
1

Derivative-free online learning of inverse dynamics
models

Diego Romeres?, Mattia Zorzi†, Raffaello Camoriano‡�, Silvio Traversaro� and Alessandro Chiuso†

Abstract—This paper discusses online algorithms for inverse
dynamics modelling in robotics. Several model classes including
rigid body dynamics (RBD) models, data-driven models and
semiparametric models (which are a combination of the previous
two classes) are placed in a common framework. While model
classes used in the literature typically exploit joint velocities
and accelerations, which need to be approximated resorting
to numerical differentiation schemes, in this paper a new
“derivative-free” framework is proposed that does not require
this preprocessing step. An extensive experimental study with
real data from the right arm of the iCub robot is presented,
comparing different model classes and estimation procedures,
showing that the proposed “derivative-free” methods outperform
existing methodologies.

Index Terms—Inverse dynamics, Robotics, Rigid Body Dy-
namics, Learning, Online methods, Semiparametric models,
Derivative-free methods, Gaussian processes, Marginal Likeli-
hood optimisation

I. INTRODUCTION

Robotic platforms, such as industrial and service robots, are
becoming more and more popular and are prospected to per-
vade our everyday life in the near future. A key requirement for
such systems is that they should be able to safely interact with
the environment, possibly including humans, while performing
robustly and efficiently certain assigned tasks; in order to do
so, they have to adapt their behavior to variable conditions.

Among other technological challenges, this requires new
mathematical tools for data-driven modeling while accounting
for inherent uncertainty and changing conditions (learning).
While accomplishing user assigned tasks, the robotic system
acquires new data which needs to be processed online to adapt
these models.

In this paper we shall be concerned with online learning
of so called inverse dynamics models: these models have joint
trajectories as inputs and joint torques as outputs. They are
widely used for model-based control in robotic applications to
improve the tracking performances leading to high accuracy
and low control gains [1], [2], [3], [4]; see also the survey

This work has been supported by the FIRB project “Learning meets time”
(RBFR12M3AC) funded by MIUR.

? Mitsubishi Electric Research Labs (MERL), Cambridge, MA, USA (e-
mail: romeres@merl.com). Part of the work has been done at †
† Dept. of Information Engineering, University of

Padova, Via Gradenigo 6/b, 35131, Padova, Italy (e-mail:
{zorzimat,chiuso}@dei.unipd.it)
‡ LCSL - IIT@MIT, Massachusetts Institute of Technology, Cambridge,

MA 02139, USA
� iCub Facility, Istituto Italiano di Tecnolo-

gia, Via Morego 30, Genoa 16163, Italy (e-mail:
{raffaello.camoriano,silvio.traversaro}@iit.it)

[5] for a comprehensive overview. Inverse dynamics models
are also very important for detection and estimation of contact
forces, see for instance [6].

Typically, inverse dynamics models are obtained from first
principles, using the physics of rigid body dynamics (RBD),
[7]. This results in a parametric model that depends on some
physical parameters (masses, lengths, etc.). Unfortunately,
accurate knowledge of these physical parameters may often
not be available; for this reason an RBD model should be
estimated from data. The main advantage of the parametric
approach is that in principle it provides a global relationship
between inputs and outputs. However, the parametric model
strongly relies on several assumptions and may be rather
inaccurate when these assumptions are not perfectly satisfied
(frictions, nonlinearities, non perfectly rigid links, etc.), [8],
[7].

Alternatively, a nonparametric black-box model can be
estimated from experimental data using machine learning
techniques such as Gaussian Process regression [9]. The
nonparametric framework has the advantage of not requiring
unrealistic assumptions, but it comes at the price of being local
in nature: the model can only be expected to reflect the systems
dynamics in a “neighbourhood” of the trajectories already seen
during the learning phase. In the context of system identi-
fication for linear dynamical systems a comparison between
the capability of parametric and nonparametric approaches has
been presented in [10].

To exploit the advantages of both estimation techniques,
semiparametric models have been recently introduced as a
combination of RBD and nonparametric models, as for in-
stance in [11], [12].

In order to endow robotic systems with the ability to adapt
to changing conditions, algorithms should be able to process
data online, while taking advantage of knowledge already
acquired, in the spirit of so-called transfer learning [13], [14].
Feasibility of online learning strongly hinges on the possibility
to keep the computational complexity and memory storage
requirements bounded as the number of data grows with time.
To this propose several approaches have been proposed in
the literature [15], [16], [17], [18], [19], [20], [21] including
algorithms explicitly developed to process data online, such
as [22], which selects a sparse subset of training data points,
and the local Gaussian process regression approach proposed
in [2].

In [23] the complexity is kept constant approximating
the kernel function using the so-called “random features”,
[24], an approximation which will be exploited in this paper
following also [22], [25], [26]. It is worth noting that other

ar
X

iv
:1

80
9.

05
07

4v
1

 [
cs

.L
G

]
 1

3
Se

p
20

18

2

approximation techniques are available in the literature, for
instance: subset of data approximation, subset of regressors
approximation, conditional approximations, Nystrom approx-
imation and relevance vector machine approach, see [27].
Approximation of the kernel is equivalent to choosing a
finite (and fixed) basis expansion for the unknown model;
this expansion can be exploited to tackle estimation using
Kalman filtering techniques [28], [29] and [30], [31]. Online
nonparametric learning using Gaussian processes calls also for
online tuning of the kernel function, see for instance [32], [33]
where marginal likelihood optimisation is used in the context
of online system identification.

The main contributions of this paper are as follows:
• Various models (parametric, nonparametric and semi-

parametric) proposed in the literature [11], [12], [25]
are placed in a common framework through the so-
called semiparametric models. This common framework
is exploited to compare theoretically the semiparametric
model wtih RBD mean (SP) and the semiparametric with
RBD kernel (SPK) and to show (see Section III for
details) that the latter is to be preferred, complementing
the findings from the experimental evaluation. Online
learning is performed, following [25], exploiting the
random features approach.

