Initial-Value Problems for Ordinary Differential Equations

where the prime denotes differentiation with respect to x. The distinction be­
tween the two classifications lies in the location where the extra conditions [Eqs.
(LIb) and (1.2b)] are specified. For an IVP, the conditions are given at the
same value of x, whereas in the case of the BVP, they are prescribed at two
different values of x.

Since there are relatively few differential equations arising from practical
problems for which analytical solutions are known, one must resort to numerical
methods. In this situation it turns out that the numerical methods for each type
of problem, IVP or BVP, are quite different and require separate treatment. In
this chapter we discuss IVPs, leaving BVPs to Chapters 2 and 3.

Consider the problem of solving the mth-order differential equation

y(m) = f(x, Y, y', y", ... , y(m-1») (1.3)

with initial conditions

y(xo) = Yo

y'(XO) = yb

y(m-1) (XO) = Y6m- 1)

where f is a known function and Yo, yb, ... ,Y6m
-1) are constants. It is customary

to rewrite (1.3) as an equivalent system of m first-order equations. To do so,
we define a new set of dependent variables Y1(X), Yz(x), ... , Ym(x) by

Yl = Y

Yz = Y'

Y3 = y"

Ym = y(m-1)

(1.4)

and transform (1.3) into

Y;' = Yz

y~ = Y3

= f1(X, Yl, Yz, , Ym)

= fz(x, Y1' Yz, , Ym) (1.5)

y:r, = f(x, Yv Yz, ... , Ym) = fm(x, Yv Yz, ... , Ym)

with

Y1(XO) = Yo

yzCxo) = yb



Explicit Methods

In vector notation (1.5) becomes

y'(x) = rex, y)

y(xo) = Yo

where

3

(1.6)

[

heX)]
y(x) = Y2~X) ,

Ym(X)
[

fleX, y)]
rex, y) = f2(X; y) ,

fm(x, y)
[

Yo]
Y

_ yb
o - .

y~m'-l)

It is easy to see that (1.6) can represent either an mth-order differential
equation, a system of equations of mixed order but with total order of m, or a
system of m first-order equations. In general, subroutines for solving IVPs as­
sume that the problem is in the form (1.6). In order to simplify the analysis, we
begin by examining a single first-order IVP, after which we extend the discussion
to include systems of the form (1.6).

Consider the initial-value problem

y' = f(x, y), Y(Xo) = Yo (1.7)

We assume that aflay is continuous on the strip Xo ~ x ~ XN' thus guaranteeing
that (1.7) possesses a unique solution [1]. If y(x) is the exact solution to (1.7),
its graph is a curve in the xy-plane passing through the point (xo, Yo). A discrete
numerical solution of (1.7) is defined to be a set of points [(Xi' u;)]~o, where
Uo = Yo and each point (Xi' u;) is an approximation to the corresponding point
(Xi' Y(Xi)) on the solution curve. Note that the numerical solution is only a set
of points, and nothing is said about values between the points. In the remainder
of this chapter we describe various methods for obtaining a numerical solution
[(Xi' Ui)]~O'

EXPLICIT METHODS

We again consider (1.7) as the model differential equation and begin by dividing
the interval [xo, XN] into N equally spaced subintervals such that

Xi = Xo + ih, i = 0, 1,2, ... , N

(1.8)

The parameter h is called the step-size and does not necessarily have to be
uniform over the interval. (Variable step-sizes are considered later.)



4 Initial-Value Problems for Ordinary Differential Equations

If y(x) is the exact solution of (1.7), then by expanding y(x) about the
point Xi using Taylor's theorem with remainder we obtain:

Y(Xi+1) = y(xi) + (Xi+1 - xi)y'(Xi)

+ (X i + 12~ xy y"(~J,

The substitution of (1.7) into (1.9) gives

(1.9)

(1.10)

The simplest numerical method is obtained by truncating (1.10) after the second
term. Thus with Ui = y(xJ,

Ui+1 = Ui + hf(xi , uJ,

Uo = Yo

i = 0, 1, ... , N - 1, (1.11)

This method is called the Euler method.
By assuming that the value of Ui is exact, we find that the application of

(1.11) to compute Ui+1 creates an error in the value of Ui+1. This error is called
the local truncation error, ei+1. Define the local solution, z(x), by

Z'(X) = f(x, z), Z(Xi) = Ui (1.12)

An expression for the local truncation error, ei+1 = Z(Xi+1) Ui+1' can be
obtained by comparing the formula for Ui+1 with the Taylor's series expansion
of the local solution about the point Xi. Since

z(xi + h) = z(xi) + hf(Xi' z(xi» + ~~ z"(~J

or

Z(Xi + h) = Ui + hf(Xi' uJ + ~~ Z"(~i)'

it follows that

(1.13)

ei+1 = ~~ Z"(~i) = 0(h2
) (1.14)

The notation O( ) denotes terms of order ( ), i.e. ,f(h) = O(hL
) if If(h)1 ~ Ah l

as h~ 0, where A and I are constants [1]. The global error is defined as

(1.15)

and is thus the difference between the true solution and the numerical solution
at X = Xi+1. Notice the distinction between ei+1 and c; i+1. The relationships
between ei+1 and c; i+1 will be discussed later in the chapter.
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We say that a method is pth-order accurate if

ei+l = 0(hP+ 1)

5

(1.16)

and from (1.14) and (1.16) the Euler method is first-order accurate. From the
previous discussions one can see that the local truncation error in each step can
be made as small as one wishes provided the step-size is chosen sufficiently small.

The Euler method is explicit since the function f is evaluated with known
information (i.e., at the left-hand side of the subinterval). The method is pictured
in Figure 1.1. The question now arises as to whether the Euler method is able
to provide an accurate approximation to (1.7). To partially answer this question,
we consider Example 1, which illustrates the properties of the Euler method.

EXAMPLE 1

Kehoe and Butt [2] have studied the kinetics of benzene hydrogenation on a
supported Ni/kieselguhr catalyst. In the presence of a large excess of hydrogen,
the reaction is pseudo-first-order at temperatures below 200°C with the rate
given by

mole/(g of catalyst·s)

where

Rg = gas constant, 1.987 cal/(mole'K)

- Q - Ea = 2700 cal/mole

PH2 = hydrogen partial pressure (torr)

ko = 4.22 mole/(gcat·s·torr)

Ko = 2.63 X 10- 6 cm3/(mole'K)

T = absolute temperature (K)

CB = concentration of benzene (mole/cm3).

Price and Butt [3] studied this reaction in a tubular reactor. If the reactor is
assumed to be isothermal, we can calculate the dimensionless concentration
profile of benzene in their reactor given plug flow operation in the absence of
inter- and intraphase gradients. Using a typical run,

PH2 = 685 torr

PB = density of the reactor bed, 1.2 gcat/cm3

e = contact time, 0.226 s

T = 150°C



6

SLOPE =f (xO'YO)

y y ­
o

fiGURE. 1.1 Euler method.

SOLUTION

Initial-Value Problems for Ordinary Differential Equations

y(x)

(X3'U3)
I
I
I SLOPE=f(x2,u2)
I
I
I
I
I
I

Define

C~ = feed concentration of benzene (mole/cm3
)

z = axial reactor coordinate (cm)

L reactor length

y dimensionless concentration of benzene (CB / C~)

x = dimensionless axial coordinate (z/L).

The one-dimensional steady-state material balance for the reactor that expresses
the fact that the change in the axial convection of benzene is equal to the amount
converted by reaction is

with

C~ at x o
Since e is constant,

: = - PBePH2koKoT exp [( - ~g-;' Ea
)] y

Let
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Using the data provided, we have <!>

equation becomes

7

21.6. Therefore, the material balance

dy = -21.6y
dx

with

y 1 at x = 0

and analytical solution

y = exp (-21.6x)

Now we solve the material balance equation using the Euler method [Eq. (1.11)]:

where

U i + 1 = U i - 21.6hu;, i = 0, 1, 2, ... , N - 1

h=l
N

Table 1.1 shows the generated results. Notice that for N = 10 the differ­
ences between the analytical solution and the numerical approximation increase
with x. In a problem where the analytical solution decreases with increasing
values of the independent variable, a numerical method is unstable if the global
error grows with increasing values of the independent variable (for a rigorous
definition of stability, see [4]). Therefore, for this problem the Euler method is
unstable when N = 10. For N = 20 the global error decreases with x, but the
solution oscillates in sign. If the error decreases with increasing x, the method
is said to be stable. Thus with N = 20 the Euler method is stable (for this
problem), but the solution contains oscillations. For all N > 20, the method is
stable and produces no oscillations in the solution.

From a practical standpoint, the "effective" reaction zone would be ap­
proximately 0 ~ x ~ 0.2. If the reactor length is reduced to 0.2L, then a more
realistic problem is produced. The material balance equation becomes

dy = -4.32y
dx

y = 1 at x = 0

Results for the "short" reactor are shown in Table 1.2. As with Table 1.1, we
see that a large number of steps are required to achieve a "good" approximation
to the analytical solution. An explanation of the observed behavior is provided
in the next section.

Physically, the solutions are easily rationalized. Since benzene is a reactant,
thus being converted to products as the fluid progresses toward the reactor outlet
(x = 1), Y should decrease with x. Also, a longer reactor would allow for greater
conversion, i.e., smaller y values at x = 1.
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TABU 1.1 Results of Euler Method on :: = -21.6y,y = 1 atx = 0

Analytical
x Solutiont N = 10 N = 20 N = 100 N = 8000

0.00 1.00000 1.0000 1.00000 1.00000 1.00000
0.05 0.33960 - 0.80000( -1) 0.29620 0.33910
0.10 0.11533 -1.1600 0.64000( -2) 0.87733( -1) 0.11499
0.15 0.39164( -1) - 0.51200( - 3) 0.25986( -1) 0.38993( -1)
0.20 0.13300(-1) 1.3456 oo40960( - 4) 0.76970( -2) 0.13222(-1)
0.25 0045166( - 2) - 0.32768( - 5) 0.22798( -2) 0044837( - 2)
0.30 0.15338( - 2) -1.5609 0.26214( -6) 0.67528( - 3) 0.15204(-2)
0.35 0.52088( -3) -0.20972( -7) 0.20000(-3) 0.51558( - 3)
0.40 0.17689(-3) 1.8106 0.16777( -8) 0.59244( -4) 0.17483(-3)
0045 0.60070( -4) -0.13422( -9) 0.17548(-4) 0.59286(-4)
0.50 0.20400( -4) -2.1003 0.10737( -10) 0.51976( - 5) 0.20104(-4)
0.55 0.69276( - 5) - 0.85899( -12) 0.15395( - 5) 0.68172( -5)
0.60 0.23526( -5) 204364 0.68719( -13) 0045600( - 6) 0.23117( - 5)
0.65 0.79892(-6) -0.54976( -14) 0.13507( - 6) 0.78390(-6)
0.70 0.27131( -6) -2.8262 oo43980( - 15) oo40006( - 7) 0.26582( - 6)
0.75 0.92136( -7) - 0.35184( -16) 0.11850(-7) 0.90139(-7)
0.80 0.31289( -7) 3.2784 0.28147( -17) 0.35098( - 8) 0.30566(-7)
0.85 0.10626(-7) - 0.22518( -18) 0.10396( - 8) 0.10365( -7)
0.90 0.36084( -8) -3.8030 0.18014( -19) 0.30793(-9) 0.35148( - 8)
0.95 0.12254( - 8) -0.14412( -20) 0.91207( -10) 0.11919( - 8)
1.00 0.41614( - 9) 404114 0.11529( - 21) 0.27015( -10) 0.40416( - 9)

t ( - 3) denotes 1.0 x 10-3,

STABILITY

In Example 1 it was seen that for some choices of the step-size, the approximate
solution was unstable, or stable with oscillations. To see why this happens, we
will examine the question of stability using the test equation

dy = Ay
dx

yeO) = Yo

where Ais a complex constant. Application of the Euler method to (1.17) gives

Ut+1 = Ut + Ahut
or

Ut+l = (1 + hA)Ut = (1 + hA)2Ut _ 1 =

The analytical solution of (1.17) is

y(x t+ 1) = yoeAXi+l = yoe(i+l)hA

(1.18)

(1.19)

(1.20)

Comparing (1.20) with (1.19) shows that the application of Euler's method to
(1.17) is equivalent to using the expression (1 + hA) as an approximation for
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TABLE. 1.1 Results of Euler Method on dy = -4.31y, Y = 1 at x = 0
dx

Analytical
x Solution N = 100 N = 1000 N = 8000

0.0 1.00000 1.00000 1.00000 1.00000
0.1 0.64921 0.64300 0.64860 0.64913
0.2 0.42147 0.41345 0.42068 0.42137
0.3 0.27362 0.26585 0.27286 0.27353
0.4 0.17764 0.17094 0.17698 0.17756
0.5 0.11533 0.10992 0.11479 0.11526
0.6 0.07487 0.07067 0.07445 0.07481
0.7 0.04860 0.04544 0.04828 0.04856
0.8 0.03155 0.02922 0.03132 0.03152
0.9 0.02048 0.01878 0.02031 0.02046
1.0 0.01330 0.01208 0.01317 0.01328

e Ah . Now suppose that the value Yo is not exactly representable by a machine
number (see Appendix A), then eo = Yo - Uo will be nonzero. From (1.19),
with Uo replaced by Yo - eo,

Ui+1 (1 + h1l.)i+1 (yo - eo)

and the global error (5 i+1 is

(5i+1 = Y(Xi+1) - Ui+1 = yoe(i+1)hA - (1 + hA)i+1 (Yo - eo)

or

(5i+1 = [e(i+1)Ah - (1 + hA)i+1] Yo + (1 + hA)i+1eo (1.21)

Hence, the global error consists of two parts. First, there is an error that results
from the Euler method approximation (1 + hA) for eAh . The second part is the
propagation effect of the initial error, eo. Clearly, if 11 + hAl> 1, this component
will grow and, no matter what the magnitude of eo is, it will become the dominant
term in (5 i + l' Therefore, to keep the propagation effects of previous errors
bounded when using the Euler method, we require

11 + hAl <s; 1 (1.22)

The region of absolute stability is defined by the set of h (real nonnegative) and
Avalues for which a perturbation in a single value Ui will produce a change in
subsequent values that does not increase from step to step [4]. Thus, one can
see from (1.22) that the stability region for (1.17) corresponds to a unit disk in
the complex hA-plane centered at ( -1, 0). If Ais real, then

- 2 <S; hA <S; 0 (1.23)

Notice that if the propagation effect is the dominant term in (1.21), the global
error will oscillate in sign if - 2 <S; hA <S; - 1.
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EXAMPLE 2

Initial-Value Problems for Ordina'Y Differential Equations

Referring to Example 1, find the maximum allowable step-size for stability and
for nonoscillatory behavior for the material balance equations of the "long" and
"short" reactor. Can you now explain the behavior shown in Tables 1.1 and
1.2?

SOLUTION

For the long reactor: 'AL = - 21.6
For the short reactor: 'As = - 4.32
For stability: 0;;,: h'A ;;,: - 2
For nonoscillatory error: 0 ;;,: h'A > -1

(real)
(real)

Unstable
Stable, error oscillations
Stable, no error oscillations

Long Reactor

0.0926 < h
0.0463 ~ h ~ 0.0926

h < 0.0463

Short Reactor

0.4630 < h
0.2315 ~ h ~ 0.4630

h < 0.2315

For the short reactor, all of the presented solutions are stable and non­
oscillatory since the step-size is always less than 0.2315. The large number of
steps required for a "reasonably" accurate solution is a consequence of the first­
order accuracy of the Euler method.

For the long reactor with N > 20 the solutions are stable and nonoscillatory
since h is less than 0.0463. With N = 10, h = 0.1 and the solution is unstable,
while for N = 20, h = 0.05 and the solution is stable and oscillatory. From the
above table, when N = 20, the global error should oscillate if the propagation
error is the dominant term in Eq. (1.21). This behavior is not observed from
the results shown in Table 1.1. The data for N = 10 and N = 20 can be explained
by examining Eq. (1.21):

6i+l = [e(i+l)Ah - (1 + h'A)i+l]yo + (1 + h'A)i+leo = (A)yo + (B)eo

For N = 10, h = 0.1 and 'Ah = -2.16. Therefore,

o
1
2

(A)

1.2753
-1.3323

1.5624

(B)

-1.160
1.3456

-1.5609

Global Error Calculated from
Results Shown in Table 1.1

1.2753
-1.3323

1.5624

Since Yo = 1 and eo is small, the global error is dominated by term (A) and not
the propagation term, i.e., term (B). For N = 20, h = 0.05 and 'Ah = -1.08.
Therefore,
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o
1
2

(A)

0.4196
0.1089
0.3967 x 10- 1

(B)

-0.08
0.64 x 10- 2

-0.512 X 10-3

Global Error Calculated from
Results Shown in Table 1.1

0.4196
0.1089
0.3967 x 10- 1

As with N = 10, the global error is dominated by the term (A). Thus no os­
cillations in the global error are seen for N = 20.

From (1.19) one can explain the oscillations in the solution for N = 10
and 20. If

(1 + hA) < 0

then the numerical solution will alternate in sign. For (1 + hA) to be equal to
zero, hA = -1. When N = 10 or 20, hA is less than -1 and therefore oscillations
in the solution occur.

For this problem, it was shown that for the long reactor with N = 10 or
20 the propagation error was not the dominant part of the global error. This
behavior is a function of the parameter A and thus will vary from problem to
problem.

From Examples 1 and 2 one observes that there are two properties of the
Euler method that could stand improvement: stability and accuracy. Implicit
within these categories is the cost of computation. Since the step-size of the
Euler method has strict size requirements for stability and accuracy, a large
number of function evaluations are required, thus increasing the cost of com­
putation. Each of these considerations will be discussed further in the following
sections. In the next section we will show methods that improve the order of
the accuracy.

RUNGE·KUTIA METHODS

Runge-Kutta methods are explicit algorithms that involve evaluation of the
function f at points between Xi and Xi + l' The general formula can be written as

where

v

U i + 1 = U i + 2: wjKj
j=1

(1.24)

(1.25)
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(1.26)

Notice that if v = 1, WI = 1, and K 1 = hf(x;, u;), the Euler method is obtained.
Thus, the Euler method is the lowest-order Runge-Kutta' formula. For higher­
order formulas, the parameters w, C, and a are found as follows. For example,
if v = 2, first expand the exact solution of (1.7) in a Taylor's series,

Y(Xi+1) = y(x) + hf(x;, y(x;)) + ~~ f'(x;, y(x)) + 0(h3
)

Next, rewrite f'(x;, y(x)) as

d~ = a~ + af; dy I
d d

(fx + fyf);
x ax ay x X=Xi

Substitute (1.27) into (1.26) and truncate the 0(h3
) term to give

h2

Ui+1 = U; + h~ + 2" (fx + fyf);

Expand each of the K/s about the ith position. To do so, denote

K1 = hf(x;, u;) = h~

and

(1.27)

(1.28)

(1.29a)

(1.29b)

Recall that for any two functions 'Y) and <p that are located near x; and U;,

respectively,

f('Y), <p) = f(x;, u;) + ('Y) - x;)fx(x;, u;) + (<p - u;)fy(x;, u;)

Using (1.30) on K 2 gives

K2 = h(f; + c2hfx + a21K d y)

or

K2 = h~ + h2(C2fx + a2dyf);

Substitute (1.29a) and (1.31) into (1.24):

U;+l = U; + w1hf; + w2h~ + w2h2c2(fx); + a21w2h2(fyf);

Comparing like powers of h in (1.32) and (1.28) shows that

WI + 0>2 = 1.0

W2C2 = 0.5

(1.30)

(1.31)

(1.32)

The Runge-Kutta algorithm is completed by choosing the free parameter; i.e.,
once either WI' W2' C2' or a21 is chosen, the others are fixed by the above formulas.
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If Cz is set equal to 0.5, the Runge-Kutta scheme is

13

Ui+l = Ui + hl(xi + ~h, Ui + ~hl;),

Uo = Yo

or a midpoint method. For Cz = 1,

h
U i + 1 = Ui + "2 [I; + I(xi + h, Ui + hj;)L

Uo = Yo

i = 0, 1, ... , N - 1

0,1, ... , N - 1

(1.33)

(1.34)

These two schemes are graphically interpreted in Figure 1.2. The methods are
second-order accurate since (1.28) and (1.31) were truncated after terms of O(hZ).

If a pth-order accurate formula is desired, one must take v large enough
so that a sufficient number of degrees of freedom (free parameters) are available
in order to obtain agreement with a Taylor's series truncated after terms in hP •

A table of minimum such v for a given p is

p

v

Since v represents the number of evaluations of the function I for a particular
i, the above table shows the minimum amount of work required to achieve
a desired order of accuracy. Notice that there is a jump in v from 4 to 6 when
p goes from 4 to 5, so traditionally, because of the extra work, methods with
p > v have been disregarded. An example of a fourth-order scheme is the

(0)

+LOPE=f(Xi+h,Ui+hf (Ui»=S2

// I

SL¥<toPE=f(~~=SI: UI+I

Ui :

- I, I SLOPE= SI+S2
I --

I I 2
, I
I I

Xi Xi

(b)

SLOPE=S3

fiGURE 1.1. Ramge-I{utta interpretations. (a) (q. (1.34). (b) Eq. (1.33).
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Runge-Kutta-Gill Method [41] and is:

Ui + 1 = Ui + HKI + K4) + HbK2 + dK3 )

K 2 = hf(xi + ~h, U i + ~KI)

K3 = hf(xi + ~h, Ui + aKI + bK2)

K4 = hf(xi + h, Ui + cK2 + dK3)

0- 1 2 - 0
a =

2
b =

2

0 0
c =

2 '
d = 1 + -

2

for

(1.35)

i = 0, 1, ... , N - 1 and Uo = Yo

The parameter choices in this algorithm have been made to minimize round-off
error.

Use of the explicit Runge-Kutta formulas improves the order of accuracy,
but what about the stability of these methods? For example, if A is real, the
second-order Runge-Kutta algorithm is stable for the region - 2.0 ~ Ah ~ 0,
while the fourth-order Runge-Kutta-Gill method is stable for the region
-2.8 ~ Ah ~ 0.

EXAMPLE 3

A thermocouple at equilibrium with ambient air at lOoC is plunged into a warm­
water bath at time equal to zero. The warm water acts as an infinite heat source
at 20°C since its mass is many times that of the thermocouple. Calculate the
response curve of the thermocouple.

Data: Time constant of the thermocouple = 0.4 min-I.

SOLUTION

Define

Cp = thermal capacity of the thermocouple

U = heat transfer coefficient of the thermocouple

A = heat transfer area of thermocouple

t = time (min)

T, Tp' To = temperature of thermocouple, water, and ambient air



Runge-Kutta Methods

T - T
6 = ---"'p-­

Tp - To

C
'T] = U~ = time constant of the thermocouple

t
t* - 10

15

T = lOoC at t = 0

The governing differential equation is Newton's law of heating or cooling and
is

dT
Cp di = UA(Tp -. T),

If the response curve is calculated for 0 :;;; t :;;; 10 min, then

d6
dt*

The analytical solution is

-256,

6 = e-25t*,

6 = 1 at t = 0

o:;;; t* :;;; 1

Now solve the differential equation using the second-order Runge-Kutta method
[Eq. (1.34)]:

Uo = 1

where

U;+l = U; + ~ [I; + f«( + h, U; + hi;)],

-25u;

i = 0, 1, ... , N - 1

f«( + h, U; + hi;) = -25(u; + hf;)

and using the Runge-Kutta-Gill method [Eq. (1.35)]:

Uo = 1

U;+l = u; + ~(Kl + K4) + ~(bK2 + dK3) , i = 0, 1, ... , N - 1

K 1 = -25hu;

K2 = -25h(u; + !K1)

K3 = -25h(u; + aK1 + bK2)

K4 = - 25h(U; + cK2 + dK3)

Table 1.3 shows the generated results. Notice that for N = 20 the second­
order Runge-Kutta method shows large discrepancies when compared with the
analytical solution. Since A = - 25, the maximum stable step-size for this method
is h = 0.08, and for N = 20, h is very close to this maximum. For the



16 Initial-Value Problems for Ordinary Differential Equations

dO
- 250, 0 = t at t* = 0TABLE 1.3 Comparison of Runge-Kutta Methods dt* =

Second~Order Runge-Kutta
Method Runge-Kutta-Gill Method

Analytical
t* Solution N = 20 N = 200 N = 20 N = 200

0.00000 1.00000 1.00000 1.00000 1.00000 1.00000
0.20000 0.67379( - 02) 0.79652(-01) 0.68350( -02) 0.89356(-02) 0.67380( -02)
0040000 OA5400( - 04) 0.63444( - 02) 0046717(-04) 0.79845(-04) OA5401( - 04)
0.60000 0.30590( -06) 0.50534( -03) 0.31931( - 06) 0.71346(-06) 0.30591( -06)
0.80000 0.20612( -08) OA0252( -04) 0.21825( -08) 0.63752( -08) 0.20612( - 08)
1.00000 0.13888( -10) 0.32061( - 05) 0.14917( -10) 0.56966( -10) 0.13889(-10)

Runge-Kutta-Gill method the maximum stable step-size is h = 0.112, and h
never approaches this limit. From Table 1.3 one can also see that the Runge­
Kutta-Gill method produces a more accurate solution than the second-order
method, which is as expected since it is fourth-order accurate. To further this
point, refer to Table 1.4 where we compare a first (Euler), a second, and a
fourth-order method to the analytical solution. For a given N, the accuracy
increases with the order of the method, as one would expect. Since the Runge­
Kutta-Gill method (RKG) requires four function evaluations per step while the
Euler method requires only one, which is computationally more efficient? One
can answer this question by comparing the RKG results for N = 100 with the
Euler results for N = 800. The RKG method (N = 100) takes 400 function
evaluations to reach t* = 1, while the Euler method (N = 800) takes 800. From
Table 1.4 it can be seen that the RKG (N = 100) results are more accurate than
the Euler (N = 800) results, and require half as many function evaluations. It
is therefore shown that for this problem although more function evaluations per
step are required by the higher-order accurate formulas, they are computation­
ally more efficient when trying to meet a specified error tolerance (this result
cannot be generalized to include all problems).

Physically, all the results in Tables 1.3 and 1.4 have significance. Since
e = (Tp - T)/(Tp - To), initially T = To and e = 1. When the thermocouple
is plunged into the water, the temperature will begin to rise and Twill approach
Tp , that is, e will go to O.

So far we have always illustrated the numerical methods with test problems
that have an analytical solution so that the errors are easily recognizable. In a
practical problem an analytical solution will not be known, so no comparisons
can be made to find the errors occurring during computation. Alternative strat­
egies must be constructed to estimate the error. One method of estimating the
local error would be to calculate the difference between u,!+ 1 and Ui + 1 where
U i + 1 is calculated using a step-size of hand U'!+l using a step-size of h/2. Since
the accuracy of the numerical method depends upon the step-size to a certain
power, U'!+l will be a better estimate for Y(Xi +l) than Ui + 1• Therefore,



TABU 1.4 Comparison of Runge·Kutta Methods with the Euler Method
dO- = -250, 0 = 1 at t* = 0
dt*

Second·Order Runge.Kutta
Method Runge-Kutta-Gill Method Euler Method

Analytical
t* Solution N = 100 N = 800 N = 100 N = 800 N = 100 N = 800

0.00000 1.000000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
0.20000 0.67379( -02) 0.71746( -02) 0.67436( -02) 0.67393(-02) 0.67379( -02) 0.31712( -02) 0.62212( - 02)
0.40000 0.45400(-04) 0.51476(-04) 0.45476( - 04) 0.45418(-04) 0.45400( - 04) 0.10057(-04) 0.38703(-04)
0.60000 0.30590( -06) 0.36932( - 04) 0.30667( - 06) 0.30609( -06) 0.30590( -06) 0.31892( -07) 0.24078( -06)
0.80000 0.20612( - 08) 0.26497( -08) 0.20680( - 08) 0.20628( - 08) 0.20612( -08) 0.10113(-09) 0.14980(-08)
1.00000 0.13888( -10) 0.19011( -10) 0.13946( -10) 0.13902( -10) 0.13888( -10) 0.32072( -12) 0.93191( -11)
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For Runge-Kutta formulas, using the one-step, two half-steps procedure can be
very expensive since the cost of computation increases with the number of
function evaluations. The following table shows the number of function evalu­
ations per step for pth-order accurate formulas using two half-steps to calculate
U7+1:

p

Evaluations of
fper step

2

5

3

8

4 5

11 14

Take for example the Runge-Kutta-Gill method. The Gill formula requires four
function evaluations for the computation of Ui+1 and seven for U7+1' A better
procedure is Fehlberg's method (see [5]), which uses a Runge-Kutta formula of
higher-order accuracy than used for Ui+1 to compute U7+1' The Runge-Kutta­
Fehlberg fourth-order pair of formulas is

[25 k 1408k 2197k 1k ]
Ui + 1 = Ui + 216 1 + 2565 3 + 4104 4 - :5 5 ,

[
16 k 6656 k 28561 k 9 k + 2 k ]

U i + 135 1 + 12825 3 + 56430 4 - 55 5 55 6 ,

where

k1 = hf(xi, uJ
k2 = hf(xi + ~h, Ui + ~kl)

k3 = hf(Xi + ih, ui + iik1 + !zk2)

k4 = hf(xi + Hh, Ui + ~~~~kl - iig~k2 + ii~~k3)

k - hf( + h + mk 8k + 3680k - M2..k)5 - Xi ,Ui 216 1 - 2 ill 3 4104 4

On first inspection the system (1.36) appears quite complicated, but it can be
programmed in a very straightforward way. Notice that the formula for U i + 1 is
fourth-order accurate but requires five function evaluations as compared with
the four of the Runge-Kutta-Gill method, which is of the same order accuracy.
However, if ei+l is to be estimated, the half-step method using the Runge-Kutta­
Gill method requires eleven function evaluations while Eq. (1.36) requires only
six-a considerable decrease! The key is to use a pair of formulas with a common
set of k/s. Therefore, if (1.36) is used, as opposed to (1.35), the accuracy is
maintained at fourth-order, the stability criteria remains the same, but the cost
of computation is significantly decreased. That is why a number of commercially
available computer programs (see section on Mathematical Software) use Runge­
Kutta-Fehlberg algorithms for solving IVPs.
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(1.37)

In this section we have presented methods that increase the order of ac­
curacy, but their stability limitations remain severe. In the next section we discuss
methods that have improved stability criteria.

IMPLICIT METHODS

If we once again consider Eq. (1.7) and expand y(x) about the point Xi + 1 using
Taylor's theorem with remainder:

Y(Xi) = Y(Xi+1) - hy'(Xi+1) + ~~ Y"(~i)'

Substitution of (1.7) into (1.37) gives

y(xi) = Y(Xi+1) - hf(xi+1' Y(Xi+1))

h2 _ _

+ 2! t: (~, y(~)), (1.38)

A numerical procedure of (1.7) can be obtained from (1.38) by truncating after
the second term:

Uo = Yo

i = 0, 1, ... , N - 1, (1.39)

(1.40)

Equation (1.39) is called the implicit Euler method because the function f is
evaluated at the right-hand side of the subinterval. Since the value of U i + 1 is
unknown, (1.39) is nonlinear iffis nonlinear. In this case, one can use a Newton
iteration (see Appendix B). This takes the form

[s+1] _ h[fl afl ([S+1] Is] )]Ui+1 - [s]. + ay [s] Ui+1 - Ui+1 + Ui
u 1+1 U l +l

or after rearrangement

( 1 - h af) I ([S+1] - [s]) - hil Is]ay u['] Ui+1 Ui+1 - ['I + Ui - Ui+1
1+1 U 1+ 1

where U~11 is the sth iterate of Ui+1. Iterate on (1.41) until

IU~~";.1] - U!111 ~ TOL

(1.41)

(1.42)

where TOL is a specified absolute error tolerance.
One might ask what has been gained by the implicit nature of (1.39) since

it requires more work than, say, the Euler method for solution. If we apply the
implicit Euler scheme to (1.17) (X. real),
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(1.43)_ ( 1 ) _ ( 1 );+1
U; + 1 - 1 _ h'A U; - 1 _ h'A Yo

If 'A < 0, then (1.39) is stable for all h > °or it is unconditionally stable, and
never oscillates.

The implicit nature of the method has stabilized the algorithm, but unfor­
tunately the scheme is only first-order accurate. To obtain a higher order of
accuracy, combine (1.38) and (1.10) to give

i = 0, 1, ... , N - 1,

2[Y(Xi+1) - y(x;)] = h[/;+1 + /;] + O(h3
)

The algorithm associated with (1.44) is

h
U;+1 = U; + 2 [/;+1 + /;],

(1.44)

(1.45)

Uo = Yo

which is commonly called the trapezoidal rule. Equation (1.45) is second-order
accurate, and the stability of the scheme can be examined by applying the method
to (1.17), giving ('A real)

(1 + ¥)
(1 _~h)

;+1

Yo (1.46)

If 'A < 0, then (1.45) is unconditionally stable, but notice that if h'A < - 2 the
method will produce oscillations in the sign of the error. A summary of the
stability regions ('A real) for the methods discussed so far is shown in Table 1.5.

From Table 1.5 we see that the Euler method requires a small step-size
for stability. Although the criteria for the Runge-Kutta methods are not as

dy
TABLE 1.5 Comparison of Methods Based upon dx = -TY, y(O) = t, T > 0 and

is a real constant

Stable Step-Size, Stabie Step-Size, Unstable Order of
Method No Oscillations Oscillations Step-Size Accuracy

Euler (1.11) hT < 1 10;;; hT 0;;; 2 2 < hT 1
Second-order Runge-

Kutta (1.33) hT 0;;; 2 None 2 < hT 2
Runge-Kutta-Gill (1.35) hT 0;;; 2.8 None 2.8 < hT 4
Implicit Euler (1.39) hT < 00 None None 1
Trapezoidal (1.45) hT < 2 2 0;;; hT 0;;; 00 None 2
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(1.47)

stringent as for the Euler method, stable step-sizes for these schemes are also
quite small. The trapezoidal rule requires a small step-size to avoid oscillations
but is stable for any step-size, while the implicit Euler method is always stable.
The previous two algorithms require more arithmetic operations than the Euler
or Runge-Kutta methods when f is nonlinear due to the Newton iteration, but
are typically used for solution of certain types of problems (see section on
stiffness) .

In Table 1.5 we once again see the dilemma of stability versus accuracy.
In the following section we outline one technique for increasing the accuracy
when using any method.

EXTRAPOLATION

Suppose we solve a problem with a step-size of h giving the solution Ui at Xi'
and also with a step-size h/2 giving the solution Wi at Xi' If an Euler method is
used to obtain Ui and Wi' then the error is proportional to the step-size (first­
order accurate). If Y(x i ) is the exact solution at X;, then

Ui = Y(xi) + <l>h

h
Wi = Y(Xi) + <1>2"

where <I> is a constant. Eliminating <I> from (1.47) gives

Y(xi) = 2Wi - Ui (1.48)

If the error formulas (1.47) are exact, then this procedure gives the exact solution.
Since the formulas (1.47) usually only apply as h ~ 0, then (1.48) is only an
approximation, but it is expected to be a more accurate estimate than either Wi
or Ui' The same procedure can be used for higher-order methods. For the trap­
ezoidal rule

EXAMPLE 4

Ui = Y(Xi) + <l>h2

Wi = Y(Xi) + <I> (~) 2

4w· - Ui
Y(Xi) = 1

3

(1.49)

The batch still shown in Figure 1.3 initially contains 25 moles of n-octane and
75 moles of n-heptane. If the still is operated at a constant pressure of 1 at­
mosphere (atm) , compute the final mole fraction of n-heptane, x{.p if the re­
maining solution in the still, Sf, totals 10 moles.
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fiGURE 1.3 Batch still.

Still

D 'YH' Distillate

Data: At 1 atm total pressure, the relationship between XH and the mole
fraction of n-heptane in the vapor phase, YH, is

2. 16xH
YH = 1 + 1.16 XH

SOLUTION

An overall material balance is

dS = -dD

A material balance of n-heptane gives

d(xHS)

Combination of these balances yields

rSf dS rx
{, dXH

Js o S = Jx'i, YH - XH

where So = 100, Sf = 10, x~ = 0.75.
Substitute for YH and integrate to give

(
Sf) (1 - X~)[(l _ X~)(X~)]1/1.16
SO 1 - x~ 1 - x~ x~

and

X~ = 0.37521825

Physically, one would expect XH to decrease with time since heptane is lighter
than octane and would flash in greater amounts than would octane. Now compare
the analytical solution to the following numerical solutions. First, reformulate
the differential equation by defining

So - S
t=---"---

So - Sf
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so that

Thus:

dXH-=
dt

O~t~l

1.16 (Sf - So) xH(l - XH)

(So(l - t) + Sft) (1 + 1. 16xH) ,
at t = 0

23

If an Euler method is used, the results are shown in Table 1.6. From a practical
standpoint, all the values in Table 1.6 would probably be sufficiently accurate
for design purposes, but we provide the large number of significant figures to
illustrate the extrapolation method. A simple Euler method is first-order ac­
curate, and so the truncation error should be proportional to h(1/N). This is
shown in Table 1.6. Also notice that the error in the extrapolated Euler method
decreases faster than that in the Euler method with increasing N. The truncation
error of the extrapolation is approximately the square of the error in the basic
method. In this example one can see that improved accuracy with less compu­
tation is achieved by extrapolation. Unfortunately, the extrapolation is successful
only if the step-size is small enough for the truncation error formula to be
reasonably accurate. Some nonlinear problems require extremely small step­
sizes and can be computationally unreasonable.

Extrapolation is one method of increasing the accuracy, but it does not
change the stability of a method. There are commercial packages that employ
extrapolation (see section on Mathematical Software), but they are usually based
upon Runge-Kutta methods instead of the Euler or trapezoidal rule as outlined

TABU t.6 Errors in the Euler Method and
the Extrapolated Euler Method for Exam·
pie 4

Number of
Steps

Absolute
Total Number Value
of Steps of the Error

Euler Method

50
100
200
400
800

1,600

50
100
200
400
800

1,600

0.01373
0.00675
0.00335
0.00166
0.00083
0.00041

Extrapolated Euler Method

50-100 150
100-200 300
200-400 600
400-800 1,200
800-1600 2,400

0.000220
0.000056
0.000013
0.000003
0.000001
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(1.50)

above. In the following section we describe techniques currently being used in
software packages for which stability, accuracy, and computational efficiency
have been addressed in detail (see, for example, [5]).

MULTISTEP METHODS

Multistep methods make use of information about the solution and its derivative
at more than one point in order to extrapolate to the next point. One specific
class of multistep methods is based on the principle of numerical integration. If
the differential equation y' = f(x, y) is integrated from Xi to Xi+l' we obtain

J:"+1 y' dx = J:"+1 f(x, y(x» dx

or

Y(Xi+l) = y(x;) + {'+1 f(x, y(x» dx

To carry out the integration in (1.50), approximate f(x, y(x» by a polynomial
that interpolates f(x, y(x» at k points, Xi' Xi-l, ... , Xi-k+l. If the Newton
backward formula of degree k-l is used to interpolate f(x, y(x», then the
Adams-Bashforth formulas [1] are generated and are of the form

where

k

Ui+l = Ui + h 2,bjU!-j+l
j=l

(1.51)

U; = f(xj' Uj)

This is called a k-step formula because it uses information from the previous k
steps. Note that the Euler formula is a one-step formula (k = 1) with b l = 1.
Alternatively, if one begins with (1.51), the coefficients bj can be chosen by
assuming that the past values of U are exact and equating like powers of h in
the expansion of (1.51) and of the local solution Zi+1 about Xi. In the case of a
three-step formula

Substituting values of Z into this and expanding about Xi gives

Zi+l = Zi + hz;[b1 + b2 + b3] - h2z7[b2 + 2b3] + ~~ zt[b2 + 4b3] + ...

where
h2

Z,'-l = z,~ - hz'! + - Z~II +
I 2!'

4h2

Z,'-2 = z,' - 2hz~' + - Z~II +, 2!'
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The Taylor's series expansion of Zi+ 1 is

hZ h3

Z,"+l = Z," + hZ,~ + -z" + -ZIII +2! l 3! l

and upon equating like power of h, we have

bl + bz + b3 = 1

25

1
-2:

The solution of this set of linear equations is bl = ~, bz = -~, and b3

Therefore, the three-step Adams-Bashforth formula is

Ui + l = Ui + :2 [23ul - 16ul_ l + 5u;_z]

2.­
12·

(1.52)

with an error ei + 1 = O(h4) [generally ei + l = O(hk + l ) for any value of k; for
example, in (1.52) k = 3].

A difficulty with multistep methods is that they are not self-starting. In
(1.52) values for Ui, u;, U;-l, and u;-z are needed to compute Ui+l' The tradi­
tional technique for computing starting values has been to use Runge-Kutta
formulas of the same accuracy since they only require Uo to get started. An
alternative procedure, which turns out to be more efficient, is to use a sequence
of s-step formulas with s = 1, 2, . . . , k [6]. The computation is started with
the one-step formulas in order to provide starting values for the two-step formula
and so on. Also, the problem of getting started arises whenever the step-size h
is changed. This problem is overcome by using a k-step formula whose coeffi­
cients (the b/s) depend upon the past step-sizes (hs = Xs - Xs-l' S = i, i - 1,
... ,i - k + 1) (see [6]). This kind of procedure is currently used in commercial
multistep routines.

