Date:

Unit 6 Test Review

1. Judging by appearance, classify the figure in as many ways as possible.

(All angles are right angles.)

rectangle, square, quadrilateral, parallelogram, rhombus

- rectangle, square, parallelogram
- rhombus, trapezoid, quadrilateral, square C.
- square, rectangle, quadrilateral d.
- 2. Find the values of the variables and the lengths of the sides of this kite.

$$2 \times +2 = \times +$$

 $X = 9$
 $= 13$

parallelogram

$$x = 9, y = 13; 11, 20$$

b. rectangle

- What is the most precise name for quadrilateral ABCD with vertices A(-5, 2), B(-3, 6), C(6, 6), and D(4, 2)?
- 4. Which statement is true?

quadrilateral

- All quadrilaterals are rectangles.
- All quadrilaterals are squares.
- C, All rectangles are quadrilaterals.
- All quadrilaterals are parallelograms.

Which Venn diagram is NOT correct?

ABCD is a parallelogram. If $m\angle CDA = 66$, then $m\angle BCD =$

- 66
- 124
- 114
- d. 132

- ABCD is a parallelogram. If $m\angle DAB = 115$, then $m\angle BCD = \frac{7}{15}$
 - b. 65
- 75
- 115

8. LMNO is a parallelogram. If
$$NM = x + 15$$
 and $OL = 3x + 5$, find the value of x and then find NM and OL.

$$X+15 = 3x+5$$
 NM=20
 $10 = 2X$ OL=20
 $5 = X$

9. For the parallelogram, if
$$m\angle 2 = 5x - 28$$
 and $m\angle 4 = 3x - 10$, find $m\angle 3$. The diagram is not to scale.

12. In the parallelogram,
$$m\angle KLO = 68$$
 and $m\angle MLO = 61$. Find $m\angle KJM$. The diagram is not to scale.

13. In parallelogram
$$DEFG$$
, $DH = x + 3$, $HF = 3y$, $GH = 4x - 5$, and $HE = 2y + 3$. Find the values of x and y. The diagram is not to scale.

$$x + 3 = 3y - 3$$
 $x = 3y - 3$
 $y = 3$

$$X+3=3y$$

 $X=3y-3$
 $=6-3$
 $X=3$
 $=6-3$
 $X=3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6-3$
 $=6$

Determine whether the following are always, sometimes or never true:

- 14. The diagonals of a parallelogram are perpendicular. Sometimes (if it's a rhombus)
- 15. Both pairs of opposite angles of a trapezoid are congruent. Never (it would have to be a)
- 16. Find (AM) in the parallelogram if PN=9 and AO=4. The diagram is not to scale.

17. Find values of x and y for which ABCD must be a parallelogram. The diagram is not to scale.

$$4x-2 = x+28$$

 $3x = 30$
 $x = 10$

$$4y-7 = y+14$$

Based on the information in the diagram, can you prove that the figure is a parallelogram? Explain.

- Yes; both pairs of opposite sides are congruent.
- Yes; opposite angles are congruent,
 - No; you cannot prove that the quadrilateral is a parallelogram.
 - Yes; two opposite sides are both parallel and congruent.
- 19. Based on the information given, can you determine that the quadrilateral must be a parallelogram? Explain.

Given: $\overline{XY} \cong \overline{WZ}$ and $\overline{XW} \cong \overline{YZ}$

- No; you cannot determine that the quadrilateral is a parallelogram.
- Yes; two opposite sides are both parallel and congruent.
- Yes; opposite sides are congruent.
 - Yes; diagonals of a parallelogram bisect each other.
- 20. If ON = 5x 4, LM = 4x + 7, NM = x 7, and OL = 2y 6, find the values of x and y for which LMNO must be a parallelogram. The diagram is not to scale.

$$5x-4 = 4x+7$$

$$2y-6 = 11$$
 $2y-6 = 4$
 $2y = 10$
 $y = 5$

21. If $m\angle B = m\angle D = 41$, find $m\angle C$ so that quadrilateral ABCD is a parallelogram. The diagram is not to scale.

Which statement can you use to conclude that quadrilateral XYZW is a parallelogram?

(a.)
$$\overline{XW} \cong \overline{YZ}$$
 and $\overline{XY} \cong \overline{WZ}$
b. $\overline{XW} \cong \overline{WZ}$ and $\overline{XY} \cong \overline{WZ}$

c.
$$\overline{YN} = \overline{NX}$$
 and $\overline{XN} = \overline{NY}$
d. $\overline{XW} \cong \overline{YZ}$ and $\overline{XY} \cong \overline{YZ}$

23. In the rhombus, $m \angle 1 = 6x$, $m \angle 2 = x + y$, and $m \angle 3 = 18z$. Find the value of each variable. The diagram is not to scale.