• A new “derivative-free” modelling framework, which
avoids the use of numerical derivatives, is proposed.
In robot modelling, this framework contrasts the errors
introduced into the system by computing numerically the
velocities and accelerations starting from the measured
(noisy) positions.

• A thorough experimental study, based on real data from
the iCub robot, is undertaken; classical methods as well as
the newly proposed derivative-free methods are compared
and analysed, both in terms of adaptation capabilities
(how fast the algorithms can learn the dynamical models
after a change in the experiental conditions) as well as
in terms of steady state error. The experimental results
show that the derivative-free methods proposed in this
paper outperform classical schemes based on numerical
derivatives. In doing so Cross Validation and Marginal
Likelihood optimisation methods are compared for es-
timating the kernel hyperparametrs, suggesting that the
latter should be preferred to the former.

The paper is organized as follows. In Section II the problem
of inverse dynamics modeling is formalized. In Section III
parametric, nonparametric and semiparametric models are
introduced, while Section IV deals with kernel approximation
which allows for the use of online algorithms. Section V
introduces learning methods to avoid the use of numerical
derivatives. In Section VI the different online algorithms
are tested in the inverse dynamics estimation of the robotic
platform iCub. Finally, in Section VII conclusions and future
works are drawn.

II. PROBLEM STATEMENT

Assume we are given a robotic system with n degrees of
freedom (DoF), and denote with q(t) ∈ Rn, t ∈ R, the free

coordinates describing the robot configuration. Starting from
the laws of physics, which account for gravity, apparent forces,
frictions and so on, it would in principle be possible to write a
(direct) dynamical model which, having as inputs the torques
y(t) acting on the robot joints, outputs the trajectory of the
free coordinates (joint positions) q(t). This is the so called
“direct dynamics”.

However, for the purpose of control design, it is of interest to
know which torques y(t) should be applied in order to obtain
a certain trajectory q(t). This can be achieved for example
using inverse dynamics models, which can be exploited, e.g.,
to determine the feedforward joint torques yd(t) which should
be applied to follow a desired trajectory qd(t); see Figure 1.
Clearly, closing a high performance loop quests for an accurate

RobotController
qd(t)

yd(t)

q(t)

+

M

+
-

+

Fig. 1. Schematic for robot motion control.

inverse dynamics model M. While control is an important
application of inverse dynamics models, it is certainly not
their unique use. For instance, inverse dynamics models find
important applications in modelling, detecting and estimating
contact forces, see e.g. [6].

In practice an inverse dynamics model should be learned
from a set of measured data (y(t), q(t)), with t = 1 . . . N ; this
should be possibly performed online, updating the model as
new data become available. An overview of model structures
used for inverse dynamics modeling will be provided in
Section III and the approximations involved in online learning
discussed in Section IV.

Remark 2.1 (Causality of Inverse Dynamics Models):
Strictly speaking, such models are not proper: the present
torques depend on the joint positions, velocities and
accelerations which corresponds to having knowledge about
future temporal instants. In this paper we shall either
assume velocities and accelerations are given, or causal
approximations will be considered, where the present torques
only depend on present and past joint trajectories. If such
models have to be used to build feedforward control laws,
it is well possible that the future (desired) trajectories are
known and thus one can build, starting from data, non-causal
models. On the other hand, when online identification is to
be performed (which means that the underlying system is
time-varying) there is the delay in updating the time-varying
model. However, time-variability should be slow and, as such,
it should not be a significant drawback.

Remark 2.2 (Stability of Inverse Dynamics Models): A
model of a mechanical system as a map from joint torques
y(t) (the inputs) to joint angular velocities q̇(t) (the outputs),
is passive. In the linear case this implies that the transfer from
input to outputs is positive real and thus it is minimum phase.
Nonlinear extensions of this concept are indeed possible,

3

i.e. a passive nonlinear system has stable zero dynamics,
see e.g. [34]. Therefore, when considering inverse dynamics
for (passive) mechanical systems, stability is not an issue.
Stability of the inverse model may become critical when non
minimum-phase systems are considered (e.g. non-collocated
systems); it would thus be possible to consider acausal and
stable functions of the reference trajectory to build a (stable)
inverse dynamics model. This would be compatible with
online implementation provided the reference trajectory is
known in a finite and sufficiently long future horizon. We
shall not consider the latter case in this paper.

The typical assumption that joint positions q(t), joint ve-
locities q̇(t), and joint accelerations q̈(t) are measured con-
siderably simplifies the identification procedure; the latter are
stacked in the so-called “input location” vector

x(t) := [q>(t) q̇>(t) q̈>(t)]> ∈ Rm (1)

with m = 3n. Under this assumption, the inverse dynamics
of a rigid body can be written in a linear form once a
suitable overparametrization is introduced, see Section III-A.
Unfortunately, measuring velocities and accelerations is often
unrealistic and one has to resort to numerical differentiation
schemes, which may be prone to large errors in the presence
of measurement noise. In Section V, we shall analyze an
alternative model which only exploits the past history of the
joint positions. In this way,M is a model with the past history
of the joint positions as input and with the applied torques as
output. As we shall see this choice compares favourably with
standard approaches in the literature.

III. MODEL CLASSES

In this Section we briefly review the typical model classes
used to learn the inverse dynamics of a robot, that is the linear
parametric model, whose structure is given by the physics, the
nonparametric model, whose structure is learnt from the data,
and the semiparametric models which are a combination of the
first two models. Throughout this Section, Gaussian processes
are indexed in Rm, take values in Rn and are zero mean. The
symbol e(t) denotes a zero mean white Gaussian noise with
covariance matrix σ2In. Most of the models introduced in this
Section are equipped with a so-called hyperparameters vector.
We address the problem of estimating this vector in Section
IV.