The previous multistep methods can be derived using polynomials that
interpolated at the point Xi and at points backward from Xi' These are sometimes
known as formulas of explicit type. Formulas of implicit type can also be derived
by basing the interpolating polynomial on the point Xi+l' as well as on Xi and
points backward from Xi' The simplest formula of this type is obtained if the
integral is approximated by the trapezoidal formula. This leads to

which is Eq. (1.45). Iffis nonlinear, U i + 1 cannot be solved for directly. However,
we can attempt to obtain Ui + 1 by means of iteration. Predict a first approximation
U)~l to Ui+l by using the Euler method

[0] _ + h,-r
U i + 1 - Ui :Ii (1.53)
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(1.54)

Then compute a corrected value with the trapezoidal formula

ul~~l] = Ui + ~ Lt; + !(ull1)], s = 0, 1, ...

For most problems occurring in practice, convergence generally occurs within
one or two iterations. Equations (1.53) and (1.54) used as outlined above define
the simplest predictor-corrector method.

Predictor-corrector methods of higher-order accuracy can be obtained by
using the multistep formulas such as (1.52) to predict and by using corrector
formulas of type

k

Ui + 1 = Ui + h L bj U;_j+l
j=O

(1.55)

Notice that j now sums from zero to k. This class of corrector formulas is called
the Adams-Moulton correctors. The b/s of the above equation can be found in
a manner similar to those in (1.52). In the case of k = 2,

(1.56)

with a local truncation error of 0(h4). A similar procedure to that outlined for
the use of (1.53) and (1.54) is constructed using (1.52) as the predictor and
(1.56) as the corrector. The combination (1.52), (1.56) is called the Adams­
Moulton predictor-corrector pair of formulas.

Notice that the error in each of the formulas (1.52) and (1.56) is 0(h4).

Therefore, if ei + 1 is to be estimated, the difference

Ui+l from (1.56), Ui +l from (1.52)

would be a poor approximation. More precise expressions for the errors in these
formulas are [5]

for (1.52)

for (1.56)

where Xi - 2 < ~ and ~* < X i + 1• Assume that ~* = ~ (this would be a good
approximation for small h), then subtract the two expressions.

ei+l - ei + 1 = Ui+l - Ui + 1 = - fzh4y""(~)

Solving for h4y""(~) and substituting into the expression ei+l gives

1*1_.1.1* 1ei + 1 - 10 Ui + 1 - Ui+l

Since we had to make a simplifying assumption to obtain this result, it is better
to use a more conservative coefficient, say /;. Hence,

I * 1-.1 I * Iei + 1 - 8 Ui + 1 - Ui + 1 (1.57)
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Note that this is an error estimate for the more accurate value so that Ui+1 can
be used as the numerical solution rather than Ui +1' This type of analysis is not
used in the case of Runge-Kutta formulas because the error expressions are very
complicated and difficult to manipulate in the above fashion.

Since the Adams-Bashforth method [Eq. (1.51)] is explicit, it possesses
poor stability properties. The region of stability for the implicit Adams-Moulton
method [Eq. (1.55)] is larger by approximately a factor of 10 than the explicit
Adams-Bashforth method, although in both cases the region of stability de­
creases as k increases (see p. 130 of [4]). For the Adams-Moulton predictor­
corrector pair, the exact regions of stability are not well defined, but the stability
limitations are less severe than for explicit methods and depend upon the number
of corrector iterations [4].

The multistep integration formulas listed above can be represented by the
generalized equation:

k j k2

Ui + 1 = 2: ai+1,j Ui -j+1 + h i+ 1 2: b i + 1,j u:- j + 1
j=l j=O

(1.58)

which allows for variable step-size through h i + 1, a i+ 1,j, and b i + 1,j' For example,
if k1 = 1, a i + 1,1 = 1 for all i, b i + 1,j = bi,j for all i, and kz = q - 1, then a
qth-order implicit formula is obtained. Further, if bi + 1,0 = 0, then an explicit formula
is generated. Computationally these methods are very efficient. If an explicit
formula is used, only a single function evaluation is needed per step. Because
of their poor stability properties, explicit multistep methods are rarely used in
practice. The use of predictor-corrector formulas does not necessitate the so­
lution of nonlinear equations and requires S + 1 (S is the number of corrector
iterations) function evaluations per step in x. Since S is usually small, fewer
function evaluations are required than from an equivalent order of accuracy
Runge-Kutta method and better stability properties are achieved. If a problem
requires a large stability region (see section of stiffness), then implicit backward
formulas must be used. If (1.58) represents an implicit backward formula, then
it is given by

k j

Ui + 1 2: a i + 1,j Ui - j + 1 + h i + 1 b i + 1,0 u:+ 1
j=l

or
Ui + 1 = bi+1,0 hi+1 f(Ui+1) + <Pi (1.59)

where <Pi is the grouping of all known information. If a Newton iteration is
performed on (1.59), then

[1 - bi+1,0 h i + 1 :; ui1J [Ui~~l] - ui11]

= b i + 1,0 h i + 1 fl u[s] + <Pi - ui11'
i+1

s = 0,1, ... (1.60)
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Therefore, the derivative aflay must be calculated and the function f evaluated
at each iteration. One must "pay" in computation time for the increased stability.
The order of accuracy of implicit backward formulas is determined by the value
of k 1• As k1 is increased, higher accuracy is achieved, but at the expense of
decreased stability (see Chapter 11 of [4]).

Multistep methods are frequently used in commercial routines because of
their combined accuracy, stability, and computational efficiency properties (see
section on Mathematical Software). Other high-order methods for handling
problems that require large regions of stability are discussed in the following
section.

HIGH-ORDER METHODS BASED ON KNOWLEDGE Of {)ff{Jy

A variety of methods that make use of aflay has been proposed to solve problems
that require large stability regions. Rosenbrock [7] proposed an extension of the
explicit Runge-Kutta process that involved the use of aflay. Briefly, if one allows
the summation in (1.25) to go from 1 to j, i.e., an implicit Runge-Kutta method,
then,

(1.61)

If kj is expanded,

(

j-1 )
kj = hf U i + 2: a'zkzZ= 1 ]

(1.62)

and rearranged to give

[
af ( j -1 _ )] _ ( j -1 _ )

1 - hajj - Ui + 2: a'lkZ kj = hf Ui + 2: a·zkzay Z=1 ] Z=1 ]
(1.63)

the method is called a semi-implicit Runge-Kutta method. In the function f, it
is assumed that the independent variable x does not appear explicitly, i.e., it is
autonomous. Equation (1.63) is used with

v

Ui + 1 = Ui + 2: wjkj
j=1

(1.64)

to specify the method. Notice that if the bracketed term in (1.63) is replaced
by 1, then (1.63) is an explicit Runge-Kutta formula. Calahan [8], Allen [9],
and Caillaud and Padmanabhan [10] have developed these methods into algo­
rithms and have shown that they are unconditionally stable with no oscillations
in the solution. Stabilization of these algorithms is due to the bracketed term in
(1.63). We will return to this semi-implicit method in the section Mathematical
Software.

Other methods that are high-order, are stable, and do not oscillate are the
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second- and third-order semi-implicit methods of Norsett [11], more recently
the diagonally implicit methods of Alexander [12], and those of Bui and Bui
[13] and Burka [14].

STIffNESS

Up to this point we have limited our discussion to a single differential equation.
Before looking at systems of differential equations, an important characteristic
of systems, called stiffness, is illustrated.

k 1

Suppose we wish to model the reaction path A :;::::=: B starting with pure A.
k2

The reaction path can be described by

dCA--;It = - k1CA + kZCB (1.65)

where

CA = C1 at t = 0

CA = concentration of A

t = time

One can define Y1 = (CA - C~)I(C~ - C~) where C~ is the equilibrium
value of CA (t -i> 00). Equation (1.65) becomes

dYl =dt -(k1 + kz) Yl' Yl = 1 at t = 0 (1.66)

If k 1 = 1000 and kz = 1, then the solution of (1.66) is

(1.67)

If one uses the Euler method to solve (1.66), then

h < llOl
for stability. The time required to observe the full evolution of the solution is

k3

very short. If one now wishes to follow the reaction path B -i> D, then

dCB 0----;[( = -k3CB , CB = CB at t = 0 (1.68)

If k3 = 1 and Yz = CB/C~, then the solution of (1.68) is

Yz = e- t

If the Euler method is applied to (1.68), then

h<1

(1.69)
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for stability. The time required to observe the full evolution of the solution is
long when compared with that required by (1.66). Next suppose we wish to
simulate the reaction pathway

(1.71)

(1.70)

[l,OyQy = f, yeO)

The governing differential equations are

dCA"dt = -k1CA + k2CB

dCB _ k C - (k k )Cdt - 1 A 2 + 3 B'

CA = Cl, CB = 0 at t = 0

This system can be written as

dy
dt

where

The solution of (1.71) is

(1.72)

A plot of (1.72) is shown in Figure 1.4. Notice that Yl decays very rapidly, as
would (1.67), whereas Y2 requires a long time to trace its full evolution, as would
(1.69). If (1.71) is solved by the Euler method

1
h < - (1.73)

IAG'lmax

where III. glma. is the absolute value of the largest eigenvalue of Q. We have the
unfortunate situation with systems of equations that the largest step-size is gov­
erned by the largest eigenvalue while the integration time for full evolution of
the solution is governed by the smallest eigenvalue (slowest decay rate). This
property of systems is called stiffness and can be quantified by the stiffness ratio



Stiffness

I.0 ,----,---.,.-----r--,..-'Ir--'V-,------,---,---,

31

0.8

0.6

Yj
0.4

0.2

0.0005 0.001 0.0015 0.003 0.1 0.3 0.5

fiGURE 1.4 Results from Eq. (1.72).

[15] SR,

maxlrealpartofA 6',1
i

SR = . I 1 f I'mm rea parto A6',
;

realpartof A6',<0, i= 1, ... ,m,

(1.74)

m = numberofequationsinthesystem

which allows for imaginary eigenvalues. Typically SR = 20 is not stiff, SR = 103

is stiff, and SR = 106 is very stiff. From (1.72) SR = 10
1
01 = 103

, and the system
(1.71) is stiff. If the system of equations (1.71) were nonlinear, then a lineari­
zation of (1.71) gives

where

dy
dt = Q(t;)y(t;) + J(t;)(y - yeti))

yeti) = vector y evaluated at time t;

Q(t;) = matrix Q evaluated at time t;

J(t;) = matrix J evaluated at time t;

(1.75)
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The matrix J is called the Jacobian matrix, and in general is

all all all
aY1' ayz' ... , aYm

J=
aim aim aim
ay/ ayz' ... , aYm

For nonlinear problems the stiffness is based upon the eigenvalues of J and thus
applies only to a specific time, and it may change with time. This characteristic
of systems makes a problem both interesting and difficult. We need to classify
the stiffness of a given problem in order to apply techniques that "perform"
well for that given magnitude of stiffness. Generally, implicit methods "out­
perform" explicit methods on stiff problems because of their less rigid stability
criterion. Explicit methods are best suited for nonstiff equations.

SYSnMS Of DiffERENTIAL EQUATIONS

A straightforward extension of (1.11) to a system of equations is

i = 0, 1, ... , N - 1 (1.76)

Uo = Yo

Likewise, the implicit Euler becomes

"0 = Yo

while the trapezoid rule gives

h
"i+1 = "i + '2 [f(xi, "i+1) + f(xi, "i)],

Uo = Yo

i = 0, 1, ... , N - 1

i = 0, 1, ... , N - 1

(1.77)

(1.78)

For a system of equations the Runge-Kutta-Fehlberg method is

* + [16 k 6656 k 28561 k 9 k 2 k ]"i + 1 = "i 135 1 + 12825 3 + 56430 4 - 55 5 + 55 6

where

k . = [k{l} k{Z} k~m}]T
Z l , I'··" I

(1.79)
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and, for example,

k {]} - h.f ( {I} {2} {m})
1 - 1j Xi' Ui ,Ui , ... ,Ui , j = 1, ... ,m

33

<Pji = u}J1 + ~k¥1

k¥1 = h/i(xi + ~h, <P1i' <P2;, ... , <Pmi), j = 1, ... ,m

(1.80)

The Adams-Moulton predictor-corrector formulas for a system of equations are

U i + 1 = Ui + :2 [23uI - 16uI_1 + 5uI-z]

*- h[5' 8' ']Ui+ 1 - U i + 12 Ui+1 + U i - Ui-1

An algorithm using the higher-order method of Caillaud and Padmanabhan
[10] was formulated by Michelsen [16] by choosing the parameters in (1.63) so
that the same factor multiplies each k;, thus minimizing the work involved in
matrix inversion. The final scheme is

i = 0, 1, ... , N - 1

Uo = Yo

_ [ af]-l
k 1 = h I - hal ay (Ui) feu;)

_ [ af] -1 _
k2 = h I - hal ay (Ui) f(u i + b2k1)

_ [ af] -1 _ _
k3 = h I - hal ay (Ui) (b31k 1 + b32k2)

where I is the identity matrix,

a1 = 0.43586659

b2 = 0.75

-1
b31 = -6 (8at - 2a1 + 1)

a1

2
b32 = -9 (6at - 6a1 + 1)

a1

(1.81)
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(1.82)

As previously stated, the independent variable x must not explicitly appear in
f. If x does explicitly appear in f, then one must reformulate the system of
equations by introducing a new integration variable, t, and let

dx- = 1
dt

be the (m + 1) equation in the system.

EXAMPLE 5

Referring to Example 1, if we now consider the reactor to be adiabatic instead
of isothermal, then an energy balance must accompany the material balance.
Formulate the system of governing differential equations and evaluate the stiff­
ness. Write down the Euler and the Runge-Kutta-Fehlberg methods for this
problem.

Data
Cp = 12.17 X 104 J/(kmole'°C)

- b.Hr = 2.09 x 108 J/kmole

SOLUTION

Let T* = TlTo, TO = 423 K (150°C). For the "short" reactor, .

dy [3.21]
dx = -0.1744 exp T* y (material balance)

dT* [3.21]dx = 0.06984 exp T* y (energy balance)

y = 1, T* = 1 at x = 0

First, check to see if stiffness is a problem. To do this the transport equations
can be linearized and the Jacobian matrix formed.

J =

(
3.21)-0.1744 exp T*

(
3.21)0.06984 exp T*

0.56 (3.21)
(T*)Z exp T* y

- 0.224 (3.21)
(T*)Z exp T* y

At the inlet T* = 1 and y = 1, and the eigenvalues of J are approximately
(6.3, -7.6). Since T* should increase as y decreases, for example, if T* = 1.12
and y = 0.5, then the eigenvalues of J are approximately (3.0, -4.9). From
the stiffness ratio, one can see that this problem is not stiff.
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Euler:

U{1} = U{1} - 01744 exp [3.21] U{1} hz+1 I' U{2} z
z

U{2} = U{2} + 006984 exp [3.21] U{1} h
z+ 1 z· U{2} z

z

ub1
} = 1

U{2} = 1
o

Runge-Kutta-Fehlberg:

ui21 = ui1}+ [C1·ki1}+ C2'k~1} + C3·kr} + C4'k~1}]

U{2} = U{2} + [C1'k{2} + C2·k{2} + C3·k{2} + C4·k{2}]z+l z 1 3 4 5

U{1}* = u{l} + [C5·k{l} + C6·k{1} + C7·k{1} + C8·k{1} + C9·k{1}]z+1 I 1 3 4 5 6

U{2}* = U{2} + [C5'k{2} + C6·k{2} + C7·k{2} + C8·k{2} + C9·k{2}]z+1 z 1 3 4 5 6

35

C1 = ii6,

C2 = i~~~,

C3 = ~i~~,

C5 = 1~~

C6 = 1~6i;5

C7 = ~~~~6

C4 = -!, C8 = 9-so

C9 = is

Define

[
3.21]F1(A, B) = -0.1744 exp 13 A

[
3.21]F2(A, B) = 0.06984 exp 13 A

then

k{l} = hF1(u{l} U{2})
1 l , l

ki2} = hF2(ui1}, ui2})

k~1} = hF1(ui1} + ~ki1}, ui2} + ~ki2})

k~2} = hF2(ui1} + ~kil}, ui2} + ~ki2})
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(1.84)

(1.86)

(1.85)

Thus far we have only concerned ourselves with constant step-sizes. Variable
step-sizes can be very useful for (1) controlling the local truncation error and
(2) improving efficiency during solution of a stiff problem. This is done in all
of the commercial programs, so we will discuss each of these points in further
detail.

Gear [4] estimates the local truncation error and compares it with a desired
error, TOL. If the local truncation error has been achieved using a step-size hI,

e = <!>h~ + 1 (1.83)

Since we wish the error to equal TOL,

TOL = <!>h~+1

Combination of (1.83) and (1.84) gives

[ ]

1/(P+l)

h - h TOL
2 - 1 e

Equation (1.83) is method-dependent, so we will illustrate the procedure with
a specific method. If we solve a given problem using the Euler method,

Ui+l = Ui + hd(uJ

and the implicit Euler,

(1.87)

and subtract (1.86) and (1.87) from (1.10) and (1.38), respectively (assuming
Ui = Yi), then

Ui+l - Y(Xi+1) = - ~hi Ii + O(hI)

Wi+l - Y(Xi+l) = ~hf Ii + O(hI)

The truncation error can now be estimated by

The process proceeds as follows:

(1.88)

(1.89)

(1.90)

1.

2.
3.

4.

Equations (1.86) and (1.87) are used to obtain Ui+l and Wi+l.

The truncation error is obtained from (1.89).

If the truncation error is less than TOL, the step is accepted; if not, the
step is repeated.

In either case of step(3), the next step-size is calculated according to

(
TOL) 1/2

h2 = hI -­
ei + 1
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To avoid small errors, one can use an h2 that is a certain percentage smaller
than calculated by (1.90).

Michelsen [16] solved (1.81) with a step-size of h and then again with
h/2. The semi-implicit algorithm is third-order accurate, so it may be written as

(1.91)

(1.92)

where gh4 is the dominant, but still unknown, error term. If Ui+1 denotes the
numerical solution for a step-size of h, and OOi+ 1 for a step-size of h/2, then,

Ui+1 = Y(Xi+1) + gh4 + 0(h5
)

OOi+1 = Y(Xi+1) + 2g (i) 4 + 0(h5
)

where the 2g in (1.92) accounts for error accumulation in each of the two
integration steps. Subtraction of the two equations (1.92) from one another gives

(1.93)

Provided ei + 1 is sufficiently small, the result is accepted. The criterion for step­
size acceptance is

where

j = 1,2, ... ,m (1.94)

e{j} = local truncation error for the j component

If this criterion is not satisfied, the step-size is halved and the integration re­
peated. When integrating stiff problems, this procedure leads to small steps
whenever the solution changes rapidly, often times at the start of the integration.
As soon as the stiff component has faded away, one observes that the magnitude
of e decreases rapidly and it becomes desirable to increase the step-size. After
a successful step with hi' the step-size hi+1 is adjusted by

. [{ I e{j} I} -1/4 ]hi+1 = hi mIll 4 max TOL{j} ,3, j = 1, 2, ... , m (1.95)

For more explanation of (1.95) see [17]. A good discussion of computer algo­
rithms for adjusting the step-size is presented by Johnston [5] and by Krogh
[18].

We are now ready to discuss commercial packages that incorporate a variety
of techniques for solving systems of IVPs.

MATHEMATICAL SOfTWARE

Most computer installations have preprogrammed computer packages, i.e., soft­
ware, available in their libraries in the form of subroutines so that they can be
accessed by the user's main program. A subroutine for solving IVPs will be
designed to compute a numerical solution over [xa, XN] and return the value UN
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given xo, XN' and Uo' A typical calling sequence could be

CAll DRIVE (FUNC, X, XEND, U, TOl),

where

FUNC = a user-written subroutine for evaluating f(x, y)

X = Xo

XEND= XN

U = on input contains Uo and on output contains UN

TOL = an error tolerance

This is a very simplified call sequence, and more elaborate ones are actually
used in commercial routines.

The subroutine DRIVE must contain algorithms that:

1. Implement the numerical integration

2. Adapt the step-size

3. Calculate the local error so as to implement item 2 such that the global
error does not surpass TaL

4. Interpolate results to XEND (since h is adaptively modified, it is doubtful
that XEND will be reached exactly)

Thus, the creation of a software package, from now on called a code, is a
nontrivial problem. Once the code is completed, it must contain sufficient doc­
umentation. Several aspects of documentation are significant (from [24]):

1. Comments in the code identifying arguments and providing general instruc­
tions to the user (this is valuable because often the code is separated from
the other documentation)

2. A document with examples showing how to use the code and illustrating
user-oriented aspects of the code

3. Substantial examples of the performance of the code over a wide range of
problems

4. Examples showing misuse, subtle and otherwise, of the code and examples
of failure of the code in some cases.

Most computer facilities have at least one of the following mathematical
libraries:

IMSl [19]
NAG [20]

HARWEll [21]
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The Harwell library contains several IVP codes, IMSL has two (which will be
discussed below), and NAG contains an extensive collection of routines. These
large libraries are not the only sources of codes, and in Table 1.7 we provide a
survey of IVP software (excluding IMSL, Harwell, and NAG). Since the pro­
duction of software has increased tremendously during recent years, any survey
of codes will need continual updating. Table 1.7 should provide the reader with
an appreciation for the types of codes that are being produced, i.e., the under­
lying numerical methods. We do not wish to dwell on all of these codes but only
to point out a few of the better ones. Recently, a survey of IVP software [33]
concluded that RKF45 is the best overall explicit Runge-Kutta routine, while
LSODE is quite good for solving stiff problems. LSODE is the update for
GEAR/GEARB (versions of which are presently the most used stiff IVP solver)
[34].

The comparison of computer codes is a difficult and tricky task, and the
results should always be "taken with a grain of salt." Hull et al. [35] have
compared nonstiff methods, while Enright et al. [36] compared stiff ones. Al­
though this is an important step, it does not bear directly on how practical a
code is. Shampine et al. [37] have shown that how a method is implemented

TABLE. 1.1 (VI' Codes

[22]
[23]

DE is limited to 20 equations [6]
or less: ODE has no size limit

Same as DE/ODE except that [6]
nonlinear sclliar equations can
be coupled to the IVPs

Allow for nonstiff Adams and [24], [25]
stiff backward formulas;
GEARB allows for banded
structure of the Jacobian

Replacement for GEAR/ [26]
GEARB

Differ from GEARIGEARB in [27]
how the variable step-size is
performed

Designed to solve systems aris- [28]
ing from a method of lines
discretization of partial dif­
ferential equations

Name

RKF45
GERK
DE/ODE

DEROOT/OD­
ERT

GEARIGEARB

LSODE

EPISODE/EPI­
SODEB

M3RK

STRIDE
STIFF3
BLSODE
STINT
SECDER

Method Implemented

Runge-Kutta-Fehlberg
Runge-Kutta-Fehlberg
Variable-order Adams multi-

step
Variable-order Adams multi­

step

Variable-order Adams multi­
step and backward multistep

Same as GEARIGEARB

Stabilized explicit Runge-Kutta*

Implicit Runge-Kutta
Semi-implicit Runge-Kutta
Blended multistep'
Cyclic composite multistep'
Variable-order Enright for-

mula'

Comments

See text; Eq. (1.81) with (1.95)
For stiff oscillatory problems

Reference

[29]
[17]
[30]
[31]
[32]

*Method not covered in this chapter.
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may be more important than the choice of method, even when dealing with the
best codes. There is a distinction between the best methods and the best codes.
In [31] various codes for nonstiff problems are compared, and in [38] GEAR
and EPISODE are compared by the authors. One major aspect of code usage
that cannot be tested is the user's attitude, including such factors as user time
constraints, accessibility of the code, familiarity with the code, etc. It is typically
the user's attitude which dictates the code choice for a particular problem, not
the question of which is the best code. Therefore, no sophisticated code com­
parison will be presented. Instead, we illustrate the use of software packages by
solving two problems. These problems are chosen to demonstrate the concept
of stiffness.

The following codes were used in this study:

1. IMSL-DVERK: Runge-Kutta solver.

2. IMSL-DGEAR: This code is a modified version of GEAR. Two methods
are available in this package: a variable-order Adams multistep method and
a variable-order implicit multistep method. Implicit methods require Ja­
cobian calculations, and in this package the Jacobian can be (a) user-sup­
plied, (b) internally calculated by finite differences, or (c) internally cal­
culated by a diagonal approximation based on the directional derivative
(for more explanation see [24]). The various methods are denoted by the
parameter MF, where

MF

10
21
22
23

Method

Adams
Implicit
Implicit
Implicit

Jacobian

User-supplied
Finite differences
Diagonal approximation

3. STIFF3: Implements (1.81) using (1.94) and (1.95) to govern the step-size
and error.

4. LSODE: updated version of GEAR. The parameter MF is the same as for
DGEAR. MF = 23 is not an option in this package.

5. EPISODE: A true variable step-size code based on GEAR. GEAR, DGEAR,
and LSODE periodically change the step-size (not on every step) in order
to decrease execution time while still maintaining accuracy. EPISODE adapts
the step-size on every step (if necessary) and is therefore good for problems
that involve oscillations. For decaying or linear problems, EPISODE would
probably require larger execution times than GEAR, DGEAR, or LSODE.

6. ODE: Variable-order Adams multistep solver.
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(1.96)

We begin our discussions by solving the reactor problem outlined in Ex­
ample 5:

dy [3.21]dx = -0.1744 exp T* Y

dT* [3.21]dx = 0.06984 exp T* Y

Y = T* = 1 at x = 0

Equations (1.96) are not stiff (see Example 1.5), and all of the codes performed
the integration with only minor differences in their solutions. Typical results are
shown in Table 1.8. Notice that a decrease in TOL when using DVERK did
produce a change in the results (although the change was small). Practically
speaking, any of the solutions presented in Table 1.8 would be acceptable. From
the discussions presented in this chapter, one should realize that DVERK, ODE,
DGEAR (MF = 10), LSODE (MF = 10), and EPISODE (MF = 10) use
methods that are capable of solving nonstiff problems, while STIFF3, DGEAR
(MF = 21,22,23), LSODE (MF = 21,22), and EPISODE (MF = 21,22,23)
implement methods for solving stiff systems. Therefore, all of the codes are
suitable for solving (1.96). One might expect the stiff problem solvers to require
longer execution times because of the Jacobian calculations. This behavior was
observed, but since (1.96) is a small system, i.e., two equations, the execution
times for all of the codes were on the same order of magnitude. For a larger
problem the effect would become significant.

Next, we consider a stiff problem. Robertson [39] originallyproposed the

TABU 1.8 Typical Results from Software Packages Using Eq. (1.96)

x

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

DVERK,
TaL = (-4)

y T*
1.000000 1.00000
0.699795 1.12021
0.528839 1.18868
0.413483 1.23487
0.329730 1.26841
0.266347 1.29379
0.217094 1.31352
0.178118 1.32912
0.146869 1.34164
0.121569 1.35177
0.100931 1.36003

DVERK,
TaL = (-6)

y T*
1.000000 1.00000
0.700367 1.11999
0.529199 1.18853
0.413737 1.23477
0.329919 0.26833
0.266492 1.29373
0.217208 1.31347
0.178209 1.32909
0.146943 1.34161
0.121629 1.35175
0.100980 1.36002

DGEAR
(MF = 21),
TaL = (-4)

Y T*
1.000000 1.00000
0.700468 1.11994
0.529298 1.18849
0.413775 1.23475
0.329864 1.26836
0.266349 1.29379
0.217070 1.31353
0.178076 1.32914
0.146801 1.34167
0.121495 1.35180
0.100864 1.36006

STIFF3,
TaL = (-4)

Y T*
1.000000 1.00000
0.700371 1.11998
0.529208 1.18853
0.413745 1.23477
0.329924 1.26833
0.266497 1.29373
0.217211 1.31347
0.178212 1.32909
0.146945 1.34161
0.121630 1.35175
0.100982 1.36001



42 Initial-Value Problems for Ordinary Differential Equations

following set of differential equations that arise from an autocatalytic reaction
pathway:

dYl =
dt - 0.04Yl + 104YzY3

dYzdt = 0.04Yl - 104YzY3 - 3 X 107y~

dY3 = 3 X 107y~
dt

(1.97)

The Jacobian matrix is

Yz(O) = 0, Y3(0) = 0 at t = 0

[

-0.04

J = ~.04

104Y3
-104Y3 - 6 X 107Yz

6 X 107Yz
(1.98)

When t varies from 0.0 to 0.02, one of the eigenvalues of J changes from - 0.04
to -2,450. Over the complete range of t, 0 ~ t ~ 00, one of the eigenvalues
varies from -0.04 to -104• Figure 1.5 shows the solution of (1.97) for 0 ~ t ~ 10.
Notice the steep gradient in Yz at small values of t. Thus the problem is very
stiff. Caillaud and Padmanabhan [10], Seinfeld et al. [40], Villadsen and Mich­
elsen [17], and Finlayson [41] have discussed this problem. Table 1.9 shows the

i.0 ~--r------,-----,------,-------,0.36

0.80

0.60

0.40

0.20

0.32

0.28

0.24

0.20

0.00 '"""'-----'-----'-----'------''------' 0.16
0.0 2.0 4.0 6.0 8.0 10.0

fiGURE 1.5 Results from Eq. (1.97).
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results at t = 10. At a TOL of 10 -4 all of the nonstiff methods failed to produce
a solution. At smaller tolerance values, the nonstiff methods failed to produce
a solution or required excessive execution times, i.e., two orders of magnitude
greater than those of the stiff methods. This behavior is due to the fact that the
tolerances were too large to achieve a stable solution (recall that the step-size
is adapted to meet the error criterion that is governed by the value of TOL) or
a solution was obtained but at a high cost (large execution time) because of the
very small step-size requirements of nonstiff methods (see section on stiffness).

TABU 1.9 Comparison of Software Packages on the Robertson Problem
(Results at t = 10)

Execution
Time Ra-

Code MF TOL YI Yz X 104 Y3 tiot
DVERK ( -4) No solution
DVERK (-6) No solution
DVERK ( -8) No solution
ODE ( -4) No solution
ODE ( -6) 0.8411 0.1586 0.1589 339.0
ODE ( -9) 0.8414 0.1623 0.1586 347.0
DGEAR 10 ( -4) No solution
DGEAR 21 ( -4) 0.8414 0.1624 0.1586 0.25
DGEAR 22 ( -4) 0.8414 0.1624 0.1586 1.0
DGEAR 23 ( -4) No solution
DGEAR 10 ( -6) 0.8414 0.1619 0.1586 261.0
DGEAR 21 ( -6) 0.8414 0.1623 0.1586 1.0
DGEAR 22 ( -6) 0.8414 0.1623 0.1586 1.0
DGEAR 23 ( -6) 0.8414 0.1624 0.1586 2.5
LSODE 10 ( -4) No solution
LSODE 21 ( -4) No solution
LSODE 22 ( -4) No solution
LSODE:j: 10 ( -4) No solution
LSODE:j: 21 ( -4) 0.8414 0.1623 0.1586 1.75
LSODE:j: 22 ( -4) 0.8414 0.1623 0.1586 1.75
LSODE 10 ( -6) No solution
LSODE 21 ( -6) 0.8414 0.1623 0.1586 1.75
LSODE 22 ( -6) 0.8414 0.1623 0.1586 1.75
EPISODE 10 ( -4) No solution
EPISODE 21 ( -4) No solution
EPISODE 22 ( -4) No solution
EPISODE 23 ( -4) No solution
EPISODE 10 ( -6) 0.8414 0.1623 0.1586 530.0
EPISODE 21 ( -6) 0.8414 0.1623 0.1586 1.5
EPISODE 22 ( -6) 0.8414 0.1623 0.1586 1.5
EPISODE 23 ( -6) 0.8414 0.1623 0.1586 3.8
STIFF3 ( -4) 0.8414 0.1623 0.1586 1.25
STIFF3 ( -6) 0.8414 0.1623 0.1586 3.0
"EXACT"§ 0.841 0.162 0.159

tExecution time ratio = execution time/execution time of DGEAR [MF = 21, TOL = (-6)].

+Tolerance for Y2 is (-8); for YJ and Y3, (-4).

§Caillaud and Padmanabhan [10].
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TABU 1.10 Comparison of Code Results to the "Exad" Solution for Time = 1, 4,
and 10

Code MF TOL t Yt Y2X 104
Y3

"EXACT" 1.0 0.966 0.307 0.0335
4.0 0.9055 0.224 0.0944

10.0 0.841 0.162 0.159
STIFF3 ( -6) 1.0 0.9665 0.3075 0.3351( -1)

4.0 0.9055 0.2240 0.9446( -1)
10.0 0.8414 0.1623 0.1586

EPISODE 21 ( -6) 1.0 0.9665 0.3075 0.3351( -1)
4.0 0.9055 0.2240 0.9446( -1)

10.0 0.8414 0.1623 0.1586
DGEAR 10 ( -6) 1.0 0.9665 0.3087 0.3350( -1)

4.0 0.9055 0.2238 0.9445( -1)
10.0 0.8414 0.1619 0.1586

DGEAR 21 ( -6) 1.0 0.9665 0.3075 0.3351( -1)
4.0 0.9055 0.2240 0.9446( -1)

10.0 0.84414 0.1623 0.1586
ODE ( -6) 1.0 0.9665 0.3075 0.3351( -1)

4.0 0.9055 0.2222 0.9452( -1)
10.0 0.8411 0.1586 0.1589

All of the stiff algorithms were able to produce solutions with execution
times on the same order of magnitude. Caillaud and Padmanabhan [10] have
studied (1.97) using Runge-Kutta algorithms. Their "exact" results (fourth-order
Runge-Kutta with step-size = 0.001) and the results obtained from various codes
are presented in Table 1.10. Notice that when a solution was obtained from
either a stiff or a nonstiff algorithm, the results were excellent. Therefore, the
difference between the stiff and nonstiff algorithms was their execution times.

The previous two examples have illustrated the usefulness of the com­
mercial software packages for the solution of practical problems. It can be
concluded that generally one should use a package that incorporates an implicit
method for stiff problems and an explicit method for nonstiff problems (this was
stated in the section on stiffness, but no examples were given).

We hope to have eliminated the "blackbox" approach to the use of initial­
value packages through the illustration of the basic methods and rationale behind
the production of these programs. No code is infallible, and when you obtain
spurious results from a code, you should be able to rationalize your data with
the aid of the code's documentation and the material presented in this chapter.

PROBLEMS*

1. A tubular reactor for a homogeneous reaction has the following dimen­
sions: L = 2 m, R = 0.1 m. The inlet reactant concentration is
Co = 0.03 kmole/m3 , and the inlet temperature is To = 700 K. Other

* See the Preface regarding classes of problems.
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y = 1 at z = 0

data is as follows: - 6.H = 104 kJ/kmole, Cp = 1 kJ/(kg'K), Ea = 100
kJ/kmole, P = 1.2 kglm3 , Uo = 3 mis, and ko = 5s- 1

. The appropriate ma­
terial and energy balance equations are (see [17] for further explanation):

~ = - Da y exp [8(1 - ~)l 0~ z ~ 1,

~: = ~Da y exp [8(1 - ~)] - Hw (8 - 8w )

where

LkoDa=­
Uo

C
y=­

Co

T
8 =-

To

Ifone considers the reactor to be adiabatic, U = 0, the transport equations
can be combined to

d
- (8 + ~y) = 0
dz

which gives

8 = 1 + ~(1 - y)

using the inlet conditions 8 = Y = 1. Substitution of this equation into
the material balance yields

dy [ 8~(1 - y) ]
dz = - Da y exp 1 + ~(1 _ y) ,

(a) Compute y and 8 if U = 0 using an Euler method.

(I» Repeat (a) using a Runge-Kutta method.

(c) Repeat (a) using an implicit method.
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(d) Check algorithms (a) to (c) by comparing their solutions to the
analytical solution by letting 8 = O.

2. Write a subroutine called EULER such that the call is

CAll EULER (FUNC, XO, XOUT, H, TOl, N, V),
where

FUNC = external subroutine to calculate the right-hand-side functions

XO = initial value of the independent variable

XOUT = final value of the independent variable

H = initial step-size

TOL = local error tolerance

N = number of equations to be integrated

Y = vector with N components for the dependent variable y. On
input y is the vector initial values, on output it contains the
computed values of y at XOUT.

The routine is to perform an Euler integration on

dy

dx

yeO) = Yo, XO ~ X ~ XOUT

Create this algorithm such that it contains an error-checking routine and
a step-size selection routine. Test your routine by solving Example 5.
Hopefully, this problem will give the reader some feel for the difficulty
in creating a general-purpose routine.

3.* Repeat Problem 1, but now allow for heat transfer by
letting U = 70 J/(m2 ·s·K). Locate the position of the hot spot,
8max , with 8w = 1.

4.* In Example 4 we evaluated a binary batch distillation system. Now con­
sider the same system with recycle (R = recycle ratio) and a constant
condenser hold-up M (see Figure 1.6).

Still

FIGURE 1.6 Batch still with recycle.
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A mass balance on n-heptane for the condenser is

M dxc = V (YH - xJ
dt

An overall balance on the still gives

41

ds

dt

-V
=---

R + 1

while an overall balance on n-heptane is

Repeat the calculations of Example 1.4 with s
Xc = 0.85 at t = O. Let R = 0.3 and M = 10.

0.75, and

5.* Consider the following process where steam passes through a coil, is
condensed, and is withdrawn as condensate at the same temperature in
order to heat liquid in a well-stirred vessel (see Figure 1.7).
If

Fs flow rate of steam

H v latent heat of vaporization of the steam

F flow rate of liquid to be heated

To inlet liquid temperature

T outlet liquid temperature

and the control valve is assumed to have linear flow characteristics such
that instantaneous action occurs, i.e., the only lags in the control scheme

TEMP. CONTROLLER

CONTROL
LINE

THERMOCOUPLE
THERMOWELLfI F,To,L1QUID IN

/-----+--STI RRER

Fs STEAM IN

CONDENSATE
OUT

F,T,L1QUID OUT

FlGURf 1.1 Temperature control process.
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occur in the temperature measures, then the process can be described by

dT
Mcp dt = FCp(To - T) + FsHv

C dTw - ( )
I dt - UIAI T - Tw

C dTt - U ( )z dt - zAz Tw - Tt

Fs = Kp(Ts - Tt)

For convenience allow

(liquid energy balance)

(thermowell energy balance)

(thermocouple energy balance)

(proportional control)

F
1 min- 1-

M

Hv
= 1°C/kg

Mcp

To = SO°C

10 UIAI = UzAz = 1 min- l

CI Cz

The system of differential equations becomes

dTdi = Fs - T + To

dTt
dt = Tw - T t

Fs = Kp(Tt - Ts)

Initially T = SO°C. Investigate the temperature response, T(t), to a lOoC
step increase in the designed liquid temperature, Ts = 60°C, for Kp = 2
and Kp = 6. Recall that with proportional control there is offset in the
response.

6.* In a closed system of three components, the following reaction path can
occur:

k3

2B~ C + B
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dCA

dt

dCB
dt

dCc
dt

7.

Calculate the reaction pathway for k 1 = 0.08, k2

k3 = 6 X 107 .

Develop a numerical procedure to solve

d
2
f + ~ df = <1PR(f) 0 ~ r ~ 1

dr2 r dr '

%(0) = 0, f(l) = 1

2 X 104 , and

Hint: Let df/dr(l) = ex and choose ex to satisfy (df/dr) (0) = O.

(Later in this text we will discuss this method for solving boundary-value
problems. Methods of this type are called shooting methods.)
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Boundary-Value Problems
Ordinary Differential Equations:
Discrete Variable Methods

INTRODUCTION

In this chapter we discuss discrete variable methods for solving BVPs for ordinary
differential equations. These methods produce solutions that are defined on a
set of discrete points. Methods of this type are initial-value techniques, i.e.,
shooting and superposition, and finite difference schemes. We will discuss initial­
value and finite difference methods for linear and nonlinear BVPs, and then
conclude with a review of the available mathematical software (based upon the
methods of this chapter).

BACKGROUND

One of the most important subdivisions of BVPs is between linear and nonlinear
problems. In this chapter linear problems are assumed to have the form

y' = F(x)y + z(x), a < x < b (2.1a)

with

A yea) + B y(b) = 'Y (2.1b)

where 'Y is a constant vector, and nonlinear problems to have the form

y' = f(x,y), a < x < b (2.2a)

53
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with

g(y(a), y(b» = 0 (2.2b)

If the number of differential equations in systems (2.1a) or (2.2a) is n, then the
number of independent conditions in (2.1b) and (2.2b) is n.

In practice, few problems occur naturally as first-order systems. Most are
posed as higher-order equations that can be converted to a first-order system.
All of the software discussed in this chapter require the problem to be posed in
this form.

Equations (2.1b) and (2.2b) are called boundary conditions (BCs) since
information is provided at the ends of the interval, i.e., at x = a and x = b.
The conditions (2.1b) and (2.2b) are called nonseparated BCs since they can
involve a combination of information at x = a and x = b. A simpler situation
that frequently occurs in practice is that the BCs are separated; that is, (2.1b)
and (2.2b) can be replaced by

A y(a) = "h, B y(b) = "/2 (2.3)

where "h and "12 are constant vectors, and

giy (b» = 0 (2.4)

respectively, where the total number of independent conditions remains equal
to n.

