
Hacking WebAssembly Games
with Binary Instrumentation

WEBASSEMBLY 101

WASM
101

> Developers have done (and continue to do)
incredible work speeding up Javascript

> However, the dynamic nature of Javascript will
always be a roadblock

> WebAssembly provides a static, pre-compiled
binary format for performance intensive
applications

WASM
101

> WebAssembly "defines an instruction set and
binary format for an assembly-like architecture"

> WebAssembly is built to be targetable by existing
compilers and languages
> Finally we can write web applications in C!

WASM
USES

> WebAssembly video games are becoming very
common
> Look at any browser game website

(Newgrounds, Kongregate, etc)
> Unity3D and Unreal Engine 4 can now both target

WebAssembly
> This means there’s a lot of targets without a lot of

tools

WASM
USES

> WebAssembly is used for a lot of types of
applications, not just video games
> Retargeted desktop applications
> 3D applications
> Crypto miners
> ...etc

> These techniques are not video game specific —
video games are just the most fun target

WASM
REVERSING

> With WebAssembly, web RE has started to feel
more like “traditional” binary RE
> Back to the disassembler!

> A few tools support WebAssembly (mostly static
analysis)
> radare2
> JEB decompiler
> wabt (WebAssemby Binary Toolkit)

WASM
REVERSING

> Browser debugging capabilities for WASM are
pretty lacking
> No watchpoints
> No conditional breakpoints
> Lots of bugs

VIDEO
GAME

REVERSING

> Video games are a unique challenge when it
comes to RE

> Video game binaries are typically much larger and
more complex than other applications

> Video games are more performance intensive, and
performance impacts are more noticeable
> No one wants to play a game at 5 FPS

> With this in mind, I was looking for a tool like
Cheat Engine for WASM

CHEAT
ENGINE

> Cheat Engine (made by Dark Byte) is effectively a
specialized debugger for hacking video games

> Cheat Engine can:
> Search memory
> Modify and “freeze” memory
> Set watchpoints
> Inject/patch code

CHEAT ENGINE 101

We want to make our character invincible. We know our character
currently has 5 health

We start by searching the game’s memory for the value 5

Then we cause the value to change and search for the new value...

...and continue this process until we’ve found our health value in
memory

Now we can manipulate our health to heal ourselves

...or give ourselves more health

...or “freeze” our health so we can’t get hurt

This process can take a while and needs to be redone every time we
play. Ideally we want to permanently patch the game

We set a watchpoint on our health address, then trigger it

Now we know where health is decremented when we get hurt

...and we can patch it out

> Cheat Engine not only helps us hack games, it can
also be significant help in RE

> Using watchpoints we can associate a value in
memory to the code that affects it

> This is an invaluable time saver reverse
engineering large applications like video games

CHEAT
ENGINE

USES

CHEAT
ENGINE

> Since WASM doesn’t have watchpoints we can’t
directly implement Cheat Engine features

> Can we emulate watchpoint behavior without
“real” watchpoints?

EMULATING
WATCH
POINTS

> First attempt: Using the browser debugger
> Place a breakpoint at each load/store instruction

and check if the access affects our “watched”
address

EMULATING
WATCH
POINTS

> First attempt: Using the browser debugger
> Place a breakpoint at each load/store instruction

and check if the access affects our “watched”
address

> Way too slow — browser becomes unusable

EMULATING
WATCH
POINTS

> To emulate watchpoints, we want to inject code
into the binary at each memory load/store
instruction

> Injected code will check if this access affects the
memory area we are “watching”

> If so, trigger our breakpoint code
> To do all this, we need to employ some form of

binary instrumentation

BINARY
INSTRUMENTATION

> In a nutshell, binary instrumentation is the process
of manipulating an application binary to aid in
analysis

> A lot of cool binary instrumentation tools exist for
other types of binaries
> Frida
> DynamoRIO
> ...others I haven’t used

> There’s even some existing tools for WASM!

BINARY
INSTRUMENTATION

101

OTHER
TOOLS

> Wasabi (by Daniel Lehmann) is a very cool
instrumentation and analysis tool for WASM

> However, it does not exactly fit our needs
> Wasabi is written in Rust and intended to be run

from the terminal
> Wasabi does its analysis by injecting Javascript

> If we want to run a game at any decent FPS, we
need to call Javascript as infrequently as possible

OTHER
TOOLS

> WABT (WebAssembly Binary Toolkit) can parse
and (to some extent) modify WASM binaries

> It’s even been compiled to Javascript!
> Unfortunately, WABT’s parsing takes too long/too

much memory for most video game binaries

OTHER
TOOLS

> What we want is a tool that:
> Can instrument binaries from within the

browser
> Can handle large (40MB+) WASM binaries

quickly and without running out of memory

WAIL

> The “WebAssembly Instrumentation Library”
(WAIL) is my attempt at a solution to this problem