$$6x = 90$$

$$x = 15$$

$$\chi + y = 90$$
 $15 + y = 90$

$$6x = 90$$
 $x+y=90$ $18z=90$
 $x=15$ $y=75$ $y=75$

24. DEFG is a rectangle. DF = 5x - 5 and EG = x + 11. Find the value of x and the length of each diagonal.

a.
$$x = 4$$
, $DF = 13$, $EG = 13$

$$x = 4$$
, $DF = 15$, $EG = 15$
d. $x = 2$, $DF = 13$, $EG = 13$

b.
$$x = 4$$
, $DF = 15$, $EG = 18$

d.
$$x = 2$$
, $DF = 13$, $EG = 13$

$$5x-5 = x+11$$

 $4x = 16$ $x = 4$

25. Which description does NOT guarantee that a quadrilateral is a parallelogram?

- a a quadrilateral with both pairs of opposite sides congruent
- b. a quadrilateral with the diagonals bisecting each other
 - a quadrilateral with consecutive angles supplementary
- quadrilateral with two opposite sides parallel
- 26. Find the values of a and b. The diagram is not to scale.

$$180 - 36 = 144^{\circ} = \alpha$$

$$180 - 113 = 6 = 67^{\circ}$$

27. The isosceles trapezoid is part of an isosceles triangle with a 46° vertex angle. What is the measure of an acute base angle of the trapezoid? Of an obtuse base angle? The diagram is not to scale.

$$\frac{180 - 46}{2} = \frac{134}{2} = 67$$

28. Find $m \angle 1$ and $m \angle 3$ in the kite. The diagram is not to scale.

29. Which description does NOT guarantee that a trapezoid is isosceles?

- a rate trap.
- engruent bases could be be congruent diagonals
- c both pairs of base angles congruent
- d. congruent legs
- 30. $\angle J$ and $\angle M$ are base angles of isosceles trapezoid JKLM. If $m\angle J = 20x + 9$, and $m\angle M = 14x + 15$, find $m\angle K$.

- (a.) 151

$$180 - 29$$

$$20x+9 = 14x+15$$

 $6x = 6$
 $v = 1$

$$MLJ=29$$

31. $m\angle R = 130$ and $m\angle S = 80$. Find $m\angle T$. The diagram is not to scale.

- 32. One side of a kite is 8 cm less than four times the length of another side. The perimeter of the kite is 78 cm. Find the lengths of the sides of the kite.
 - (a.) 9.4 cm and 29.6 cm
 - b. 23.5 cm and 86 cm

- 23.5 cm
- d. 9.4 cm

4x-8 = 29.6 cm

For the parallelogram, find coordinates for P without using any new variables.

34. In the coordinate plane, three vertices of rectangle HIJK are H(0, 0), I(0, d), and K(e, 0). What are the

$$d. \left(\frac{d}{2}, \frac{e}{2}\right)$$

35. Which diagram shows the most useful positioning of a square in the first quadrant of a coordinate plane? a. b. đ.

(1, 0)

36. Which diagram shows the most useful positioning and accurate labeling of a kite in the coordinate plane?

- Isosceles trapezoid ABCD has legs \overline{AB} and \overline{CD} , and base \overline{BC} . If AB = 4y 3, BC = 3y 4, and CD = 5y 10, find the value of y.

$$4y-3 = 5y-10$$
 $7 = y$

39. For parallelogram PQRS, find the values of x and y. Then find PT, TR, ST, and TQ. The diagram is not to scale.

$$2x-1=y-1$$
 $2x = 1$
 $y=6$

$$2x-1=y-1$$
 $X+4=3y-11$
 $2x = y = 6$ $X+4=3(2x)-11$
 $PT=5$ $X+4=(ex-11)$
 $TR=5$ $15=5x$
 $ST=7$ $3=x$

Rhombus
$$180 - 118 = 62$$
 $62 = 31$

Rhombus
$$180 - 118 = 62$$
 $62 = 31$
 $62 = 31$
 $= 31$

Complete the following proofs:

41. Given:
$$\overline{SV} \cong \overline{TU}$$
 and $\overline{SV} \parallel \overline{TU}$
Prove: $VX = XT$

2. If one prid opp.

Sides is ≈ 411, the
figure is a □.

3. Diagonals of
a □ bisect

each other.

42. Show that the quadrilateral with vertices A(0, -6), B(4, -5), C(6, 3), and D(2, 2) is a parallelogram.

Since the slopes of opp. sides are =, The opp. sides are 11. Therefore ABCD 15 a parallel ogram.

43 Given: NRSM is a parallelogram

Statements

Keasons

 $\angle 4 \cong \angle 5$

Prove: ERAM is a parallelogram | NRSIN is a -

L4 = L5

2. NR IIMS

3. ∠3 = ∠8

4. LNG LS

5. LIZ L8

At This is only one way

6. 41 = 43

to amplete

7. EM 11 RA

this proof. There are many.

8. ERAM is a []

2. Def & 17 3. alt. Int. L's 4. opp. L's of a ∠ are =. 5. 3rd ∠ Th. for Co. Trans. Prop. 7. Conv. of act. 8. Det of 17

44. Complete the coordinates for rectangle *DHCP*. Then use coordinate geometry to prove the following statement: The diagonals of a rectangle are congruent (Theorem 6-11).

Given: rectangle DHCP

Prove: $\overline{DC} \cong \overline{HP}$

$$DC = \int (2a-0)^2 + (0-2b)^2$$

$$= \int (2a)^2 + (-2b)^2 = \int 4a^2 + 4b^2$$

 $(2a-0)^2 + (2b-0)^2 = \sqrt{4a^2 + 4b^2}$

 $\sqrt{(2\omega)^2+(2\omega)^2}$

Lince the distances are the