INITIAL-VALLIE METHODS

Shooting Methods

We first consider the single linear second-order equation

Ly == - y" + p(x)y' + q(x)y = r(x),

with the general linear two-point boundary conditions

aoy(a) - aly'(a) = Ct

boy(b) + bly'(b) = [3

a<x<b (2.5a)

(2.5b)

(2.5c)

where ao, alJ Ct, bo, blJ and [3 are constants, such that

aOal ;;;: 0, laol + lall =1= °
bobl ;;;: 0, Ibol + Ibll =1= °

laol + Ibol =1= °
We assume that the functions p(x), q(x), and r(x) are continuous on [a, b] and
that q(x) > 0. With this assumption [and (2.Sc)] the solution of (2.5) is unique
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[1]. To solve (2.5) we first define two functions, y(l) (x) and y(Z) (x), on [a, b]
as solutions of the respective initial-value problems

Ly<l) = rex),

Ly<Z) = 0,

y(l)(a) = - aClJ

y(Z)(a) = alJ

y(1)' (a) = - aCo

y(Z)' (a) = ao

(2.6a)

(2.6b)

where Co and Cl are any constants such that

alCO - aOCl = 1

The function y(x) defined by

y(x) == y(x; s) = y(l)(X) + sy(Z) (x), a~x~b

(2.7)

(2.8)

satisfies aoy(a) - aly'(a) = a(alCO- aOCl ) = a, and will be a solution of (2.5)
if s is chosen such that

<p(s) = boy(b; s) + bly'(b; s) - 13 = 0

This equation is linear in s and has the single root

13 - [bOy<l)(b) + bl y(1)'(b)]
s =

[boy(Z)(b) + bly(Z)'(b)]

Therefore, the method involves:

(2.9)

(2.10)

1. Converting the BVP into an IVP
by specifying extra initial condi­
tions

2. Guessing the initial conditions and
solving the IVP over the entire in­
terval

3. Solving for s and constructing y.

1. (2.5) to (2.6)

2. Guess Co, evaluate Cl from (2.7),
and solve (2.6)

3. Evaluate (2.10) for s; use sin (2.8)

(2.11)

The shooting method consists iIi simply carrying out the above procedure
numerically; that is, compute approximations to y<1) (x) , y(1)'(x), y(Z) (x) , y(Z)'(x)
and use them in (2.8) and (2.10). To solve the initial-value problems (2.6), first
write them as equivalent first-order systems:

[ :(~:], = [;~~l) + qW(l) - r]

w(1)(a) = -aClJ v(l)(a) = -aCo

and

[
w(Z)]' [v(Z) ]
v(Z) = pv(Z) + qw(Z)

w(Z)(a) = alJ v(Z)(a) = ao

(2.12)
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respectively. Now any of the methods discussed in Chapter 1 can be employed
to solve (2.11) and (2.12).

Let the numerical solutions of (2.11) and (2.12) be

At the point Xo = a, the exact data can be used so that

W (l) - -"'C W(2) - -"'Co- ..... v 0- ..... 0

respectively, for

W(I) V(l) W(2) V(2)
l' l' l' l'

Xi = a + ih,

b - a
h=-­

N

V(l) = ao 1,

i = 0,1, ... ,N

i = 0,1, ... ,N

V (2) - ao - 0

(2.13)

(2.14)

To approximate the solution y(x), set

y. = W(I) + SW(2)
l l l

where

Yi = y(x;)

S = 13 - [boWjJ) + b1VjJ)]

[boWZ) + b1VZ)]

(2.15)

(2.16)

This procedure can work well but is susceptible to round-off errors. If W~l) and
W~2) in (2.15) are nearly equal and of opposite sign for some range of i values,
cancellation of the leading digits in Yi can occur.

Keller [1] posed the following example to show how cancellation of digits
can occur. Suppose that the solution of the IVP (2.6) grows in magnitude as
X ~ b and that the boundary condition at x = b has b1 = °[y(b) = 13 is
specified]. Then if 1131«lboWjJ)1

and

S=
W(l)

N---
W(2)

N

(2.17)

[
W(1)]Y. = W(1) - ~ W(2)

l l W(2) l

N

(2.18)

Clearly the cancellation problem occurs here for Xi near b. Note that the solution
W~l) need not grow very fast, and in fact for 13 = °the difficulty is always
potentially present. If the loss of significant digits cannot be overcome by the
use of double precision arithmetic, then multiple-shooting techniques (discussed
later) can be employed.
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We now consider a second-order nonlinear equation of the form

y" = f(x, y, y'), a < x < b

subject to the general two-point boundary conditions

aoy(a) - aly' (a) = a,

boy(b) + bly'(b) = (3,

ao + bo > 0

The related IVP is

57

(2.19a)

(2.19b)

where

u" = f(x, u, u'),

u(a) = als - cla

u'(a) = aos - coa

a<x<b (2.20a)

(2.20b)

The solution of (2.20), u = u(x; s), will be a solution of (2.19) if s is a root of

<!>(s) = bou(b; s) + blu'(b; s) - (3 = 0 (2.21)

To carry out this procedure numerically, convert (2.20) into a first-order system:

with

w(a) = als - cla

v(a) = aos - coa

In order to find s, one can apply Newton's method to (2.21), giving

s[k+ll = s[kl _ <!>(s[kl)
<!>'(s[kl)' k = 0, 1, ...

s[OI = arbitrary

To find <!>'(s), first define

t() aw(x; s) d () av(x; s)."x= an T)X=
as as

Differentiation of (2.22) with respect to s gives

(2.22a)

(2.22b)

(2.23)

(2.24)

f = T),

T) , = af T) + af £,
av aw

T)(a) = ao

(2.25)
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Solution of (2.25) allows for calculation of <\>' as

<\>' = bo i;(b; s) + bi T)(b; s) (2.26)

Therefore, the numerical solution of (2.25) would be computed along with the
numerical solution of (2.22). Thus, one iteration in Newton's method (2.23)
requires the solution of two initial-value problems.

EXAMPLE 1

An important problem in chemical engineering is to predict the diffusion and
reaction in a porous catalyst pellet. The goal is to predict the overall reaction
rate of the catalyst pellet. The conservation of mass in a spherical domain gives

D[~ :r (r
2 ~~)] = k9l(e), 0 < r < rp

where

r = radial coordinate (rp = pellet radius)

D = diffusivity

e = concentration of a given chemical

k = rate constant

9l(e) = reaction rate function

with

de

dr
o at r = 0 (symmetry about the origin)

e = Co at r = rp (concentration fixed at surface)

If the pellet is isothermal, an energy balance is not necessary. We define the
effectiveness factor E as the average reaction rate in the pellet divided by the
average reaction rate if the rate of reaction is evaluated at the surface. Thus

f:P

9l(e(r))r2 dr
E=-..,.-----f:P

9l(eo)r2 dr

We can integrate the mass conservation equation to obtain

fr
p [1 d ( de) ] frp

de ID - - r2 - r2 dr = k 9l(e)r2 dr = Dr2 -
o r2 dr dr 0 p dr

rp

Hence the effectiveness factor can be rewritten as

3r; D ~~I
E = __-,--_rp

k 9l(eo)
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If E = 1, then the overall reaction rate in the pellet is equal to the surface value
and mass transfer has no limiting effects on the reaction rate. When E < 1, then
mass transfer effects have limited the overall rate in the pellet; i.e., the average
reaction rate in the pellet is lower than the surface value of the reaction rate
because of the effects of diffusion.

Now consider a sphere (5 mm in diameter) of "{-alumina upon which Pt is
dispersed in order to catalyze the dehydrogenation of cyclohexane. At 700 K,
the rate constant k is 4 s-1, and the diffusivity D is 5 X 10-2 cm2/s. Set up the
equations necessary to calculate the concentration profile of cyclohexane within
the pellet and also the effectiveness factor for a general 9r'(c). Next, solve these
equations for 9r'(c) = c, and compare the results with the analytical solution.

SOLUTION

Define

C = concentration of cyclohexane
concentration of cyclohexane at the surface of the sphere

R = dimensionless radial coordinate based on the radius of the

sphere (rp = 2.5 mm)

Assume that the spherical pellet is isothermal. The conservation of mass equation
for cydohexane is

0< R < 1,

with

dC = 0 at R = 0 (due to symmetry)
dR

C = 1 at R = 1 (by definition)

where

<1>= ,,J~ (Thiele modulus)

Since 9r' (c) is a general function of c, it may be nonlinear in c. Therefore,
assume that 9r' (c) is nonlinear and rewrite the conservation equation in the
form of (2.19):

d
2
C = <1>2 9r'(c) _ ~ dC = feR C C)

dR2 Co R dR "
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The related IVP systems become

with

and

[
WvJ '= v

cI>2 9l(c) _ ~ v
Co R

W(O) = s,

v(O) = 0,

~(O) = 1

11(0) = °

2
- -11

R

k = 0,1, ...

<p(s) w(l; s) - 1

<p'(s) ~(1; s)

Choose s[O], and solve the above system of equations to obtain a solution. Com­
pute a new s by

S[k+l] = srk] _ w(l; s[k
1) - 1

~(1; S[k]) ,

and repeat until convergence is achieved.
Usingthedataprovided,wegetcI> = 2.236. If 9l(c) = c,thentheproblem

is linear and no Newton iteration is required. The IMSL routine DVERK (see
Chapter 1) was used to integrate the first-order system of equations. The results,
along with the analytical solution calculated from [2],

C = sinh (cI>R)
R sinh (cI»

are shown in Table 2.1. Notice that the computed results are the same as the
analytical solution (to four significant figures). In Table 2.1 we also compare

TABU 2.1 Results from Example 1
TOl = 10- 6 for DVERK

R

0.0
0.2
0.4
0.6
0.8
1.0
E

C,
Analytical
Solution

0.4835
0.4998
0.5506
0.6422
0.7859
1.0000
0.7726

C,
Computed
Solution
(s = 0.4835)

0.4835
0.4998
0.5506
0.6422
0.7859
1.0000
0.7727
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the computed value of E, which is defined as

dCI
3 dR 1

E=-­
<I>2
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with the analytical value from [2],

E - l [ 1 _ 1:-]
- <I> tanh (<I» <I>

Again, the results are quite good.
Physically, one would expect the concentration of cyclohexane to decrease

as R decreases since it is being consumed by reaction. Also, notice that the
concentration remains finite at R = O. Therefore, the reaction has not gone to
completion in the center of the catalytic pellet. Since E < 1, the average reaction
rate in the pellet is less than the surface value, thus showing the effects of mass
transfer.

EXAMPLE 2

If the system described in Example 1 remains the same except for the fact that
the reaction rate function now is second-order, i.e., 9P (c) = c2 , compute the
concentration profile of cyclohexane and calculate the value of the effectiveness
factor. Let Co = 1.

SOLUTION

The material balance equation is now

d
2
C ~ dC _ <I>2C2 0 < R < 1

dR2 + R dR - ,

dC = 0 at R = 0
dR

C = 1 at R = 1

<I> = 2.236

The related IVP systems are

with
w(O) = s,

v(O) = 0,

~(O) = 1

'r](0) = 0
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and

<I>(s) w(l; s) - 1

<1>' (s) HI; s)

The results are shown in Table 2.2. Notice the effect of the tolerances set for
DVERK (TOLD) and on the Newton iteration (TOLN). At TOLN = 10- 3

,

the convergence criterion was not sufficiently small enough to match the bound­
ary condition at R = 1.0. At TOLN = 10- 6 the boundary condition at R = 1
was achieved. Decreasing either TOLN or TOLD below 10-6 produced the
same results as shown for TOLN = TOLD = 10- 6

•

In the previous two examples, the IVPs were not stiff. If a stiff IVP arises
in a shooting algorithm, then a stiff IVP solver, for example, LSODE (MF = 21),
would have to be used to perform the integration.

Systems of BVPs can be solved by initial-value techniques by first con­
verting them into an equivalent system of first-order equations. Consider the
system

with

y' = f(x, y), a<x<b (2.27a)

or more generally

The associated IVP is

where

A yea) + B y(b) = a

g(y(a), y(b)) = 0

u' = f(x, u)

u(a) = s

s = vector of unknowns

(2.27b)

(2.27c)

(2.28a)

(2.28b)

TABLE 1.1 Results from Example 1

R

0.0
0.2
0.4
0.6
0.8
1.0
E
s

C,
TOLD = 1O-3t
TOLN = 10-3 :1=

0.5924
0.6042
0.6415
0.7101
0.8220
1.0008
0.6752
0.5924

C,
TOLD = 10-6

TOLN = 10-3

0.5924
0.6042
0.6415
0.7101
0.8220
1.0008
0.6752
0.5924

C,
TOLD = 10-6

TOLN = 10-6

0.5921
0.6039
0.6411
0.7096
0.8214
1.0000
0.6742
0.5921

t Tolerance for DVERK.

*Tolerance on Newton iteration.
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We now seek s such that u(x; s) is a solution of (2.27). This occurs if s is a root
of the system

or more generally

<I>(s) = A s + B u(b; s) - a = 0

<I>(s) = g(s, u(b; s)) = 0

(2.29)

(2.30)

Thus far we have only discussed shooting methods that "shoot" from x = a.
Shooting can be applied in either direction. If the solutions of the IVP grow
from x = a to x = b, then it is likely that the shooting method will be most
effective in reverse, that is, using x = b as the initial point. This procedure is
called reverse shooting.

Multiple Shooting

Previously we have discussed some difficulties that can arise when using a shoot­
ing method. Perhaps the best known difficulty is the loss in accuracy caused by
the growth of solutions of the initial-value problem. Multiple shooting attempts
to prevent this problem. Here, we outline multiple-shooting methods that are
used in software libraries.

Multiple shooting is designed to reduce the growth of the solutions of the
IVPs that must be solved. This is done by partitioning the interval into a number
of subintervals, and then simultaneously adjusting the "initial" data in order to
satisfy the boundary conditions and appropriate continuity conditions. Consider
a system of n first-order equations of the form (2.27), and partition the interval
as

O<t<l

a = Xo < Xl < ... < XN-l < XN = b

Define

for

1= 1,2, ... , N

With this change of variables, (2.27) becomes

d,,·
dt' = r;(t, r;),

for

i = 1,2, ... ,N

(2.31)

(2.32)

(2.33)
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The boundary conditions are now

A '1'1(0) + B'I'N(l) = a

or

[for (2.27b)]

[for (2.27c)]

(2.34a)

(2.34b)

In order to have a continuous solution to (2.27), we require

i = 1, 2, ... , N - 1 (2.35)

The N systems of n first-order equations can thus be written as

d
dt lfI = aCt, lfI)

with

P lfI(O) + Q lfI(l) = 'Y

or

G = 0

where
lfI = ['I'I(t), 'I'z(t), ... , 'I'N(t)f

aCt, lfI) = [r1(t, '1'1), rzCt, 'I'z), ... , rN(t, 'I'N)f

'Y = [a, 0, , Of

o = [0, 0, , of
A

1

(2.36)

P=

Q=

. 0
o

1

o B
-1 0
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The related IVP problem is

d
dt V = aCt, V),

with

V(O) = 8

where

0< t < 1

65

(2.37)

The solution of (2.37) is a solution to (2.36) if 8 is a root of

«1>(8) = P 8 + Q V(l; 8) - 'Y = 0

or

«1>(8) = G = 0

(2.38)

depending on whether the BCs are of form (2.27b) or (2.27c). The solution
procedure consists of first guessing the "initial" data 8, then applying ordinary
shooting on (2.37) while also performing a Newton iteration on (2.38). Ob­
viously, two major considerations are the mesh selection, i.e., choosing Xi'

i = 1, ... , N - 1, and the starting guess for 8. These difficulties will be dis­
cussed in the section on software.

An alternative shooting procedure would be to integrate in both directions
up to certain matching points. Formally speaking, this method includes the
previous method as a special case. It is not clear a priori which method is
preferable [3].

Superposition

Another initial-value method is called superposition and is discussed in detail
by Scott and Watts [4]. We will outline the method for the following linear
equation

with

y'(x) = F(x)y(x) + g(x) ,

A yea) = Ol

B y(b) = ~

a<x<b (2.39a)

(2.39b)

The technique consists of finding a solution y(x) such that

y(x) = vex) + U(x)c (2.40)
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where the matrix U satisfies

U'(x) = F(x)U(x)

A U(a) = 0

the vector vex) satisfies

v'(x) = F(x) vex) + g(x)

v(a) = a

(2.41a)

(2.41b)

(2.42a)

(2.42b)

and the vector of constants c is chosen to satisfy the boundary conditions at
x = b:

B U(b)c = -B v(b) + 13 (2.43)

The matrix U(x) is often referred to as the fundamental solution, and the vector
vex) the particular solution.

In order for the method to yield accurate results, vex) and the columns of
U(x) must be linearly independent [5]. The initial conditions (2.41b) and (2.42b)
theoretically ensure independence; however, due to the finite world length used
by computers, the solutions may lose their numerical independence (see [5] for
full explanation). When this happens, the resulting matrix problem (2.43) may
give inaccurate answers for c. Frequently, it is impossible to extend the precision
of the computations in order to overcome this difficulty. Therefore, the basic
superposition method must be modified.

Analogous to using multiple shooting to overcome the difficulties with
shooting methods, one can modify the superposition method by subdividing the
interval as in (2.31), and then defining a superposition solution on each subin­
terval by

where

yJx) = vJx) + UJx)Ci(x) ,

i = 1,2, ... ,N,

Xi-I";;; X ,,;;; Xi (2.44)

U;(x) = F(x) UJx)

Ui(Xi- l ) = Ui-l(Xi- l ), A Ul(a) = 0

v; (x) = F(x)vi(x) + g(x)

(2.45)

(2.46)

and

yJxi) = Yi+ 1(x;)

B UN(b)CN = -B vN(b) + 13

(2.47)

(2.48)

The principle of the method is then to piece together the solutions defined on
the various subintervals to obtain the desired solution. At each of the mesh
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points Xi the linear independence of the solutions must be checked. One way to
guarantee independence of solutions over the entire interval is to keep them
nearly orthogonal. Therefore, the superposition algorithm must be coupled with
a routine that checks for orthogonality of the solutions, and each time the vectors
start to lose their linear independence, they must be orthonormalized [4,5] to
regain linear independence. Obviously, one of the major problems in imple­
menting this method is the location of the orthonormalization points Xi.

Nonlinear problems can also be solved using superposition, but they first
must be "linearized." Consider the following nonlinear BVP:

y' (x) = f(x, y),

A y(a) = Ol

B y(b) = ~

a<x<b

(2.49)

If Newton's method is applied directly to the nonlinear function f(x, y), then
the method is called quasilinearization. Quasilinearization of (2.49) gives

where

Y(k+l)(X) = f(x, Y(k)(X» + J(x, Y(k)(X»(Y(k+l)(X) - Y(k)(X»,

k = 0,1, ...

J(X, Y(k)(X» = Jacobian of f(x, Y(k/X»

k = iteration number

(2.50)

One iteration of (2.50) can be solved by the superposition methods outlined
above since it is a linear system.

FINITE DIFFERENCE METHODS

Up to this point, we have discussed initial-value methods for solving boundary­
value problems. In this section we cover finite difference methods. These meth­
ods are said to be global methods since they simultaneously produce a solution
over the entire interval.

The basic steps for a finite difference method are as follows: first, choose
a mesh on the interval of interest, that is, for [a,b]

a = Xo < Xl < ... < XN < XN+l = b (2.51)

such that the approximate solution will be sought at these mesh points; second,
form the algebraic equations required to satisfy the differential equation and
the BCs by replacing derivatives with difference quotients involving only the
mesh points; and last, solve the algebraic system of equations.
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Linear Second-Order Equations

We first consider the single linear second-order equation

Ly == -y" + p(x)y' + q(x)y = rex),

subject to the Dirichlet boundary conditions

yea) = a

y(b) = f3

On the interval [a, b] impose a uniform mesh,

a<x<b (2.52a)

(2.52b)

Xi = a + ih,

b - a
h=-­

N + 1

i = 0, 1, ... , N + 1,

The parameter h is called the mesh-size, and the points Xi are the mesh points.
If y(x) has continuous derivatives of order four, then, by Taylor's theorem,

h2 h3 h4

y(x + h) = y(x) + hy'(x) + -y"(x) + -y"'(x) + -y""(£)
2! 3! 4! '

h2 h3 h4 _
y(x - h) = y(x) - hy'(x) + -y"(x) - -y"'(x) + -y""(£)

2! 3! 4! '

Xi - h~~~Xi (2.54)

From (2.53) and (2.54) we obtain

y'(x) = [y(X + h) - y(X)] _ ~ y"(x) _ h
2

y"'(x) _ h
3

y""(£) (2.55)
h 2! 3! 4!

y'(x) = [y(X) - ~(x - h)] + ;! y"(x) _ ~: y"'(x) + ~: y""(~) (2.56)

respectively. The forward and backward difference equations (2.55) and (2.56)
can be written as

respectively, where

y'(x;) = Yi+\- Yi + O(h)

y'(xi) = Yi -/i-1 + O(h)

(2.57)

(2.58)

Yi = y(Xi)

Thus, Eqs. (2.57) and (2.58) are first-order accurate difference approximations
to the first derivative. A difference approximation for the second derivative is
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obtained by adding (2.54) and (2.53) to give

h4 _

y(x + h) + y(x - h) = 2y(x) + h2y"(x) + 4! [y""(£) + y'11I(£)]

from which we obtain

"( .) = (Yi+l - 2Yi + Yi-l) + 0(h2)
Y X, h2
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(2.59)

(2.60)

(2.62)

If the BVP under consideration contains both first and second derivatives, then
one would like to have an approximation to the first derivative compatible with
the accuracy of (2.60). If (2.54) is subtracted from (2.53), then

h3 h4 _

2hy'(x) = y(x + h) - y(x - h) - 3! ylll(X) + 4! [y'lll(£) - y""(£)] (2.61)

and hence

y'(Xi) = [Yi+l ; Yi-l] + 0(h2)

which is the central difference approximation for the first derivative and is clearly
second-order accurate.

To solve the given BVP, at each interior mesh point Xi we replace the
derivatives in (2.52a) by the corresponding second-order accurate difference
approximations to obtain

L - [Ui+ 1 - 2ui + Ui- 1 ] () [Ui+ 1 - Ui- 1 ] (hUi= - h2 + P Xi 2h + q Xi)Ui = r(xi)

i = 1, ... ,N

and

(2.63)

Uo = a,

where

The result of multiplying (2.63) by h2/2 is

h2 h2

2' Lhui = aiui- 1 + biui + CiUi+ 1 = 2'r(x;), i = 1,2, ... ,N

Uo = a, (2.64)
where

ai = - ~ [1 + ~ P(Xi)]

bi = [1 + ~ q(X;)]

Ci = - ~ [1 - ~ P(Xi) ]
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The system (2.64) in vector notation is

Au=r (2.65)

where

u = [u I , U2' ••. , UN]T

h2 [2al (Y 2CN I3] T
r = 2 r(x l ) - Ji2' r(X2)' ... , r(xN - I ) - h2

bl CI

a2 b2 C2 °
A=

°
aN - I bN - I CN - I

aN bN

A matrix of the form A is called a tridiagonal. This special form permits a very
efficient application of the Gaussian elimination procedure (described in Ap­
pendix C).

To estimate the error in the numerical solution of BVPs by finite difference
methods, first define the local truncation errors 'Ti[0] in L h as an approximation
of L, for any smooth function 0(x) by

'Ti[0] = L h0(Xi) - L0(xi), i = 1, 2, ... , N (2.66)

(2.68)

(2.67)

i = 1, ... ,N

If 0(x) has continuous fourth derivatives in [a, b], then for L defined in (2.52)
and L h defined in (2.63),

'Ti[0] = _ [0(Xi + h) - 20~:i) + 0(xi - h)] + 0"(xi)

( .) [0(Xi + h) - 0(xi - h) _ W( .)]+ P X, 2h )U X,

or by using (2.59) and (2.61),

'Ti[0] = - ~~ [0""(1';) - 2p(xi)0"'(;Yi)],

From (2.67) we find that L h is consistent with L, that is, 'Ti[0] -7 °as h -7 0,
for all functions 0(x) having continuous second derivatives on [a, b]. Further,
from (2.68), it is apparent that L h has second-order accuracy (in approximating
L) for functions 0(x) with continuous fourth derivatives on [a, b]. For sufficiently
small h, L h is stable, i.e., for all functions Vi' i = 0, 1, ... , N + 1 defined on
Xi' i = 0, 1, ... , N + 1, there is a positive constant M such that

Ivil ~ M {max (Ivai, IVN+II) + max ILhvil}
l~i~N
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for i = 0, 1, ... , N + 1. If L h is stable and consistent, it can be shown that
the error is given by

lUi - y(xi)1 .;;; M max ITj[y]l,
1 ~ j ~ i

(for proof see Chapter 3 of [1]).

i = 1, ... , N (2.69)

Flux Boundary Conditions

Consider a one-dimensional heat conduction problem that can be described by
Fourier's law and is written as

where

1 d [ dT]- - zSk - = g(z),
ZS dz dz

O<z<l (2.70)

k = thermal conductivity

g(z) = heat generation or removal function

s = geometric factor: 0, rectangular; 1, cylindrical; 2, spherical

In practical problems, boundary conditions involving the flux of a given com­
ponent occur quite frequently. To illustrate the finite difference method with
flux boundary conditions, consider (2.70) with s = 0, g(z) = z, k = constant,
and

T = To at z = ° (2.71)

(2.72)

where Al and A2 are given constants. Since the governing differential equation
is (2.70), the difference formula is

with

i = 1,2, ... ,N (2.73a)

(2.73b)

(2.73c)

Since UN + I is now an unknown, a difference equation for (2.73c) must be de­
termined in order to solve for U N + I •

To determine UN+l> first introduce a "fictitious" point X N + 2 and a corre­
sponding value U N + 2 . A second-order correct approximation for the first deriv-
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ative at z = 1 is

dT TN+ 2 - TN
-=
dz 2h

Therefore, approximate (2.73c) by

and solve for U N + 2

(2.74)

(2.75)

(2.76)

(2.77)

UN+2 = 2h(A2 - A1UN + 1) + UN

The substitution of (2.76) into (2.73a) with i = N + 1 gives

h2

(11.2 - A1UN+1)h - UN+l + UN = 2k

Notice that (2.77) contains two unknowns, UN and UN+l' and together with the
other i = 1, 2, ... , N equations of type (2.73a), maintains the tridiagonal
structure of the matrix A. This method of dealing with the flux condition is called
the method of fictitious boundaries for obvious reasons.

EXAMPLE 3

A simple but practical application of heat conduction is the calculation of the
efficiency of a cooling fin. Such fins are used to increase the area available for
heat transfer between metal walls and poorly conducting fluids such as gases.
A rectangular fin is shown in Figure 2.1. To calculate the fin efficiency one must
first calculate the temperature profile in the fin. If L > > B, no heat is lost from
the end or from the edges, and the heat flux at the surface is given by

Metal
Wall
Tw

L

~
~2B

Cooling Fin

FIGURE 2.1 Cooling fin.
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q = "f)(T - Ta) in which the convective heat transfer coefficient "f) is constant
as is the surrounding fluid temperature Ta, then the governing differential equa­
tion is

d 2 T "f)- = - (T - Ta)
dz2 kB

where

k = thermal conductivity of the fin

and

T(O) = Tw

dT (L) = 0
dz

Calculate the temperature profile in the fin, and demonstrate the order of ac­
curacy of the finite difference method.

SOLUTION

Define

e T - Ta

Tw - Ta

e(o) = 1,

z
x=-

L

H ~ j~~'
The problem can be reformulated as

d 2e
dx2 = H

2e,
de
- (1) = 0
dx

The analytical solution to the governing differential equation is

e = _co_s_h_H_(",-1_-_x-,-)
cosh H

For this problem the finite difference method (2.63) becomes

i = 1,2, ... ,N
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where

ai = 1
Ci = 1

hi = -(2 + hZHZ)

with

Uo = 1

and

Numerical results are shown in Table 2.3. Physically, one would expect e
to decrease as x increases since heat is being removed from the fin by convection.
From these results we demonstrate the order of accuracy of the finite difference
method.

If the error in approximation is O(hP ) [see (2.68)], then an estimate of P
can be determined as follows. If uj(h) is the approximate solution calculated
using a mesh-size hand

j = 1, ... ,N + 1

with

IIe(h)11 = max Iy(x) - uih)1
j

then let

IIe(h)11 = ljJhP

where ljJ is a constant. Use a sequence of h values, that is, hI > hz > ... , and
write

TABU 1.3 Results of(d2 0)/(dx2 ) = 46,0(0) = t, 0'(1) = 0

Analytical Errort, Error, Error, Error,
x solution 0, h = 0.2 h = 0.2 h = 0.1 h = 0.05 h = 0.02

0.0 1.00000 1.00000
0.2 0.68509 0.68713 2.0 (-3) 5.1 (-4) 1.2 (-4) 2.0 (-5)
0.4 0.48127 0.48421 2.9 (-3) 7.4(-4) 1.8 (-4) 2.9 (-5)
0.6 0.35549 0.35876 3.2 (-3) 8.2 (-4) 2.0 (-4) 3.3(-5)
0.8 0.28735 0.29071 3.3 (-3) 8.4(-4) 2.1 (-4) 3.4(-5)
LV 0.26580 0.26917 3.3 (-3) 8.5 (-4) 2.1 (-4) 3.4 (-5)

tError = e - analytical solution.
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The value of P can be determined as

In [lle(ht - 1)11]
Ile(ht)11

P=-----

In [\~1]

Using the data in Table 2.3 gives:

In[~] In [\~1]
h, Ile(h,)11 Ile,ll p

1 0.20 3.3 (-3)
2 0.10 8.5(-4) 1.356 0.693 1.96
3 0.05 2.1 (-4) 1.398 0.693 2.01
4 0.02 3.4(-5) 1.820 0.916 1.99

One can see the second-order accuracy from these results.

75

Integration Method

Another technique can be used for deriving the difference equations. This tech­
nique uses integration, and a complete description of it is given in Chapter 6 of
[6].

Consider the following differential equation

d [dY] dy- dx w(x) dx + p(x) dx + q(x)y = rex)

a<x<b (2.78)

<Xly(a) - 131Y' (a) = "11

<X2y(b) + 132y'(b) = "12

where w(x) , p(x), q(x), and rex) are only piecewise continuous and hence possess
a number of jump discontinuities. Physically, such problems arise from steady­
state diffusion problems for heterogeneous materials, and the points of discon­
tinuity represent interfaces between successive homogeneous compositions. For
such problems y and w(x)y' must be continuous at an interface x = 1'), that is,

(2.79)
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Choose any set of points a = Xo < Xl < ... < XN + l = b such that the discon­
tinuities of w, P, q, and r are a subset of these points, that is, 'Y] = Xi for some
i. Note that the mesh spacings h; = X;+! - X; need not be uniform. Integrate
(2.78) over the interval X; ~ X ~ X; + h/2 == Xi+1/2' 1 ~ i ~ N, to give:

dY;+1/2 dy(xt) lXi + 112 dy
-Wi+lI2 -d- + w(xt) -d-- + p(x) -d dx

X X Xi X

+ J:'i+1I2 y(x)q(x) dx = fi+1I2 rex) dx

We can also integrate (2.78) over the interval X;-1/2 ~ X ~ X; to obtain:

_ dy(x;-) dY;-lI2 IXi dy
-w(x; ) -d- + W.;-1/2 -d- + p(x) dx dx

X X Xi_In

(2.80)

+ J:'~1I2 y(x)q(x) dx = J:_ 1I2 rex) dx (2.81)

Adding (2.81) and (2.80) and employing (2.79) gives

dY;+lI2 dY;-1/2 IXi
+

l12 dy
-W;+lI2 -d- + W;-lI2 -d- + p(x) dx dx

X X X i _ l12

+ fi+1I2 y(x)q(x) dx = fi+1I2 rex) dx
~-ln ~-ln

(2.82)

The derivatives in (2.82) can be approximated by central differences, and the
integrals can be approximated by

fi+1I2 g(x) dx = fi g(x) dx
Xi_liZ Xi-liZ

[Xi + 112 (ho 1) (ho)
+ JXi g(X) dx = g;- '; + gt -t

where

gi- = g(Xi-)

g;+ = g(Xt)

(2.83)

Using these approximations in (2.82) results in

[
U;+l - U;] [U; - U;-l]

-W;+1/2 h; + W;-1/2 h;-l

+ Pi- [U; -2U;_l] + Ui [q;-h;-12+ q;+h;]

1 ~ i ~ N
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At the left boundary condition, if 131 = 0, then ua = "Il/al' If 131> 0, then
Ua is unknown. In this case, direct substitution of the boundary condition into
(2.80) for i = °gives

[
U 1 - Ua]

+ Pa 2 (2.85)

The treatment of the right-hand boundary is straightforward. Thus, these expres­
sions can be written in the form

where

L. = °\-1/2 + Pi-
l hi - 1 2

i = 1,2, ... , N

(2.86)

Again, if 131 > 0, then

La = °

raha Wa'Yl
R =-+--

a 2 13

Summarizing, we have a system of equations

Au = R

(2.87)

(2.88)

where A is an m x m tridiagonal matrix where m = N, N + 1, or N + 2
depending upon the boundary conditions; for example m = N + 1 for the com­
bination of one Dirichlet condition and one flux condition.
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EXAMPLE 4

A nuclear fuel element consists of a cylindrical core of fissionable material
surrounded by a metal cladding. Within the fissionable material heat is produced
as a by-product of the fission reaction. A single fuel element is pictured in Figure
2.2. Set up the difference equations in order to calculate the radial temperature
profile in the element.

Data: Let

T( I'c)
thermal conductivity of core, kf =1= ktC I')

thermal conductivity of the cladding, kc =1= kc ( I')

source function of thermal energy, S = 0 for I' > I'f

SOLUTION

Finite Difference Formulation
The governi~g differential equation is:

dd
l

, ( I,k ~:) I'S

dT o at I' = 0
dt<

with
T= Tc at I' = I'c

S = {S(/'), 0,;;; I" ::::::; I'J

0, I' > I'J

and

COOLANT-<>
CLADDING

CORE

A.c fiGURE 2.2 Nuclear fuel element.
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By using (2.84), the difference formula becomes

k [
Ui+l - Ui ] k [Ui - Ui - 1 ]- /0. 1 + /0. 1

1+ 2 hi 1-2 hi- 1

19

If i = °is the center point and i = j is the point /Of' then the system of difference
equations becomes

U 1 - Uo = °

i = 1, ... ,j-1

Nonlinear Second-Order Equations

We now consider finite difference methods for the solution of nonlinear bound­
ary-value problems of the form

Ly(x) == - y" + f(x, y, y') = 0,

y(a) = Ct, y(b) = ~

a<x<b (2.89a)

(2.89b)

If a uniform mesh is used, then a second-order difference approximation to
(2.89) is:

L = - [Ui + 1 - 2ui + Ui - 1 ] f (. . Ui+l - Ui - 1) = 0,
hUi - h2 + X" u" 2h

i = 1,2, ... , N (2.90)

Uo = Ct,

The resulting difference equations (2.90) are in general nonlinear, and we shall
use Newton's method to solve them (see Appendix B). We first write (2.90) in
the form

<I'(u) = 0 (2.91)



80 Boundary-Value Problems for Ordinary Differential Equations: Discrete Variable Methods

where

and

h2

<p.(U) = - L u·
I 2 h I

The Jacobian of «P(u) is the tridiagonal matrix

°
J(U) = a«p(u) =

au

°
where

(2.92)

i = 1,2, ... ,N

1 [ h at ( U i + l - U i - l )]
A;(u) = - 2: 1 + "2 ay' Xi' Ui, 2h '

Bi(u) = [1 + ~2 :~ (Xi' Ui, Ui+l ~ U;-l)1
C;(u) = - ~ [1 - ~ :: (Xi' Ui, U;+l ~ Ui-l)1

and

i = 2,3, ... ,N

i = 1,2, ... , N - 1

with

at ( Ui+l - U;-l) l'S
ay' Xi' Ui' 2h

at ( ')ay' Xi' y, Y

and

y evaluated by U i

y' evaluated by U
i + l ~ U

i
-

l

In computing <Pl(u), <PN(u), AN(u), Bl(u), BN(u), and Cl(U), we use Uo = ex
and UN+l = 13. Now, with any initial estimate u[O] of the quantities U;,
i = 1, 2 . . . , N, we define

U[k+l] = U[k] + AU[k],

where AU[k] is the solution of

k = 0,1,2, ...

k = 0,1,2, ...

(2.93)

(2.94)
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More general boundary conditions than those in (2.89b) are easily incorporated
into the difference scheme.

EXAMPLE 5

A class of problems concerning diffusion of oxygen into a cell in which an
enzyme-catalyzed reaction occurs has been formulated and studied by means of
singular perturbation theory by Murray [7]. The transport equation governing
the steady concentration C of some substrate in an enzyme-catalyzed reaction
has the general form

'i/(D'i/C) = g(C)

Here D is the molecular diffusion coefficient of the substrate in the medium
containing uniformly distributed bacteria and g(C) is proportional to the reaction
rate. We consider the case with constant diffusion coefficient Do in a spherical
cell with a Michaelis-Menten theory reaction rate. In dimensionless variables
the diffusion kinetics equation can now be written as

where

O<x<l

r
x=­

R'
( )

_ C(r)
y x - Co' = (DoCO

)
8 R 2 'nq

_ -1 y(x)
f(y) - 8 y(x) + k'

k=km

Co

Here R is the radius of the cell, Co is the constant concentration of the substrate
in r > R, km is the Michaelis constant, q is the maximum rate at which each cell
can operate, and n is the number of cells.

Assuming the cell membrane to have infinite permeability, it follows that

y(l) = 1

Further, from the assumed continuity and symmetry of y(x) with respect to
x = 0, we must have

y'(O) = 0

There is no closed-form analytical solution to this problem. Thus, solve this
problem using a finite difference method.

SOLUTION

The governing equation is

2
or y" + - y' - f(y) = 0

x
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with y(l) = 1 and y'(O) = O. With the mesh spacing h = lI(N + 1) and mesh
point Xi = ih,

i = 1,2, ... , N

with U N + 1 = 1.0. For X = 0, the second term in the differential equation is
evaluated using L'Hospital's rule:

. (y') y"LIm - =-
x->o X 1

Therefore, the differential equation becomes

3y" - fey) = 0

at x = 0, for which the corresponding difference replacement is

h2

U1 - 2uo + U- 1 - 3 f(uo) = 0

Using the boundary condition y' (0) = 0 gives

h2

U 1 - Uo - (; f(uo) = 0

The vector <I»(u) becomes

and the Jacobian is

J(u)
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where

h
Z k)+ - X ----:c

6£ (uo + k)Z

83

(2.95a)

(2.95b)

Ai = (1 - ~), l = 1,2, ... , N

Bi = - (2 + ~z x (u
i
~ k)Z), i = 1,2, ... , N

Ci=(l+~), i=1,2, ... ,N-i

Therefore, the matrix equation (2.94) for this problem involves a tridiagonal
linear system of order N + 1.

The numerical results are shown in Table 2.4. For increasing values of N,
the approximate solution appears to be converging to a solution. Decreasing the
value of TOL below 10-6 gave the same results as shown in Table 2.4; thus the
differences in the solutions presented are due to the error in the finite difference
approximations. These results are consistent with those presented in Chapter 6
of [1].

The results shown in Table 2.4 are easy to interpret from a physical stand­
point. Since y represents the dimensionless concentration of a substrate, and
since the substrate is consumed by the cell, the value of y can never be negative
and should decrease as x decreases (moving from the surface to the center of
the cell).

flrst·Order Systems

In this section we shall consider the general systems of m first-order equations
subject to linear two-point boundary conditions:

Ly = y' - f(x, y) = 0, a < x < b

Ay(a) + By(b) = a

TABLE 1.4 Results of Example 5, TOt = (- 6) on Newton Iteration, E = 0.1,
k = 0.1

x

0.0
0.2
0.4
0.6
0.8
1.0

N=5

0.283( -1)
0.430( -1)
0.103
0.259
0.553
1.000

N = 10
0.243( -1)
0.384( -1)
0.998( -1)
0.257
0.552
1.000

N = 20

0.232( -1)
0.372( -1)
0.989(-1)
0.257
0.552
1.000

N = 40

0.229( -1)
0.369( -1)
0.987( -1)
0.257
0.552
1.000

N = 80

0.228( -1)
0.368( -1)
0.987( -1)
0.257
0.552
1.000
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As before, we take the mesh points on [a, b] as

Xi = a + ih,

b - a
h=-­

N+1

i = 0, 1, ... , N + 1 (2.96)

Let the m-dimensional vector U i approximate the solution y(xJ , and approximate
(2.95a) by the system of difference equations

L - Ui - Ui - l f ( Ui + U i - l ) = 0,
hUi - h - X i -1/2, 2

i = 1,2, ... , N + 1

The boundary conditions are given by

Auo + BUN + I - 01. = 0

(2.97a)

(2.97b)

The scheme (2.97) is known as the centered-difference method. The nonlinear
term in (2.95a) might have been chosen as

~ [f(x i, ui ) + f(xi-I> Ui - l )]

resulting in the trapezoidal rule.
On defining the meN + 2)-dimensional vector U by

(2.97) can be written as the system of meN + 2) equations

Auo + BUN + I - 01.

hLhu I

(2.98)

(2.99)

<I>(U) = 0 (2.100)

(2.102)

With some initial guess, UfO], we now compute the sequence of U[kl's by

U[k+l] = U[k] + aU[k1, k = 0, 1,2, . . . (2.101)

where aU[kl is the solution of the linear algebraic system

a<I>(U[k1) aU[kl = _ <I>(U[k1)
au

One of the advantages of writing a BVP as a first-order system is that
variable mesh spacings can be used easily. Let

a = Xo < Xl < ... < XN+I = b (2.103)

h = max hi
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be a general partition of the interval [a, b].
The approximation for (2.95) using (2.103) with the trapezoidal rule is

(2.104)

where

h;-lLh"; = "; - ";-1 - h
i
;l [f(x;, "i) + f(xi_v ";-1)], i = 1, ... , N + 1

By allowing the mesh to be graded in the region of a sharp gradient, nonuniform
meshes can be helpful in solving problems that possess solutions or derivatives
that have sharp gradients.