> WAIL is a Javascript library focused on making
targeted modifications to WASM binaries
> Can add entries to any specification-defined

section
> Can edit existing entries of sections
> Can add/remove sections

WAIL
PARSING

> WAIL uses a couple of tricks to modify binaries
significantly faster with less memory usage than
other libraries
> WAIL only parses sections/elements that are

necessary to perform the defined modifications
> WAIL parses binaries as a “stream”

STREAM
PARSING

> The normal way of parsing a binary involves
creating a “map” of all pieces that make up the
binary

> Once this map is created, you modify the pieces
as needed and stick everything back together

> This is convenient, but also slow and memory
intensive

STREAM
PARSING

> WAIL parses binaries as a “stream” — handling
and modifying each element as soon as it is read

> This is more efficient because we don’t need to
save each element of the entire binary

> Rather, we act on a single element at a time and
then “forget” about it and move to the next

PARSING
GOTCHAS

> There are a few downsides to this approach:
> The first is that the parser can never go

“backwards”
> Once we finish parsing a particular element, we

cannot go back and make changes to it
> To deal with this, we must define all our

modifications before we start parsing

PARSING
GOTCHAS

> In some cases, one addition to a binary will require
knowledge of another

> For instance, to insert a new function into a
WASM binary we must:
> Add an element to the TYPE section
> Add an element to the FUNCTION section that

references the new TYPE element
> Add an element to the CODE section

corresponding to the new FUNCTION element

PARSING
GOTCHAS

> WAIL uses a special grammar to deal with these
cases

> Each addition we make returns a “handle” to a
value that will be resolved when parsing

> This handle can be used in subsequent
modifications

> This allows us to perform complex modifications
to binaries while still defining everything up front

> The next gotcha: the function and global
variable tables

> Functions and globals are referenced by
index into the respective table

> The function table is built by taking all
imported functions, then appending all
internal functions

> The same goes for imported and internal
globals

INDEX 0

INDEX 1

INDEX 2

INDEX 3

INDEX 4

INDEX 5

INDEX 6

INDEX 7

INDEX 8

I
M
P
O
R
T
E
D

I
N
T
E
R
N
A
L

> Therefore, if we add a new imported
function or global, we’ve thrown off all
references to internal functions/globals

INDEX 0

INDEX 1

INDEX 2

INDEX 3

NEW ELEMENT
(INDEX 4)

INDEX 5

INDEX 6

INDEX 7

INDEX 8

I
M
P
O
R
T
E
D

I
N
T
E
R
N
A
L

> WAIL fixes this automatically by changing
affected entries in the following sections:
> EXPORT
> ELEMENT
> CODE
> START

INDEX 0

INDEX 1

INDEX 2

INDEX 3

NEW ELEMENT
(INDEX 4)

INDEX 5

INDEX 6

INDEX 7

INDEX 8

I
M
P
O
R
T
E
D

I
N
T
E
R
N
A
L

> First we create two new global variables
> One for the address we are watching
> One will hold two different “flags”

> Is watchpoint enabled?
> Size of value being watched

EMULATING
WATCH
POINTS

EMULATING
WATCH
POINTS

> Next, we add an IMPORT entry for a Javascript
function

> This function will only be called when our
watchpoint is triggered
> This makes performance impact minimal

EMULATING
WATCH
POINTS

> Next we create a new internal function
> As mentioned earlier, this requires adding to the

TYPE, FUNCTION, and CODE elements
> This new function will perform the actual logic of

our watchpoints
> Check if an access overlaps with our “watched”

address
> If it does, call the “trigger” function

EMULATING
WATCH
POINTS

> Finally, we place calls to our watchpoint function
before each memory load or store instruction

> As long as we’re careful about performance, we
can apply watchpoints to games without
noticeable drop in FPS

CETUS

> Cetus is a browser extension that implements
features of Cheat Engine for WASM

> Comes from the Latin word for “sea monster”
> Cetus intercepts and instruments WASM binaries

on the fly
> Adds read/write watchpoints
> Adds “freezing” functionality
> Can apply user-defined patches

CETUS DEMO

MORE
CETUS

> Cetus can also do “differential” searching
> Used to find values when an exact starting

value is not known
> Cetus also comes with a built-in speed hack

> Works by replacing performance.now() and
Date.now()

OTHER EXAMPLES

> WAIL can also be used to trace function
calls by placing code at the beginning of
each function

> This is slow, but still fairly useful

> WAIL can also replace a function entirely
by swapping out all references to it

> For instance, we can take a WASM
function and replace it with an imported
Javascript function

> This way we can effectively patch WASM
binaries using Javascript

> WAIL can take “internal” functions of a
binary and export them

> This allows us to call the internal function
on command with arbitrary arguments

ADDING
SYMBOLS

> Using WAIL we can add our own symbols to a
binary

> There are two ways this can be done:
> Add a “name” section to the binary with our

symbols
> Add an export entry for each function we want

to name

github.com/qwokka/wail github.com/qwokka/cetus

GAME HACKING
MONTAGE