A. Linear parametric model

The rigid body dynamics (RBD) of a robot is described by
the equation

y(t) = M(q(t))q̈(t) + C(q(t), q̇(t))q̇(t) +G(q(t)) (2)

where M(q(t)) is the inertia matrix of the robot, C(q(t), q̇(t))
the Coriolis and centripetal forces and G(q(t)) the gravity
forces, [7], [35]. The terms on the right hand side of (2) can
be rewritten as ψ>(x(t))π which is linear in the robot (base)
inertial parameters vector π ∈ Rp. The map ψ : Rm → Rp×n
is the known RBD regressor which is a nonlinear function of

the input locations vector described by x(t). Therefore, the
RBD model is equivalent to

y(t) = ψ>(x(t))π + e(t) (3)

where e(t) includes the nonlinearities of the robot that are not
modeled by the rigid body dynamics (e.g. actuator dynamics,
frictions, etc.).

Since the RBD model is physics-based, it should, in prin-
ciple, describe the robot dynamics for all the desired trajecto-
ries, leading to good generalization and global approximation
properties. A known issue of this model (see e.g., [8]) is
that the problem of determining π from measured data y(t)
is usually ill posed and the matrix ψ(x(t)) is rank deficient.
Possible solutions in system identification are either the design
of efficient experiments to collect data sufficiently rich to
excite the highest number of modes of the system or dedicated
experiments which are good to estimate parameters separately.

Another drawback of such model class is that it is prone
to undermodeling (as it may not capture non-linear friction
effects, effects of non-rigidities etc.) that may ultimately result
in severely biased estimated models.

This model will be denoted as “P” (Parametric).

B. Nonparametric Model

Following the “Gaussian Process” framework [9], the robot
inverse dynamics can be modeled postulating that:

y(t) = f(x(t)) + e(t) (4)

where f(·) is a Gaussian process with covariance function (i.e.
kernel function)1 cov[f(x(t)), f(x(s))] = K(x(t), x(s)):

K(x(t), x(s)) = ρ2KG(x(t), x(s))In. (5)

Several choices are possible for the kernel K (see e.g. [9],
[36]), which can be exploited to encode specific model struc-
tures. However, in this paper we shall only consider K to be
the Gaussian kernel2

KG(x(t), x(s)) = e−
‖x(t)−x(s)‖2

2τ (6)

where the hyperparameter τ is the kernel width. The latter is
a typical choice to correlate the input locations for learning
the inverse dynamics, [23], [11], [12]. ρ2 plays the role of
scaling factor. The vector η := [ρ2 τ σ2] is referred to as
hyperparameters vector. This model will be denoted as “NP”
(NonParametric).

This class of models is known to have high flexibility
and prediction performance (see e.g. [9]) since the dynamics
are extrapolated directly from the experimental data, without
making any unrealistic approximation on the physical system
(e.g. assuming linear frictions models, ignoring the dynamics

1To be precise, the kernel function and the covariance function coincide
up to the scaling factor. However, to ease the exposition we will follow this
abuse of terminology.

2 In order to avoid scaling issues, each component of the input location
vector x(t) is normalised to have unit standard deviation. Some preliminary
tests showed worse performance when using an independent width for each
component of x(t), which is probably to be attributed to overfitting due to
the large number of hyperparameters.

4

of the hydraulic actuators, etc.). Nevertheless, nonparametric
models deteriorate their performance when predicting unseen
data which are far (in the Euclidean metric) from those visited
in the training dataset.

C. Semiparametric model with RBD mean

The semiparametric model is an attempt to take advantage
of the global property of the parametric model as well as of
the flexibility of the nonparametric model; the first possibility
is to embed the former as a mean term into the latter. Thus,
the inverse dynamics is modeled as

y(t) = ψ>(x(t))π + f(x(t)) + e(t) (7)

where π is the vector of inertial parameters, ψ(x(t)) is
the RBD regressor and f(·) a Gaussian process with kernel
function as in (5).

At this point two alternatives are possible. The first and most
principled one is to treat π as an unknown hyperparameter.
Model (7) with this hypothesis will be denoted as “SP”
(SemiParametric). In this case η := [π ρ2 τ σ2].

A suboptimal alternative but often applied in the literature
is to assume that π is known, here denoted by π̂. This could
be possibly estimated using some preliminary experiment as in
[11] or estimated via Least Squares as in [25] or it can be given
from some expert knowledge. Model (7) with this hypothesis
will be denoted as “SP2”. In this case η := [ρ2 τ σ2].

D. Semiparametric model with RBD kernel

An alternative possibility for combining the parametric and
nonparametric models is to incorporate the RBD structure
in the kernel, [11]. The debate as to whether one should
account for prior knowledge as a mean term or as a structured
kernel is often encountered in Gaussian Process regression. We
shall come back to the relation between these two alternatives
in Proposition 3.1 and the discussion which follows that
proposition.

Therefore, the inverse dynamics is modeled as

y(t) = f(x(t)) + e(t) (8)

where f(·) is a Gaussian process with kernel function

K(x(t), x(s)) = γ2ψ(x(t))>ψ(x(s)) + ρ2KG(x(t), x(s))In.
(9)

This model will be denoted as “SPK” (SemiParametric Ker-
nel). The hyperparameters vector is η := [γ2 ρ2 τ σ2].

It is worth noting that in the case ρ = 0 we obtain the
parametric model (3) where the inertia parameters vector is
now modeled as a Gaussian random vector with zero mean
and covariance matrix γ2Ip.