Higher-Order Methods

The difference scheme (2.63) yields an approximation to the solution of (2.52)
with an error that is 0(h2 ). We shall briefly examine two ways in which, with
additional calculations, difference schemes may yield higher-order approxima­
tions. These error-reduction procedures are Richardson's extrapolation and de­
ferred corrections.

The basis of Richardson's extrapolation is that the error E;, which is the
difference between the approximation and the true solution, can be written as

(2.105)

(2.106)

where the functions a/x;) are independent of h. To implement the method, one
solves the BVP using successively smaller mesh sizes such that the larger meshes
are subsets of the finer ones. For example, solve the BVP twice, with mesh sizes
of hand h12. Let the respective solutions be denoted ulh) and ulhI2). For any
point common to both meshes, x; = ih = 2i(hI2) ,

y(x;) - ui(h) = h2a1(x;) + h4a2(x;) + .

y(x;) - U i (~) = ~ a1(x;) + ~~ a2(x;) + .

Eliminate a1(x;) from (2.106) to give

(2.107)

Thus an 0(h4
) approximation to y(x) on the mesh with spacing h is given by

u· = i u. (~)
I 3 I 2 i = 0, 1, ... , N + 1 (2.108)
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A further mesh subdivision can be used to produce a solution with error 0(h6),

and so on.
For some problems Richardson's extrapolation is useful, but in general,

the method of deferred corrections, which is described next, has proven to be
somewhat superior [8].

The method of deferred corrections was introduced by Fox [9], and has
since been modified and extended by Pereyra [10-12]. Here, we will outline
Pereyra's method since it is used in software described in the next section.

Pereyra requires the BVP to be in the following form:

y' = f(x, y), a < x < b

g(y(a), y(b)) = 0

and uses the trapezoidal rule approximation

Ui+1 - U; - ~ h [f(x;, u;) + f(Xi+1' U;+l)] = hT(u;+1/2)

(2.109)

(2.110)

where T(U;+1/2) is the truncation error. Next, Pereyra writes the truncation error
in terms of higher-order derivatives

o

q

T(U;+1/2) = - L [ash2Sf}~si/2] + 0(h2s +2)
s~l

where

s

22S - 1 (2s + 1)(2s!)

q number of terms in series (sets the desired accuracy)

The first approximation ul1
] is obtained by solving

ul~l - ul1
] - ~ h[f(x;, ul1

]) + f(x;+v ul~l)]

i = 0, 1, ... , N

g(U[l] U[l] ) = 0
0' N+1

(2.111)

(2.112)

where the truncation error is ignored. This approximation differs from the true
solution by 0(h2

).

The process proceeds as follows. An approximate solution U[k] [differs from
the true solution by terms of order 0(h2k)] can be obtained from:

ul~l - ulkJ ~ h [f(x;, ulk]) + f(x;+1J ul~l)] = hT[k-1](ul:~/~)

i = 0,1, ... ,N

g(U[k] U[k] ) = 0)
0' N+1

(2.113)
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where
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T[k-l] = T with q = k -1

In each step of (2.113), the nonlinear algebraic equations are solved by Newton's
method with a convergence tolerance ofless than O(h2k). Therefore, using (2.112)
gives uP] (O(h2)), which can be used in (2.113) to give U~2] (O(h4)). Successive
iterations of (2.113) with increasing k can give even higher-order accurate ap­
proximations.

MATHEMATICAL SOFTWARE

The available software that is based on the methods of this chapter is not as
extensive as in the case of IVPs. A subroutine for solving a BVP will be designed
in a manner similar to that outlined for IVPs in Chapter 1 except for the fact
that the routines are much more specialized because of the complexity of solving
BVPs. The software discussed below requires the BVPs to be posed as first­
order systems (usually allows for simpler algorithms). A typical calling sequence
could be

CAll DRIVE (FUNC, DFUNC, BOUND, A, B, U, Tal)

where

FUNC = user-written subroutine for evaluating rex, y)

DFUNC = user-written subroutine for evaluating the Jacobian of rex, y)

BOUND = user-written subroutine for evaluating the boundary conditions and,
if necessary, the Jacobian of the boundary conditions

A = left boundary point

B = right boundary point

U = on input contains initial guess of solution vector, and on output
contains the approximate solution

TaL = an error tolerance

This is a simplified calling sequence, and more elaborate ones are actually used
in commercial routines.

The subroutine DRIVE must contain algorithms that:

1. Implement the numerical technique

2. Adapt the mesh-size (or redistribute the mesh spacing in the case of non­
uniform meshes)

3. Calculate the error so to implement step (2) such that the error does not
surpass TaL
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Implicit within these steps are the subtleties involved in executing the various
techniques, e.g., the position of the orthonormalization points when using su­
perposition.

Each of the major mathematical software libraries-IMSL, NAG, and
HARWELL--eontains routines for solving BVPs. IMSL contains a shooting
routine and a modified version of DD04AD (to be described below) that uses
a variable-order finite difference method combined with deferred corrections.
HARWELL possesses a multiple shooting code and DD04AD. The NAG library
includes various shooting codes and also contains a modified version of DD04AD.
Software other than that of IMSL, HARWELL, and NAG that is available is
listed in Table 2.5. From this table and the routines given in the main libraries,
one can see that the software for solving BVPs uses the techniques that are
outlined in this chapter.

We illustrate the use of BVP software packages by solving a fluid mechanics
problem. The following codes were used in this study:

1. HARWELL, DD03AD (multiple shooting)

2. HARWELL, DD04AD

Notice we have chosen a shooting and a finite difference code. The third major
method, superposition, was not used in this study. The example problem is
nonlinear and would thus require the use of SUPORQ if superposition is to be
included in this study. At the time of this writing SUPORQ is difficult to im­
plement and requires intimate knowledge of the code for effective utilization.
Therefore, it was excluded from this study. DD03AD and DD04AD will now
be described in more detail.

DD03An [18]

This program is the multiple-shooting code of the Harwell library. In this al­
gorithm, the interval is subdivided and "shooting" occurs in both directions.
The boundary-value problem must be specified as an initial-value problem with
the code or the user supplying the initial conditions. Also, the partitioning of
the interval can be user-supplied or performed by the code. A tolerance param­
eter (TOL) controls the accuracy in meeting the continuity conditions at the

TABLE 2.5 BVP Codes

Name

BOUNDS
SHOOTl
SHOOT2
MSHOOT
SUPORT
SUPORQ

Method Implemented

Multiple shooting
Shooting with separated boundary conditions
Same as SHOOTI with more general boundary conditions
Mutliple shooting
Superposition (linear problems only)
Superposition with quasilinearization

Reference

[13,14]
[15]
[15]
[15]
[4]
[16]
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matching points [see (2.35)]. This type of code takes advantage of the highly
developed software available for IVPs (uses a fourth-order Runge-Kutta algo­
rithm [19]).

DD04AD [.7, 20]

This code was written by Lentini and Fe~eyra and is described in detail in [20].
Also, an earlier version of the code is discussed in [17]. The code implements
the trapezoidal approximation, and the resulting algebraic system is solved by
a modified Newton method. The user is permitted to specify an initial interval
partition (which does not need to be uniform), or the code.provides a coarse,
equispaced one. The user may also specify an initial estimate for the solution
(the default being zero). Deferred corrections is used to increase accuracy and
to calculate error estimates. An error tolerance (TOL) is provided by the user.
Additional mesh points are automatically added to the initial partition with the
aim of reducing error to the user-specified level, and also with the aim of equi­
distribution of error throughout the interval [17]. The new mesh points are always
added between the existing mesh points. For example, if xj and xj + 1 are initial
mesh points, then if m mesh points t;, i = 1, 2, ... , m, are required to be
inserted into [Xj' Xj + 1], they are placed such that

(2.114)

(2.116)

where

t2 - xj t;+1 t;-1 Xj+1 - tm - 1
t1 = --2-' ... , t; = --2--' ... , tm = --'----2--

The approximate solution is given as a discrete function at the points of the final
mesh.

Example Problem

The following BVP arises in the study of the behavior of a thin sheet of viscous
liquid emerging from a slot at the base of a converging channel in connection
with a method of lacquer application known as "curtain coating" [21]:

d
2
y _ ! (dy )2 _ ydy + 1 = 0 (2.115)

dx2 Y dx dx

The function y is the dimensionless velocity of the sheet, and x is the dimen­
sionless distance from the slot. Appropriate boundary conditions are [22]:

y = Yo at x = 0

dy ---7 (2X)-1/2 at sufficiently large x
dx
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In [22] (2.115) was solved using a reverse shooting procedure subject to
the boundary conditions

and

y = 0.325 at x = 0 (2.117)

dy = (2X)-1/2 at x = x
dx R

The choice of XR = 50 was found by experimentation to be optimum in the
sense that it was large enough for (2.116) to be "sufficiently valid." For smaller
values of XR, the values of y at zero were found to have a variation of as much
as 8%.

We now study this problem using DD03AD and DD04AD. The results
are shown in Table 2.6. DD03AD produced approximate solutions only when
a large number of shooting points were employed. Decreasing TOL from 10-4

to 10 -6 when using DD03AD did not affect the results, but increasing the number
of shooting points resulted in drastic changes in the solution. Notice that the
boundary condition at x = 0 is never met when using DD03AD, even when
using a large number of shooting points (SP = 360). Davis and Fairweather [23]
studied this problem, and their results are shown in Table 2.6 for comparison.
DD04AD was able to produce the same results as Davis and Fairweather in
significantly less execution time than DD03AD.

We have surveyed the types of BVP software but have not attempted to
make any sophisticated comparisons. This is because in the author's opinion,
based upon the work already carried out on IVP solvers, there is no sensible
basis for comparing BVP software.

Like IVP software, BVP codes are not infallible. If you obtain spurious
results from a BVP code, you should be able to rationalize your data with the
aid of the code's documentation and the material presented in this chapter.

TABLE 2.6 Results of Eq. (2.1' 5) with (2.117) and X R = 5.0

DD03AD DD03AD DD03AD DD04AD Reference [23]

x

0.0
1.0
2.0
3.0
4.0
5.0
E.T.R.*

TOL = 10-4,
SP = SOt

0.3071
0.9115
0.1462(1)
0.1931(1)
0.2340(1)
0.2737(1)
3.75

TOL = 10- 6 ,

SP = SO

0.3071
0.9115
0.1462(1)
0.1931(1)
0.2340(1)
0.2737(1)
4.09

TOL = 10-6 ,

SP = 320
0.3205
0.9253
0.1474(1)
0.1941(1)
0.2349(1)
0.2743(1)
14.86

TOL = 10-4

0.3250
0.9299
0.1477(1)
0.1945(1)
0.2349(1)
0.2701(1)
1.0

TOL = 10-4

0.3250
0.9299
0.1477(1)
0.1945(1)
0.2349(1)
0.2701(1)

t SP = number of "shooting" points.

+E.T.R. = Execution time ratio
execution time

execution time of DD04AD with TOL = 10-4'



Problems

1. Consider the BVP

PROBLEMS

y" + r(x)y = f(x),

yea) = a

y(b) = f3

a<x<b
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Show that for a uniform mesh, the integration method gives the same
result as Eq. (2.64).

2. Refer to Example 4. If

S(r) = So[ 1 + b (;~r]
solve the governing differential equation to obtain the temperature profile
in the core and the cladding. Compare your results with the analytical
solution given on page 304 of [24]. Let kc = 0.64 cal/(s·cm·K), kf = 0.066
cal/(s·cm·K), To = 500 K, I'-c = ~ in, and I"f = ~ in.

3.* Axial conduction and diffusion in an adiabatic tubular reactor can be
described by [2]:

1 d 2C dC
- - - - - R(C T) = 0
Pe dx2 dx '

1 d 2T dT
- -- - - - f3R (C T) = 0
Bo dx2 dx '

with

and

1 dC
Pe -dx = C- 1}
1 dT-- = T - 1

Bo dx

at x= 0

dC = O}
:~ = 0 at x = 0

dx

Calculate the dimensionless concentration C and temperature T profiles for
f3 = -0.05,Pe = Bo = 10,E = 18,andR(C, T) = 4Cexp[E(1-l/T)].

4.* Refer to Example 5. In many reactions the diffusion coefficient is a function
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of the substrate concentration. The diffusion coefficient can be of form
[1]:

D(y) = 1 + A-
Do (y + kz)Z

Computations are of interest for A- = kz = lO-z, with e and k as in Example
5. Solve the transport equation using D(y) instead of D for the parameter
choice stated above. Next, let A- = 0 and show that your results compare
with those of Table 2.4.

S.* The reactivity behavior of porous catalyst particles subject to both internal
mass concentration gradients as well as temperature gradients can be stud­
ied with the aid of the following material and energy balances:

dZy + ~ dy = <pZyexp ['Y (1 _1.)]
dxz xdx T

~:~ + ~ ~~ = - ~<pZy exp [ 'Y (1 - ~)]
with

dT = dy = 0 at x = 0
dx dx

T = y = 1 at x = 1

where

y = dimensionless concentration

T = dimensionless temperature

x = dimensionless radial coordiante (spherical geometry)

<p = Thiele modulus (first-order reaction rate)

'Y = Arrhenius number

~ = Prater number

These equations can be combined into a single equation such that

dZy + ~ dy = <pz ex [ 'Y~(1 - y) ]
dxz x dx Y P 1 + ~(1 - y)

with

dy
dx

y = 1 at x = 1

For 'Y 30, ~ 0.4, and <p = 0.3, Weisz and Hicks [25] found three
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solutions to the above equation using a shooting method. Calculate the
dimensionless concentration and temperature profiles of the three solu­
tions.

Hint: Try various initial guesses.
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Boundary-Value Problems
Ordinary Differential Equations:
finite Element Methods

INTRODUCTION

The numerical techniques outlined in this chapter produce approximate solutions
that, in contrast to those produced by finite difference methods, are continuous
over the interval. The approximate solutions are piecewise polynomials, thus
qualifying the techniques to be classified as finite element methods [1]. Here,
we discuss two types of finite element methods: collocation and Galerkin.

BACKGROUND

Let us begin by illustrating finite elements methods with the following BVP:

y" = y + [(x),

yeO) = 0
y(1) = 0

O<x<l (3.b)

(3.th)

Finite element methods find a piecewise polynomial (pp) approximation, u(x),
to the solution of (3.1). A piecewise polynomial is a function defined on a
partition such that on the subintervals defined by the partition, it is a polynomial.
The pp-approximation can be represented by

m

u(x) = 2: aj<pj(x)
j=l

(3.2)

97
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where {<!>Jx)lj= 1, ... , m} are specified functions that are piecewise continu­
ously differentiable, and {ah =1, ... , m} are as yet unknown constants. For
now, assume that the functions <!>j (x), henceforth called basis functions (to be
explained in the next section), satisfy the boundary conditions. The finite element
methods differ only in how the unknown coefficients {ajlj= 1, ... , m} are
determined.

In the collocation method, the set {ajU = 1, ... , m} is determined by
satisfying the BVP exactly at m points, {xiii = 1, ... ,m}, the collocation points,
in the interval. For (3.1):

u"(xi) - u(x;) - f(xi) = 0,

If u(x) is given by (3.2), then (3.3) becomes

i = 1, ... ,m (3.3)

m

L aj[<!>j(xi) - <!>j(xi)] - f(xi) = 0,
j=1

i = 1, ... ,m (3.4)

or in matrix notation,

(3.5)

where

(3.6)i = 1, ... ,m

The solution of (3.5) then yields the vector a, which determines the collocation
approximation (3.2).

To formulate the Galerkin method, first multiply (3.1) by <!>i and integrate
the resulting equation over [0, 1]:

f [y"(x) - y(x) - f(X)]<!>i(X) dx = 0,

Integration of y"(x)<!>;(x) by parts gives

fa
1

Y"(X)<j>i(X) dx = Y'(X)<!>i(X) I~ -f y' (x)<j>; (x) dx, i = 1, ... ,m

i=I, ... ,m

Since the functions <!>/x) satisfy the boundary conditions, (3.6) becomes

L1Y'(X)<!>;(X)dX +f [y(x) + f(X)J<l>i(X)dx = 0, (3.7)

For any two functions 'Y] and tjJ we define

('Y], tjJ) = f 'Y](x)tjJ(x) dx (3.8)
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With (3.8), Eq. (3.7) becomes

(y', <pD + (y, <Pi) + (f, <PJ = 0, i = 1, ... ,m
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(3.9)

and is called the weak form of (3.1). The Galerkin method consists of finding
u(x) such that

i = 1, ... ,m(u ', <pD + (u, <Pi) + (f, <PJ = 0,

If u(x) is given by (3.2), then (3.10) becomes:

(i: aj<p;, <P:) + (i: aj<pj, <Pi) + (f, <Pi) = 0,
J=l J=l

or, in matrix notation,

where

g = [11' ... ,JrnV
1i = (f, <Pi)

i=l, ... ,m

(3.10)

(3.11)

(3.12)

The solution of (3.12) gives the vector a, which specifies the Galerkin approx­
imation (3.2).

Before discussing these methods in further detail, we consider choices of
the basis functions.

PIECEWISE POLYNOMIAL FUNCTIONS

To begin the discussion of pp-functions, let the interval partition 'IT be given by:

with

a = Xl < X2 < ... < Xe+1 = b

h = max hj = max (xj + 1 - XJ)
l,;;;j,;;;e l,;;;j,;;;e

(3.13)

Also let {Pj(x)lj = 1, ... , €} be any sequence of € polynomials of order k
(degree <:;; k - 1). The corresponding pp-function, F(x), of order k is defined
by

(3.14)

j = 1, ... ,€
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where xj are called the breakpoints of F. By convention

F(x) = {Pl(X),
Pix),

and

(3.15)

F(xJ = Pi(x;) (right continuity) (3.16)

A portion of a pp-function is illustrated in Figure 3.1. The problem is how to
conveniently represent the pp-function.

Let S be a set of functions:

S = {A./x)lj = 1, ... , L} (3.17)

The class of functions denoted by !ZJ is defined to be the set of all functions
f(x) of the form

L

f(x) = 2.: ajA.j(x)
j=l

(3.18)

where the a/s are constants. This class of functions !ZJ defined by (3.18) is called
a linear function space. This is analogous to a linear vector space, for if vectors
xj are substituted for the functions A./x) in (3.18), we have the usual definition
of an element x of a vector space. If the functions A.j in S are linearly independent,
then the set S is called a basis for the space !ZJ, L is the dimension of the space
!ZJ, and each function A.j is called a basis function.

Define !ZJk (7I") (subspace of !ZJ) to be the set of all pp-functions of order
k on the partition 71". The dimension of this space is

(3.19)

Let v be a sequence of nonnegative integers vj, that is, v = {vjlj = 2, ... , e},
such that

d i - l

jumpXj dX i - l [f(x)] = 0 (3.20)

i = 1, ... , Vj' j = 2, ... ,e

\rPj

\P j - I ~

~~

fiGURE 3. t Piecewise polynomial function.
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where
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(3.21)

or in other words, 11 specifies the continuity (if any) of the function and its

derivative at the breakpoints. Define the subspace .0 k(1T) of .0k(1T) by

.0 v ( ) = {f(X) is in .0J1T) and satisfies the jump} (3.22)
k 1T conditions specified by 11

The dimension of the space .0 kC1T) is
e

dim .0 k(1T) ~ (k - vj )
j=1

(3.23)

where VI = O.
We now have a space, .0 k(1T), that can contain pp-functions such as F(x).

Since the 'A./s can be a basis for .0 k(1T), then F(x) can be represented by (3.18).
Next, we illustrate various spaces .0k(1T) and bases for these spaces. When
using .0 k(1T) as an approximating space for solving differential equations by
finite element methods, we will not use variable continuity throughout the in­
terval. Therefore, notationally replace 11 by v, where {vi = vlj = 2, ... , .e}.

The simplest space is .0i(1T), the space of piecewise linear functions. A
basis for this space consists of straight-line segments (degree = 1) with discon­
tinuous derivatives at the breakpoints (v = 1). This basis is given in Table 3.1
and is shown in Figure 3.2a. Notice that the dimension of .0 i(1T) is .e + 1 and
that there are .e + 1 basis functions given in Table 3.1. Thus, (3.18) can be
written as

f(x)

TABU 3.t Linear Basis functions

(3.24)

0,

x - x j _ 1,
xj - x j _ 1

0,

0,

x - X e ,
X e+ 1 - X e

for x ;;. X2

for x'" Xe

forxe~X~Xe+l
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Wj(X)~ ~
XI X2 Xj_1 Xj Xj+1 xl. x,( +1

(0)

~
Vj(X) 51
or

Sj(X)

XI X2 Xj+1 Xi

(b)

fiGURE 3.2 Schematic of basis fll.mctions. (a) Piecewise linear functions.
(b) Piecewise hermite cubic functions.

Frequently, one is interested in numerical approximations that have continuity
of derivatives at the interior breakpoints. Obviously, .Q? H'IT) does not possess
this property, so one must resort to a high-order space.

A space possessing continuity of the first derivative is the Hermite cubic
space, .Q? ~('IT). A basis for this space is the "value" vj and the "slope" Sj functions
given in Table 3.2 and shown in Figure 3.2b. Some important properties of this
basis are

o at all Xi

(3.25)

Sj = 0 at all Xi

~>{~ at all Xi of- X j
at x j

The dimension of this space is 2(.£ + 1); thus (3.18) can be written as

€+1

f(x) = ~ [ap)vj + aF)sj]
j=1

(3.26)

where ay) and ay) are constants. Since v = 2, f(x) is continuous and also
possesses a continuous first derivative. Notice that because of the properties
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TABLE 3.2 Hermite Cubic Basis functions
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hj = Xj + 1 - Xj gl(X) = -2x3 + 3x 2, O~x~l

x-x· g2(X) = X3
- X2, O~x~l

~j(x)=T
J

Value Functions Slope Functions

VI = {gl(1 - ~1(X)), 0~X~X2 _ { -h1g2(1 - ~1(X», 0~X~X2

0, x2~x~1
SI - 0,

x2~x~1

el(~j-'(X))' Xj _ 1 ::S;X:S;;Xj rj-lgO<~j-l(X»' Xj_l~X~Xj

Vj = gl(l-~j(x», XjS;;X:'!SXj + 1 Sj = - hjg2(1- Ux», Xj~X~Xj+l

0, O~X~Xj_l,Xj+l ~x~ 1 0, O~X~Xj_l,Xj+l ~x~l

{O, °~ x ~ xe {0, °~ x ~ xe
Ve+1 = gl(~e(X», xe ~ X ~ 1 se+l = hegi~eCx», xe ~ x ~ 1

shown in (3.25) the vector

(1) _ [(1) (1) (1) ]T
01. - (Xl ,(X2 , ... , (Xe+l

give the values of f(x;), i = 1, ... , e + 1 while the vector

(2) _ [(2) (2) (2) ]T
01. - (Xl '(X2 , .•• , (Xe+l

gives the values of df(x;)/dx, i = 1, ... , .e + 1. Also, notice that the Hermite
cubic as well as the linear basis have limited or local support on the interval;
that is, they are nonzero over a small portion of the interval.

A suitable basis for it k(1T) given any v, k, and 1T is the B-spline basis [2].
Since this basis does not have a simple representation like the linear or Hermite
cubic basis, we refer the reader to Appendix D for more details on B-splines.
Here, we denote the B-spline basis functions by B/x) and write (3.18) as:

N

f(x) = ~ (XjBj(x)
j=l

where

N = dim itk(1T)

Important properties of the B/s are:

1. They have local support.

2. Bl(a) = 1, BN(b) = 1.

3. Each B/x) satisfies 0 ~ Bj(x) ~ 1 (normalized B-splines).

N

4. ~ B/x) = 1 for a ~ x ~ b.
j=l

(3.27)
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THE GALERKIN METHOD

Consider (3.1) and its weak form (3.9). The use of (3.2) in (3.9) produces the
matrix problem (3.12). Since the basis <l>i is local, the matrix A G is sparse.

EXAMPLE 1

Set up the matrix problem for

_y"(X) = 1,

yeO) = 0

y(l) = 0

using ..0 i (rr) as the approximating space.

SOLUTION

Using ..0i(-rr) gives

0< x < 1,

£+1

u(x) = L ajwj
j=1

Since we have imposed the condition that the basis functions satisfy the boundary
conditions, the first and last basis function given in Table 3.1 are excluded.
Therefore, the pp-approximation is given by

£-1

u(x) = L ajwj
j= 1

where the w/s are as shown in Figure 3.3. The matrix AG is given by

A~ = r<1>;<1>: dx

Because each basis function is supported on only two subintervals [see Figure
3.2(a)],

A~ = 0 if Ii - jl > 1

FIGURE 3.3 Numbering of basis functions for Example t.
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Thus, A G is tridiagonal and

f
Xi [ 1 ]2 fXi+1 [ -1 ]2

= dx+ dx
Xi-l Xi - Xi- 1 Xi Xi+ 1 - Xi

1 1
= - +-- hi = Xi - Xi- 1

hi hi+/

e (Xi+l [ -1 ] [ 1 ]
A5+1 = J( <fJ;<fJ;+l dx = L _ _ dx

o x, Xi+l Xi Xi+1 Xi

1

G _ 1
A i,i-l - - h-

I

The vector g is given by

Therefore, the matrix problem is:

105

o
~ (hI + h2 )

! (h 2 + h3 )

1

he- 2
ae- 2

1

(h:_J
~(he-2 + he-I)

0 he- 2
ae- 1

From Example 1, one can see that if a uniform mesh is specified using
!l? ~ ('IT), the standard second-order correct finite difference method is obtained.

Therefore, the method would be second-order accurate. In general, the Galerkin
method using !l?k('IT) gives an error such that [1]:

Ily - ull ~ Chk (3.28)
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where

y = true solution

u = pp-approximation

C = a constant

h = uniform partition

IIQII = max IQI
x

provided that y is sufficently smooth. Obviously, one can increase the accuracy
by choosing the approximating space to be of higher order.

EXAMPLE 2

An insulated metal rod is exposed at each end to a temperature, To. Within the
rod, heat is generated according to the following function:

H(T - To) + cosh(1)]

where

~ = constant

T = absolute temperature

The rod is illustrated in Figure 3.4. The temperature profile in the rod can be
calculated by solving the following energy balance:

d 2 T
H(T - To) + cosh(1)]K dz2 =

T= To at z = 0

T= To at z = L

(3.29)

where K is the thermal conductivity of the metal. When (~L2)/K = 4, the solution
of the BVP is

y = cosh (2x - 1) - cosh (1)

where y = T - To and x = z/L. Solve (3.29) using the Hermite cubic basis,
and show that the order of accuracy is O(h4) (as expected from 3.28).
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INSULATION

METAL

fiGURE. 3.4 Insulated metal rod.

SOLUTION

z=L
T=To
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First put (3.29) in dimensionless form by using y = T - To and x = zlL.

d2 ~U
~2 = - [y + cosh(1)]
dx K

Since (~U)IK = 4, the ordinary differential equation (ODE) becomes

d 2y
dx2 = 4[y + cosh (1)]

Using iZ'HTI) (with TI uniform) gives the piecewise polynomial approximation

e+1
u(x) = 2: [aYlvj + a?lsJ

j~l

As with Example 1, y(O) = y(1) = 0 and, since v1(O) = 1 and ve+1(1) = 1,

u(x) = ai2ls1 + a~llv2 + a~2ls2' ... , a~llve + a~2lse + a~2l1se+1

The weak from of the ODE is

- (y', <p;) - 4(y, <PJ = 4(1, <Pi) cosh (1), i = 1, ... ,2(£ + 1) - 2

Substitution of u(x) into the above equation results in

- (u', <p;) - 4(u, <Pi) = 4(1, <Pi) cosh (1), i = 1, ... ,2(£ + 1) - 2

In matrix notation the previous equation is

[A + 4B] a = -4 cosh (1)F
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where

(s~,sD (s~, v~) (s~,s~)

(v~, sD (v~, v~) (v~, s~) (v~, v~) (v~, sD
(s~, sD (s~, vD (s~, s~) (s~, v;) (s;, s~)

A=

°

° (v~, V~-1) (V~,S~_1)

(s~, V~-1) (S~,S~_1)

(v~,v~)

(s~, v~)

(s~+l> v~)

(v~,s~) . (V~,S~+1)
(s~, s~) (s~, s~ + 1)
(s~+l>S~) (s~+l>S~+1)

B = the same as A except for no primes on the basis functions

F = [(1, S1), (1, v2), (1, S2), ... , (1, ve), (1, se), (1, Se+1)Y
Ol = [a(2) a(1) a(2) a(1) a(2) a(2) ]T

1 , 2' 2'···' e, e, e+1

Each of the inner products ( , ) shown in A, B, and F must be evaluated.
For example

with

x - X i - 1

Xi - X i - 1 '
1 - ~;(x)

X i + 1 - X

Xi+1 - Xi

where

°1 = e' Xi-1 ~ X ~ Xi

0, otherwise

°2 =
{I, Xi ~ X ~ X i + 1

0, otherwise

and

or for a uniform partition,
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Once all the inner products are determined, the matrix problem is ready to be
solved. Notice the structure of A or B (they are the same). These matrices are
block-tridiagonal and can be solved using a well-known block version of Gaussian
elimination (see page 196 of [3]). The results are shown below.

h (uniform
partition) tly - uti

1 0.1250 0.6011 x 10-5

2 0.0556 0.2707 x 10- 6

3 0.0357 0.4872 x 10-7

4 0.0263 0.1475 x 10-7

Since Ily - ull ~ ChP , take the logarithm of this equation to give

lnlly - ull ~ InC + pLnh

Let e(h) = Ily - ull (u calculated with a uniform partition; subinterval size h),
and calculate p by

In (e(ht _ 1))

e(ht )

p = -----

In (h~~l)

From the above results,

p

1
2
3
4

3.83
3.87
3.91

which shows the fourth-order accuracy of the method.
Thus using .CZ? H1T) as the approximating space gives a Galerkin solution

possessing a continuous first derivative that is fourth-order accurate.

Nonlinear Equations

Consider the nonlinear ODE:

y" = f(x, y, y'),

y(O) = y(l) = 0

O<x<l

(3.30)

Using the B-spline basis gives the pp-approximation

N

u(x) = 2: ujBj(x)
j~l

(3.31)
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Substitution of (3.31) into the weak form of (3.30) yields

(£OljBl, B;) + (t(x, £OljBj, £OljBl), B;) = 0,
~1 J=l J=l

i = 1, ... ,N

The system (3.32) can be written as

A« + H(<<) = 0

(3.32)

(3.33)

where the vector H contains inner products that are nonlinear functions of «.
Equation (3.33) can be solved using Newton's method, but notice that the vector
H must be recomputed after each iteration. Therefore, the computation of H
must be done efficiently. Normally, the integrals in H do not have closed form,
and one must resort to numerical quadrature. The rule of thumb in this case is
to use at least an equal number of quadrature points as the degree of the
approximating space.

Inhomogeneous Dirichlet and Flux Boundary Conditions

The Galerkin procedures discussed in the previous sections may easily be mod­
ified to treat boundary conditions other than the homogeneous Dirichlet con­
ditions, that is, yeO) = y(l) = O. Suppose that the governing ODE is

(a(x)y'(x))' + b(x)y(x) + c(x) = 0, 0 < x < 1 (3.34)

subject to the boundary conditions

y(l) = \j!2 (3.35)

where \j!1 and \j!2 are constants. The weak form of (3.34) is

Since

a(x)y' (x)B;(x)

o

(a(x)y' (x), B; (x)) + (b(x)y(x), B;(x))

+ (c(x), B;(x)) = 0 (3.36)

and

then

1,

N

2: Bj(O) = 0
j~2

N-1

2: Bj (l) = 0
j=l

(3.37)
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to match the boundary conditions. The value of i in (3.36) goes from 2 to N - 1
so that the basis functions satisfy the homogeneous Dirichlet conditions [elim­
inates the first term in (3.36)]. Thus (3.36) becomes:

N-1

~ aj[(a(x)Bj, BD - (b(x)Bj, Bi)] = (c(x), Bi)
j=2

+ t!J1[-(a(x)B~, BD + (b(x)Bv Bi )]

+ t!J2[ -(a(x)B~, BD + (b(x)BN> Bi )], i = 2, ... ,N - 1 (3.38)

If flux conditions are prescribed, they can be represented by

ThY + 131Y' ="'11 at x = 0

1llY + 132Y' ="'12 at x = 1

where 1]1> 1]2' 131, 132, "'11' and "'12 are constants and satisfy

h11 + 11311 > 0

11]21 + 11321 > 0
Write (3.39) as

"'11 1]1y' = - - - Y at x = 0
131 131

(3.39)

"'12 1]2y' = - - - Y at x = 1 (3.40)
132 132

Incorporation of (3.40) into (3.36) gives:

f uj[(a(X)Bj, BD - (b(x)Bj, Bi ) - OnOj1a(0) 1]1 + oiNojN a(l) 1]2]
j=l 131 132

where

i = 1, ... ,N (3.41)

{

I,
Os, =

0,

s = t

s -# t

Notice that the subscript i now goes from 1 to N, since yeO) and y(l) are
unknowns.

Mathematical Software

In light of the fact that Galerkin methods are not frequently used to solve BVPs
(because of the computational effort as compared with other methods, e.g.,
finite differences, collocation), it is not surprising that there is very limited
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software that implements Galerkin methods for BVPs. Galerkin software for
BVPs consists of Schryer's code in the PORT library developed at Bell Labora­
tories [4]. There is a significant amount of Galerkin-based software for partial
differential equations, and we will discuss these codes in the chapters concerning
partial differential equations. The purpose for covering Galerkin methods for
BVPs is for ease of illustration, and because of the straightforward extension
into partial differential equations.

COLLOCATION

Consider the nonlinear ODE

y" = f(x, Y, y'), a<x<b (3.42a)

ThY + 131Y' = "11 at x = a

'TlzY + I3zY' = "Iz at x = b (3.42b)

(3.43)j = 1, ... ,€, i = 1, ... ,k - M

where 'Tll, 'Tlz, 131> I3z, "11> and "Iz are constants. Let the interval partition be given
by (3.13), and let the pp-approximation in iZ?k(1T) (v ~ 2) be (3.31). The
collocation method determines the unknown set {ajlj = 1, ... ,N} by satisfying
the ODE at N points. For example, if k = 4 and v = 2, then N = 2€ + 2. If
we satisfy the two boundary conditions (3.42b), then two collocation points are
required in each of the € subintervals. It can be shown that the optimal position
of the collocation points are the k - M (M is the degree of the ODE; in this
case M = 2) Gaussian points given by [5]:

h (h.)
Tji = Xj + -.:f + -.:f Wi'

where

W = k - M Gaussian points in [ - 1, 1]

The k - M Gaussian points in [ -1, 1] are the zeros of the Legendre polynomial
of degree k - M. For example, if k = 4 and M = 2, then the two Gaussian
points are the zeros of the Legendre polynomial

-1":; x.,:; 1

or
1

W z = V3

Thus, the two collocation points in each subinterval are given by

h· h· ( 1 )
TjI = xj + -.:f - -.:f V3

(3.44)
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The 2€ equations specified at the collocation points combined with the
two boundary conditions completely determines the collocation solution
{ajlj = 1, ... , 2€ + 2}.

EXAMPLE 3

Solve Example 2 using spline collocation at the Gaussian points and the Hermite
cubic basis. Show the order of accuracy.

SOLUTION

The governing ODE is:

d2yd2 = 4[y + cosh (1)], 0 < x < 1
x y(O) = y(l) = 0

Let

Ly = -y" + 4y = -4 cosh (1)

and consider a general subinterval [xj' xj+d in which there are four basis func­
tions-vj , Vj+l' Sj, and Sj+l-that are nonzero. The "value" functions are eval­
uated as follows:

vj = gl(l - /;/X)) , [xj' xj+d

Vj = -2 [X
j
+1h- xr+ 3 [X

j
+ 1h- xr,

12 6
vi = - h3 (x j + 1 - x) + h2

_ 12 6 8 ( )3 12 ( )2
LVj - h3 (Xj +1 - x) - h2 - h3 Xj +1 - X + h2 Xj +1 - X

-2 [x ~ Xjr + 3 [x ~ Xjr

12 6
- h3 (x - Xj) + h2

12 6 8 ( )3 12 ( )2
LVj +1 = h3 (x - Xj ) - h2 - h3 X - Xj + h2 X - xj

The two collocation points per subinterval are

Tjl = Xj + i-~ (~) = Xj + i [1 -~]
Tj2 = Xj + i+ ~ (~) = xj + i [1 -~]
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Using TjI and Tj2 in LVj and LVj+ 1 gives

12 6
= h2 (1 - PI) - h2 - 8(1 - PI? + 12(1 - Pl)2

12 6
= h2 (1 - P2) - h2 - 8(1 - P2)3 + 12(1 - P2)2

_ 12 6 3 2 2
- h2 PI - h2 - 8Pl + 1 PI

_ 12 6 3 12 2
P 8p + P2- h2 2 - h2 - 2

The same procedure can be used for the "slope" functions to produce

6 2
LSiTjl) = h (1 - PI) - h - 4h[(1 - PI? - (1 PI?]

6 2
LSiTj2) = h (1 - P2) - h - 4h[(1 - P2)3 - (1 - P2)2]

() 6 2 [ 3 2]Lsj + 1 Tj1 = - h PI + h + 4h PI - PI ,

() 6 2 [ 3 2]LSj + 1 Tj2 = -h P2 + h + 4h P2 - P2 .

For notational convenience let

F1 = LSiTj1) - LSj+ 1(Tj2)

F2 = LSiTj2) - LSj+ 1(Tj1)

F3 = LV/Tj2) = LVj+ 1(TjI)

F4 = LVj(Tj1) = LVj+ 1(Tj2)

At x = 0 and x = 1, Y = O. Therefore,

a (1) = a (1) = 0
1 e+1

Thus the matrix problem becomes:

F1 F3 -F2 a(2) 11

F2 F4 -F1 a(l) 12
F4 F1 F3 -F2 0 (2)a 2

F3 F2 F4 -F1 a(l)
3

- 4 cosh (1)

F4 F1 -F2 a (2) 1
0

e

F3 F2 -F1 (2)
1a e+ 1
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This matrix problem was solved using the block version of Gaussian elimination
(see page 196 of [4]). The results are shown below.

1
2
3
4

From the above results

1
2
3
4

h (uniform
partition)

0.100
0.050
0.033
0.250

p

4.00
3.90
4.14

Ily - ull
0.2830 X 10-6

0.1764 X 10- 7

0.3483 X 10-8

0.1102 X 10-8

0< x < xp

which shows fourth-order accuracy.
In the previous example we showed that when using ..0' k(7T), the error

was O(h4
). In general, the collocation method using ..0' k(7T) gives an error of

the same order as that in Galerkin's method [Eq. (3.28)] [5].

EXAMPLE 4

The problem of predicting diffusion and reaction in porous catalyst pellets was
discussed in Chapter 2. In that discussion the boundary condition at the surface
was the specification of a known concentration. Another boundary condition
that can arise at the surface of the pellet is the continuity of flux of a species as
a result of the inclusion of a boundary layer around the exterior of the pellet.
Consider the problem of calculating the concentration profile in an isothermal
catalyst pellet that is a slab and is surrounded by a boundary layer. The con­
servation of mass equation is

d 2c
D - = k9l(c),

dx2

where

D = diffusivity

x = spatial coordinate (xp = half thickness of the plate)

c = concentration of a given species

k = rate constant

~(c) = reaction rate function



(symmetry)

116 Boundary-Value Problems for Ordinary Differential Equations: Finite Element Methods

The boundary conditions for this equation are

dc = 0 at x = 0
dx

where

dc
-D - = S (c - c)dx h 0

at x = Xp (continuity of flux)

Co = known concentration at the exterior of the boundary layer

Sh = mass transfer coefficient

Set up the matrix problem to solve this ODE using collocation with .cl'~(7f),

where

7f: 0 = Xl < X2 < ... < Xe+l = x p

and

for 1 ~ i ~ e (i.e., uniform)

SOLUTION

First, put the conservation of mass equation in dimensionless form by defining

C=~
Co

<I> = x Jk (Thiele modulus)
p D

. ShXp
Bl = -- (Biot number)

D

With these definitions, the ODE becomes

d
2
C = <1>2 [ 9l(C)]

dz2
Co

dC = 0 at z = 0
dz

dC = Bi (1 - C) at z = 1
dz
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The dimension of .!lJ ~ (7f) is 2(.£ + 1), and there are two collocation points in
each subinterval.

The pp-approximation is

e+1
u(x) = ~ (a?)vj + a?)sj)

j=l

With C'(O) = 0, af) is zero since s~ = 1 is the only nonzero basis function in
u'(O). For each subinterval there are two equations such that

for i = 1, ... , .£. At the boundary z = 1 we have

(2) B' (1 (1) )ae+ 1 = 1 - ae+ 1

since S~+l = 1 is the only nonzero basis function in u'(1) and Vf+1 = 1 is the
only nonzero basis funciton in u(1).

Because the basis is local, the equations at the collocation points can be
simplified. In matrix notation:

V~(Tl1)' V~(Tl1)' S~(Tl1)
a(l)

1

V~(Td, v~(Td, s~(Td
a(l)

2

V~(T21)' S~(T21)' V~(T21)' S~(T21) 0 a (2)
2

V~(Td, S~(T22)' V~(T22)' S~(T22)
a(l)

3

a (2)
3

<1>2

= -F
Co

a (1)
e

0 V~(Td, s~(Td, V~+l(Tf1) - Bi S~+JTf1) a (2)
e

V~(Td, s~(Td, V~+l(Tf2) - Bi S~+l(Tf2)
(1)

ae+1
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where

Yl'{co[aplvlrjl) + aFlSlrjl) + ag\vj+1(-rjl) + af;\Sj+l(-rjl)]}
Yl'{cO[aplVj(-rj2) + aFlslrj2) + agllVj+l(Tj2) + af;llSj+l(Tj2)]}

C~i S;+l(Tn) ~ Yl'{cO[aplVe(T,:l) + aplSe(Tn)
c Bi + ai~l(Ve+l(Tn) - Bise+l(Tn)) + Bise+l(Tn)]}
~2 S;+l(Tn) + Yl'{cO[aplVe(Tn) + aFlse(Ta)

+ ai~1(Ve+l(Te2) - Bise+l(Tn» + Bise+l(Tn)H

This problem is nonlinear, and therefore Newton's method or a variant of it
would be used. At each iteration the linear system of equations can be solved
efficiently by the alternate row and column elimination procedure of Varah [6].
This procedure has been modified and a FORTRAN package was produced by
Diaz et al. [7].

As a final illustration of collocation, consider the m nonlinear ODEs

with

y" = f(x, y, y'), a<x<b (3.45a)

g(y(a), y(b), y'(a), y'(b» = 0

The pp-approximations ( il k(-lT» for this system can be written as

N

u(x) = L OljBj(x)
j=l

(3.45b)

(3.46)

where each Olj is a constant vector of length m. The collocation equations for
(3.45) are

and,

i = 1, ... , k - 2, S = 1, ... , .e (3.47)

(3.48)

If there are m ODEs in the system and the dimension of ilk('lT) is N, then
there are mN unknown coefficients that must be obtained from the nonlinear
algebraic system of equations composed of (3.47) and (3.48). From (3.23)

e
N = k + L (k - v)

j=2
(3.49)
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and the number of coefficients is thus

mk + m(e - 1)(k - v)
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(3.50)

The number of equations in (3.47) is m(k - 2)e, and in (3.48) is 2m. Therefore
the system (3.47) and (3.48) is composed of 2m + meek - 2) equations. If we
impose continuity of the first derivative, that is, v = 2, then (3.50) becomes

mk + m(e - 1)(k - 2)

or

2m + meek - 2) (3.51)

Thus the solution of the system (3.47) and (3.48) completely specifies the pp­
approximation.

Mathematical Software

The available software that is based on collocation is rather limited. In fact, it
consists of one code, namely COLSYS [8]. Next, we will study this code in detail.

COLSYS uses spline collocation to determine the solution of the mixed­
order system of equations

where

U~Ms)(X) = fs(x; z(u)),

a<x<b

s = 1, ... ,d

(3.52)

M s = order of the s differential equation

II = [Ul> Uz, ..• , UdV is the vector of solutions

z(u) = (u l , ui, ... , u~Ml-1l, ... , Ud' u~, ... , u5tMd - l
))

It is assumed that the components Ul , Uz, ... , Ud are ordered such that

M l ~ M z ~ ... ~ M d ~ 4

Equations (3.52) are solved with the conditions

(3.53)

j = 1, ... ,M* (3.54)

where
d

M* L M s
s= 1

and

a ~ ~i ~ ~z ~ . .. ~ ~M' ~ b

Unlike the BVP codes in Chapter 2, COLSYS does not convert (3.52) to a first­
order system. While (3.54) does not allow for nonseparated boundary conditions,
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such problems can be converted to the form (3.54) [9]. For example, consider
the BVP

y" = f(x, y, y'), a<x<b

y'(a) = <X, g(y(a), y(b)) = 0 (3.55)

Introducing a (constant) Vex) gives an equivalent BVP

y" = f(x, y, y'), a < x < b

V' = 0, (3.56)

y'(a) = <X, yea) = V(a), g(V(b), y(b)) = 0

which does not contain a nonseparated boundary condition.
COLSYS implements the method of spline collocation at Gaussian points

using a B-spline basis (modified versions of deBoor's algorithms [2] are used to
calculate the B-splines and their derivates). The pp-solutions are thus in !lJ '( ('IT)
where COLSYS sets k and v* such that

where

s = 1, ... ,d (3.57)

v* = {Vj = M s I j = 2, ... , t'}

q = number of collocation points per subintervals

The matrix problem is solved using an efficient implementation of Gaussian
elimination with partial pivoting [10], and nonlinear problems are "handled"
by the use of a modified Newton method. Algorithms are included for estimating
the error, and for mesh refinement. A redistribution of mesh points is auto­
matically performed (if deemed worthwhile) to roughly equidistribute the error.
This code has proven to be quite effective for the solution of "difficult" BVPs
arising in chemical engineering [11].

To illustrate the use of COLSYS we will solve the isothermal effectiveness
factor problem with large Thiele moduli. The governing BVP is the conservation
of mass in a porous plate catalyst pellet where a second-order reaction rate is
occurring, i.e.,

d 2c _ rF.2 2
dx2 - 'J! C , 0 < x < 1,

C'(O) = 0

c(l) = 1 (3.58)
where

c = dimensionless concentration of a given species

x = 'dimensionless coordinate

<I> = Thiele modulus (constant)
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The effectiveness factor (defined in Chapter 2) for this problem is

E = L1

c2 dx

121

(3.59)

For large values of <1>, the "exact" solution can be obtained [12] and is

where Co is given by

1 J2E = ~ 3" (1 - C6)1/2 (3.60)

<I> J~3 Co = (lle
o d~ (3.61)

Jo V~3 -: 1

This problem is said to be difficult because of the extreme gradient in the solution
(see Figure 3.5). We now present the results generated by COLSYS.

COLSYS was used to solve (3.58) with <I> = 50, 100, and 150. A tolerance
was set on the solution and the first derivative, and an initial uniform mesh of
five subintervals was used with initial solution and derivative profiles of 0.1 and
0.001 for 0 ~ x ~ 1, respectively. The solution for <I> = 50 was used as the
initial profile for calculating the solution with <I> = 100, and subsequently this
solution was used to calculate the solution for <I> = 150. Table 3.3 compares

x
I.°,-0_,9,9_0__0_,9,9_2__0.:,:,,9.:,:94-'-------'0'--,9,9_6_----'0_,9,9_8_--:::;"",1.0

u~

Z
0
I- 0.8«
0::
I-
Z
W
U 0,6
Z
0
U

(j)
(j)

0.4w
.-J
Z
0
u;
Z 0.2w
::2:
0

DIMENSIONLESS DISTANCE,x

fiGURE 3.5 Solution of E.q. (3.58).
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TABLE. 3.3 Results for Eq. (3.58)
Tolerance = 10-4

Collocation Points Per Subinterval = 3

50
100
150

COLSYS

0.1633( -1)
0.8165( -2)
0.5443( -2)

"Exact"
0.1633( -1)
0.8165( -2)
0.5443( -2)

the results computed by COLSYS with those of (3.60) and (3.61). This table
shows that COLSYS is capable of obtaining accurate results for this "difficult"
problem.

COLSYS incorporates an error estimation and mesh refinement algorithm.
Figure 3.6 shows the redistribution of the mesh for <I> = 50, q = 4, and the
tolerance = 10-4

• With the initial uniform mesh (mesh redistribution number = 0;
i.e., a mesh redistribution number of 1) designates that COLSYS has automat­
ically redistributed the mesh 1) times), COLSYS performed eight Newton iter­
ations on the matrix problem to achieve convergence. Since the computations
continued, the error exceeded the specified tolerance. Notice that the mesh was
then redistributed such that more points are placed in the region of the steep
gradient (see Figure 3.5). This is done to "equidistribute" the error throughout
the x interval. Three additional redistributions of the mesh were required to
provide an approximation that met the specified error tolerance. Finally, the
effect of the tolerance and q, the number of collocation points per subinterval,
were tested. In Table 3.4, one can see the results of varying the aforementioned
parameters. In all cases shown, the same solution, u(x), and value of E were

CD =LOCATION OF MESH
POINT

NI(a)=a NEWTON ITERATIONS

NI(ll FOR CONVERGENCE

NI(])

NI(])

NI(l)

NI(8)

~
w
CD 4
~
~

z
z
o
i= 3
~

CD
~

~ 2
o
W
~

:c
(/)
w
~

o
o 0.2 0.4

x
0.6 0.8 1.0

FIGURE 3.6 Redistribution of mesh.



Collocation

TABU 3.4 further Results for £q. (3.58)
«P = 50

123

Collocation Points
Per Subinterval
3
3
2
4

Number of
Subintervals

20
114
80
12

Tolerance on
Solution and
Derivative
10-4

10- 6

10- 4

10-4

E.T.R.*

1.0
4.6
1.9
1.1

* E.T.R. = execution time ratio.

obtained. As the tolerance is lowered, the number of subintervals and the exe­
cution time required for solution increase. This is not unexpected since we are
asking the code to calculate a more accurate solution. When q is raised from 3
to 4, there is a slight decrease in the number of subintervals required for solution,
but this requires approximately the same execution time. If q is reduced from
3 to 2, notice the quadrupling in the number of subintervals used
for solution and also the approximate doubling of the execution time. The dras­
tic changes in going from q = 2 to q = 3 and the relatively small changes when
increasing q from 3 to 4 indicate that for this problem one should specify q ~ 3.

In this chapter we have outlined two finite element methods and have
discussed the limited software that implements these methods. The extension
of these methods from BVPs to partial differential equations is shown in later
chapters.

PROBLEMS

1. A liquid is flowing in laminar motion down a vertical wall. For z < 0, the
wall does not dissolve in the fluid, but for 0 < z < L, the wall contains a
species A that is slightly soluble in the liquid (see Figure 3.7, from [13]).
In this situation, the change in the mass convection in the z direction
equals the change in the diffusion of mass in the x direction, or

~ (UZcA ) = D a
2

c A

az ax 2

where U z is the velocity and D is the diffusivity. For a short "contact time"
the partial differential equation becomes (see page 561 of [13]):

ax aCA = D a
2
cA

az ax2

CA = 0 at z = 0

CA = 0 at x = 00

CA c1 at x = 0
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h-.,---,--"; LAMIN AR
VELOCITY
PROFILE

INSOLUBLE
WALL--+-O-

SOLUBLE
WALL
OF A

x

fiGURE 3.7 Solid dissolution Into failing film.
Adapted from R. B. Bird, W. E. Stewart, and E. N.
Lightfoot, Transport Phenomena, copyright © 1960,
p. 551. Reprinted by permission of John Wiley and
Sons, New York.

where f(n)

where a is a constant and c1 is the solubility of A in the liquid. Let

f = CAand ~ = x (~)1/3
c1 9Dz

The PDE can be transformed into a BVP with the use of the above di­
mensionless variables:

d
2
f + 3e df = 0

de d~

f = 0 at ~ = 00

f = 1 at ~ = 0

Solve this BVP using the Hermite cubic basis by Galerkin's method and
compare your results with the closed-form solution (see p. 552 of [13]):

fi;x exp ( - ~3)d~

f= fm
LX I3n-1r13dl3, (n > 0), which has the recursion formula

f(n + 1) = nf(n)

The solution of the Galerkin matrix problem should be performed by
calling an appropriate matrix routine in a library available at your instal­
lation.

2. Solve Problem 1 using spline collocation at Gaussian points.
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3.* Solve problem 5 of Chapter 2 and compare your results with those obtained
with a discrete variable method.

4.* The following problem arises in the study of compressible boundary layer
flow at a point of attachment on a general curved surface [14].

f'" + (f + cg)f" + (1 + Swh - (f'F) = 0

gill + (f + cg)g" + c(l + Swh - (f')2) = 0

hlf + (f + cg)h' = 0

with

f=g=f' = g' = 0 at Tj = 0

h= 1 at Tj = 0

f' = g' = 1 at Tj ~ 00

h = 0 at Tj~oo

where f, g, and h are functions of the independent variable Tj, and c and
Sw are constants. As initial approximations use

Tj2
f(Tj) = g(Tj) = ---2

Tjoo

h(Tj) = Tjoo - Tj

Tjoo

where Tjoo is the point at which the right-hand boundary conditions are
imposed. Solve this problem with Sw = 0 and c = 1.0 and compare your
results with those given in [11].

5.* Solve Problem 4 with Sw = 0 and c = -0.5. In this case there are two
solutions. Be sure to calculate both solutions.

6.* Solve Problem 3 with [3 = 0 but allow for a boundary layer around the
exterior of the pellet. The boundary condition at x = 1 now becomes

dy = Bi (1 - y)
dx

Vary the value of Bi and explain the effects of the boundary layer.

REFERENCES

1. Fairweather, G., Finite Element Galerkin Methods for Differential Equa­
tions, Marcel Dekker, New York (1978).

2. deBoor, C., Practical Guide to Splines, Springer-Verlag, New York (1978).



.26 Boundary-Value Problems for Ordinary Differential Equations: Finite Element Methods

3. Varga, R. S., Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs,
N.J. (1962).

4. Fox, P. A., A. D. Hall, and N. L. Schryer, "The PORT Mathematical
Subroutine Library," ACM TOMS, 4, 104 (1978).

5. deBoor, C., and B. Swartz, "Collocation at Gaussian Points," SIAM J.
Numer. Anal., 10, 582 (1973).

6. Varah, J. M., "Alternate Rowand Column Elimination for Solving Certain
Linear Systems," SIAM J. Numer. Anal., 13, 71 (1976).

7. Diaz, J. c., G. Fairweather, and P. Keast, "FORTRAN Packages for
Solving Almost Block Diagonal Linear Systems by Alternate Rowand
Column Elimination," Tech. Rep. No. 148/81, Department of Computer
Science, Dniv. Toronto (1981).

8. Ascher, D., J. Christiansen, and R. D. Russell, "Collocation Software for
Boundary Value ODEs," ACM TOMS, 7, 209 (1981).

9. Ascher, D., and R. D. Russell, "Reformulation of Boundary Value Prob­
lems Into "Standard" Form," SIAM Rev. 23, 238 (1981).

10. deBoor, C., and R. Weiss, "SOLVEBLOK: A Packagefor Solving Almost
Block Diagonal Linear Systems," ACM TOMS, 6, 80 (1980).

11. Davis, M., and G. Fairweather, "On the Dse of Spline Collocation for
Boundary Value Problems Arising in Chemical Engineering," Comput.
Methods. Appl. Mech. Eng., 28, 179 (1981).

12. Aris, R., The Mathematical Theory ofDiffusion and Reaction in Permeable
Catalysts, Clarendon Press, Oxford (1975).

13. Bird, R. B., W. E. Stewart, and E. N. Lightfoot, Transport Phenomena,
Wiley, New York (1960).

14. Poots, J., "Compressible Laminar Boundary-Layer Flow at a Point of
Attachment," J. Fluid Mech., 22, 197 (1965).

BIBLIOGRAPHY

For additional or more detailed information, see the following:

Becker, E. B., G. F. Carey, and J. T. Oden, Finite Elements: An Introduction, Prentice­
Hall, Englewood Cliffs, N.J. (1981).

deBoor, C., Practical Guide to Splines, Springer-Verlag, New York (1978).

Fairweather, G., Finite Element Galerkin Methods for Differential Equations, Marcel
Dekker, New York (1978).

Russell, R. D., Numerical Solution of Boundary Value Problems, Lecture Notes, Uni­
versidad Central de Venezuela, Publication 79-06, Caracas (1979).

Strang, G., and G. J. Fix, An Analysis of the Finite Element Method, Prentice-Hall,
Englewood Cliffs, N.J. (1973).



(4.2)

Equations in One Space Variable

INTRODUCTION

In Chapt~r 1 we discussed methods for solving IVPs, whereas in Chapters 2 and
3 boundary-value problems were treated. This chapter combines the techniques
from these chapters to solve parabolic partial differential equations in one space
variable.

CLASSifiCATION Of PARTIAL DiffERENTIAL EQUATIONS

Consider the most general linear partial differential equation of the second order
in two independent variables:

Lw = awxx + 2bwxy + CWyy + dwx + ewy + fw = g (4.1)

where a, b, C, d, e, f, g are given functions of the independent variables and
the subscripts denote partial derivatives. The principal part of the operator L
is

a2 a2 a2

a-+2b--+c-
ax2 ax ay ay2

Primarily, it is the principal part, (4.2), that determines the properties of the
solution of the equation Lw = g. The partial differential equation Lw - g = 0

127
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is classified as:

HyperbOliC} {> °
Parabolic according as b2

- ac = °
Elliptic < ° (4.3)

where b2 - ac is called the discriminant of L. The procedure for solving each
type of partial differential equation is different. Examples of each type are:

Wxx + W yy = 0, e.g., Laplace's equation, which is elliptic

e.g., wave equation, which is hyperbolic

e.g., diffusion equation, which is parabolic

An equation can be of mixed type depending upon the values of the parameters,
e.g.,

YWxx + Wyy = 0,
(Tricomi's equation) {

y < 0, hyperbolic
y = 0, parabolic,
U > 0, elliptic

To each of the equations (4.1) we must adjoin appropriate subsidiary
relations, called boundary and/or initial conditions, which serve to complete the
formulation of a "meaningful problem." These conditions are related to the
domain in which (4.1) is to be solved.

METHOD OF LINES

Consider the diffusion equation:

aw = D a2w
at ax2 '

°< x < 1, 0< t

D constant, (4.4)

with the following mesh in the x-direction

i = 1, ... ,N

(4.5)

(4.6)

Discretize the spatial derivative in (4.4) using finite differences to obtain the
following system of ordinary differential equations:

duo Dd/ = h2 [Ui+l - 2ui + ui-d

where

ult) = W(Xi' t)
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Thus, the parabolic PDE can be approximated by a coupled system of ODEs
in t. This technique is called the method of lines (MOL) [1] for obvious reasons.
To complete the formulation we require knowledge of the subsidiary conditions.
The parabolic PDE (4.4) requires boundary conditions atx = °and x = 1, and
an initial condition at t = 0. Three types of boundary conditions are:

Dirichlet, e.g., weD, t) = 8l(t)

Neumann, e.g., wi1, t) = gz(t)

Robin, e.g., aw(O, t) + I3wx (O, t) = git) (4.7)

In the MOL, the boundary conditions are incorporated into the discretization
in the x-direction while the initial condition is used to start the associated IVP.

EXAMPLE 1

Write down the MOL discretization for

aw = D azw
at axz

weD, t) = a

w(l, t) = 13

w(x, 0) = a + (13 - a)x

using a uniform mesh, where D, a, and 13 are constants.

SOLUTION

Referring to (4.6), we have

du D
dt' = hZ [u;+1 - 2u; + u;-d, i = 2, ... ,N

i = 3, ... ,N - 1

For i = 1, U 1 = a, and for i = N + 1, UN+l = 13 from the boundary conditions.
The ODE system is therefore:

duz 1
dt = hZ [u3 - 2uz + a]

duo 1dr' = hZ [U;+l - 2u; + u;-d,

with

u; = a + (13 - a)x; at t = °
This IVP can be solved using the techniques discussed in Chapter 1.
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The method of lines is a very useful technique since IVP solvers are in a
more advanced stage of development than other types of differential equation
solvers. We have outlined the MOL using a finite difference discretization. Other
discretization alternatives are finite element methods such as collocation and
Galerkin methods. In the following sections we will first examine the MOL using
finite difference methods, and then discuss finite element methods.

FINITE DIffERENCES

Low-Order Time Approximations

Consider the diffusion equation (4.4) with

w(O, t) = 0

w(l, t) = 0

w(x, 0) = f(x)

which can represent the unsteady-state diffusion of momentum, heat, or mass
through a homogeneous medium. Discretize (4.4) using a uniform mesh to give:

duo Dd/ = h2 [Ui+l - 2ui + ui-d, i = 2, ... , N

(4.8)

where Ui = f(xi), i = 2, ... ,N at t = O. If the Euler method is used to integrate
(4.8), then with

we obtain

j = 0,1, ...

or

where

Ui,j+l - Ui,j D
I::i.t = h2 [Ui+1,j - 2 i ,j + Ui-1,j]

Ui,j+l = (1 - 2T)Ui ,j + T(Ui+1,j + Ui-l,)

(4.9)

At
T = h2 D

and the error in this formula is O(At + h2
) (At from the time discretization, h2

from the spatial discretization). At j = 0 all the u/s are known from the initial
condition. Therefore, implementation of (4.9) is straightforward:
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1. Calculate Ui,j+1 for i = 2, ... , N (u l and UN+l are known from the
boundary conditions), using (4.9) with j = O.

2. Repeat step (1) using the computed Ui,j+l values to calculate Ui ,j+2, and so
on.

Equation (4.9) is called the forward difference method.

EXAMPLE 2

Calculate the solution of (4.8) with

D = 1

{

2X'
f(x) =

2(1 - x),

for 0,;:.;; x ,;:.;; ~

for ~ ,;:.;; x ,;:.;; 1

Use h = 0.1 and let (1) At = 0.001, and (2) f:.t = 0.01.

SOLUTION

Equation (4.9) with h = 0.1 and At = 0.001 becomes:

Ui,j+l = 0.8ui,j + O.l(Ui+l,j + Ui-1,j) (1' = 0.1)

The solution of this equation at x = 0.1 and t = 0.001 is

U2,1 = 0.8~,o + 0.1(u3,o + Ul,O)

The initial condition gives

U2,O = 2h

U3,O = 2(2h)

U1,O = 0

Thus, U2 ,1 = 0.16 + 0.04 = 0.2. Likewise U3 ,1 = 0.4. Using U3 ,1' U2 ,1' UI,l' one
can then calculate U 2 ,2 as

~,2 = 0.2.

A sampling of some results are listed below:

0.005
0.01
0.Q2
0.10

Finite-Difference
Solution (x = 0.3)

0.5971
0,5822
0.5373
0.2472

Analytical
Solution (x = 0.3)

0.5966
0.5799
0.5334
0.2444
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Now solve (4.9) using h

Parabolic Partial Differential Equations in One Space Variable

0.1 and I1t = 0.01 (r = 1). The results are:

x

t 0.0 0.1 0.2 0.3 0.4 0.5
0.00 0 0.2 0.4 0.6 0.8 1.0
0.01 0 0.2 0.4 0.6 0.8 0.6
0.02 0 0.2 0.4 0.6 0.4 1.0
0.03 0 0.2 0.4 0.2 1.2 -0.2
0.04 0 0.2 0.0 1.4 -1.2 2.6

As one can see, the computed results are very much affected by the choice of
T.

In Chapter 1 we saw that the Euler method had a restrictive stability
criterion. The analogous behavior is shown in the forward difference method.
The stability criterion for the forward difference method is [2]:

(4.10)

As with IVPs there are two properties of PDEs that motivate the derivation of
various algorithms, namely stability and accuracy. Next we discuss a method
that has improved stability properties.

Consider again the discretization of (4.4), i.e., (4.8). If the implicit Euler
method is used to integrate (4.8), then (4.8) is approximated by

or

Ui,j+l - Ui,j D
I1t = h2 [Ui+l,j+l - 2ui ,j+l + Ui-1,j+d

Ui,j = -TUi+l,j+l + (1 + 2T)Ui ,j+l - TUi-1,j+l

(4.11)

The error in (4.11) is again O(l1t + h2). Notice that in contrast to (4.9), (4.11)
is implicit. Therefore, denote

-T

and write (4.11) in matrix notation as:

1 + 2T -T
-T 1 + 2T

-T

1 + 2T

U1,j+l

o

o
UN+1,j+l

(4.12)

(4.13)

with U1,j+l UN+1,i+l = O. Equation (4.11) is called the backward difference
method, and it is unconditionally stable. One has gained stability over the for­
ward difference method at the expense of having to solve a tridiagonal linear
system, but the same accuracy is maintained.
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To achieve higher accuracy in time, discretize the time derivative using the
trapezoidal rule:

where

aW
at

j+1/Z

(4.14)

Notice that (4.14) requires the differential equation to be approximated at the
half time level. Therefore the spatial discretization must be at the half time level.
If the average of Wi,j and Wi,j+l is used to approximate Wi,j+l/Z' then (4.4)
becomes

Wi,j+l - w· . D
I1t ',J = 2hz [(Wi+1,j+l + Wi+1,j) -2(wi,j+l + Wi,j)

(4.15)

A numerical procedure for the solution of (4.4) can be obtained from (4.15) by
truncating O(LltZ + hZ) and is:

1 + 'T -'T12
- 'T12 1 + 'T -'T12

1-'T
'T12

'T12
1-'T 'T12

u·­]

-'T12
-'T12 1+'T

'T12
'T12 1 - 'T

o

~(UN+l,j + UN+1,j+l) (4.16)

where U1,j' U1,j+v UN+l,j and UN+l,j+l = O. This procedure is called the Crank­
Nicolson method, and it is unconditionally stable [2].

The Theta Method

The forward, backward, and Crank-Nicolson methods are special cases of the
theta method. In the theta method the spatial derivatives are approximated by
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the following combination at the j and j + 1 time levels:

iPu _ 2 (1 )"2
-2 - 80x u i J"+l + - 8 uxui J"ax' ,

where

U"+l " - 2u" " + U,"-l,J"02 _',J ',J
xUi,j - h2

For example, (4.4) is approximated by

U i ,j+1 - Ui,j = D[802 u" " (1 8)02 ]I5..t x ',J+1 + - xUi,j

or in matrix form

(4.17)

(4.18)

[1 - (1 - 8)1"1]U j (4.19)

where

1 = identity matrix

2 -1

-1 2

J=

-1
-1 2

(4.20)

Referring to (4.18), we see that 8 = 0 is the forward difference method and the
spatial derivative is evaluated at the jth time level. The computational molecule
for this method is shown in Figure 4.1a. For 8 = 1 the spatial derivative is
evaluated at the j + 1 time level and its computational molecule is shown in

+1

i-I

(a)

;+1 i-I

(b)

;+1 i-I

(c)

i+1

FIGURE 4.. Computation molecules (x denoted grid points involved in the differ­
ence formulation). (a) Forward-difference method. (b) Backward-difference method.
(c) Crank-Nicolson method.
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Figure 4.1b. The Crank-Nicolson method approximates the differential equation
at the j + ~ time level (computational molecule shown in Figure 4.1c) and
requires information from six positions. Since 8 = t the Crank-Nicolson method
averages the spatial derivative between j and j + 1 time levels. Theta may lie
anywhere between zero and one, but for values other than 0, 1, and ~ there is
no direct correspondence with previously discussed methods. Equation (4.19)
can be written conveniently as:

or

uj + 1 = [1 + 81"1]-1 [1 - (1 - 8) 1"1] u j (4.21)

(4.22)

Boundary and Initial Conditions

Thus far, we have only discussed Dirichlet boundary conditions. Boundary con­
ditions expressed in terms of derivatives (Neumann or Robin conditions) occur
very frequently in practice. If a particular problem contains flux boundary con­
ditions, then they can be treated using either of the two methods outlined in
Chapter 2, i.e., the method of false boundaries or the integral method. As an
example, consider the problem of heat conduction in an insulated rod with heat
being convected "in" at x = °and convected "out" at x = 1. The problem can
be written as

aT aZT
pC- = k-Pat axz

T = To at t = 0, for 0< x < 1

where

aT
- k- = h1(T1 - T) at x = °

ax

aT
-k- = hz(T - Tz) at x = 1

ax

T = dimensionless temperature

To = dimensionless initial temperature

pCp = density times the heat capacity of the rod

h1, hz = convective heat transfer coefficients

T1, Tz = dimensionless reference temperatures

k = thermal conductivity of the rod

(4.23)
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Using the method of false boundaries, at x = 0

aT
-k- = h1(T1 - T)ax

becomes

Solving for Uo gives

A similar procedure can be used at x = 1 in order to obtain

2h2
UN + 2 = k t:u(T2 - UN + 1) + UN

Thus the Crank-Nicolson method for (4.23) can be written as:

where
c = [I + hA]-l[I - hAl

(4.24)

(4.25)

(4.26)

(4.27)

A=

-1 2 -1

-1 2

-2

An interesting problem concerning the boundary and initial conditions that
can arise in practical problems is the incompatibility of the conditions at some
point. To illustrate this effect, consider the problem of mass transfer of a com­
ponent into a fluid flowing through a pipe with a soluble wall. The situation is
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I' L ,

- FLUID VELOCITY

t t t t t t t t t t t t t

Fluid enters
at a uniform
composition
with mole
fraction of
component A,

Y
A1 ______-L......I-.L-.L-L.....J--L---I.--L-L-L-...I-...I.-.L--'-- _

Soluble coating an wall maintains liquid
composition Y~ next to the wall surface.

fiGURE. 4.2 Mass transfer in a pipe with a solubie wall. Adapted from R. B. Bird,
W. E. Stewart, and Eo N. Lightfoot, Transport Phenomena, copyright © 1960, p. 643.
Reprinted by permission of John Wiley and Sons, New York.

shown in Figure 4.2. The governing differential equation is simply a material
balance on the fluid

vayA= 0 ~ (r ayA)
az r ar ar

(a) (b)

(4.28a)

with

YA = YA , at z = 0, for °~ r ~ wall (4. 28b)

aYA = ° at r = °ar (4.28c)

at r = wall (4.28d)

where

o = diffusion coefficient

v = fluid velocity

kg = mass transfer coefficient

Term (a) is the convection in the z-direction and term (b) is the diffusion in the
r-direction. Notice that condition (4.28b) does not satisfy condition (4.28d) at
r = wall. This is what is known as inconsistency in the initial and boundary
conditions.

The question of the assignment of YA at z = 0, r = wall now arises, and
the analyst must make an arbitrary choice. Whatever choice is made, it introduces
errors that, if the difference scheme is stable, will decay at successive z levels
(a property of stable parabolic equation solvers). The recommendation of Wilkes
[3] is to use the boundary condition value and set YA = Y~ at z = 0, r = wall.
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EXAMPLE 3

Parabolic Partial Differential Equations in One Space Variable

A fluid (constant density p and viscosity fL) is contained in a long horizontal
pipe of length L and radius R. Initially, the fluid is at rest. At t = 0, a pressure
gradient (Po - PL)/L is imposed on the system. Determine the unsteady-state
velocity profile V as a function of time.

SOLUTION

The governing differential equation is

p aV = Po - PL + fL!..i (r av)
at L r ar ar

with

v=o at t = 0, for 0 :%; r :%; R

av = 0 at r = 0, for t ~ 0ar
V=o at r = R, for t ~ 0

Define

r
~ =­

R

T) = (Po - PL)R2

then the governing PDE can be written as

aT) = 4 + !..i (~ aT))
aT ~ a~ a~

T) = 0 at T = 0, for 0 :%; ~ :%; 1

a1] = 0 at ~ = 0, for T ~ 0
a~

1] = 0 at ~ = 1, for T ~ 0

At T ---? 00 the system attains steady state, 1]0C" Let

The steady-state solution is obtained by solving

1 d ( d1]oc)o = 4 + ~ d~ ~ d~
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with

1]00 = 0 at £ = 1

a1]oo = 0 at £ = 0
a£

and is 1]00 = 1 - £2. Therefore

a<l> = ! ~ (£ a<l»
a'T £a£ a£

with

a<l> = 0 at £ = 0, for'T ;:?; 0
a£

<1>=0 at £ = 1, for 'T ;:?; 0

<I> = 1 - £2 at 'T = 0, for 0 ~ £ ~ 1

Discretizing the above PDE using the theta method yields:

[1 + e<PA] Uj+l = [1 - (1 - e)<pA] uj

where

139

A=

-4

2 _(1 + __1__)
2(i - 1)

Table 4.1 shows the results. For <P > 0.5, the solution with e = 0 diverges. As
<P goes from 0.4 to 0.04, the solutions with e = 0, 1 approach the solution with
e = 1. Also notice that no change in the e = 1solution occurs when decreasing
<P. Since e = 0,1 areO(A'T + A£2) and e = 1is 0(A'T2 + A£2), one would expect
the behavior shown in Table 4.1. The analytical solution is given for 'T = 0.2
and 0.4, but as stated in the table, it required interpolation from Bessel function
tables, and therefore is not applicable for a five-digit precision comparison with
the numerical results. The analytical solution is given to show that all the answers
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TABLE 4.1 Computed <l> Values Using the Theta Method
~ = 0.4

fl> = 0.4 fl> = 0.04

'I' 6=0 6=1 6=! 6=0 6=1 6=!

0.2 0.27192 0.27374 0.27283 0.27274 0.27292 0.27283
0.4 0.85394( -1) 0.86541( -1) 0.85967( -1) 0.8591O( -1) 0.86025( -1) 0.85968( -1)
0.8 0.84197(-2) 0.86473( -2) 0.85332(-2) 0.85218(-2) 0.85446(-2) 0.85332(-2)

Analyticalt
0.2723
0.8567( -1)

t Solution required the use of Bessel functions, and interpolation of tabular data will produce errors in these
numbers.

are within "engineering accuracy." Finally, the unsteady-state velocity profile
is shown in Figure 4.3, and is what one would expect from the physical situation.

Nonlinear Equations
Consider the nonlinear equation

W xx = F(x, t, w, wx ' wt)

o~ x ~ 1, 0 ~ t

(4.29)

1.0 r-------~-~------__,

0.8

0.6

0.4

0.2

1.0 0.8 0.4 o 0.4 0.8 1.0

fiGURE 4.3 Transient velocity profiles.

(1) 0.1
(2) 0.2
(3) 00
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(4.30)

with w(O, t), w(l, t), and w(x, 0) specified. The forward difference method
would produce the following difference scheme for (4.29):

2 _ ( ui,i+l - Ui,i)
8x ui ,i - F Xi' ti, Ui,i' ilXUi,i' ilt

where

If the time derivative appears linearly, (4.30) can be solved directly. This is
because all the nonlinearities are evaluated at the jth level, for which the node
values are known. The stability criterion for the forward difference method is
not the same as was derived for the linear case, and no generalized explicit
criterion is available. For "difficult" problems implicit methods should be used.
The backward difference and Crank-Nicolson methods are

and

1 2( (Ui,i+1 + Ui,i
28x Ui,i+l + Ui,) = F Xi' ti +1/2, 2

Ui,i+\ -t Ui,i)~ilx (u i , i + 1 + U i , i ), --'-''---''l.l----'-'"-

(4.31)

(4.32)

Equations (4.31) and (4.32) lead to systems of nonlinear equations that must be
solved at each time step. This can be done by a Newton iteration.

To reduce the computation time, it would be advantageous to use methods
that handle nonlinear equations without iteration. Consider a special case of
(4.29), namely,

Wxx = !lex, t, w)wt + f2(X, t, w)wx + f3(X, t, w) (4.33)

A Crank-Nicolson discretization of (4.33) gives

with

= h i +1I2 (Ui'i+~~ Ui,i)

+ hi+1I2 il
x

(Ui,i+12+ Ui,i) + f~i+1/2 (4.34)

(
u· . 1 + u· .)

f i,i+ 1/2 _ .(: l,J+ l,J
n - in Xi' ti + 1/2 , 2 ' n = 1,2,3.

Equation (4.34) still leads to a nonlinear system of equations that would require
an iterative method for solution. If one could estimate ui,i+1/2' by ui,i+1/2 say,
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and use it in

1 1)2 ( U . .) = t-iJ+1/2(Ui,j+1 - Ui,j)2' x U i ,j+1 + ',j 1 At

- (u .. 1 + U· .)+ t~j+1I2 Ax l,j+ 2 ',j

where

+ h j
+

1I2

(4.35)

then there would be no iteration. Douglas and Jones [4] have considered this
problem and developed a predictor-corrector method. They used a backward
difference method to calculate Cti,j+1I2:

1)2 - -Ii j Cti,j+1/2 - Ui,j fi j A - fi j
, ";,1+," - i (~t) + i ,u;,I+'" + i'

where

(4.36)

The procedure is to predict Ui,j+1/2 from (4.36) (this requires the solution
of one tridiagonal linear system) and to correct using (4.35) (which also requires
the solution of one tridiagonal linear system). This method eliminates the non­
linear iteration at each time level, but does require that two tridiagonal systems
be solved at each time level. Lees [5] introduced an extrapolated Crank-Nicolson
method to eliminate the problem of solving two tridiagonal systems at each time
level. A linear extrapolation to obtain Ui,j+ 112 gives

Ct· '+1/2 = U· . + ~ (u· . - U· '-1)l,] l.J 1,J l,j

or

Cti,j + 1/2
3Ui ,j - U i ,j-1

2
(4.37)

Notice that Cti ,j+1I2 is defined directly for j > 1. Therefore, the procedure is to
calculate the first time level using either a forward difference approximation or
the predictor-corrector method of Douglas and Jones, then step in time using
(4.35) with Cti,j + 1/2 defined by (4.37). This method requires the solution of only
one tridiagonal system at each time level (except for the first step), and thus
would require less computation time.

Inhomogeneous Media

Problems containing inhomogeneities occur frequently in practical situations.
Typical examples of these are an insulated pipe-i.e., interfaces at the inside
fluid-inside pipewall, outside pipewall-inside insulation surface, and the outside
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insulation surface-outside fluid-or a nuclear fuel element (refer back to Chapter
2). In this case, the derivation of the PDE difference scheme is an extension of
that which was outlined in Chapter 2 for ODEs.

Consider the equation

ow 0 [ ow]- = - A(r)-uz or or
at the interface shown in Figure 4.4. Let

and

(4.38)

A(r) = {A1(r),
AlI(r)

for r < rj

for r > r i
(4.39)

with A(r) being discontinuous at rj. For w continuous at r j and

+ ow
AlI(rj )­ar (4.40)

the discretization of (4.38) at r j can be formulated as follows. Integrate (4.38)
from ri+ liZ to r j :

+ aw jr'+112 aw
- AlI(ri ) .oR "".= - dr

u r,+ az
rt

(4.41)

Next, integrate (4.38) from r j to rj-1/Z '

rj-1I2

jr,- aw
= -dr

r'-1I2 az
(4.42)

A(r)

MATERIAL I MATERIAL II

i-I • 1
1--

2

FIGURE 4.4 Material interface where the function A(l') is discontinuous.
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Now, add (4.42) to (4.41) and use the continuity condition (4.40) to give

f
r;+112 aw

= -dr
r'-112 aZ

ri-l/2

(4.43)

Approximate the integral in (4.43) by

f
r
'+112 aw aw 1 aw

- dr = - (ri+l/Z - r i - lIZ) = -2(hr + hn ) ­
ri-112 az az az

(4.44)

If a Crank-Nicolson formulation is desired, then (4.43) and (4.44) would give

Ui,j+l - Ui,j 1 {An (ri + 1/z)
Llz = hI + hn hn (Ui+l,j+l + Ui+l)

(4.45)

Notice that if hI = hn and AI = An, then (4.45) reduces to the standard second­
order correct Crank-Nicolson discretization. Thus the discontinuity of A(r) is
taken into account.

As an example of a problem containing interfaces, we outline the solution
of the material balance equation of the annular bed reactor [6]. Figure 4.5 is a
schematic of the annular bed reactor, ABR. This reactor is made up of an annular
catalyst bed of very small particles next to the heat transfer surface with the
inner core of the annulus packed with large, inert spheres (the two beds being
separated by an inert screen). The main fluid flow is in the axial direction through

Catalytic
Bed

Reactants Coolant
Cross Flow

FIGURE. 4.5 Schematic of annular bed reactor. From M. E. Davis and J. Yamanis,
A.I.Ch.E. J., 28, p. 267 (1982). Reprinted by permission ofthe A.I.Ch.E. Journal and
the authors.
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the core, where the inert packing promotes radial transport to the catalyst bed.
If the effects of temperature, pressure, and volume change due to reaction on
the concentration and on the average velocity are neglected and mean properties
are used, the mass balance is given by

"at _
VI ­az

(a)

[
Am An] ~ ~ (rD at)
Re Sc r ar ar

(b)

+ [~: ~n}2 4> 2R(f)

(c) (4.46)

where the value of 1 or 0 for ~1 and ~2 signifies the presence or absence of a
term from the above equation as shown below

Core Screen Bed

with

1
o

o
o

o
-1

t = dimensionless concentration

z = dimensionless axial coordinate

r = dimensionless radial coordinate

Am, An = aspect ratios (constants)

Re = Reynolds number

Sc = Schmidt number

D = dimensionless radial dispersion coefficient

4> = Thiele modulus

R(f) = dimensionless reaction rate function.