Remark 3.1: Note that equation (9) is derived assuming π
is a zero mean Gaussian vector with variance γ2I . Of course
if prior knowledge was available on the expected scale of
the components of π, this could be included in the prior
variance introducing a diagonal scaling matrix D, so that
π ∼ N (0, γ2D).

We have also tested an alternative version in which the diag-
onal matrix γ2D has been estimated via Marginal Likelihood
together with all other hyperparameters. However the overall
performance is worse than when assuming π ∼ N (0, γI)
and estimating only γ, which is probably due to the fact that
this extra freedom results in a less favourable bias-variance
tradeoff.

The semiparametric model with RBD kernel (SPK) is
connected with the RBD mean (SP) model introduced in
Section III-C. To make this connection sharp we shall refer
to both the minimum variance estimators (see Section IV)
obtained with these models, as well as to the log-likelihood
functions which can be used to estimate the hyperparameters
(see Section IV-C). In particular, let us stack the available
data y(t), t = 1 . . . N in the vector y and stack cor-
respondingly the regressors ψ>(x(t)) and f(x(t)) in the
matrix Ψ and vector f , respectively. Moreover, we define
K(x,x) = cov[f , f], LSPK(y) and LSP (y) as the negative
marginal log-likelihoods −2 log pη(y) of data y as a function
of hyperparameters η for models SPK and SP, respectively,
and

L̂SP (y) := min
π
LSP (y) = LSP (y)|π=π̂WLS

(10)

as the profile marginal log-likelihood, where π̂WLS denotes a
suitable weighted least squares estimate of π (see Appendix A
for the precise definition of π̂WLS). The following proposition
establishes the link between the semiparametric with RBD
mean (SP) and semiparametric with RBD kernel (SPK) estima-
tors as the prior on π becomes uninformative (i.e. as γ2 →∞),
showing that also in this asymptotic regime the two models
induce a different marginal likelihood (see eq. (11)). The take-
home message of this proposition is that the SPK model better
handles uncertainties and should thus be preferred; a more in
depth discussion will be provided in Section III-E. The reader
is also referred to [37] where a similar discussion has been
provided in a completely different context.

Proposition 3.1: Consider the semiparametric models SP in
(7) and SPK in (8), their respective negative marginal log-
likelihoods LSP (y) and LSPK(y) and the profile marginal
likelihood L̂SP (y) defined in (10). Assume that ρ2, τ, σ2 are
fixed. Then, the following two statements hold:

(i) the minimum variance estimator of model SP and model
SPK coincide when γ2 →∞;

(ii) in the limiting case of γ2 →∞ the two log-likelihoods
LSPK(y) and L̂SP (y) differ in a nontrivial term
log(det(Ψ>R−1Ψ)) which leads to different location in
their minima. That is:

lim
γ2→∞

LSPK(y)− L̂SP (y)− p log γ2

= log(det(Ψ>R−1Ψ))
(11)

where R = K(x,x) + σ2I .
Proof: See Appendix A.

E. Discussion of Proposition 3.1

Proposition 3.1 shows that, when estimating hyperparam-
eters using the marginal likelihoods (as discussed in IV-C),
the two models (SP and SPK) are not equivalent even under

5

the assumption that a non informative prior on π is used,
i.e. γ2 → ∞. In fact, the two marginal likelihood functions
differ by a nontrivial term log(det(Ψ>R−1Ψ)) which may
change the location of the minima. In particular the latter term
accounts for the uncertainty in estimating the term π.

When the SP model is used, the hyperparameters σ2, ρ2, τ
are estimated minimising

L̂SP (y) = log(det(2πR))+(y−Ψπ̂WLS)>R−1(y−Ψπ̂WLS).

Doing so, σ2, ρ2, τ are chosen so as to fit with R the “sample”
covariance (y − Ψπ̂WLS)(y − Ψπ̂WLS)>. The drawback of
this choice is that the component of the variance along Ψ may
be underestimated (i.e. R too small along Ψ). On the contrary,
when optimising LSPK(y) the term

log(det(Ψ>R−1Ψ)) = −log(det(V ar{π̂WLS})
favour values of σ2, ρ2, τ which make log(det(V ar{π̂WLS})
large or, equivalently, R−1 small (i.e. R large) along the
direction of Ψ.

Clearly this goes in the opposite direction and avoids the
risk alluded at above (i.e. R too small along Ψ). Thus, to
summarise, the term log(det(Ψ>R−1Ψ)) serves as a correc-
tion which accounts for the uncertainty of π̂WLS . Thus it
is fair to say that model SPK deals more “cautiously” with
uncertainty than model SP. This is reflected in the simulation
results (see e.g. Figure 4) where SPK slightly outperforms SP
(both endowed with ML hyperparameters estimation, i.e. SP-
ML and SPK-ML).

IV. KERNEL APPROXIMATION AND ONLINE LEARNING

In this Section we review the online learning problem using
the model classes of Section III. Since it is well known how
to perform online learning using the parametric model (3), we
will focus on the other models. On the other hand, model (3)
can be understood as a special case, for instance, of model
(7). Online learning using nonparametric and semiparametric
models can be performed by applying the Gaussian regression
framework, [9]. In order to do so, two issues have to be faced
which will be addressed in Section IV-A and Section IV-C,
respectively. First, following [25], [26], an approximation of
the kernel is introduced to allow online learning with constant
complexity. Second, two commonly used approaches are very
briefly reviewed to estimate the hyperparametes vector η,
namely Cross Validation and Marginal Likelihood optimisa-
tion.