Equation (4.46) must be complemented by the appropriate boundary and initial
conditions, which are given by

at r = 0at = 0
ar

Dc atl = Dsc atl at r = rscar c ar sc

Dsc atl = DB atl at r = r Bar sc ar B

at = 0 at r = 1ar

(centerline)

(core-screen interface)

(screen-bed interface)

(wall)

t = 1 at z = 0, for 0 ~ r ~ 1
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Notice that in (4.46), term (a) represents the axial convection and therefore is
not in the equation for the screen and bed regions, while term (c) represents
reaction that only occurs in the bed, i.e., the equation changes from parabolic
to elliptic when moving from the core to the screen and bed. Also, notice that
D is discontinuous at r sc and rB • This problem is readily solved by the use of an
equation of the form (4.45). Equation (4.46) becomes

8
1

[Ui ,j+1 :z Ui ,j-1] [Am An] 1 ~ {ri + 1/z D i + 1/Z

= Re Sc hI + h
rr

r
i

h
rr

(Ui + 1,j+1

(
ri+1/Z Di+lIZ + r i - 1/Z D i - lIZ) ( . . . .)+ Ui + 1 ) - h h U"j+1 + U"j

rr I

(4.47)

with the requirement that the positions r sc and rB be included in the set of mesh
points rio Since R(Ui+ liZ) is a nonlinear function of Ui+ liZ' the extrapolated Crank­
Nicolson method (4.37) was used to solve (4.47), and typical results from Davis
et al. [7] are shown in Figure 4.6. For a discussion of the physical significance
of these results see [7].

1.0

0.9

0.8

0.7

0.6

f 0.5

0.4

0.3

0.2
FLOW

( I) Laminar - Unpacked

0.1 (2) Packed Core

0
0 0.1

r

flGURf. 4.6 Results of annular bed reactor. Adapted from M. E. Davis, G. fair­
weather, and J. Yamanis, Can. J. Chem. Eng., 59, p. 499 (1981). Reprinted by per­
mission of the Can. J. Chem. Eng.lC.S.Ch.E. and the authors.
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(4.48)

High-Order Time Approximations

Selecting an integration method for use in the MOL procedure is very important
since it influences accuracy and stability. Until now we have only discussed
methods that are O(6.t) or O(6.tZ). Higher-order integration methods, such as
Runge-Kutta, and multistep methods can be used in the MOL procedure, and
in fact are the preferred methods in commercial MOL software. The formulation
of the MOL-IVP leads to a system of the form:

du
B - + Au = f

dt

uJO) = <Xo(xi)

where u(t) is the vector of nodal solution values at grid points of the mesh (Xi),
A corresponds to the spatial operator, f can be a nonlinear function vector, and
<Xo(xi) are the nodal solution values at the grid points for t = O. More generally,
(4.48) can be written as:

du
dt = g(t, u)

It is the eigenvalues of the Jacobian J,

J = ag
au

(4.49)

(4.50)

that determine the stiffness ratio, and thus the appropriate IVP technique.
Sepehrnoori and Carey [8] have examined the effect of the IVP solver on

systems of the form (4.48) arising from PDEs by using a nonstiff (ODE [9]), a
stiff (DGEAR [10]), and a stabilized Runge-Kutta method (M3RK [11]). Their
results confirm that nonstiff, moderately stiff, and stiff systems are most effec­
tively solved by nonstiff, stabilized explicit, and stiff algorithms respectively.
Also they observed that systems commonly encountered in practice require both
stiff and nonstiff integration algorithms, and that a system may change from stiff
to nonstiff or vice versa during the period of integration. Some integrators such
as DGEAR offer both stiff and nonstiff options, and the choice is left to the
user. This idea merits continued development to include stiffness detection and
the ability to switch from one category to another as a significant change in
stiffness is detected. Such an extension has been developed by Skeel and Kong
[12]. More generalizations of this type will be particularly useful for developing
efficient MOL schemes.

Let us examine the MOL using higher-order time approximations by con­
sidering the time-dependent mass and energy balances for a porous catalyst
particle. Because of the large amount of data required to specify the problem,
consider the specific reaction:

C6H 6 (benzene) + 3Hz (hydrogen) = C6H 12 (cyclohexane)
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(4.51)

(hydrogen)

(benzene)

which proceeds with the aid of a nickel/kieselguhr catalyst. The material and
energy balances for a spherical catalyst pellet are:

E aCB = De ~ (r2 aCB ) - R
Bat r2 ar ar

E aCH = De ~ (r2 aCH) - 3R
Bat r2 ar ar

aT ke a ( aT)pC - = -- r2 - + (-AH)R Bp at r2 ar ar

with

aCB = aCH = aT = ° at
ar ar ar r = °

De a~H = kg[C~(t) - CH ]

. aT
ke a; = hg[TO(t) - T]

at r = 1

CB = ° at t = 0,

CH = ° at t = 0, for °"'S r "'S rp

T = TO(O) at t = 0, for °"'S r "'S rp

where

- AH = heat of reaction

E = void fraction of the catalyst pellet

CB , CH = concentration of benzene, hydrogen

T = temperature

De = effective diffusivity (assumed equal for B and H)

ke = effective thermal conductivity

p = density of the fluid-solid system

Cp = heat capacity of the fluid-solid system

r = radial coordinate; rp = radius of the pellet

t = time

kg = mass transfer coefficient

hg = heat transfer coefficient

RB = reaction rate of benzene, RB = RB(CB, CH , T)



Finite Differences 149

and the superscript 0 represents the ambient conditions. Notice that C~, CfJ-I,
and TO are functions of time; i.e., they can vary with the perturbations in a
reactor. Define the following dimensionless parameters

-~
YB - C~(O)

CH
YH = C~(O)

T
e = TO(O)

Substitution of these parameters into the transport equations gives:

ae 1 a ( ae)Le - = - - x 2 - + ~<!>2 9t
aT x2 ax ax

with

aYB = aYH = ae = 0 at x = 0
ax ax ax

(4.52)

(4.53)

at x = 1

YB = 0 at T = 0,

YH = 0 at T = 0,

e = 1 at T = 0,

for 0 ~ x ~ 1

for 0 ~ x ~ 1

for 0 ~ x ~ 1
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where
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2

<1>2 = C~~;)De RB(C~(O), C~(O), TO(O)) (Thiele modulus squared)

p = De ( - LlH)C~(O) (Prater number)
keTO(O)

(Lewis number)

Det
T=-

r~E

Bi
m

= rpkg

De

B. rphg
Ih =­

ke

(dimensionless time)

(mass Biot number)

(heat Biot number)

(4.54)

For the benzene hydrogenation reaction, the reaction rate function is [13]:

Peatk K exp [(QR:r
E

)]PBPH

RB =

1 + K exp (R~T)PB
where

k = 3207 gmole/(sec'atm'gcat)
K = 3.207 X 10-8 atm- 1

Q = 16,470 callgmole

E = 13,770 cal/gmole

Rg = 1.9872 call(gmoleoK)

Peat = 1.88 g/cm3

Pi = partial pressure of component i

Noticing that

Ci Pi (TO(O))
Yi = q(O) = P?(O) -r
/LJ [(1 1)] 2 __[~l_+_K_P--,~:::...;(--,-O)_e-"xp--,(~(X=l),,--]_
YL· = exp (X2 - - 6 YBYH

6 [1 + KP~(O) exp (~l) YB6]

(4.55)
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where

a - Q
1 - R

g
TO(O)

a _ ..o..::(Q=----_E--'-)
2 - R

g
TO(O)
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(use false boundaries)

We solve this system of equations using the MOL. First, the system is
written as an IVP by discretizing the spatial derivatives using difference formulas.
The IVP is:

aYB,l _ 6 2----a;- - h2 [YB,2 - YB,d - <I> 9(1

aYH,l _ 6 2 C~(O)----a;- - h2 [YH,2 - YH,l] - 3<1> C~(O) 9(1

ae 6
Le _1 = h

2
[e2 - e1] + 13<1>2 9( 1

aT

a~~'i = ~2 {[1 + (i ~ 1)}B,i+1 - 2YB,i +

a~:'i = ~2 {[1 + (i ~ 1)}H,i+1 - 2YH,i

[ 1] }_3.1,.2 C~(O) 9(.
+ 1 - (i _ 1) YH,i-1 't' C~(O) I

Le ~; = ~2 {[1 + (i ~ 1)]ei + 1 - 2ei

+ [1 - (i ~ 1)Jei-1} + 13<1>29(i (4.56)

with i = 2, ... , N,

aYB,N+1 = ~ {2 - 2[1 +
aT h2 YB,N

aYH,N+1 1{ [( 1).]aT = h2 2YH,N - 2 1 + 1 + N Blmh YH,N+1

. C~(t) [ 1]} 2 C~(O)
+ 2Blmh CMO) 1 + IV - 3<1> C~(O) flP N + 1
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Le aeN + 1 = ~ {2e - 2[1 +
aT h2 N

where

h = Ax

YB,i = YB(Xi)

[7(. = [7(. (YB' YH' e.)1 ,1' ,1' 1

Notice that the Jacobian of the right-hand-side vector of the above system has
a banded structure. That is, if Jij are the elements of the Jacobian, then

for Ii - jl ;;,: 4

This system is integrated using the software package LSODE [14] (see
Chapter 1) since this routine contains nonstiff and stiff multistep integration
algorithms (Gear's method) and also allows for Jacobians that possess banded
structure. The data used in the following simulations are listed in Table 4.2.

The physical situation can be explained as follows. Initially the catalyst
pellet is bathed in an inert fluid. At t = aa reaction mixture composed of 2.5%
benzene and the remainder hydrogen is forced past the catalyst pellet. The
dimensionless benzene profiles are shown in Figure 4.7. With increasing time
(T), the benzene is able to diffuse further into the pellet. If no reaction occurs,
the profile at large T would be the horizontal line at YB = 1.0. The steady-state
profile (T-i>OO) is not significantly different than the one shown at T = 1.0.

A MOL algorithm contains two portions that produce errors: the spatial
discretization and the time integration. In the following results the time inte­
gration error is controlled by the parameter TaL, while the spatial discretization
error is a function of h, the step-size. For the results shown, TaL = 10-5 • A
decrease in the value of TaL did not affect the results (to the number of
significant figures shown). The effects of h are shown in Table 4.3. (The results
of specifying h4 = h3/2 were the same as those shown for h3 .) Therefore, as h
decreases, the spatial error is decreased. We would expect the spatial error to
be O(h2

) since a second-order correct finite difference discretization is used.

TABU 4.2 Parameter Data for Catalyst
Start-up Simulationt

q, = 1.0 C\'.(O)/C~ = 0.025/0.975

f3 = 0.04 C\'.(t) = q(O), t ~ 0

Le = 80 C~(t) = C~(O), t ~ 0
Bim = 350 TO(t) = TO(O) , t ~ 0
Bih = 20 TO(O) = 373.15 K

t From reference [15].
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(c)

0.8

0.6

(b)

0.4

0.2

O'--------'------.l.---=-----'------'
o 0.2 0.4 0.6 0.8 1.0

(surface)

x

fiGURE. 4.7 Solution of Eq. (4.51)

!
(a) 0.01
(b) 0.10
(c) 1.00

The effects of the method of time integration are shown in Table 4.4.
Notice that this problem is stiff since the nonstiff integration required much
more execution time for solution. From Table 4.4 one can see that using the
banded Jacobian feature cut the execution time in half over that when using the
full Jacobian option. This is due to less computations during matrix factoriza­
tions, matrix multiplications, etc.

TABLE 4.3 Results of Catalyst Start-Up
LSODE TOL = 10- 5

Benzene Profile, Yn, at 'T = 0.1

h _ hI hzh3 =-
X hI = 0.125 z - 2 2

0.00 0.2824 0.2773 0.2760
0.25 0.3379 0.3341 0.3331
0.50 0.4998 0.4987 0.4983
0.75 0.7405 0.7408 0.7408
1.00 0.9973 0.9973 0.9973
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TABLE 4.4 further Results of Catalyst
Start-Up
150D£ TOt = 10-5

h = 0.0625

Execution Time
Ratio

Nonstiff method
Stiff method

(full Jacobian)
Stiff method

(banded Jacobian)

T = 0.1

7.87
2.30

1.00

T = 1.0

50.98
2.24

1.00

fiNITE ELEMENTS

In the following sections we will continue our discussion of the MOL, but will
use finite element discretizations in the space variable. As in Chapter 3, we will
first present the Galerkin method, and then proceed to outline collocation.

Galerkin

Here, the Galerkin methods outlined in Chapter 3 are extended to parabolic
PDEs. To solve a PDE, specify the piecewise polynomial approximation (pp­
approximation) to be of the form:

m

u(x, t) 2: uj(t)<I>j(x)
j=l

(4.57)

Notice that the coefficients are now functions of time. Consider the PDE:

with

aw a [ aw]at = ax a(x, w) ax ' 0< x < 1, t> 0 (4.58)

w(x, 0) = woCx)

w(O, t) = 0

w(l, t) = 0

If the basis functions are chosen to satisfy the boundry conditions, then the weak
form of (4.58) is

(a(x, w) ~:' <1>;) + (aa~' <l>i) = 0 i = 1, ... m (4.59)
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The MOL formulation for (4.58) is accomplished by substituting (4.57) into
(4.59) to give

i = 1, ... ,m

Thus, the IVP (4.60) can be written as:

Ba'(t) + D(a)a(t) = 0

with

Ba(O) 13
where

Di,j = (a <1>; , <1>;)

Bi,j = (<I>j' <l>i)
13 = [(wo, <1>1), (wo, <1>2), ..• , (wo, <l>m))T

(4.60)

(4.61)

(4.62)

In general this problem is nonlinear as a result of the function a in the
matrix D. One could now use an IVP solver to calculate a(t). For example, if
the trapezoidal rule is applied to (4.61), the result is:

[
an+1 an]B l:i.t + D(an+1/2)an+1

/
2 = 0

with

where

tn = n l:i.t

an = a(tn)

a n + 1/2 =
2

Since the basis <l>i is local, the matrices Band D are sparse. Also, recall that the
error in the Galerkin discretization is O(hk ) where k is the order of the approx­
imating space. Thus, for (4.62), the error is 0(l:i.t2 + hk ), since the trapezoidal
rule is second-order accurate. In general, the error of a Galerkin-MOL discre­
tization is O(l:i.tP + hk ) where p is determined by the IVP solver. In the following
example we extend the method to a system of two coupled equations.

EXAMPLE 4

A two-dimensional model is frequently used to describe fixed-bed reactors that
are accomplishing highly exothermic reactions. For a single independent reaction
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a material and energy balance is sufficient to describe the reactor. These con­
tinuity equations are:

r af = pe[~ (r a
f
)] + 131r9P(f, e)

az ar ar

ae [a ( ae)]r - = Bo - r - + I37.r9P(f, e)
az ar ar

with

f = e = 1 at z = 1, for 0 < r < 1

af = ae = 0 at r = 0, for 0 < z < 1
ar ar

where

ae
ar

-Bi(e - ew) at r = 1, for 0 < Z < 1

z = dimensionless axial coordinate, 0 ~ z ~ 1

r = dimensionless radial coordinate, 0 ~ r ~ 1

f = dimensionless concentration

e = dimensionless temperature

ew = dimensionless reactor wall temperature

9P = dimensionless reaction rate function

Bi, Pe, Bo, 131, 132 = constants

These equations express the fact that the change in the convection is equal to
the change in the radial dispersion plus the change due to reaction. The boundary
condition for e at r = 1 comes from the continuity of heat flux at the reactor
wall (which is maintained at a constant value of ew). Notice that these equations
are parabolic PDE's, and that they are nonlinear and coupled through the re­
action rate function. Set up the Galerkin-MOL-IVP.

SOLUTION

Let

m

u(x, z) ~ a/z)<j>/x) = f(x, z)
j=l

m

vex, z) = ~ "Yj(z)<j>j(x) = e(x, z)
j=l
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such that

m

u(X, 0) = 2: aj(O)<I>/X) = 1.0
j=1

m

VeX, 0) = 2: 'Yj(O)<I>j(X) = 1.0
j=1

The weak form of this problem is

(:~, <1» = Pe [r :~<I>{ - G~ <1>:) ] + ~1( YG, <l>i)

G:, <l>i) = Bo [r ~~<I>{ - G~, <1>:) ] + ~2( YG,<I>i)

i= 1, ... ,m

where

(a, b) = fal abr dr

The boundary conditions specify that

r = 0)
(:~ = 0 at r = 1 and r = 0)

(
ae- = 0 atar

r at <l>i 11 = 0
ar 0

r ae <l>i 11 - Bi (e - ew )<I>i(1)
ar 0

Next, substitute the pp-approximations for t and e into the weak forms of the
continuity equations to give

j~1 a; (z)(<I>j' <1>;) = -Pe [j~1 aj(z)(<I>;, <1>;)] + ~1(.Yi, <l>i)

j~1 'Y;(z)(<I>j' <l>i) = -Bo [Bi C~1 'Yj<l>/1) - ew ) <l>i(1)

+ j~1 'Y/z)(<I>;, <1>;)] + ~2(.Yi, <l>i)' i = 1, ... ,m

where
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Ci,j = (<pj, <Pi)

Di,j = (<p;, <Pi)

Bi,j = <pi(l)<pj(l)

tlJi = (9t , <p;)

The weak forms of the continuity equations can now be written as:

COl.' - Pe DOl. + 131'"

C'Y' -Bo [Bi (B'Y - ew $(l)) + D'Y] + 13z'"

with 01.(0) and 'Y(O) known. Notice that this system is a set of IVPs in the
dependent variables 01. and 'Y with initial conditions 01.(0) and 'Y(O). Since the
basis <Pi is local, the matrices B, C, and D are sparse. The solution of this system
gives OI.(t) and 'Y(t) , which completes the specification of the pp-approximations
u and v.

From the foregoing discussions one can see that there are two components
to any Galerkin-MOL solution, namely the spatial discretization procedure and
the IVP solver. We defer further discussions of these topics and that of Galerkin­
based software until the end of the chapter where it is covered in the section
on mathematical software.

Collocation
As in Chapter 3 we limit out discussion to spline collocation at Gaussian points.
To begin, specify the pp-approximation to be (4.57), and consider the PDE:

with

aw ( aw aZw)-- xtw--
at - f " 'ax' axz ' 0< x < 1, t> 0 (4.63)

where

w = wo(x) at t = 0
'hW + f3 lw' = "Il(t) at x = 0
1] zW + f3zw' = "Iz(t) at x = 1

i = 1,2

According to the method of spline collocation at Gaussian points, we require
that (4.57) satisfy the differential equation at (k - M) Gaussian points per
subinterval, where k is the degree of the approximating space and M is the order
of the differential equation. Thus with the mesh

o = Xl < Xz < ... < Xe+l 1 (4.64)
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Eq. (4.63) becomes

j~l u; (t)<!>j(x;) = t(X;, t, j~l u/t)<!>j(x;), j~l Uj(t)<!>; (x;), j~l Uj(t)<!>" (x;) )

i = 1, ... , m - 2 (4.65)

where

m = (k - M}e + 2

M = 2

We now have m - 2 equations in m unknown coefficients uj • The last two
equations necessary to specify the pp-approximation are obtained by differen­
tiating the boundary conditions:

m m

'll1 L u; (t)<!>/O) + (31 L U; (t)<!>; (0) = -y~ (t)
j=l j=l
m m

'll2 L U; (t)<!>j(1) + (32 L U; (t)<!>; (1) = -y;(t)
j=l j=l

This system of equations can be written as

Aa' (t) = F(t, a)

a(O) = a o
where

A = left-hand side of (4.65) and (4.66)

F = right-hand side of (4.65) and (4.66)

and a o is given by:

(4.66)

(4.67)

m

L Uj(O)<!>j(xi) = Wo(X;) ,
j=l

1 = 1, ... ,m

Since the basis <!>j is local, the matrix A will be sparse. Equation (4.67) can now
be integrated in time by an IVP solver. As with Galerkin-MOL, the error
produced from collocation-MOL is O(LltP + hk) where p is specified by the IVP
solver and k is set by the choice of the approximating space. In the following
example we formulate the collocation method for a system of two coupled
equations.

EXAMPLE 5

A polymer solution is spun into an acidic bath, where the diffusion of acid into
the polymeric fiber causes the polymer to coagulate. We wish to find the con­
centration of the acid (in the fiber), CA , along the spinning path. The coagulation
reaction is

Polymer + acid -i> coagulated polymer + salt
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The acid bath is well stirred with the result that the acid concentration at the
surface of the fiber is constant. The governing equations are the material balance
equations for the acid and the salt within the polymeric fiber, and are given by

u aCA = ! ~ (rD (C) acA ) - kCaz r ar A s ar A, 0 < r < rf' z > 0

u acs = ! ~ (rDs(Cs) acs) + kCAaz r ar ar

where

(no acid initially present)

(symmetry)

(uniform concentration at fiber-acid bath
interface)
(no salt initially present)
(salt concentration of fiber-acid bath inter­
face maintained at zero by allowing the acid
bath to be an infinite sink for the salt)

Cs = 0 at z = 0
Cs = 0 at r = rf

Cs = concentration of the salt

z = axial coordinate

r = radial coordinate

rf = radius of the fiber

u = axial velocity of the fiber as it moves through the acid bath

DA = acid diffusivity in the fiber

Ds = salt diffusivity in the fiber

k = first-order coagulation constant

The subsidiary conditions are

CA = 0 at z = 0
acs aCA- = -- = 0 at r = 0
ar ar
CA = Cs... at r = rf

Let

where Do, A, and'f) are constants. Set up the collocation-MOL-IVP with k = 4.

SOLUTION

Let
m

u(r, z) 2: uj(z)<j>j(r) = CA(r, z)
j=l

m

vCr, z) = 2: )'j(z)<j>j(r) = CsCr, z)
j=l
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such that

for

m

u(r, 0) = L Uj(O)<pj(r) = 0
j=l

m

vCr, 0) = L 'Yj(O)<pj(r) = 0
j=l
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o = Xl < Xz < ... < Xe < Xe+l = rf

Since k = 4 and M = 2, m = 2(e + 1) and there are two collocation points
per subinterval, 'Til and 'TiZ, i = 1, ... , e. For a given subinterval i, the col­
location equations are

for s = 1, 2, where

DA('Tis) = Do exp [ -11 C~l 'Y/Z)<Pj('TiS)) ]

Dbis) = Do exp [ -A. (~l 'Yj (Z)<pj ('TiS)) ]

At the boundaries we have the following:

m m

L U; (Z)<p; (0) = L 1'; (Z)<p; (0) = 0
j=l j=l

m

L U; (Z)<P/rf) = C~,
j=l

m

L 'Y;(Z)<Pkf) = 0
j=l

The 4e equations at the collocation points and the four boundary equations give
4(( + 1) equations for the 4(( + 1) unknowns Uj(z) and 'Yj(Z) ,
j = 1, . . . , 2(e + 1). This system of equations can be written as

AljI' = F(a(z), ')'(z))
ljI(O) = Q
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Q = [0, ... , 0, C~L OF
A = sparse matrix

F(a(z), 'Y(z)) = nonlinear vector

a(z) = [U1(Z), , um(z))T

'Y(z) = b1(Z), , 'Vm(z))T

\fJ(z) = [U1(Z), 'V1(Z), U2(Z), 'Viz), ... , um(z), 'Vm(z)F

The solution of the IVP gives aCt) and 'Y(t), which completes the specifications
of the pp-approximations u and v.

As with Galerkin-MOL, a collocation-MOL code must address the prob­
lems of the spatial discretization and the "time" integration. In the following
section we discuss these problems.

MATHEMATICAL SOfTWARE

A computer algorithm based upon the MOL must include two portions: the
spatial discretization routine and the time integrator. If finite differences are
used in the spatial discretization procedure, the IVP has the form shown in
(4.49), which is that required by the IVP software discussed in Chapter 1. A
MOL algorithm that uses a finite element method for the spatial discretization
will produce an IVP of the form:

A(y, t)y' = g(y, t) (4.68)

Therefore, in a finite element MOL code, implementation of the IVP software
discussed in Chapter 1 required that the implicit IVP [Eq. (4.68)] be converted
to its explicit form [Eq. (4.49)]. For example, (4.68) can be written as

where

y'=A- 1g

A-I = inverse of A

(4.69)

This problem can be avoided by using the IVP solver GEARIB [16] or its update
LSODI [14], which allows for the IVP to be (4.68) where A and ag/ay are banded,
and are the implicit forms of the GEAR/GEARB [17,18] or LSODE [14] codes.

Table 4.5 lists the parabolic PDE software and outlines the type of spatial
discretization and time integration for each code. Notice that each of the major
libraries-NAG, Harwell, and IMSL-eontain PDE software. As is evident from
Table 4.5, the overwhelming choice of the time integrator is the Gear method.
This method allows for stiff and nonstiff equations and has proven reliable over
recent years (see users guides to GEAR [16], GEARB [17], and LSODE [14]).
Since we have covered the MOL using finite differences in greater detail than
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TABLE 4.5 Parabolic POE Codes
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Name

NAG (D03 Chapter)

Harwell
(DP01, DP02)

IMSL (DPDES)

PDEPACK
DSS/2

MOLlO
PDECOL

DISPL
POST (in PORT

library [28])
FORSIM

Spatial Discretization

Finite differences

Finite differences

Collocation; Hermite
cubic basis

Finite differences
Finite differences

Finite differences
Collocation; B-spline

basis
Galerkin; B-spline basis
Galerkin; B-spline basis

Finite differences

Time Integrator

Gear's method, i.e., Adams
multistep or implicit multi­
step

Trapezoidal rule

Gear's method (DGEAR)

Gear's method (GEARB)
Several including Runge-Kutta

and Gear's method (GEARB)
Gear's method (GEARB)
Gear's method (GEARIB)

Gear's method (GEARIB)
Explicit or implicit one-step with

extrapolation
Several including Runge-Kutta

and Gear's method

Reference

[19]

[20]

[21]

[22]
[23]

[24]
[25]

[26]
[27]

[29]

when using finite elements, we will finish the discussion of software by solving
a PDE with a collocation (PDECOL) and a Galerkin (DISPL) code.

Consider the problem of desorption of a gas from a liquid stream in a
wetted wall column. The situation is shown in Figure 4.8a. A saturated liquid
enters the top of the column and flows downward where it is contacted with a
stream of gas flowing countercurrently. This gas is void of the species being
desorbed from the liquid. If the radius of the column Rc is large compared with
the thickness of the liquid film, then the problem can be solved in rectangular
coordinates as shown in Figure 4.8b. The material balance of the desorbing
species within the liquid film is:

U[l (~r]~~
a2c

(4.70)D-
ax2

with

ac
0 at x = xfax

C=O at x = 0

C = C* at z = 0

where

c = concentration of the desorbing species in the liquid film

C* saturation concentration of the desorbing species

U = maximum liquid velocity

D diffusivity of the desorbing species
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GAS FLOW

(0)

LIQUID FILM

WALL

z

~

~

~-- GAS

~-­~
~

.~~~Xf

WALL

(b)

fiGURE. 4.8 Desorption in a wetted-wall column. (<1) Macroscopic schematic. (11)
Microscopic schematic.

The boundary condition at x = 0 implies that there is no gas film transport
resistance and that the bulk gas concentration of the desorbing species is zero.
Let

c
f =·c*

x
T] =

xf

~
zD

(4.71)-
ux2

f
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Substituting (4.71) into (4.70) gives:

(1 _ 1)2) af = a
2
f

a~ a1)2

af = 0 at 1) = 1
a1)

f = 0 at 1) = 0

f = 1 at z = 0
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(4.72)

Although (4.72) is linear, it is still somewhat of a "difficult" problem because
of the steep gradient in the solution near 1) = 0 (see Figure 4.9).

The results for (4.72) using PDECOL and DISPL are shown in Table 4.6.
The order of the approximating space, k, was fixed at 4, and the tolerance on
the time integration, TOL, set at 10- 6 • Neither PDECOL or DISPL produced
a solution close to those shown in Table 4.6 when using a uniform mesh with
1); - 1);-1 = 0.1 for all i. Thus the partition was graded in the region of [0,0.1]

1.0 .------,--~-__,_--__r-=-___,r__-__,

0.8

0.6

f

0.4

0.2

0.02 0.04 0.06 0.08 0.10

fiGURE 4.9 Solution of Eq. (4.72)

~
(a) 5 x 10-5

(b) 3 x 10-4

(c) 1 X 10-3
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TABLE 4.6 Results of (q. (4.72)
1] = 0.01, k = 4, TOt = (-6)

PDECOL DISPL

5( -5) 0.6827 0.6828
3( -4) 0.3169 0.3168
1( - 3) 0.1768 0.1769
'ITI: 0 = 'TJI < 'TJ2 < 'TJII = 0.1

0.1 = 'TJII < 'TJ12 < < 'TJ20 = 1.0
'IT2: 0 = 'TJI < 'TJ2 < < 'TJ21 = 0.1

0.1 = 'TJ21 < 'TJ22 < 'TJ30 = 1.0

0.6839
0.3169
0.1769
'TJi - 'TJi-1 = 0.01
'TJi - 'TJi-1 = 0.1
'TJi - 'TJi-l = 0.005
'TJi - 'TJi-1 = 0.1

0.6828
0.3168
0.1769

as specified by 'lT1 and 'lTz in Table 4.6. Further mesh refinements in the region
of [0, 0.1] did not cause the solutions to differ from those shown for 'lTz. From
these results, one can see that PDECOL and DISPL produced the same solu­
tions. This is an expected result since both codes used the same approximating
space, and the same tolerance for the time integration.

The parameter of engineering significance in this problem is the Sherwood
number, Sh, which is defined as

where

Sh (4.73)

311

1 = 2: 0 (1 - 1]Z)f dTf (4.74)

Table 4.7 shows the Sherwood numbers for various ~ (calculated from the so­
lutions of PDECOL using 'lTz). Also, from this table, one can see that the results
compare well with those published elsewhere [30].

TABLE 4.7 further Results oHq. (4.72)

~ Sh* Sh (PDECOL)

5( -5) 80.75 80.73
1( -4) 57.39 57.38
3( -4) 33.56 33.55
5( -4) 26.22 26.22
8( -4) 20.95 20.94
1( - 3) 18.85 18.84

* From Chapter 7 of [30].
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1. A diffusion-convection problem can be described by the following PDE:

as a2 s as
'11.- 0< x < 1, t> °at ax2 ax'

with

S(O, t) = 1,

as
- (1, t) = 0,ax

sex, 0) = 0,

t> °
t> °
O<x<l

where A = constant.
(a) Discretize the space variable, x, using Galerkin's method with the

Hermite cubic basis and set up the MOL-IVP.

(b) Solve the IVP generated in (a) with A = 25.

Physically, the problem can represent fluid, heat, or mass flow in which
an initially discontinuous profile is propagated by diffusion and convection,
the latter with a speed of A.

2. Given the diffusion-convection equation in Problem 1:

(a) Discretize the space variable, x, using collocation with the Hermite
cubic basis and set up the MOL-IVP.

(b) Solve the IVP generated in (a) with A = 25.

3. Consider the mass transfer of substance A between a gas phase into solvent
I and then into solvent II (the two solvents are assumed to be entirely
immiscible). A schematic of the system is shown in Figure 4.10. It is

GAS A

SOLVENT I' t +

zt L *----J1
L

1~OLVENT II •

fiGURE 4.10 Immiscible solvent system.

assumed that the concentration of A is sufficiently small so that Fick's law
can be used to describe the diffusion in the solvents. The governing dif­
ferential equations are

ac~ a2c~
(solvent I)0-at I az2

ac~ = a2c~
(solvent II)0 n -

2
-at az
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where

e~ = concentration of A in region i (moles/cm3)

o i = diffusion coefficient in region i (cmz/s)

t = time (s)

with

e~ = e~ = 0 at t = 0

ae~
-- = 0 at z = Laz

ae~
0 u -z- ataz

L
z=-

2

e~ = e~ at z = L/2 (distribution coefficient = 1)

P = HeI at z = 0 (pA = partial pres.sure of A in)
A A the gas phase; H IS a constant

Compute the concentration profile of A in the liquid phase from t = 0
to steady state when PA = 1 atm and H = 104 atm/(moles'cm3), for
Dr/Du = 1.0.

4. Compute the concentration profile of A in the liquid phase (from Problem
3) using DI/Du = 10.0 and DI/Du = 0.1. Compare these profiles to the
case where DI/Du = 1.0.

5*. Diffusion and adsorption in an idealized pore can be represented by the
PDEs:

ac aZc
- = D-z - [ka (1 - f)c - kdfJ, 0< x < 1, t> 0
at ax

~ f3[ka (1 - f)c - kdfJ
at

with

c(O, t) = 1, t> 0

ac
- (1, t) = 0, t> 0
ax

c(x, 0) = f(x, 0) = 0 0<x<1
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c = dimensionless concentration of adsorbate in the fluid within the
pore

f = fraction of the pore covered by the adsorbate

x = dimensionless spatial coordinate

ka = rate constant for adsorption

k d = rate constant for desorption

D, f3 = constants

Let D = f3 = ka = 1 and solve the above problem with ka/kd = 0.1, 1.0,
and 10.0. From these results, discuss the effect of the relative rate of
adsorption versus desorption.

6*. The time-dependent material and energy balances for a spherical catalyst
pellet can be written as (notation is the same as was used in the section
Finite Differences-High-Order Time Approximations):

- <\>29(

with

where

ay = ae = ° at x = °ax ax
y = e = 1 at x = 1

y = 0, e = 1 at 'T = 0, for all x

(first order)

Let <\> = 1.0, f3 = 0.04, 'Y = 18, and solve this problem using:

(a) Le = 10

(b) Le = 1

(c) Le = 0.1

Discuss the physical significance of each solution.
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7*. Froment [31] developed a two-dimensional model for a fixed-bed reactor
where the highly exothermic reactions

k 1 k2

o-xylene--p.~phthalic anhydride - CO2 , CO, H20
(A) "'" (B) (C)

k3 ~
CO2 , CO, H20

(C)

were occurring on a vanadium catalyst. The steady-state material and
energy balances are:

aXI = Pe [a
2
XI + ! aXI]

az ar2 r ar

aX2 = Pe [a
2
X2 + ! aX2]

az ar2 r ar

ae = Bo [a
2
e + ! ae]

az ar2 r ar

with

0< r < 1, O<z<l

O<z<l

Xl = X2 = 0 and e = eo at z = 0,

aXI aX2 ae
- = - = - = 0 at r = 0,ar ar ar

O<r<l

aXI = aX2 = 0
ar ar

where

d ae B' ( )an - = 1 e - ew at r= 1,ar O<z<l

Xl = fractional conversion to B

X2 = fractional conversion to C

e = dimensionless temperature

z = dimensionless axial coordinate

r = dimensionless radial coordinate

R I = k l (l - Xl - x2) - k 2x I

R2 = k2xI + k3(1 - Xl - X2)
Pe, Bo = constants

13i = constants, i = 1, 2, 3

Bi = Biot number

ew = dimensionless wall temperature
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Froment gives the data required to specify this system of PDEs, and one
set of his data is given in Chapter 8 of [30] as:

where

Pe = 5.76,

131 = 5.106,

Bo = 10.97,

I3z = 3.144,

Bi = 2.5

133 = 11.16

with

i = 1,2,3

a1 = -1.74,

"'11 = 21.6,

a z = -4.24,

"'Iz = 25.1,

a3 = -3.89

"13 = 22.9

Let ew = eo = 1 and solve the reactor equations with:

(a) al = -1.74

(b) a1 = - 0.87

(c) a1 = - 3.48

Comment on the physical implications of your results.

8*. The simulation of transport with chemical reaction in the stratosphere
presents interesting problems, since certain reactions are photochemical,
i.e., they require sunlight to proceed. In the following problem let C1

denote the concentration of ozone, 03' Cz denote the concentration of
oxygen singlet, 0, and C3 denote the concentration of oxygen, Oz (assumed
to be constant). If z specifies the altitude in kilometers, and a Fickian
model of turbulent eddy diffusion (neglecting convection) is used to de­
scribe the transport of chemical species, then the continuity equations of
the given species are

aC1 = ~[K ac1
] + R 30 < z < 50, 0< t

at az az 1,

acz = ~ [K acz] + Rzat az az

with

aC1 (30, t) = acz (30, t) = 0, t > °
az az

aC1 (50, t) = acz (50, t) = 0, t > °
az az

C1(z, 0) = 106"'1(z) , 30 ~ z ~ 50

Cz(z, 0) = 101z"'l(z), 30 ~ z ~ 50
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where

K =exp [~]
R 1 = - k 1C1C3 - k ZC1Cz + 2k3(t)C3 + kit)Cz

Rz =k1C1C3 - k ZC1CZ - kit)Cz

C3 =3.7 x 1016

k1 =1.63 X 10- 16

k z =4.66 X 10- 16

klt) = { exp [Sin-(~t)l for sin (wt) > 0, i = 3,4

0, for sin (wt) ~ 0,

V3 =22.62

V4 =7.601

1T

W = 43,200

[ ]
z [ ]4Z - 40 1 z - 40

-y(z) = 1 - 10 + 2 10

Notice that the reaction constants k3(t) and k4(t) build up to a peak at
noon (t = 21,600) and are switched off from sunset (t = 43,200) to sunrise
(t = 86,400). Thus, these reactions model the diurnal effect. Calculate the
concentration of ozone for a 24-h time period, and compare your results
with those given in [26].
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(5.1)

Partial Differendal Equadons in Two
Space Variables

INTRODUCTION

In Chapter 4 we discussed the various classifications of PDEs and described
finite difference (FD) and finite element (FE) methods for solving parabolic
PDEs in one space variable. This chapter begins by outlining the solution of
elliptic PDEs using FD and FE methods. Next, parabolic PDEs in two space
variables are treated. The chapter is then concluded with a section on mathe­
matical software, which includes two examples.

ELLIPTIC rOES-fiNITE DIffERENCES

Background

Let R be a bounded region in the x - y plane with boundary aR. The equation

~ [alex, y) aw] + ~ [az(x, y) aw] = d (x, y, w, aw, aw)ax ax ay ay ax ay
alaz > 0

is elliptic in R (see Chapter 4 for the definition of elliptic equations), and three
problems involving (5.1) arise depending upon the subsidiary conditions pre­
scribed on aR:

1. Dirichlet problem:

w = f(x, y) on aR (5.2)

111
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2. Neumann problem:

aw
- = g(x, y) on aR
an

where a/an refers to differentiation along the outward normal to aR

3. Robin problem:

aw
u(x, y)w + ~(x, y) an = "{(x, y) on aR

We illustrate these three problems on Laplace's equation in a square.

laplace's Equation in a Square

Laplace's equation is

(5.3)

(5.4)

o~ x ~ 1, 0 ~ Y ~ 1 (5.5)

Let the square region R, 0 ~ x ~ 1, 0 ~ y ~ 1, be covered by a grid with sides
parallel to the coordinate axis and grid spacings such that Llx = Ily = h. If
Nh = 1, then the number of internal grid points is (N - 1)2. A second-order
finite difference discretization of (5.5) at any interior node is:

1 1
(IlX)2 [Ui+1,j - 2ui ,j + Ui-1,j] + (lly)2 [Ui,j+l - 2ui ,j + ui,j-d = 0 (5.6)

where

Ui,j = w(xi , y)
Xi = ih
Yj = jh

Since Ilx = Ily, (5.6) can be written as:

Ui,j-l + Ui+1,j - 4ui ,j + Ui-1,j + Ui,j+l = 0

with an error of O(h2).

Dirichlet Problem If w = f(x, y) on aR, then

Ui,j = f(x i , Yj)

(5.7)

(5.8)

for (x;, yJ on aR. Equations (5.7) and (5.8) completely specify the discretization,
and the ensuing matrix problem is

Au = f (5.9)
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where
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A

J

-[

°

-[ °

(N - 1)2 x (N - 1)2

-1

-1

1 = identity matrix,

4 -1

-1
J=

J

(N - 1) x (N - 1)

(N - 1) x (N - 1)
-1

-1 . 4

U = [Ul,l, ... , UN-l,l, Ul,b ... , UN-l,b ... , Ul,N-V ... , UN_l,N_d T

f = [teO, Yl) + f(xv 0), f(X2' 0), ... ,f(XN-V 0)

+ f(l, Yl), f(O, Yz), 0, ... ,0, f(l, Yz), ... ,f(O, YN-l)

+ f(xv 1), f(xv 1), f(X2' 1), ... ,f(xN-v 1) + f(l, YN-l»)T

Notice that the matrix A is block tridiagonal and that most of its elements are
zero. Therefore, when solving problems of this type, a matrix-solving technique
that takes into account the sparseness and the structure of the matrix should be
used. A few of these techniques are outlined in Appendix E.

Neumann Problem Discretize (5.3) using the method of false boundaries to
gIVe:

or

where

gO,j = g(O, jh)

(5.10)
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Combine (5.10) and (5.7) with the result

Au = 2hg (5.11)

where

K -21

-1

A= (N + 1)2 X (N + If
-1

-21 K

4 -2
-1 4 -1
-1

K = (N + 1) x (N + 1)

-1 4-1
-2 4

1 = identity matrix, (N + 1) x (N + 1)

u = [uo,o, ... , UN,O, UO,l' ... , UN,l' ... , UO,N, ... , UN,N]T

g = [2go,o, gl,O, , 2gN,o, gO,l' 0, ... , 0, gN,l' ... ,

2g0,N' gl,N, , gN-l,N, 2gN,NF

In contrast to the Dirichlet problem, the matrix A is now singular. Thus A has
only (N + If - 1 rows or columns that are linearly independent. The solution
of (5.11) therefore involves an arbitrary constant. This is a characteristic of the
solution of a Neumann problem.

(5.12)

for 0,;:;; x,;:;; 1

for 0,;:;; y ,;:;; 1
x = 01}
x=

y=O}
y = 1

aw
ay - <P2W = go(x),

aw
- + T) w = gl(X),ay 2

Robin Problem. Consider the boundary conditions of form

aw
ax - <hw = Jo(Y),
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where <I> and 11 are constants and f and g are known functions. Equations (5.12)
can be discretized, say by the method of false boundaries, and then included in
the discretization of (5.5). During these discretizations, it is important to main­
tain the same order of accuracy in the boundary discretization as with the PDE
discretization. The resulting matrix problem will be (N + 1)2 X (N + 1)2, and
its form will depend upon (5.12).

Usually, a practical problem contains a combination of the different types
of boundary conditions, and their incorporation into the discretization of the
PDE can be performed as stated above for the three cases.

EXAMPLE 1

Consider a square plate R
conduction equation

{(x, y): 0 ~ x ~ 1, 0 ~ Y ~ I} with the heat

Set up the finite difference matrix problem for this equation with the following
boundary conditions:

T(x, y) = T(O, y)

T(I, y)

~; (x, 0) = 0

aT
- (x, 1) = k[T(x, 1) - T2]
ay

(fixed temperature)

(fixed temperature)

(insulated surface)

(heat convected away at y 1)

where Tv T2, and k are constants and T1 ~ T(x, y) ~ T2 .

SOLUTION

Impose a grid on the square region R such that Xi = ih, Yj = jh (Lix = Liy) and
Nh = 1. For any interior grid point

Ui,j-l + Ui+1,j - 4ui ,j + Ui-1,j + Ui,j+l = 0

where
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0,4

0,3

0,1

aT = k(T-T: )ay 2

1,4 2,4 3,4 4,4

13 23 3.3 43

12 22 32 42
T=T2

II 21 31 41

0,0 1,0 2,0

aT =0
ay

3,0 4,0
x

FIGURE. 5. t Grid fOil" Example t.

At the boundaries x
Therefore

°and x 1 the boundary conditions are Dirichlet.

for j = 0, ... ,N

for j = 0, ... ,N

At Y = °the insulated surface gives rise to a Neumann condition that can be
discretized as

and at y

Ui,-l - Ui,l = 0,

1 the Robin condition is

for i = 1, . . . , N - 1

Ui,N-l - Ui,N+l = k[. - T]
2h U"N 2 , for i = 1, . . . , N - 1

If N = 4, then the grid is as shown inFigure 5.1 and the resulting matrix problem
is:



~

~
n'
"0
,.."
VI

I
"T1
5'
ii

-4 1 2 u1,o -T1
0

~
1 -4 1 2 uz,o 0 ro

:J

1 -4 2 U3,O - Tz
nro
U>

1 -4 1 1 ul,l - T1

1 1 -4 1 1 UZ,l 0
1 1 -4 1 U 3,1 - Tz

1 -4 1 1 Ul,Z - T1

1 1 -4 1 1 uz,z = 0
1 1 -4 1 U3,Z - Tz

1 -4 1 1 u1,3 - T1

1 1 -4 1 1 UZ,3 0
1 1 -4 1 U3,3 -Tz

2 (4 +2hk) 1 Ul,4 - (T1 +2hkTz)

2 1 - (4+2hk) 1 UZ,4 -2hkTz

2 1 - (4 +2hk) U3,4 - (Tz+2hkTz )

-go
W
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Notice how the boundary conditions are incorporated into the matrix problem.
The matrix generated by the finite difference discretization is sparse, and an
appropriate linear equation solver should be employed to determine the solution.
Since the error is 0(h2 ), the error in the solution with N = 4 is 0(0.0625). To
obtain a smaller error, one must increase the value of N, which in turn increases
the size of the matrix problem.

for (x, y) on aR

for (x, y) on aR

Variable Coefficients and Nonlinear Problems

Consider the following elliptic PDE:

- (P(x, y)wx)x - (P(x, y)wy)y + Tj(x, y)wo- = f(x, y)

defined on a region R with boundary aR and

aw
a(x, y)w + b(x, y) - = c(x, y),an

Assume that P, Px, Py, Tj, and f are continuous in Rand

P(x, y) > 0

Tj(x, y) > 0

Also, assume a, b, and c are piecewise continuous and

a(x, y) ;::", O}
b(x, y) ;::",0
a + b > 0

(5.13)

(5.14)

(5.15)

(5.16)

If (T = 1, then (5.13) is called a self-adjoint elliptic PDE because of the form
of the derivative terms. A finite difference discretization of (5.13) for any interior
node is

-OxCP(x;, y)oxu;) - oiP(x;, yj)OyU;,j) + Tj(x;, y)ut,j = f(x;, Yj)

where

U;+1/2,j - U;-1/2,jo u· . = ----"------==""-
x ',j ~x

U;,j+1/2 - U;,j-1/2
OyU;,j = -"-'-'-'::'::-~-y-~-=-=

(5.17)

The resulting matrix problem will still remain in block-tridiagonal form, but if
(T #. 0 or 1, then the system is nonlinear. Therefore, a Newton iteration must
be performed. Since the matrix problem is of considerable magnitude, one would
like to minimize the number of Newton iterations to obtain solution. This is the
rationale behind the Newton-like methods of Bank and Rose [1]. Their methods
try to accelerate the convergence of the Newton method so as to minimize the
amount of computational effort in obtaining solutions from large systems of
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nonlinear algebraic equations. A problem of practical interest, the simulation
of a two-phase, cross-flow reactor (three nonlinear coupled elliptic PDEs), was
solved in [2] using the methods of Bank and Rose, and it was shown that these
methods significantly reduced the number of iterations required for solution [3].

Nonuniform Grids

Up to this point we have limited our discussions to uniform grids, i.e., Ax = Ay.
Now let kj = yj+l - Yj and hi = Xi + 1 - Xi- Following the arguments of Varga
[4], at each interior mesh point (Xi' y) for which Ui,j = w(xi, Yj), integrate (5.17)
over a corresponding mesh region ri,j (a = 1):

(5.18)

By Green's theorem, any two differentiable functions sex, y) and t(x, y) defined
in ri,j obey

JJ(sx - ty) dx dy = J (t dx + s dy)
~. . ~..
i,J I,]

(5.19)

where ari,j is the boundary of ri,j (refer to Figure 5.2). Therefore, (5.18) can be
written as

(5.20)

hj-I hi

fiGURE 5.2 Nonuniform grid spacing (shaded area is the integration area). Adapted
from Richard S. Varga, Matrix Iterative Analysis, copyright © t 962, p. t 84. Reprinted
by permission of Prentice-Hall, Inc., Englewood Cliffs, N. J.



186 Partial Differential Equations in Two Space Variables

The double integrals above can be approximated by

II z dx dy = A· . z· .1,J l,J

r ..
loj

for any function z(x, y) such that z(x;, Yj) = Z;,j and

(h;-l + hJ(kj - 1 + k)
A- . = -'-------'----'-

l,j 4

(5.21)

The line integral in (5.20) is approximated by central differences (integration
follows arrows on Figure 5.2). For example, consider the portion of the line
integral from (X;+l/2> Yj-lIz) to (Xi+lIZ' Yj+lIz):

where

Therefore, the complete line integral is approximated by

Using (5.23) and (5.21) on (5.20) gives

(5.22)

(5.23)

(5.24)
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where

(h i - 1 + hi)(kj - 1 + kj )
D'.,j. = L· . + M . + T· + B· . + 'n .. ------'----'-

I,j l,j I,j I,j 'Il,j 4

hi - 1 hi
k-T . = -- p. 1 ·+1 + -2 p'.+!,j.+!

j I,j 2 1- 2,j 2 2 2
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Notice that if hi = hi - 1 = kj = kj - 1 and P(x, y) = constant, (5,24) becomes
the standard second-order accurate difference formula for (5.17). Also, notice
that if P(x, y) is discontinuous at Xi and/or Yj as in the case of inhomogeneous
media, (5.24) is still applicable since P is not evaluated at either the horizontal
(Yj) or the vertical (x;) plane. Therefore, the discretization of (5.18) at any interior
node is given by (5.24). To complete the discretization of (5.18) requires knowl­
edge of the boundary discretization. This is discussed in the next section.

EXAMPLE 2

In Chapter 4 we discussed the annular bed reactor (see Figure 4.5) with its mass
continuity equation given by (4.46). If one now allows for axial dispersion of
mass, the mass balance for the annular bed reactor becomes

0
1
at = [AmAn] L~ (rDrat) + [An/Am]~ (Dz at) + [AmAn] 02<tlR(f)az ReSc rar ar ReSc az az ReSc

where the notation is as in (4.46) except for

Dr = dimensionless radial dispersion coefficient
DZ = dimensionless axial dispersion coefficient

At r = rsc> the core-screen interface, we assume that the convection term is
equal to zero (zero velocity), thus reducing the continuity equation to

! i (rDr at) + ~ (Dz at) = 0rar ar az az
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Also, since the plane r = rsc is an interface between two media, Dr and DZ are
discontinuous at this position. Set up the difference equation at the interface
r = rsc using the notation of Figure 5.3. If we now consider Dr and DZ to be
constants, and let hi- 1 = hi' and k j - 1 = k j , show that the interface discretization
simplifies to the standard second-order correct discretization.

SOLUTION

Using (5.18) to discretize the PDE at r = rsc gives

-II [! i (rDr at) + ~ (Dz at)] r dr dz 0_ r ar ar az az
r ..

'.}

Upon applying Green's theorem to this equation, we have

I [ at at]- rDr - dz - DZ - r dr = 0_ ar az
ar. .'.}

If the line integral is approximated by central differences, then

(
h 1 h ) (u ..-U·· 1)+ ~Dz + -.!.Dz l,j I,j- - 0

. 1· 1 . 1· 1 r· -
2 l-_,j-_ 2 l+-,j-_ 1 k

2 2 2 2 j-1

where

Di-l,j+l = Di-l,j-l = D~
2 2 2 2

Df-£,j+£ = Df-l,j-l = D~
2 2 2 2

Now if Dr and DZ are constants, hi- 1 hi = h, and k j - 1 = k j = k, a second­
order correct discretization of the continuity equation at r = rsc is
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CORE SCREEN

(rj, Z j)

k j-I

(rj,zH)

r = rsc

FIGURE 5.3 Grid spacing at core-screen interface of annular bed reador.

(ri = ih, Zj = jk):

~: [(1 + ~) ui+1,j - 2ui,j + (1 - ~) U i - 1,j]

DZ
+ k2 [Ui,j+1 - 2ui,j + Ui,j-1] = 0

Next, we will show that the interface discretization with the conditions stated
above simplifies to the previous equation. Since hi -1 = hi = hand kj -1 = kj = k,
multiply the interface discretization equation by l/(hkri) to give

DZ
+ k2 [Ui,j+1 - 2ui,j + ui,j-d 0

Notice that

ri+~ (i+ !)h 1
1 +-

r i ih 2i

ri+1 + ri-1 (i + !)h + (i - ~)h2 2 2
r i ih

ri-1 (i - ~)h 12 1
r i ih 2i
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and that with these rearrangements, the previous discretization becomes the
second-order correct discretion shown above.

Irregular Boundaries

Dirichlet Condition One method of treating the Dirichlet condition with irreg­
ular boundaries is to use unequal mesh spacings. For example, in figure SAa a
vertical mesh spacing from position B of f3h and a horizontal mesh spacing of
OI.h would incorporate aR into the discretization at the point B.

Another method of treating the boundary condition using a uniform mesh
involves selecting a new boundary. Referring to Figure SAa, given the curve
aR, one might select the new boundary to pass through position B, that is,
(xs, Ys)· Then, a zeroth-degree interpolation would be to take Us to be
f(xs, Ys + f3h) or f(xs + OI.h, Ys) where w = f(x, y) on aR. The replacement
of Us by f(xs, Ys + f3h) can be considered as interpolation at B by a polynomial
of degree zero with value f(xs, Ys + f3h) at (xs, Ys + f3h). Hence the term
interpolation of degree zero. A more precise approximation is obtained by an
interpolation of degree one. A first-degree interpolation using positions Us and
Uc is:

Us - f(xs, Ys + f3h)
f3h

or

Us = (f3 ~ l)UC + (f3 ~ l)f(xs, Ys + f3h)

Alternatively, we could have interpolated in the x-direction to give

Us = (01. : l)UA + (01. ~ l)f(xs + OI.h, Ys)

/3h

(5.25)

(5.26)

ilR

(0)

ilR

(b)

fiGURE 5.4 Irregular boundaries. (a) Uniform mesh with interpolation. (b) Non­
uniform mesh with approximate boundary aRh'
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Normal Derivative Conditions. Fortunately, in many practical applications nor­
mal derivative conditions occur only along straight lines, e.g., lines of symmetry,
and often these lines are parallel to a coordinate axis. However, in the case
where the normal derivative condition exists on an irregular boundary, it is
suggested that the boundary aR be approximated by straight-line segments de­
noted aRh in Figure 5.4(b). In this situation the use of nonuniform grids is
required. To implement the integration method at the boundary aRh' refer to
Figure 5.5 during the following analysis. If b(xi, yJ :;f 0 in (5.14), then Ui,j is
unknown. The approximation (5.22) can be used for vertical and horizontal
portions of the line integral in Figure 5.5, but not on the portion denoted aRh'
On aRh the normal to aRh makes an angle ewith the positive x-axis. Thus, aRh
must be parameterized by

x = Xi+1/2 - 'A sin e

and on aRh

Y = Yj-1/2 + 'A cos e

aWe' e- = Wx cos + wy sman

(5.27)

(5.28)

The portion of the line integral (Xi+1/2' Yj-1/2) to (Xi' y) in (5.20) can be written
as

if if aw
- (PWx cos e + PWy sin e) d'A = - P- d'A

o 0 an

FIGURE 5.5 Boundary point on aRh' Adapted from Richard S. Varga, Matrix IteratIve
AnalysIs, © 1962, p. 184. Reprinted by permission of Prentice-Hali, Inc., Englewood
Cliffs, N. J.
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or by using (5.14):

-L{PWx dy - PWy dx} = - LP [C(A) -b~A~A)W(A)] dA

= _ p . . [Ci,j - ai,jUi,j] .e (5.29)
',j b· .

t,j

where

1
.e = - Yh2 + k?

2 ' r 1 (path length of integration).

Notice that we have used the boundary condition together with the differential
equation to obtain a difference equation for the point (x;, y).

ELLIPTIC PDES-fINITE ELEMENTS

Background

Let us begin by illustrating finite element methods with the following elliptic
PDE:

and

a2
W a2 w

-2 + -2 = -f(x, y),ax ay for (x, y) in R (5.30)

W(x, y) = 0, for (x, y) on aR (5.31)

Let the bounded domain R with boundary aR be the unit square, that is, 0 :;:::; x :;:::; 1,
o< Y :;:::; 1. Finite element methods find a piecewise polynomial (pp) approxi­
mation, u(x, y), to the solution of (5.30). The pp-approximation can be written
as

m

u(x, y) = La/pix, y)
j=l

(5.32)

where {<hex, y)lj = 1, ... ,m} are specified functions that satisfy the boundary
conditions and {ajlj = 1, ... , m} are as yet unknown constants.

In the collocation method the set {ajlj = 1, , m} is determined by
satisfying the PDE exactly at m points, {(Xi' Yi)li = 1, , m}, the collocation
points in the region. The collocation problem for (5.30) using (5.32) as the pp­
approximation is given by:

ACa = -f (5.33)
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f = [I(x!> Yl), ... ,f(xm, Ym)]T

The solution of (5.33) then yields the vector Ol, which determines the collocation
approximation.

To formulate the Galerkin method, first multiply (5.30) by <Pi and integrate
over the unit square:

II e:~ + ~:~) <Pi dx dy = - II f(x, Y)<Pi dx dy
R R

i = i, ... ,m

Green's first identity for a function t is

II (at a<pi at a<pi) d d--+-- x Y
ax ax ay ay

R

II (aZt aZt) I at= - - + - <p. dx dy + - <p. deaxz ayz I an I

R M

(5.34)

(5.35)

where

~ = denotes differentiation in the direction of outward normal
an

e = path of integration for the line integral

Since the functions <Pi satisfy the boundary condition, each <Pi is zero on aR.
Therefore, applying Green's first identity to (5.34) gives

II (aw a<Pi + aw a<pi) dx dy = II f(x, y) <Pi dx dy
ax ax ay ay

R R

i = 1, ... ,m

For any two piecewise continuous functions 1] and <\1 denote

(1], <\1) = II 1]<\1 dx dy
R

(5.36)

(5.37)

Equation (5.36) can then be written as

(V'w, V'<Pi) = (f, <Pi)'
where

i = 1, ... ,m (5.38)

V' = gradient operator.
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This formulation of (5.30) is called the weak form. The Galerkin method consists
in finding u(x) such that

i = 1, ... ,m (5.39)

or in matrix notation,

where

g = [gl> ... ,gmV

gi = (I, <Pi)

Next, we discuss each of these methods in further detail.

(5.40)

Collocation
In Chapter 3 we outlined the collocation procedure for BVPs and found that
one of the major considerations in implementing the method was the choice of
the approximating space. This consideration is equally important when solving
PDEs (with the added complication of another spatial direction). The most
straightforward generalization of the basis functions from one to two spatial
dimensions is obtained by considering tensor products of the basis functions for
the one-dimensional space !L?k(1T) (see Chapter 3). To describe these piecewise
polynomial functions let the region R be a rectangle with G1 ~ x ~ bv Gz ~ Y ~ b2J

where -00 < Gi ~ bi < 00 for i = 1,2. Using this region Birkhoff et al. [5] and
later Bramble and Hilbert [6,7] established and generalized interpolation results
for tensor products of piecewise Hermite polynomials in two space variables.
To describe their results, let

(5.41)

h = max hi = max (X i + 1 - xJ
l~is.;;.Nx l:s:i~Nx

k = max k· = max (Yj+l - Yj)
l,,;,j,,;,Ny J l,,;,j,,;,Ny

p = max {hJ k}

be the partitions in the x- and y-directions, and set 1T = 1Tl X 1T2' Denote by
Q32(1T) the set of all real valued piecewise polynomial functions <Pi defined on

1T such that on each subrectangle [XiJ Xi+l] x [YjJ Yj+d of R defined by 1T, <Pi is
a polynomial of degree at most 3 in each variable (x or y). Also, each <Pi'
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(a<p;)/(ax), and (a<p;)/(ay) must be piecewise continuous. A basis for !Z!2 is the
tensor products of the Hermite cubic basis given in Chapter 3 and is

{V;(X)Vj(y), s;(x)Vj(Y)' v;(x)s/y), S;(X)Sj(Y)} [:1 [:1 (5.42)

where the v's and s's are listed in Table 3.2. If the basis is to satisfy the ho­
mogeneous Dirichlet conditions, then it can be written as:

i = 1,Nx + 1, j = 1, ... ,Ny + 1
i=1, ,Nx +1, j=1,Ny +1
i = 2, ,Nx , j = 2, ... ,Ny

(5.43)

Using this basis, Prenter and Russell [8] write the pp-approximation as:

Nx +1 N y +1 [ au
u(x, y) = 2: 2: u(xb Yj)v;Vj + - (x;, Yj)S;Vj

;=1 j=1 ax (5.44)

au a2u ]+ - (x;, Y)V;Sj + -- (x;, Yj)S;Sj
ay ax ay

which involves 4(Nx + 1)(Ny + 1) unknown coefficients. On each subrectangle
[x;, x;+d X [Yj' Yj+d there are four collocation points that are the combination
of the two Gaussian points in the x direction, and the two Gaussian points in
the Y direction, and are:

TL = (x; + ~ [1 - ~l Yj + 1[1- ~])

TT,j = (x; + ~ [1 + ~l Yj + 1[1-~])
TL = (x; + ~ [1 - ~l Yj + 1[1+ ~])

Ttj = (x; + ~ [1 + ~l Yj + 1[1+ ~])

(5.45)

Collocating at these points gives 4Nx Ny equations. The remaining 4Nx + 4Ny + 4
equations required to determine the unknown coefficients are supplied by the
boundary conditions [37]. To obtain the boundary equations on the sides x = a1

and x = h1 differentiate the boundary conditions with respect to y. For example,
if

au = y2 at x = a1 and x = h1ax
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(5.46)

a2 u
-- = 2y at x = a l and x = b Iax ay

Equation (5.46) applied at Ny - 1 boundary nodes (yjlj = 2, ... , Ny) gives:

au
ax (a v Yj) = yJ

a2u
ax ay (aI' y) = 2Yj

au
ax (b v Yj) = yJ

(5.47)

or 4Ny - 4 equations. A similar procedure at y = a2 and y = b2 is followed to
give 4Nx - 4 equations. At each corner both of the above procedures are applied.
For example, if

(5.48)

then

au ag
- (av a2) = - (aI' a2)
ay ay

Thus, the four corners supply the final 12 equations necessary to completely
specify the unknown coefficients of (5.44).

EXAMPLE 3

Set up the colocation matrix problem for the PDE:

a2 w a2w
- + - = <P °~ x ~ 1, °~ Y ~ 1ax2 ay2 '

with

w = 0, for x = 1

w= 0, for y = 1

aw
0, for x = °-=

ax

aw
0, for y = °-=

ay
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where 1> is a constant. This PDE could represent the material balance of an
isothermal square catalyst pellet with a zero-order reaction or fluid flow in a
rectangular duct under the influence of a pressure gradient. Let N x = Ny = 2.

SOLUTION

Using (5.44) as the pp-approximation requires the formulation of 36 equations.
Let us begin by constructing the internal boundary node equations (refer to
Figure 5.6a for node numberings):

aw (1, 2) = 0, a
2
w (1, 2)

ax ax ay

w(3,2)
aw

0, ay (3,2) = 0

~; (2, 1) 0,
a2 w
-(2 1)ax ay ,

w(2, 3) = 0, aw (2, 3) 0
ax

o

o

where w(i, j) w(x i, yJ At the corners

aw (1, 1) = aw (1, 1) = a
2

w (1, 1) 0
ax ay ax ay

aw a2 w
w(l, 3) = - (1, 3) = - (1, 3) 0

ax ax ay

w(3,1) aw (3, 1) = a
2

w (3, 1) 0
ay ax ay

y y

,3)

(1,1)
x

=0

1.0

~=o
o y

w=O

V1V2 ,VI SZi'I S3 V2VZtV2SZ,V2S3

V2V2 ,V252/253 S2V2,5{>2,5253

S2V2'5252~2S, 5,v2,5?2'S3%
w

VI VI' VI V2,VI~ V2V1,V2V2 ,V2~

v2v[ 1 V2V2,V2S; 52V,,52V2 ,5,A,

5 2V"S2V2'Sij, 53V,,53V2,~

1.0

ow =0
ax

,2)

x
(2,1) (3,1)

EI:COLLOCATION POINT

(i,j) : (x i' Yj )

(2,3)
(3

EI EI EI EI

EI EI EI EI

(2,2) (3
EI EI EI EI

EI EI EI EI

(1,2)

(1,3)

(0) (b)

fiGURE. 5.6 Grid for Example 3. (a) Collocation points. (b) Nonvanishing basis
functions.
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aw aw
w(3, 3) = - (3, 3) = - (3, 3) = 0

ax ay

This leaves 16 equations to be specified. The remaining 16 equations are the
collocation equations, four per subrectangle (see Figure 5.6a). If the above
equations involving the boundary are incorporated in the pp-approximation,
then the result is

U(x, y)

a=

where

U;,j = u(x;, Yj)

The pp-approximation is then used to collocate at the 16 collocation points.
Since the basis is local, various terms of the above pp-approximation can be
zero at a given collocation point. The nonvanishing terms of the pp-approxi­
mation are given in the appropriate subrectangle in Figure 5.6b. Collocating at
the 16 collocation points using the pp-approximation listed above gives the
following matrix problem:

where

1 = [1, ... , IV

[
aUl Z aU13 auz 1

U U --'--'U --'UI,V I,Z' ay' ay' Z,V ax' z,z

auz,z auz,z aZuz,z aUZ,3 aZUZ,3
ax' ay' ax ay' ay' ax ay

aU3,1 au3,z aZu3,z aZU3,3]T
ax' ax' ax ay' ax ay

(for any function 1jJ)

and for the matrix A c,



-\C
\C

A C =

V'IIIV1V 1V'IIIVlVZ V'I11V1SZ

V'II4VI Vl V'II4V I VZV'II4VlSZ

V'I11VZV 1V'I11SZV 1 V'IIIVZVZ V'Il1SZVZ V'I11VzSZ V'I11SzSZ

V'II4VZVl V'II4SZV l V'II4VZVZ V'II4S ZVZ V'II4VzSZ V'II4S zSZ

V'~ZIV2V2 V'~ZISZVZ V'~21VZSZ V'bszsz V'~ZIVZS3V'bSZS3

V'~Z4VZVZ V'~Z4SZVZ V'~Z4VZSZ V'~Z4S2SZ V'~Z4VZS3V'~Z4SZS3

V'11IS 3V 1

V'114S 3V :

V'~21S3VZ V'~ZIS3SZ V'bS3S3

V'~24S3V ZV'~Z4S3S2 V'~Z4S3S3
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The solution of this matrix problem yields the vector a, which specifies the values
of the function and its derivatives at the grid points.

Thus far we have discussed the construction of the collocation matrix prob­
lem using the tensor products of the Hermite cubic basis for a linear PDE. If
one were to solve a nonlinear PDE using this basis, the procedure would be the
same as outlined above, but the ensuing matrix problem would be nonlinear.

In Chapter 3 we saw that the expected error in the pp-approximation when
solving BVPs for ODEs was dependent upon the choice of the approximating
space, and for the Hermite cubic space, was O(h4). This analysis can be extended
to PDEs in two spatial dimensions with the result that [8]:

lu(x, y) - w(x, y)1 = O(p4)

Next, consider the tensor product basis for.!Z!'fe ('ITl) x .!Z!'fe ('ITz) where 'ITI and
x y

'ITz are given in (5.41), kx is the order of the one-dimensional approximating
space in the x-direction, and ky is the order of the one-dimensional approximating
space in the y-direction. A basis for this space is given by the tensor products
of the B-splines as:

/

DIMX IDIMY

B;(x)B~(y) i~l j~l

where

Bf(x) = B-spline in the x-direction of order kx

B~(y) = B-spline in the y-direction or order ky

DIMX = dimension of .!Z!t

DIMY = dimension of .!Z! 'fey

The pp-approximation for this space is given by

DIMX DIMY

u(x, y) = 2: 2: (Xi,jBf(x)B~(y)
i~ 1 j= 1

where (Xi,j are constants, with the result that

lu(x, y) - w(x, y)1 = O(p'!)

where

(5.49)

(5.50)

(5.51)

Galerkin

The literature on the use of Galerkin-type methods for the solution of elliptic
PDEs is rather extensive and is continually expanding. The reason for this growth
in use is related to the ease with which the method accommodates complicated
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geometries. First, we will discuss the method for rectangles, and then treat the
analysis for irregular geometries.

Consider a region R that is a rectangle with a l ~ x ~ bl , a2 ~ Y ~ b2, with
-00 < ai ~ bi < 00 for i = 1,2. A basis for the simplest approximating space
is obtained from the tensor products of the one-dimensional basis of the space
..0i(1T), i.e., the piecewise linears. If the mesh spacings in x and yare given by
1TI and 1T2 of (5.41), then the tensor product basis functions wi,/x, y) are given
by

[x - Xi-I] [Y - Yj-ll Xi- l ~ x~ Xi' Yj-l ~ Y ~ Yj
hi- l kj- l

[X - Xi-I] [Yj+l - Y1 Xi- l ~ X ~ Xi' Yj~Y ~Yj+l
hi- l kj

Wi,j (5.52)

[Xi+l - X] [Y-Yj-l} Xi~X~Xi+h Yj-l ~ Y ~ Yj
h, k j - l

[Xi+lhi- X] [Yj+lk
j
- Y1 Xi ~ X ~ Xi+h Yj~Y~Yj+1

with a pp-approximation of

Nx+l Ny+l
u(x, y) = L L U(Xi' Yj)Wi,j

i= I j= I
(5.53)

Therefore, there are (Nx + l)(Ny + 1) unknown constants u(xi , y), each
associated with a given basis function Wi,j' Figure 5.7 illustrates the basis function
Wi,j' from now on called a bilinear basis function.

EXAMPLE 4

Solve (5.30) with f(x, y) 1 using the bilinear basis with Nx = Ny = 2.

fiGURE 5.7 Bilinear basis function.
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SOLUTION

The PDE is

0<;; x <;; 1, 0 <;; Y <;; 1

with

w(x, y)

The weak form of the PDE is

o on the boundary

II (aw a<Pi aw a<pi) II- -- + - -- dx dy = <Pi dx dy
ax ax ay ay

R R

where each <Pi satisfies the boundary conditions. Using (5.53) as the pp-approx­
imation gives

3 3

u(x, y) = 2: 2: u(xi, Yj)Wi,j
i~ 1 j~ 1

Let hi = k j = h = 0.5 as shown in Figure 5.8, and number each of the sub­
rectangles, which from now on will be called elements. Since each Wi,j must
satisfy the boundary conditions,

leaving the pp-approximation to be

u(x, y) = u(xz, yz)wz,z = UzWz

y

x
1.0

U 1,3 U 2 ,3 U 3,3

® CD
U 1,2 U2,2 U 3,2

® @

U',I U 2tl U 3,Io
o

1.0

fiGURE 5.8 Grid for Example 4. CD = element I.
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Therefore, upon substituting u(x, y) for w(x, y), the weak form of the PDE
becomes

II ( awz awz awz awz) IIUz - - + Uz - - dx dy = Wz dx dy
ax ax ay ay

R R

or

where

II (awz awz + awz awz) dx d
Azz = ax ax ay ay y

R

gz = II Wz dx dy
R

This equation can be solved on a single element ei as

ei = 1, ... ,4

and then summed over all the elements to give

4 4

Azzuz = L A~2UZ = L g~; = gz
ei=l ej=l

In element 1:

Uzu(x, y) = hZ (1 - x)(l - y),

and

0.5 ~ x ~ 1, 0.5 ~ Y ~ 1

1
W z = hZ (1 - x)(l - y)

Thus

Aiz = h14 e e [(1 - yf + (1 - x)Z] dx dy = ~
)0.5 )0.5 3

and

gi = 1z f e (1 - x)(l - y) dx dy = h
Z

h 0.5 )0.5 4

For element 2:

(h = 0.5)

Uz
u(x, y) = hZ (1 - y)x, o~ x ~ 0.5, 0.5 ~ Y ~ 1.0
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giving
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1
W z = hZ x(l - Y)

The results for each element are

Element Aei
22

1
2
'3

2 2
3

3 :<
3

4 2
3

Thus, the solution is given by the sum of these results and is

Uz = i hZ = 0.09375

In the previous example we saw how the weak form of the PDE could be
solved element by element. When using the bilinear basis the expected error in
the pp-approximation is

Iu(x, Y) - w(x, Y)I = O(pZ) (5.54)

(5.55)

where p is given in (5.41). As with ODEs, to increase the order of accuracy,
the order of the tensor product basis functions must be increased, for example,
the tensor product basis using Hermite cubics given an error of 0(p4). To illustrate
the formulation of the Galerkin method using higher-order basis functions, let
the pp-approximation be given by (5.50) and reconsider (5.30) as the elliptic
PDE. Equation (5.39) becomes

(V ~~x ~~y (Xi,jB~(x)B;(y), VB;';,(X)B~(Y)) = 0B;';,(X)B~(Y))

m = 1, ... , DIMX, n = 1, ... , DIMY

In matrix notation (5.55) is

Aa = g (5.56)
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where

_ [- - ]Tg - gl>"" gz

gj = [(f, B:(x)B{(y)), ... , (f, B:(x)Bt>IMy(y))]T

Ap,q = (VB:(x)Br(y), VB~,(x)B~(y))

p = DIMY (m - 1) + n (1 ~ P ~ DIMX x DIMY)

q = DIMY (i - 1) + j (1 ~ q ~ DIMX x DIMY)

Equation (5.56) can be solved element by element as

No. of elements No. of elements

L Aiq<Xq = L gi
ei=l ei=l

205

(5.57)

The solution of (5.56) or (5.57) gives the vector a, which specifies the pp­
approximation u(x, y) with an error given by (5.51).

Another way of formulating the Galerkin solution to elliptic problems is
that first proposed by Courant [9]. consider a general plane polygonal region R
with boundary aR. When the region R is not a rectangular parallelepiped, a
rectangular grid does not approximate R and especially aR as well as a triangular
grid, i.e., covering the region R with a finite number of arbitrary triangles. This
point is illustrated in Figure 5.9. Therefore, if the Galerkin method can be
formulated with triangular elements, irregular regions can be handled through
the use of triangulation. Courant developed the method for Dirichlet-type boundary
conditions and used the space of continuous functions that are linear polynomials
on each triangle. To illustrate this method consider (5.30) with the pp-approx­
imation (5.32). If there are TN vertices not on aR in the triangulation, then
(5.32) becomes

TN

u(x, y) = L <Xs<Ps(x, y)
s~l

(5.58)

Given a specific vertex s = e, <Xe = u(xf, Ye) with an associated basis function
<l>e(x, y). Figure 5.lOa shows the vertex (xeo Ye) and the triangular elements that
contain it, while Figure 5.10b illustrates the associated basis function. The weak
form of (5.30) is

II (au a<l>s + au a<l>s) dx dy = II f(x, Y)<l>s dx dy
ax ax ay ay

R R

s = 1, ... , TN (5.59)
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(0)
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(b)

fiGURE 5.9 Grids on a polygonal region. (a) Rectangular grid. (b) Triangular grid.

or in matrix notation

Aa = g

where

A sq = JJ [a<ps a<pq + a<ps a<pq] dx dy
ax ax ay ay

R

g = [JJf(x, Y)<Pl dx dy, ... , JJf(x, y)<PTN dx dY] T

R R

(5.60)

(0) (b)

fiGURE 5.10 Linear basis function for triangular elements. (a) Vertex (xe, Ye)' (b)
Basis function <Pe.
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Equation (5.60) can be solved element by element (triangle by triangle) and
summed to give

2: A;~aq = 2: g;i
ei ej

s = 1, ... , TN, q = 1, ... , TN (5.61)

Since the PDE can be solved element by element, we need only discuss the
formulation of the basis functions on a single triangle. To illustrate this for­
mulation, first consider a general triangle with vertices (Xi' Yi), i = 1, 2, 3. A
linear interpolation Pl(x, y) of a function C(x, y) over the triangle is given by
[10]:

where

3

Pl(x, y) = 2: a;(x, Y)C(Xb y;)
i=l

al(x, y) = l/J(-r23 + 'll23X - ~23Y)

a2(x, y) = l/J(-r3l + 'll3lX - ~3lY)

a3(x, y) = l/J(T12 + 'll12X - ~12Y)

l/J = (twice the area of the triangle)-l

(5.62)

To construct the basis function <Pe associated with the vertex (xe, Ye) on a single
triangle set (xe, Ye) = (Xl, Yl) in (5.62). Also, since <Pe(xe> Ye) = 1 and <Pe is
zero at all other vertices set C(xl, Yl) = 1, C(x2, Y2) = 0 and C(X3' Y3) = 0 in
(5.62). With these substitutions, <Pe = PI(X, y) = al(x, y). We illustrate this
procedure in the following example.

EXAMPLE 5

Solve the problem given in Example 3 with the triangulation shown in Figure
5.11.

SOLUTION

From the boundary conditions
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y

1.0
U 1,3 U 2,3 U 3,3

® ®

CD ®
U 1,2 U 2,2 U 3,2

@) ®

® CD
U 2,I U 3,I

X

0 1.0

fiGURE 5.11 Triangulation for Example 5. CD = element J

Therefore, the only nonzero vertex is uz,z, which is common to elements 2, 3,
4, 5, 6, and 7, and the pp-approximation is given by

u(x, y) = uz,z<Pz(x, y) = uz<Pz

Equation (5.61) becomes
7 7

~ A~2Uz = ~ g~i
ei=2 ei=2

where

A ei = JJ (a<pz a<pz + a<pz a<pz) dx d
zz ax ax ay ay y

Triangle
ei

Triangle
ei

The basis function <p~i can be constructed using (5.62) with (Xl> Yl) = (0.5,0.5)
giving

Thus,

e,
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and

ei

For element 2 we have the vertices

(Xl' Yl) = (0.5, 0.5)

(X2' Y2) = (1, 0.5)

(x3 , Y3) = (0.5, 0)

and

1
tV = 0.25

1"23 = (1)(0) - (0.5)(0.5) = - 0.25

~23 = 1 - 0.5 = 0.5

1123 = 0.5

A~2 = II (0.25)-2[(0.5)2 + (0.5)2] dx dy = 1

2 - II 1 ] _ 0.25g2 - (0.25) [-0.25 + 0.5x - 0.5y dx dy - -6-

Likewise, the results for other elements are

Element Aei g;i22

0.25
2 1.0 -

6

0.5
0.25

3 -
6

0.5
0.25

4 -
6

0.25
5 0.5 -

6

0.5
0.25

6 -
6

0.25
7 1.0 -

6
-

Total 4.0 0.25

which gives

U2 = 0.0625

209
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c,

(a)

C2

( b)

fiGURE 5. t 2. Node positions for triangular elements. (a) Linear basis. (b) Quadratic
basis: C, = C(x" y,).

The expected error in the pp-approximation using triangular elements with
linear basis functions is O(h2

) [11], where h denotes the length of the largest side
of any triangle. As with rectangular elements, to obtain higher-order accuracy,
higher-order basis functions must be used. If quadratic functions are used to
interpolate a function, C(x, Y), over a triangular element, then the interpolation
is given by [10]:

where

6

L bi(x, y)C(x, y)
i= 1

(5.63)

j = 1, 2, 3b/x, y) = aj(x, y)[2aj(x, y) - 1],

b4(x, y) = 4a1(x, y)a2(x, y)

bs(x, y) = 4a 1(x, y)a3(x, y)

b6(x, y) = 4aix, y)a3(x, y)

and the ai(x, y)'s are given in (5.62). Notice that the linear interpolation (5.62)
requires three values of C(x, y) while the quadratic interpolation (5.63) requires
six. The positions of these values for the appropriate interpolations are shown
in Figure 5.12. Interpolations of higher order have also been derived, and good
presentations of these bases are given in [10] and [12].

Now, consider the problem of constructing a set of basis functions for an
irregular region with a curved boundary. The simplest way to approximate the
curved boundary is to construct the triangulation such that the boundary is
approximated by the straight-line segements of the triangles adjacent to the
boundary. This approximation is illustrated in Figure 5.9b. An alternative pro­
cedure is to allow the triangles adjacent to the boundary to have a curved side
that is part of the boundary. A transformation of the coordinate system can
then restore the elements to the standard triangular shape, and the PDE solved
as previously outlined. If the same order polynomial is chosen for the coordinate
change as for the basis functions, then this method of incorporating the curved
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boundary is called the isoparametric method [10-12]. To outline the procedure,
consider a triangle with one curved edge that arises at a boundary as shown in
Figure 5.13a. The simplest polynomial able to describe the curved side of the
triangular element is a quadratic. Therefore, specify the basis functions for the
triangle in the Al-A2 plane to be quadratics. These basis functions are completely
specified by their values at the six nodes shown in Figure 5.13b. Thus the
isoparametric method maps the six nodes in the x-y plane onto the ACA2 plane.
The PDE is solved in this coordinate system, giving U(Al> A2), which can be
transformed to u(x, y).

PARABOLIC PDES IN TWO SPACE VARIABLES

In Chapter 4 we treated finite difference and finite element methods for solving
parabolic PDEs that involved one space variable and time. Next, we extend the
discussion to include two spatial dimensions.

Method of Lines

Consider the parabolic PDE

aw = D [a 2 w + a2 w]
at ax2 ay2

oR

o~ t, o~ x ~ 1, (5.64)

( 0)

(O,I)

-----...~II--....-----... },.,
(0,0) (1,0)

( b)

fiGURE. 5.13 C.oordinate transformation. (a) xy-plane. (b) AtAz-plane.



212 Partial Differential Equations in Two Space Variables

(5.65)

with D constant. Discretize the spatial derivatives in (5.64) using finite dif-
ferences to obtain the following system of ordinary differential equations:

au·· D D
a~'J = (LiX)JUi+1,j - 2ui,j + Ui-1J + (Liy)JUi,j+l - 2ui,j + Ui,j-l]

where

Ui,j = w(xiJ y)

Xi = i Lix

Yj = j Liy

Equation (5.65) is the two-dimensional analog of (4.6) and can be solved in a
similar manner. To complete the formulation requires knowledge of the subsid­
iary conditions. The parabolic PDE (5.64) requires boundary conditions at X = 0,
x = 1, y = 0, and y = 1, and an initial condition at t = 0. As with the MOL
in one spatial dimension, the two-dimensional problem incorporates the bound­
ary conditions into the spatial discretizations while the initial condition is used
to start the IVP.

Alternatively, (5.64) could be discretized using Galerkin's method or by
collocation. For example, if (5.32) is used as the pp-approximation, then the
collocation MOL discretization is

(5.66)

i = 1, ... ,m

where (Xi> y;) designates the position of the ith collocation point. Since the MOL
was discussed in detail in Chapter 4 and since the multidimensional analogs are
straightforward extensions of the one-dimensional cases, no rigorous presenta­
tion of this technique will be given.