A. Kernel approximation
A typical route followed in machine learning is to approx-

imate the kernel with a low rank factorisation of the form

KG(x(t), x(s)) ≈ φ>(x(t))φ(x(s)) (12)

where φ : Rm → R2d is a suitable vector of “basis functions”
that have to be properly defined. Ideally, φ(x(t)) should be
built from the eigenfunctions of the kernel matrix; however
this optimal approximation is computationally unfeasible in
a recursive algorithm3. Therefore, we rely on the random

3An exception is the case when the eigenfunctions of the kernel are
available analytically.

features approximation proposed in [24] and exploited for
online inverse dynamics modelling in [23], [25], [26].

According to the random feature approximation, the basis
functions vector for the Gaussian kernel is defined as4

φ(x) =
1√
d

[
cos
(
ω>1 x
τ

)
. . . cos

(
ω>d x
τ

)
sin
(
ω>1 x
τ

)
. . . sin

(
ω>d x
τ

)]>
(13)

with wk ∼ p(ω) = exp(−‖ω‖2/2)/(
√

2π)m, k = 1, . . . , d.
Notice that if d→∞ then the approximation is almost surely
exact. As a consequence, the parameter d has to be chosen
to trade-off accuracy of the approximation and computational
complexity. Finally, it is worth noting that φ(x) depends on
the width of the Gaussian kernel τ .

Using the approximation in (12) for model (8) is equivalent
to consider the approximation

f(x(t)) ≈ ψ>(x(t))π +
[
φ>(x(t))⊗ In

]
πNP (14)

where π and πNP are independent Gaussian random vectors
with zero mean and covariance matrices γ2Ip and ρ2I2d,
respectively. Finally, by defining

ϕ>(x(t)) =
[
ψ>(x(t)) φ>(x(t))⊗ In

]
θ =

[
π> π>NP

]>
the approximation of model (8) is

y(t) = ϕ>(x(t))θ + e(t). (15)

It is possible to show that all the models in Section III can be
approximated with a model in the form (15). A derivation of
all these approximations can be found in [26].

B. Online learning

Next, we address the problem of online learning. For
simplicity of exposition, we consider the NP model in (4).
It is well known that, given data (y(t), x(t)), t = 1 . . . N , the
minimum variance estimator of f can also be expressed as the
solution of the Tikhonov regularization problem, [9],

f̂ = argmin
f∈H

1

σ2

N∑
t=1

‖y(t)− f(x(t))‖2 +
1

ρ2
‖f‖2H (16)

where f belongs to the reproducing kernel Hilbert space H,
[39], with reproducing kernel function KG and norm ‖ · ‖H.

It is not difficult to see that the Tikhonov regularization
problem (16) takes a similar form for all the models of Section
III. The solution of (16) takes the general form

f̂(x) =

N∑
t=1

αtK(x, x(t)) (17)

4This construction is based on the fact that any bounded and positive
semidefinite kernel is the Fourier transform of a non-negative and integrable
function (Bochner’s theorem), which thus induces a probability distribution
(the function p(ω) below equation (13)). See [24] for details. Another
interpretation is that p(ω) represents (up to a constant factor) the power
spectral density [38] of the stationary kernel KG.

6

where αt’s are uniquely determined from
(x(1), y(1)), . . . , (x(N), y(N)). Accordingly, the solution of
(16) is unique regardless of the excitation properties of x(t).
Moreover, it is possible to prove that αt’s take finite value, so
that f̂ maps bounded trajectories into bounded torques/forces.
It is worth noting that the number of coefficients αt coincides
with the number of the data points/samples, i.e. N , making
the estimator intractable for an online (recursive) solution.
On the other hand, using the approximated model (15),
the minimum variance estimator of θ is the solution to the
following Regularized Least Squares problem

θ̂ = argmin
θ

1

σ2

N∑
t=1

‖y(t)− ϕ>(x(t))θ‖2 + θ>Wθ (18)

where W is the inverse kernel matrix induced by the ap-
proximation. Its optimal solution can be computed recursively,
whenever new data becomes available, through the well known
Recursive Least Squares algorithm, see e.g [40, Chapter 11]
and [41]. In practice, the implementation of this algorithm uses
Cholesky-based updates [42], which have robust numerical
properties. The computational complexity of each update is
O(p̄2) where p̄ is the dimension of vector θ; the cost of
evaluating the model output is O(p̄) for each output and thus
O(p̄n) if n wrenches (torques/forces) are to be computed.
This computational complexity is compatible with online
implementation for state-of-the-art computation facilities.

C. Hyperparameter vector estimation

Nonparametric and semiparametric models are characterized
by the hyperparameters vector η, which is not known and
needs to be estimated from the data. Typically, two approaches
are considered to address this problem.

A first possible method is called Cross Validation (CV).
The goal is to obtain an estimate of the prediction capability
of the model on future data for different choices of the
hyperparameters vector η. Hold-out cross validation approach
is a possible version of CV, see e.g. [43, Chapter 6]. The
dataset is split in two, the training set and the validation set.
The optimal η is given by optimizing an estimate of the mean
squared error in the validation set

η̂CV = argmin
η∈Ω

M̂SE(η). (19)

In practice this approach is limited to the estimation of a small
number of hyperparameters since the minimization in (19) is
typically performed by gridding the search space Ω.

A second method is offered directly by the Gaussian regres-
sion framework. The marginal likelihood (ML), denoted by
pη(y), expresses the likelihood of the hyperparameters vector
η on the data y := [y(1)> . . . y(N)>]>, once the parameter
θ has been integrated out. Under model (15), the latter can
be computed in closed form, as discussed in [9]. To conclude,
the optimal η is then given by solving

η̂ML = argmax
η∈Ω

pη(y). (20)

In Section VI we shall thoroughly compare on real data
these two approaches for hyperparameter estimation. The ex-
perimental results, in this case, show that Marginal Likelihood
optimisation outperforms Cross Validation.