Alternating Direction Implicit Methods

Discretize (5.65) in time using Euler's method to give

ut,j = [~~~] [U?+l,j + U?-l,j] + [~~;] [Ui,j+l + Ui,j-l]

[
2D Lit 2D Lit]

+ ui,j 1 - (LiX)2 - (Liy)Z

where

(5.67)



Parabolic PDES in Two Space Variables

For stability

[ 1 1] 1
D ilt (ilX)2 + (ily)2 < 2"

If ilx = ily, then (5.68) becomes

D ilt 1
--~­

(ilX)2 4
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(5.68)

(5.69)

(5.70)

which says that the restriction on the time step-size is half as large as the one­
dimensional analog. Thus the stable time step-size decreases with increasing
dimensionality. Because of the poor stability properties common to explicit
difference methods, they are rarely used to solve multidimensional problems.
Inplicit methods with their superior stability properties could be used instead of
explicit formulas, but the resulting matrix problems are not easily solved. An­
other approach to the solution of multidimensional problems is to use alternating
direction implicit (ADI) methods, which are two-step methods involving the
solution of tridiagonal sets of equations (using finite difference discretizations)
along lines parallel to the x-y axes at the first-second steps, respectively.

Consider (5.64) with D = 1 where the region to be examined in (x, y, t)
space is covered by a rectilinear grid with sides parallel to the axes, and
h = ilx = ily. The grid points (Xi' yj' tn ) given by x = ih, Y = jh, and t = n ilt,
and ui,j is the function satisfying the finite difference equation at the grid points.
Define

ilt
T = h2

Essentially, the principle is to employ two difference equations that are used in
turn over successive time-steps of ilt/2. The first equation is implicit in the x­
direction, while the second is implicit in the y-direction. Thus, if Ui,j is an in­
termediate value at the end of the first time-step, then

or

Ui,j un. T [ 2- + O~Ui,J= 2" °XUi,jl,J

Un+ 1 U· . T [ 2- + 02Un+l]= 2" °xUi,jl,J l,J Y l,J

[1 - ! Tonti = [1 + ! TO~]Un

[1 - !To~]Un+l = [1 + !Tonti

(5.71)

(5.72)
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for all i and j

These formulas were first introduced by Peaceman and Rachford [13], and
produce an approximate solution which has an associated error of O(Lit2 + h2 ).

A higher-accuracy split formula is due to Fairweather and Mitchell [14] and is

[1 - H,. - ~) 8;]ii = [1 + H,. + ~) 8~]un

[1 - ~ (,. - ~) 8~]un+l = [1 + ~ (,. + ~) 8~]ii (5.73)

with an error of O(Llt2 + h4). Both of these methods are unconditionally stable.
A general discussion of ADI methods is given by Douglas and Gunn [15].

The intermediate value ii introduced in each ADI method is not necessarily
an approximation to the solution at any time level. As a result, the boundary
values at the intermediate level must be chosen with care. If

W(x, y, t) = g(x, y, t) (5.74)

when (x, y, t) is on the bounadry of the region for which (5.64) is specified,
then for (5.72)

and for (5.73)

Ui,j = ,. ~ ~ [1 - HT - n8~]gZ:1 + ,. ; ~ [1 + HT + ~) 8~]gi,j

(5.75)

(5.76)

If g is not dependent on time, then

Ui,j = gi,j (for 5.72) (5.77)

Ui,j = (1 + ~ 8~)gi,j (for 5.73) (5.78)

A more detailed investigation of intermediate boundary values in ADI methods
is given in Fairweather and Mitchell [16].

ADI methods have also been developed for finite element methods. Doug­
las and Dupont [17] formulated ADI methods for parabolic problems using
Galerkin methods, as did Dendy and Fairweather [18]. The discussion of these
methods is beyond the scope of this text, and the interested reader is referred
to Chapter 6 of [11].

MATHEMATICAL SOFTWARE

As with software for the solution of parabolic PDEs in one space variable and
time, the software for solving multidimensional parabolic PDEs uses the method
of lines. Thus a computer algorithm for multidimensional parabolic PDEs based
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(5.79)

upon the MOL must include a spatial discretization routine and a time integrator.
The principal obstacle in the development of multidimensional PDE software
is the solution of large, sparse matrices. This same problem exists for the de­
velopment of elliptic PDE software.

Parabolics
The method of lines is used exclusively in these codes. Table 5.1 lists the parabolic
PDE software and outlines the type of spatial discretization and time integration
for each code. None of the major libraries-NAG, Harwell, and IMSL-contain
multidimensional parabolic PDE software, although 2DEPEP is an IMSL prod­
uct distributed separately from their main library. As with one-dimensional PDE
software, the overwhelming choice of the time integrator for multidimensional
parabolic PDE software is the Gear algorithm. Next, we illustrate the use of
two codes.

Consider the problem of Newtonian fluid flow in a rectangular duct. Ini­
tially, the fluid is at rest, and at time equal to zero, a pressure gradient is imposed
upon the fluid that causes it to flow. The momentum balance, assuming a constant
density and viscosity, is

av Po - PL [a 2v a2v]p-= +/-L-+-at L ax2 ay2

TABLE 5.1 Parabolic PDE Codes

Spatial Discretiza- Spatial
Code tion Time Integrator Dimension Region Reference

DSS/2 Finite difference Options including 2or3 Rectangular [19]
Runge-Kutta and
GEARB [24]

PDETWO Finite difference GEARB [24] 2 Rectangular [20]
FORSIM VI Finite difference Options including 2or3 Rectangular [21]

Runge-Kutta and
GEAR [25]

DISPL Finite element; Gal- Modified version of 2 Rectangular [22]
erkin with tensor GEAR [25]
products of B-spli-
nes for the basis
function

2DEPEP Finite element; Gal- Crank-Nicolson or an 2 Irregular [23]
erkin with quad- implicit method
ratic basis functions
on triangular ele-
ments; curved
boundaries incor-
porated by isopara-
metric method
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p = fluid density

Po - PL .
L = pressure gradIent

J1. = fluid viscosity

V = axial fluid velocity

The situation is pictured in Figure 5.14. Let

x
X=B

y=L
w

V

J1.!
T=-

pB2 (5.80)

Substitution of (5.80) into (5.79) gives

aT] a 2T]
-=2+-+aT a2x

The subsidiary conditions for (5.81) are

(B)2 a2T]

w a2y
(5.81)

T] = 0 at T = 0 (fluid initially at rest)

T] = 0 at y=O (no slip at the wall)

T] = 0 at X=1 (no slip at the wall)

aT] = 0 at X = 0 (symmetry)ax

aT] = 0 at Y = 1 (symmetry)aY

Equation (5.81) was solved using DISPL (finite element discretization) and
PDETWO (finite difference discretization). First let us discuss the numerical
results form these codes. Table 5.2 shows the affect of the mesh spacing
(klY = klX = h) when solving (5.81) with PDETWO. Since the spatial discre­
tization is accomplished using finite differences, the error associated with this
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y

L

~~2W---<?"""'-~LUID OUT

ff------t"x
FLUIDIN

fiGURE 5.14 flow In a rectangular duct.

discretization is 0(h2 ). As h is decreased, the values of 'Y] shown in Table 5.2
increase slightly. For mesh spacings less than 0.05, the same results were obtained
as those shown for h = 0.05. Notice that the tolerance on the time integration
is 10-7 , so the error is dominated by the spatial discretization. When solving
(5.81) with DISPL (cubic basis functions), a mesh spacing of h = 0.25 produced
the same solution as that shown in Table 5.2 (h = 0.05). This is an expected
result since the finite element discretization is 0(h4 ).

Figure 5.15 shows the results of (5.81) for various X, Y, and 'I". In Figure
5.15a the affect at the Y-position upon the velocity profile in the X-direction is
illustrated. Since Y = 0 is a wall where no slip occurs, the magnitude of the
velocity at a given X-position will increase as one moves away from the wall.
Figure 5.15b shows the transient behavior of the velocity profile at Y = 1.0. As
one would expect, the velocity increases for 0 ~ X < 1 as ,. increases. This trend
would continue until steady state is reached. An interesting question can now
be asked. That is, how large must the magnitude of W be in comparison to the
magnitude of B to consider the duct as two infinite parallel plates. If the duct
in Figure 5.14 represents two infinite parallel plates at X = ±1, then the

B
TABLE 5.2 Results of (5.81) Using PDETWO: ,. = 0.5, W= 1, Y = 1, TOL = 10- 7

'Y]

X h = 0.2 h = 0.1 h = 0.05

0.0 0.5284 0.5323 0.5333
0.2 0.5112 0.5149 0.5159
0.4 0.4575 0.4608 0.4617
0.6 0.3614 0.3640 0.3646
0.8 0.2132 0.2146 0.2150
1.0 0 0 0
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o
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TJ
(2)

0.2

fiGURE 5.15

momentum balance becomes

(5.82)

with

T) = 0 at 'T = 0

T) = 0 at X= 1

aT) = 0 at X = 0ax
Equation (5.82) possesses an analytic solution that can be used in answering the
posed question. Figure 5.16 shows the affect of the ratio B/W on the velocity
profile at various 'T. Notice that at low 'T, a B/W ratio of ~ approximates the
analytical solution of (5.82). At larger 'T this behavior is not observed. To match
the analytical solution (five significant figures) at all 'T, it was found that the
value of B/W must be i or less.
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FIGURE. 5.16 further results of (5.81).

BIW
(1) 1
(2) 1/z
(3) 1/4 and analytical solution of (5.82)

x

Ellipties

Table 5.3 lists the elliptic PDE software and outlines several features of each
code. Notice that the NAG library does contain elliptic PDE software, but this
routine is not very robust. Besides the software shown in Table 5.3, DISPL and
2DEPEP contain options to solve elliptic PDEs. Next we consider a practical
problem involving elliptic PDEs and illustrate the solution and physical impli­
cations through the use of DISPL.

The most common geometry of catalyst pellets is the finite cylinder with
length to diameter, LID, ratios from about 0.5 to 4, since they are produced by
either pelleting or by extrusion. The governing transport equations for a finite
cylindrical catalyst pellet in which a first-order chemical reaction is occurring
are [34]:

where

(Mass)

(Energy)

( )
2 []

(Pf 1 af D a2f 'Y- + - - + - - = <p 2f exp - (t - 1)
ar 2 r ar L az2 t

( )
2 []

a2t 1 at D a2t 2 'Y- + - - - - = -!3<P f exp - (t - 1)
ar 2 r ar L az2 t

(5.83)

r = dimensionless radial coordinate, 0 ~ r ~ 1
z = dimensionless axial coordinate, 0 ~ z ~ 1
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f=
t =

'Y
<P
13
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dimensionless concentration
dimensionless temperature
Arrhenius number (dimensionless)
Thiele modulus (dimensionless)
Prater number (dimensionless)

with the boundary conditions

af at
= 0 at r = 0ar ar

af at
0 0- at zaz az

(symmetry)

(symmetry)

f = t = 1 at z = 1 and r 1 (concentration and
temperature specified at
the surface of the pellet)

Using the Prater relationship [35], which is

t = 1 + (1 - f)l3

TABLE 5.3 Elliptic POE Codes

Nonlinear
Equations Reference

No

No [26]
No [27]
No [28]
No [29]
No [30]

No [31]

Code

NAG
(D03 chapter)

FISPACK
EPDE1
ITPACK/REGION
FFf9
HLMHLZ/HEL-

MIT/HELSIXI
HELSYM

PLTMG

ELIPTI

ELLPACK

Discretization

Finite difference
(Laplace's equation

in two dimensions)
Finite difference
Finite difference
Finite difference
Finite difference
Finite difference

Finite element; Ga­
lerkin with linear
basis functions on
triangular elements

ADI with finite dif­
ferences; integrate
to steady state

Finite difference; fi­
nite element (collo­
cation and Ga­
lerkin)

Region

Rectangular

Rectangular
Irregular
Irregular
Irregular
Irregular

Irregular

Irregular

Rectangular

Yes

Yes

[32]

[33]
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TABlE. 5.4 Results of (5.84) Using DlSPL
D

Jl = 0.25,13 = 0.1, 'Y = 30, - =
L

221

$=1

r h = 0.5 h = 0.25

0 0.728 0.728
0.25 0.745 0.745
0.50 0.797 0.797
0.75 0.882 0.882
1.0 1.000 1.000

h = 0.5
0.724( -3)
0.384( -1)
0.109
0.414
1.000

$ = 2

h = 0.25

0.240( -1)
0.377( -1)
0.115
0.404
1.000

h = 0.125

0.227( -1)
0.365( -1)
0.115
0.404
1.000

reduces the system (5.83) to the single elliptic PDE:

( )
2 [ ]

a2f 1 af D a2f 2 'Y13(1 - f)
ar 2 + -;. ar + L az2 = <P J exp 1 + 13(1 - f)

af = 0 at r = 0
ar

(5.84)

af = 0 at z = 0
az

f = 1 at r = 1 and z = 1

DISPL (using cubic basis functions) produced the results given in Tables
5.4 and 5.5 and Figure 5.17. In Table 5.4 the affect of the mesh spacing
(h = fJ.r = fJ.z) is shown. With $ = 1 a coarse mesh spacing (h = 0.5) is
sufficient to give three-significant-figure accuracy. At larger values of <p a finer
mesh is required for a similar accuracy. As <p increases, the gradient in f be­
comes larger, especially near the surface of the pellet. This behavior is shown
in Figure 5.17. Because of this gradient, a finer mesh is required to obtain an
accurate solution over the entire region. Alternatively, one could refine the
mesh in the region of the steep gradient. Finally, in Table 5.5 the isothermal
results (13 = 0) are compared with those published elsewhere [34]. As shown,
DISPL produced accurate results with h = 0.25.

TABlE. 5.5 Further Results of (5.84) Using DISPL
L

13 = 0.0, 'Y = 30, $ = 3, D = 1

(r, z)

(0.394, 0.285)
(0.394, 0.765)
(0.803, 0.285)
(0.803, 0.765)

DISPL,
h = 0.25

0.337
0.585
0.648
0.756

From
Reference [34]

0.337
0.585
0.648
0.759



222 Partial Differential E.quations in Two Space Variables
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fiGURE. 5.17 Results of (5.84): p = 0.1, 'Y = 30, <I> = 2, DIL = 1.

!
(1) 0.75
(2) 0.50
(3) 0.00

PROBLEMS

1. Show that the finite difference discretization of

a2 w a2 w
(x + 1) - + (y2 + 1) - - w = 1ax 2 ay 2

o :%; x:%; 1, 0 :%; Y :%; 1, Lix = Liy = ~

with

w(O, y) = Y

w(l, y) = y2

w(x,O) = 0

w(x, 1) = 1

is given by [36]:
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2.* Consider a rectangular plate with an initial temperature distribution of

w(x, y, 0) = T - To = 0, °~ x ~ 2, °~ y ~ 1

°~ r ~ 1, °~ z ~ 1

3.*

If the edges x = 2, y = 0, and y = 1 are held at T = To and on the edge
x = °we impose the following temperature distribution:

() {
2tY for °~ Y ~ ~

w 0, Y, t = T - To = 2t(1' _ y), f 1 1or 2: ~ Y ~

solve the heat conduction equation

aw a2w a2w
-=-+-at ax2 ay 2

for the temperature distribution in the plate. The analytical solution to
this problem is [22]:

w = ± i i ~ \ (e-O"! + at - 1) sin (WIT) sin (m'Trx) sin (n'TrY)
'Trm~ln=ln a 2 2

where

a = 'Tr2 (:2 + n2 )

Calculate the error in the numerical solution at the mesh points.

An axially dispersed isothermal chemical reactor can be described by the
following material balance equation:

at = _1 [a2t + ! at] + _1_ a2t + D
az Per ar2 r ar Pea az2 at,

with

1 - t = _1_ at at z
Pea az

0, at = ° at r = °and r = 1ar

at
az ° a. z = 1

where
t = dimensionless concentration

r = dimensionless radial coordinate

z = dimensionless axial coordinate

Per = radial Peclet number

Pea = axial Peclet number

D a = Damkohler number (first-order reaction rate)
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The boundary conditions in the axial direction arise from continuity of
flux as discussed in Chapter 1 of [34]. Let Da = 0.5 and Per = 10. Solve
the material balance equation using various values of Pea' Compare your
results to plug flow (Pea -? (0) and discuss the effects of axial dispersion.

4.* Solve Eq. (5.84) with D/L = 1, <p = 1, "y = 30, and let -0.2 ~ 13 ~ 0.2.
Comment on the affect of varying 13 [13 < 0 (endothermic), 13 > 0 (exo­
thermic)].

5.* Consider transient flow in a rectangular duct, which can be described by:

a'Y] = a + a
2

'Y] + (B) 2 a
2

'Y]
aT aX2 w ay2

using the same notation as with Eq. (5.81) where a: is a constant. Solve
the above equation with

-
(l( Comment

(a) 2
(b) 4
(c) 1

Eq. (5.81)
Twice the pressure gradient as Eq. (5.81)
Half the pressure gradient as Eq. (5.81)

How does the pressure gradient affect the time required to reach steady
state?
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APPENDIX

Computer Arithmetic
Error Control

In mathematical computations on a computer, errors are introduced into the
solutions. These errors are brought into a calculation in three ways:

1. Error is present at the outset in the original data-inherent error

2. Error results from replacing an infinite process by a finite one-truncation
error, i.e., representing a function by the first few terms of a Taylor series
expansion

3. Error arises as a result of the finite precision of the numbers that can be
represented in a computer-round-off error.

Each of these errors is unavoidable in a calculation, and hence the problem is
not to prevent their occurrence, but rather to control their magnitude. The
control of inherent error is not within the scope of this text, and the truncation
errors pertaining to specific methods are discussed in the appropriate chapters.
This section outlines computer arithmetic and how it influences round-off errors.

COMPUTER NUMBER SYSTEM

The mathematician or engineer, in seeking a solution to a problem, assumes
that all calculations will be performed within the system of real numbers, !7{.

In !7{, the interval between any two real numbers contains infinitely many real
numbers. !7{ does not exist in a computer because there are only a finite amount
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230 Computer Arithmetic and Error Control

of real numbers within a computer's number system. This is a source of round­
off error. In computer memory, each number is stored in a location that consists
of a sign (±) plus a fixed number of digits. A discussion of how these digits
represent numbers is presented next.

NORMALIZED fLOATING-POINT NUMBER SYSTEM

A floating-point number system is characterized by four parameters:

~ = number base

t = precision

L, U = exponent range.

One can denote such a system by

F(~, t, L, U)

Each floating-point number, x#.o, in F is represented in the following way:

x = + (d1 + d2 + + dt
) x Qe (A.I)

- ~ ~2 ..• W tJ

where

The fact that d1 #. 0 means that the floating-point number system is normalized.

ROUND-Off ERRORS

Next, consider the differences between computations in Fversus 9l, i.e., round­
off errors. The source of the differences lies in the fact that F is not closed under
the arithmetric operations of addition and multiplication (likewise, subtraction
and division); the sum or the product of two numbers in F may not necessarily
be an element of F. Hence, to stay in F, the computer replaces the "true" result
of an operation by an element of F, and this process produces some error.
Several cases can occur [A.4]:

1. The exponent e of the result can lie outside the range L ~ e ~ U,
(a) If e > U, overflow; for example, in F(2, 3, -1, 2) (A.2)

(0.100 x 22) x (0.110 X 22) = 0.110 X 2d

2 x 3 6
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(b) If e < L, underflow; for example, in F(2, 3, -1, 2)
(0.100 x 2°) x (0.110 x 2- 1

) = 0.110 X 22.
133
- X - -
2 8 16

(A.3)

2. The fractional part has more than t digits; for example, consider
F(2, 3, -1,2)
(0.110 x 2°) + (0.111 x 2°) = 0.1101 X 21

3 7 13- + - -
488

(notice that four digits are required to represent the fractional part). Sim­
ilarly,
(0.111 x 2°) x (0.110 x 2°) = 0.10101 x 2°

7 3 21
- x - -
8 4 32

(while this situation does not arise frequently in addition, it almost invariably
does with multiplication).

To define a result that can be represented in the machine, the computer selects
a nearby element of F. This can be done in two ways: rounding and chopping.
Suppose the "true" result of an operation is

(A.4)

then,

x 21 : rounding,

~0.110

X 21

------ 0.111

0.1101

1. Chopping: digits beyond (dt)/(W) are dropped.

2. Rounding:

(
d1 d2 dt + 1 + ~ 13) x Qe13 + 132 + ... + W+ 1 I-'

then chop.

For example, if one considers F(2, 3, -1, 2), the number

x 21 : chopping

while for

0.10101 x

.----.. 0.101

2°

--------.. 0.101

x 2°: chopping

x 2°: rounding.
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Both methods are commonly used on present-day computers. No matter the
method, there is some round-off error introduced by the process. If f(x) rep­
resents the machine representation of x, then

I
x -xf(X)I,a(x) = relative round-off error = X =1= 0

(A.S)

It can be shown that [A.1]

{
f3 1- t • chopping

a(x) ~ EPS = -21 Q.2~t.. d'
fJ roun mg

As an example, suppose X = 12.467 with F(lO, 4, - 50, 50) and chopping, then
f(x) = 0.1246 X 102 and

( )
= 112.467 - 0.1246 x 1021

a X 12.467

or

a(x) = 0.00056 < EPS = 10-3

For the same system with rounding, f(x) = 0.1247 X 10-2 and

a(x) = 0.00024 < EPS = ! X 10-3

One can see that the parameter EPS plays an important role in computation
with a floating-point number system. EPS is the machine epsilon and is defined
to be the smallest positive machine number such that

f(1 + EPS) > 1,

For example, for F(lO, 4, - 50, 50) with chopping

EPS = 10-3 since f(1 + 0.001) = 0.1001 x 101 > 1

and for rounding

EPS = 0.0005 since f(1 + 0.0005) = 0.1001 x 101 > 1

The machine epsilon is an indicator of the attainable accuracy in a floating-point
number system and can be used to determine the maximum achievable accuracy
of computation.

Take, as a specific example, an IBM 3032 and find EPS. Considering only
floating-point number systems, the IBM 3032 uses either of two base 16 systems:

1. Fs (16, 6, - 64, 63): single precision

2. Fv(16, 14, - 64, 63): extended precision

For chopping (EPS = f31-t):

EPS (single) = 9.54 x 10-7

EPS (extended) = 2.22 x 10-16
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If one executes the following algorithm (from Forsythe, Malcolm, and Moler
[A.1]):

OOUBLE PRECISION EPS, EPS1
EPS = 1.00

10 EPS = 0.500*EPS
EPS1 = EPS + 1.00
IF (EPS1. GT. 1.00) GO TO 10
WRITE (6,20) EPS

20 FORMAT (5X, 'THE MACHINE EPSILON = ',017.10)
STOP
ENO

the result is:

THE MACHINE EPSILON = 0.1110223025 0-15

This method of finding EPS can differ from the "true" EPS by at most a fraction
of 2 (EPS is continually halved in statement number 10). Notice that the cal­
culated value of EPS is half of the value predicted by EPS = 13 1 - t

, as one would
expect. In the course of carrying out a computer calculation of practical mag­
nitude, a very large number of arithmetic operations are performed, and the
errors can propagate. It is, therefore, wise to use the number system with the
greatest precision.

Another computational problem involving the inability of the computer to
represent numbers of 9( in F is shown below. Take for instance the number
0.1, which is used frequently in the partition of intervals, and consider whether
ten steps of length 0.1 are the same as one step of length 1.0. If one executes
the following algorithm on an IBM 3032:

OOUBLE PRECISION X
X = 0.00
N = 0
00 10 I = 1,10
X = X + 0.100

10 CONTINUE
IF (X.EQ.1.00) N = 1
WRITE(6,20) N,X

20 FORMAT (1 OX,' THE VALUE OF N = ',11,/,10X,
*' THE VALUE OF X = ',017.10)

STOP
ENO

the result is:

THE VALUE OF N = 0
THE VALUE OF X = 0.1000000000001.
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Since the printed value of x is exactly 1.0, then why is the value of N still equal
to zero? The answer to this question is as follows. The IBM computer operates
with 13 being a power of 2, and because of this, the number 0.1 cannot be exactly
represented in F (0.1 does not have a terminating expansion of ~). In fact,

10001100
10 = 2: + 22 + 23 + 24 + 25 + 26 + 27 + . . .

or

(0.1)10 = (0.000110011001100...)z = (0.19999.. ')16

The base 2 or base 16 representations are terminated after t digits since the IBM
chops when performing computations, and when ten of these representations of
0.1 are added together, the result is not exactly 1.0. This is why N was not set
equal to 1 in the above algorithm. Why then is the printed value of x equal to
1.0? The IBM machine chops when performing computations, but then rounds
on output. Therefore, it is the rounding procedure on output that sets x exactly
equal to 1.0.

The programmer must be aware of the subtleties discussed in this appendix
and many others, which are described in Chapter 2 of [A.1], for effective im­
plementation of computational algorithms.
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Newton's

(B.t)

Systems of nonlinear algebraic equations arise in the discretization of differential
equations. In this appendix, we illustrate a technique for solving systems of
nonlinear algebraic equations. More detailed discussions of this topic can be
found in [A.1-A.4].

Consider the set of nonlinear algebraic equations

fl(Yv Yz, ... ,Yn) = 0

f2(YV Yz,·· ·,Yn) = 0

which can be written as

i = 1,2, ... , n,

or

fey) = 0

We wish to find that set {YAi = 1, ... , n} that satisfies (B.1).
Although there are many ways to solve Eq. (B.1), the most common

method of practical use is Newton's method (or variants of it). In the case of a
single equation, the Newton method consists in linearizing the given equation
fey) = 0 by approximatingf(y) by

f(yO) + f' (yO)(y - yO) (B.2)
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where yO is believed to be close to the actual solution, and solving the linearized
equation

(B.3)

The value yl = yO + Lly is then accepted as a better approximation, and the
process is continued if necessary.

Now consider the system (B.l). If the ith equation is linearized, then

fi(Y~' y~, ... , y~) + ±[aa
ft

! (yJ+l - yn] = 0 (B.4)
J~ 1 YJ k

where k ;;;: O. The Jacobian is defined as

II<. = a/; I
IJ aYj k

and (B.4) can be written in matrix form as

Jk Lly = - f(yk)

where

The procedure is

1. Choose yO

2. Calculate Lly from (B.6)

3. Set yk+l = yk + Lly

4. Iterate on (2) and (3) until

IILlyllx < TOL

where

Ilxllx = max Xi

TOL = arbitrary

(B.S)

(B.6)

The convergence of the Newton method is proven in [A.2] under certain con­
ditions, and it is shown that the method converges quadratically, i.e.,

(B.7)

where

f(g*) = 0

and

m = a constant
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Gaussian Elimination

From the main body of this text one can see that all the methods for solving
differential equations can yield large sets of equations that can be formulated
into a matrix problem. Normally, these equations give rise to a matrix having
a special property in that a great many of its elements are zero. Such matrices
are called sparse. Typically, there is a pattern of zero and nonzero elements,
and special matrix methods have been developed to take these patterns into
consideration. In this appendix we begin by discussing a method for solving a
general linear system to equations and then proceed by outlining a method for
the tridiagonal matrix.

DENSE MATRIX

The standard method of solving a linear system of algebraic equations is to do
a lower-upper (LU) decomposition on the matrix, or Gaussian elimination.
Consider a dense (all elements are nonzero), nonsingular (all rows or columns
are independent) n x n matrix A such that

Ax = r
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where

A

x = [Xl> X2' ... , Xn]T

Gaussian Elimination

The 21 element can be made zero by multiplying the first row by - a 2l /a ll and
adding it to the second row. By multiplying the first row by - a3l/a ll and adding
to the third row, the 31 element becomes zero. Likewise,

all a12 al3 Xl r l

0
a 2l a 2l a2l

a 22 - -al2 a 23 - -al3 X2 r2 -rl
all all all

A[l]X 0
a3l a3l a3l

r[l]a32 - -al2 a33 - -al3 r3 - -rl
all all all

(C.2)

In sequel this is

a[k-l]
'-l

r[k] = r[k-l] _
I I

a[k-l]
i.k-l [k-l]

[k-l] a k - l •p
ak-l,k-l

a[k-l]
i.lc-l

[k-l] r k - l
alc-l,lc-l

(C.3)

(C.4)

Now make a column of zeros below the diagonal in the second column by doing
the same process as before

all a l2 a 13 .• Xl r l
0 a[2] a[2] .. X2

r[2]
22 23 2

0 0 a[2] . X 3
r[2]

33 3
A[2]x a[2] • (C.S)43
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Continue the procedure until the lower triangle is filled with zeros and set
A[n] = V.

Vx = A[n]x

o
(C.6)

Define L as the matrix with zeros in the upper triangle, ones on the diagonal,
and the scalar multiples used in the lower triangle to create V,

1
a 21

1 0
all

a 31
a[2]

L 32 1
all

- a[2]
(C.7)22

a[n-l]
n,n -1

a[n-l]
1n-l.n-l

If the unit diagonal is understood, then L and V can be stored in the same space
as A. The solution is now obtained by

r[n-l] _ a[n-l] x
n-l n-l.n n

a[n-l]
n-l,n 1

(C.S)

Xi

n

~
j=i+l

ali] x.
l,J J

It is possible to show that A = LV [A.5]. Thus (C.l) can be represented as

Ax = LVx = r (C.9)
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Notice that the sequence

Ly = r

Ux = y

gives (C.9) by multiplying (Cll) from the left by L to give

LUx = Ly

or

Gaussian Elimination

(C.IO)

(c.n)

(C.12)

Ax = LUx = r

One can think of Eq. (C.3) as the LV decomposition of A, Eq. (C.4) as the
forward substitution or the solution of (C.10), and Eq. (C.S) as the backward
elimination or the solution of (Cll). If a certain problem has a constant matrix
A but different right-hand sides r, then the matrix need only be decomposed
once and the iteration would only involve the forward and backward sweeps.

The number of multiplications and divisions needed to do one LV decom­
position and m-forward and backward sweeps for a dense matrix is

OPG.E. = ~ n3
- ~ n + mn2 (C.B)

This is fewer operations than it takes to calculate an inverse, so the decomposition
is more efficient. Notice that the decomposition is proportional to n3

, whereas
the forward and backward sweeps are proportional to n2

• For large n the de­
composition is a significant cost.

The only way that Gaussian elimination can become unstable and the
process break down when A is nonsingular is if ali-I] = 0 before performing
step i of the decomposition. Since the procedure is being performed on a com­
puter, round-off errors can cause ali-I] to be "close" to zero, likewise, causing
instabilities. Often this round-off error problem can be avoided by pivoting; that
is, find row s such that max \aJi- 11 \ = al~-l] and switch row s and row i before

i~I~n

performing the ith step. To avoid pivoting, we must impose that matrix A be
diagonally dominant:

n

laul ~ 2: laiA,
j~1

joFi

i = 1, ... , n, (C.14)

where the strict inequality must hold for at least one row. Condition (C.14)
insures that a!;-l] will not be "close" to zero, and therefore the Gaussian elim­
ination procedure is stable and does not require pivoting.
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TRIDIAGONAL MATRIX

241

The LV decomposition of a tridiagonal matrix is performed by Gaussian elim­
ination. A tridiagonal matrix can be written as

Xz

(C.IS)

The Thomas algorithm (Gaussian elimination which takes into account the form
of the matrix) is

with

and

r i - ai'Yi-l
'Yi = ,

hi - aiOl.i - 1

i = 2,3, ... , n

i = 2,3, ... , n

(C.16)

(C.17)

(C.lS)

(C.19)

i = n - 1, n - 2, ... , 1

(C.20)

(C.21)

Equations (C.18) and (C.19) are the LV decomposition and forward substitution,
and Eq. (C.21) is the backward elimination. The important point is that there
is no fill outside the tridiagonal matrix (structure remains the same). This is an
advantage in reducing the work and storage requirements. The operation count
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to solve m such systems of size n is

Gaussian Elimination

OPTD = 2(n - 1) + m(3n - 2),

which is a significant savings over mn3 of (C.13). Since this algorithm is a special
form of Gaussian elimination without pivoting, the procedure is stable only when
the matrix possesses diagonal dominance.
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In finite element methods the manner in which the approximate numerical so­
lution of a differential equation is represented affects the entire solution process.
Specifically, we would like to choose an approximating space of functions that
is easy to work with and is capable of approximating the solution accurately.
Such spaces exist, and bases for these spaces can be constructed by using B­
splines [A.6]. The authoritative text on this subject is by deBoor [A.6].

Before defining the B-splines, one must first understand the meaning of a
divided difference and a truncated power function. The first-order divided dif­
ference of a function g(X) , Xi ~ X ~ Xi+h is

(D.I)

while the higher-order divided difference (dd) formulas are given by recursion
formulas: the rth-order dd of g(x) on the points Xi' Xi + l' ... , Xi + r is

where

[ ]
g[Xi+h"" x i + r] - g[xi, ... , xi+r-d

g Xi' Xi+ h ... ,Xi+r =
Xi + r - Xi

(D.2)

g[Xi, ... , xi+r-d
g[Xi+1' ... , Xi+r-d - g[Xi, ..• , Xi+r-Z]

Xi + r - 1 - Xi
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Notice that the ith-order dd of a function is equal to its ith derivative at some
point times a constant. Next, define a truncated power function of order r
(degree = r - 1) as:

x~t

x<t
(D.3)

This function is illustrated in Figure D.1. The function and all of its derivatives
except for the (r - l)st are continuous [(r - l)th derivative is not continuous
at x = t]. Now, let the sequence tj , ••• , tj +r of r + 1 points be a nondecreasing
sequence and define

(D.4)

Thus, Zj(x) = 0, when tj , ••• , tj +r is not in an interval containing x, and when
the interval does contain x, Zj(x) is a linear combination of terms
<p~(t) = (x - t)':t-- 1 evaluated at t = tj , ••• , tj +n that is, the linear combination
that results from the dd's.

The ith B-spline of order k for the sequence t = {til i = 1, ... , k} (called
a knot sequence) is denoted by Bi,k,t and is defined by

(D.S)

If k and t are understood, then one can write B/x) for Bi,k,t(X). The main
properties of Bi(x) are:

1. Each B/x) = °when x < ti or x> ti+k (local support).
s

2. ~ B/x) = 1, specifically ~ Bi(x) = 1 for tq ~ x ~ ts •
all i i=q+l-k

3. Each B/x) satisfied°~ Bi(x) ~ 1 for ti ~ x ~ ti+k [normalized by the term
(ti+k - ti) in (D.S)] and possesses only one maximum.

fiGURE D.l

x
Truncated power function of order 1'.
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Consider the approximating space .0'1'(1T) (described in Chapter 3) and
whether the B-splines can serve as a basis for this space. Given the partition 1T,

a = Xl < X2 < ... < Xe+l = b, (D.6)

(D.7)

and the nonnegative integer sequence 11 = {Vj/j = 2, ... , e}, which denotes
the continuity at the breakpoints Xi> then the dimension of .0'1'(1T) is given by

e
N = dim ~(1T) = 2": (k - Vj)

j=l

with VI = O. If t = {tili = 1, ... , N + k} such that

tl :s;; t2 :s;; ... :s;; tk :s;; Xl (makes the first B-spline one at Xl)

(makes the last B-spline one at Xe+l)

and if for i = 2, ... , e, the number Xi occurs exactly k - Vi times in the set t,
then the sequence B;(x), i = 1, ... , N is a basis for ~(1T) [A.6]. Therefore
a function f(x) can be represented in ~(1T) by

N

f(x) = 2": cxiB;(X)
i=l

(D.9)

The B-splines have many computational features that are described in
[A.6]. For example, they are easy to evaluate. To evaluate a B-spline at a point
X, tj :s;; X :s;; tj+l , the following algorithm can be used [A.7] [let Bi,k,t(X) be
denoted by Bi,k and Z7(x) by Zi,k]:

Bi,l = 1

DO 20 e = 1, . . ., k - 1

Bi-e,e+l = 0

DO 10 j = 1, . . ., e
Zi+j-e,e = Bi+j-e,ef(ti+j - ti+l - e)

Bi+j-e-l,e+l = Bi+j-e-l,e+l + (ti+j - X)Zi+j-e,e

Bi+j-e,e+l = (x - ti+j-e)Zi+j-e,e

10 CONTINUE

20 CONTINUE

Thus B-splines of lower order are used to evaluate B-splines of higher order. A
complete set of algorithms for computing with B-splines is given by deBoor
[A.6].

A B-spline Bi,k,t(X) has support over [ti, ' .. , ti+k]' If each point Xi appears
only once in t, that is, Vi = k - 1, then the support is k subintervals, and the
B-spline has continuity of the k - 2 derivative and all lower-order derivatives.
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To decrease the continuity, one must increase the number of times Xi appears
in t (this also decreases the support). This loss in continuity results from the loss
in order of the dd's. To illustrate this point, consider the case of quadratic B­
splines (k = 3) corresponding to the knots {O, 1, 1,3,4,6,6, 6} on the partition
Xl = 1, Xz = 3, X3 = 4, X4 = 6. For this case notice that (k = 3, e = 3):

Vz = 2,

3

N = dim .fB{('TT) = L (3 - v) = 5
J=l

(0 ~ 1 ~ 1)

and

(6 ~ 6 ~ 6)

Therefore, there are five B-splines to be calculated, each of order 3. Figure D.2
(from [A.6]) illustrates these B-splines. From this figure one can see the normal
parabolic spline, B3(x), which comes from the fact that all the knots are distinct.
Also, the loss of continuity in the first derivative is illustrated, for example,
Bz(x) at X = 1 due to the repetition of Xl'

When using B-splines as the basis functions for finite element methods,
one specifies the order k and the knot sequence. From this information, one
can calculate the basis if continuity in all derivatives of order lower than the
order of the differential equation is assumed.

B""~
B21"l_£--~__-----=",,---- ~

B,"'l-----===-------=----+
B4(X)1L- ~"""_______----"'_~

BS'" 1--'-_--'----"-,L-=:.----,---+!

KNOTS

0,1,1,3

1,1,3,4

1,3,4,6

3,4,6,6

4,6,6,6

3 4 6

x
FIGURE D.2 Illustration of B.Splines. Adapted from Carl de Boor, A Practical Guide
to Splines, copyright © t 978, p. t t 2. Reprinted by permission of Springer.Verlag,
Heidelberg, and the author.



APPENDIX

Iterative Matrix

Consider the solution of the linear algebraic system

Ax = b (E.1)

where A is a given real N x N matrix, b is a given N component vector, and x
is the unknown vector to be determined. In this appendix we are concerned
with systems in which N is large and A is sparse. Linear systems of this type
arise from the numerical solution of partial differential equations.

After discretizing a partial differential equation by either finite difference
or finite element techniques, one is faced with the task of solving a large sparse
system of linear equations of form (E.1). Two general procedures used to solve
systems of this nature are direct and iterative methods. Direct methods are those
that, in the absence of round-off errors, yield the exact solution in a finite number
of arithmetic operations. An example of a direct method is Gaussian elimination.
Iterative methods are those that start with an initial guess for the solution and
that, by applying a suitably chosen algorithm, lead to better approximations. In
general, iterative methods require less storage and fewer arithmetic operations
than direct methods for large sparse systems (for a comparison of direct and
iterative methods, see [A.8]).

An iterative method for the solution of linear systems is obtained by split­
ting the matrix A into two parts, say

A=S-T

To solve (E.1) define a sequence of vectors xe by

(E.2)

e = 0,1, . (E.3)
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where XO is specified. If the sequence of vectors converges, then the limit will
be a solution of (E.1).

There are three common splittings of A. The first is known as the point
Jacobi method and is

S=D

T=D-A
(E.4)

where the matrix D is the diagonal matrix whose main diagonal is that of A. In
component form the point Jacobi method is

l~i~N, e~o (E.5)

An obvious necessary condition for (E.5) to work is au 1= O. If A is diagonally
dominant, then the point Jacobi method converges [A.3]. Examination of (E.5)
shows that one must save all the components of xe while computing xe+ 1

• The
Gauss-Seidel method does not possess this storage requirement. The matrix
splitting equations for the Gauss-Seidel method are

S=D+L

T = -U

(E.6)

where D is as before, and U and L are strictly upper and lower triangular matrices,
respectively. In component form this method is

i-I a.. Nab
xe+1 = - 2: 3. Xf+l - 2: -!!. xf + -.!.,

I j=1 aii J j=i+l aii aii

1 ~ i ~ N, e~ o. (E.7)

As with the point Jacobi method, A must be diagonally dominant for the Gauss­
Seidel method to converge [A.3]. Also, in most practical problems the Gauss­
Seidel method converges faster than the point Jacobi method. The third common
method is closely related to the Gauss-Seidel method. Let the vector xe+ 1 be
defined by

i-I a Nab.
2: -!!. xf + 1 - 2: -!!. xJ + -'-,
j~1 au j~i+l au au

1 ~ i ~ N, e~ 0 (E.8)

from which xe+ 1 is obtained as

Xf+l = xf + W(if+l - xi)
or

Xf+l = (1 - w)xf + Wif+l (E.9)

The constant w, 1 ~ w ~ 2, is called the relaxation parameter, and is chosen to
accelerate the convergence. Equations (E.8) and (E.9) can be combined to give

b· }+ -'- - xf
aii

1 ~ i ~ N, e ~ 0 (E.I0)
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Notice that if w = 1, the method is the Gauss-Seidel method. Equation (E.lO)
can be written in the split matrix notation as

1
S = - [D + wL]

w

1
T = - [(1 - w)D - wU]

w

(E.ll)

where D, L, and U are as previously defined. This method is called successive
over relaxation (SOR). In the practical use of SOR, finding the optimal w is of
major importance. Adaptive procedures have been developed for the automatic
determination of w as the iterative procedure is being carried out (see, for
example [A9]).

Computer packages are available for the solution of large, sparse linear
systems of algebraic equations. One package, ITPACK [AlO], contains re­
search-oriented programs that implement iterative methods.
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