V. DERIVATIVE-FREE LEARNING

In Section III-A we have seen that the rigid body dynamics
suggests that the inverse dynamics is described by a map
from the input locations vector x(t) = [q>(t) q̇>(t) q̈>(t)]>

composed by joint positions-velocities-accelerations to the
joint torques applied to the n joints. This hypothesis has been
exploited in all the model classes in Section III. However,
it is often the case that joint velocities and accelerations
cannot be measured from the robot; rather they are estimated
using numerical differentiation schemes from the (noisy) mea-
surements of the joint positions. As a consequence, failure
to properly handle noise in the measurement may severely
hamper the final solution. This is a very well known and highly
discussed problem, see e.g., [7], [8], [44], [1], [5] and it is
usually partially addressed by ad-hoc filter design. However,
this requires users’ knowledge and experience in tuning the
filters’ parameters.

In this Section we propose a new methodology, which
avoids the use of numerical pre-differentiation issues, by
learning the inverse dynamics without using the estimated
velocities and accelerations. We shall thus assume that only
joint torques y(t) and joint positions q(t), t = 1 . . . N , are
measured. Let

q(t−) := [q>1 (t−) q>2 (t−) . . . q>n (t−)]> ∈ R(M+1)n, (21)

and

qi(t
−) := [q>i (t) q>i (t− 1) . . . q>i (t−M)]> ∈ RM+1,

(22)

be the vector of the past joint positions and the vector of the
past of the i-th joint position, respectively, in the time window
[t−M, t] where M , sufficiently large, has been fixed. Our aim
is to model the inverse dynamics as a map from the past joint
positions q(t−) to the joint torques. In particular, we shall
postulate that output y(t) can be written as a non-linear func-
tion of a “features vector” ξ(t) := [ξ>1 (t) ξ>2 (t) . . . ξ>n (t)]>,
defined as a linear function of past measurements qi(t−)

ξi(t) = Rqi(t
−) (23)

where R ∈ Rk×(M+1). Using the features (23) can be seen as
a reduced rank regression problem. We shall discuss later on
the choice of the number k (rows of R), i.e. the number of
features which are used by model (24) below5. The choice of
k could also be performed resorting to Bayesian arguments,
as for instance done in [45] in a similar low-rank regression
problem in the context of sparse-low rank dynamic network
models.

In particular, we shall model the inverse dynamics with the
NP model

y(t) = f(ξ(t)) + e(t) (24)

5For example, in the standard case, where we have the input locations
vector, the features are k = 3: joint positions, velocities and accelerations.

7

where f(·) is a Gaussian process with kernel function

K(ξ(s), ξ(t)) = ρ2KG(ξ(s), ξ(t))In. (25)

Then, the online learning algorithm is similar to the one
sketched in Section IV. The only difference is that the “stan-
dard” input locations vector x(t) in (1) is replaced with ξ(t)
in (23). Special cases which one may consider are R = I so
that ξ(t) in (23) coincides with the past measurements (i.e. no
dimensionally reduction is performed); as an alternative (we
shall come back to this later on) the rows of the matrix R may
compute, using causal filtering operations, an approximation of
the derivatives of q(t) (i.e. q̇(t), q̈(t) and possibly higher order
derivatives). We may thus say that the approach considered in
this section generalises what seen in the previous ones.

In the following, the matrix R in (23) will be described
by a set of hyperparameters that have to be estimated from
the data; for instance, for the NP model we shall have
η := [ρ2 τ σ2 δ>], where δ is the vector containing the
hyperparameters of R. Models P, SP, SP2 and SPK can be
derived in a similar way.

We shall now consider three possible choices (but of course
many others would be possible) for the structure of the matrix
R.

A. Derivative-free features

The simplest choice is to take R = IM+1 that is the
features vector coincides with the M past measured joint
positions. Thus k = M + 1. These features will be denoted
as “Derivative-Free” (DF). As an alternative it is possible to
choose

R =


r1 0 . . . 0

0
. . .

...
...

. . . 0
0 . . . 0 rM+1

 (26)

with ri ∈ R, i = 1, ..,M + 1. That is, the features vector
is a weighted version of the past measured joint positions.
These features will be denoted as “Derivative-Free Weighted”
(DFW).

B. Derivative-free features with reduced rank

An alternative choice is to take the number of features k
smaller than M + 1. For instance, the physics suggests that
the right number of features should be equal to 3 (position,
velocity, acceleration). Therefore, the role of the features is to
compress the useful information available in q(t−) so as to
render the learning procedure more robust. This means that

R =


r>1
r>2
...
r>k

 , ‖ri‖ = 1 (27)

where k � M , ri ∈ RM+1 and the vector of hyperpa-
rameters is δ := [r1, .., rk], i.e. R is fully parameterised. In
practice it makes also sense to impose some constraints in the

ri’s. In particular r>1 := [1 0 . . . 0] so that the first feature is
the measured position. It would also be reasonable to enforce
other constraints, for instance imposing that R is an orthogonal
projection. Notwithstanding its importance, we shall not delve
further into this issue.

The number of features k is chosen by the user and it will
be subject of empirical analysis in Section VI. These features
will be denoted as “Derivative-Free Reduced rank” (DFR).

Notice, that the features DFR include all the possible linear
and causal numerical differentiation and filtering operations.
The price of this generality is that a large number of hyper-
parameters has to be estimated, i.e. (k − 1)(M + 1). As it is
well known in optimization, this might lead to local minima
problems. In order to overcome this issue one might resort
to regularization techniques on the hyperparameters or to set
appropriate initial conditions.

C. Structured derivative-free input locations with reduced
rank

The last idea is to consider only k = 3 features: the first
will be the position q(t) while the other two will attempt to
estimate explicitly velocities and accelerations. We know that
the joint velocities and accelerations can be computed by a first
order backward difference and by a second order backward
difference, respectively, both filtered by a first order low pass
filter, that is

q̇i(t) ≈
1− z−1

Ts

1

1− β1z−1
qi(t)

q̈i(t) ≈
1− 2z−1 + z−2

T 2
s

1

1− β2z−1
qi(t)

where z−1 is the backward shift operator, Ts > 0 is the
sampling time and 0 < β1, β2 < 1 represent the poles of
the filters.

We resort to a partial fraction decomposition to rewrite the
above expressions as a function of q(s−), that is:

q̇i(t) ≈ α1qi(t) +

M∑
t=1

α1β
t−1
1 (β1 − 1)qi(s− t) (28)

q̈i(t) ≈ α2qi(t) + α2(β2 − 2)qi(s− 1)

+

M∑
t=2

α2β
t−2
2 (β2

2 − 2β2 + 1)qi(s− t) (29)

where α1 = 1/Ts and α2 = 1/T 2
s . Here, we exploited the fact

that a (stable) low-pass filter can be approximated by finite
impulse response (FIR) filter with length M , where the latter
is chosen sufficiently large. Accordingly, we have

R =

 1 0 0
α1 α1(β1 − 1) . . . α1β

t−1
1 (β1 − 1) . . .

α2 α2(β2 − 2) . . . α2β
t−2
2 (β2

2 − 2β2 + 1) . . .

 .
(30)

These features are denoted as “Derivative-Free Structured
Reduced rank” (DFSR) since the features have a structure to
resemble the joint positions, velocities and accelerations.

8

A nice property of this characterization is that the num-
ber of hyperparameters in R is small, in this case δ =
[α1, α2, β1, β2] ∈ R4, independently of the length of the past
temporal lags M , which can be arbitrarily chosen.

VI. INVERSE DYNAMICS LEARNING ON ICUB

In this section, we shall provide a thorough experimental
evaluation of all the models discussed in Section III, also
endowed with derivative-free input locations as discussed in
Section V, for online learning of the inverse dynamics; all the
algorithms have been tested using real data from the iCub
robot [46], which is a full-body humanoid robot with 53
degrees of freedom.

In this work we consider inverse dynamics modelling of
the right arm. Therefore the free coordinates q(s) ∈ R4

are the angular positions of the 3 shoulder joints and of
the elbow joint, for a total of 4 degrees of freedom. When
needed, joint positions have been numerically differentiated
to obtain joint velocities and accelerations by the Authors of
[25] using the standard adaptWinPolyEstimator6 module of
the open source iCub project. The differentiation procedure
consists in applying a time-varying linear filter based on the
work [47], that is actually implemented at a higher rate before
downsampling the signals.

The outputs y(s) ∈ R6, are the 3 forces and 3 torques com-
ponents measured by the six-axes force/torque (F/T) sensors
embedded in the shoulder of the iCub’s arm, see Figure 2.

Fig. 2. iCub’s right arm.

Notice that the measured forces/torques are not the applied
joint forces and torques and, as such, the model we learn
is not, strictly speaking, the inverse dynamics model. Yet,
as explained in [48], the feedforward joint torques can be
determined from components (forces and torques) of y(s).
Indeed, such model has been used in the literature as a
benchmark for the inverse dynamics learning, [23], [25].

We consider the two datasets used in [25], corresponding
to different trajectories of the end-effector. In the first one
(XY-dataset) the end-effector tracks circles in the XY plane of
radius 10cm at an approximate speed of 6m/s; in the second
one (XZ-dataset), the end-effector tracks similar circles but in
the XZ plane (the Z axis corresponds to the vertical direction,
parallel to the gravity force). The two circles are tracked using

6Available at
wiki.icub.org/brain/adaptWinPolyEstimator 8cpp source.html

the Cartesian controller proposed in [49]. Each dataset contains
approximately 8 minutes of data collected at a sampling rate
of 20Hz, for a total of 10000 points per dataset. One single
circle is completed by the robot in about 1.25 seconds, which
corresponds to 25 points.

We shall consider the models described in Section III
endowed with standard input locations or derivative-free fea-
tures and hyperparameters estimated via either the marginal
likelihood approach or Cross Validation7, the latter has been
discussed in [25]. For ease of exposition the models will be
denoted with a combination of the following shorthands:
• P, NP, SP, SP2, SPK: to indicate the model class,

as discussed in Section III, approximated according to
Section IV-A.

• ML, CV: to indicate the method used to estimate the
hyperparameters, according to Section IV-C.

• DF, DFW, DFR, DFSR: to indicate the different
derivative-free features, according to Section V. If noth-
ing is indicated, the standard input locations are consid-
ered.

For example, we shall denote “NP-ML”, the nonparametric
model (4) with hyperparameters estimated through maximiza-
tion of the marginal likelihood; instead “NP-ML-DFR” shall
denote the nonparametric model (24) with hyperparameters
estimated through maximization of the marginal likelihood and
derivative-free features defined in (27).

The estimation routine has been implemented using Matlab.
The RBD regressor ψ for the iCub’s right arm has been
computed using the library iDynTree, [50]. The Marginal
Likelihood has been optimized using the Matlab fmincon.m
function. The recursive least squares algorithms have been
implemented using the GURLS library, [51]. The results of all
CV methods are obtained using code which has been kindly
provided by the authors of [25].

For each model as above, the following online learning
scenario is considered (with reference to the general model
structure (15)):
• Initialization: The first 1000 points in XY-dataset are

used to estimate the hyperparameters with one of the two
techniques considered, say η̂ML and η̂CV , as well as to
compute an initial estimate of the parameter θ, say θ̂1000.

• Online Estimation - Stage 1: The remaining 9000 points
of the XY-dataset are used to update online the parameter
θ using the recursive least squares algorithm, thus obtain-
ing θ̂t, t = 1001, . . . , 10000. Let θ̂1

F = θ̂10000 be the final
value obtained by this procedure on the XY-dataset.

• Online Estimation - Stage 2: The XZ-dataset is split
in 5 sequential subsets (XZ-dataset-i, i = 1, .., 5) of
2000 points each (approximately 100 seconds). These
subsets are used to evaluate the performance of the online
estimators. For each subset, the estimator of θ is always
initialized with θ̂1

F and updated recursively on the 2000
data of each dataset XZ-dataset-i, i = 1, .., 5.

7As discussed in Section IV-C, using the Cross Validation methods is
unfeasible when the number of hyperparameters is large; therefore we have
not applied validation to the semiparametric model with RBD mean when
the mean is to be considered as an hyperparameter nor to the semiparametric
model with RBD kernel which has the extra parameter γ2.

9

Note that the estimators in Stage 2 are initialised using the final
estimate from Stage 1, which corresponds to a different motion
(XY-dataset). Therefore, the evaluation of the performance in
Stage 2 allows us to verify how well the estimators generalise
on new unseen data (initial part of the new dataset) as well as
how well they are able to learn adapting to a new experimental
condition (transient and steady state).

In order to measure the quality of the estimated models,
we evaluate the online prediction capability of the estimated
models using the following index:

ε
(k)
t =

∑T
s=1(y(k)(t+ s)− ŷ(k)(t+ s|t))2∑T

s=1(y(k)(t+ s))2
(31)

where ŷ(k)(t+s|t) is the estimate of the k-th output y(k)(t+ s)
at time t+s using the model M̂t estimated with data up to time
t. Note that the test data y(k)(t+ s), s = 1 . . . T , have not been
used to estimate the model M̂t, Thus, ε(k)(t) is an average
relative error on a future horizon of length T for the output
component k. In addition, εF (t) and εT (t) will be the average
values of ε(k)(t) for the 3 forces (k = 1, 2, 3) and the 3 torques
(k = 4, 5, 6), respectively. In all our simulations, T will be
equal to 25 (which roughly corresponds to one revolution of
the end effector in the XZ plane).

The index (31) can be motivated, for instance, by the
possible use of the model in the framework of model predictive
control [52], where the final performance of the controller
hinges on the predictive capabilities of the model on a given
future horizon (say T).

The experimental results will be first presented for models
that use numerical derivatives and then for the derivative-free
models; a comparison will be eventually provided between the
two. For each experiment, we show εF (t) and εT (t) averaged
over the 5 subsets XZ-Dataset-i, i = 1, .., 5.

A. Experimental results using numerical derivatives

In Figure 3 the behavior of εF (t) and εT (t) is presented.

0.05 1 10 98.75
Seconds

0.2
1

10

P
NP-CV
SP2-CV
NP-ML
SP2-ML
SP-ML
SPK-ML

0.05 1 10 98.75
Seconds

0.2
1

10

Fig. 3. Average (over the 5 subsets of 100 seconds each) of the relative
squared prediction errors εF (t) and εT (t), computed with T = 25 corre-
sponding to an horizon of 1.25 seconds. A log-log scale is used for ease of
readability.

The parametric model, P, exhibits a poor performance because

it describes only crude idealizations of the actual dynamics.
The algorithms based on Cross Validation (CV) perform
significantly worse in the first 60 seconds than those based on
Marginal Likelihood (ML) optimisation; this is not unexpected
as discussed in [53].

As expected, the nonparametric model, NP-ML, has worse
generalization performance (the error is larger in the first
few steps) but better adaptation capabilities with respect to
model P. The models with the best performance are SP-
ML and SPK-ML because they combine the benefit of the
parametric approach, i.e. generalization capabilities (good es-
timation performance at the beginning of the new dataset)
and of the nonparametric approach, i.e. learning capabilities
(good transient and steady state performance). The estimator
SP2-ML should partially inherit these benefits from the SP
structure, yet it shows an overall slightly worse performance.
This is due to the fact that the first (least squares) step, i.e. the
estimation of the linear model, is subject to a strong bias deriv-
ing from the unmodeled dynamics. Instead, a sound approach
is followed by SP-ML and SPK-ML in which the estimation of
the hyperparameters is performed jointly, avoiding such bias.
In the steady state these semiparametric models outperform the
others; yet the semiparametric SPK-ML performs best both in
terms of average as well as distribution, as shown in Figure 4
which reports the boxplots of εFt and εTt in “steady state”, i.e.

NP-CV SP2-CV NP-ML SP2-ML SP-ML SPK-ML

0.2

0.4

0.6

0.8

F
o
rc

e
s

NP-CV SP2-CV NP-ML SP2-ML SP-ML SPK-ML
0

0.5

1

T
o
rq

u
e
s

Fig. 4. Boxplots of the steady state (i.e. after 30 seconds, see also Figure
3) of the relative squared prediction errors εF (t) and εT (t), computed with
T = 25 corresponding to an horizon of 1.25 seconds.

after the first 30 seconds which is considered to be transient,
see Figure 3. The reader is also referred to the discussion in
Appendix III-E for a theoretical justification of this latter fact.

B. Experimental results with derivative-free features

The focus of this section is the analysis of the derivative-
free models, including the comparison with the models that
use numerical derivatives presented in Section VI-A.

The parameters M (number of past temporal lags used to
form the features vector ξ(t), see equations (26), (27) and (30),
and the number of features, k, in the reduced derivative-free
models are set as follows:

• M is fixed equal to 10; larger values have been tested
with no significant differences in performance.

10

• k is fixed to 3. A discussion on this choice as well as
some results with different choices can be found later in
this Section, see e.g. Figure 7.

The hyperparameters are estimated using marginal likeli-
hood (ML) maximization, since performing Cross Validation
via gridding in high dimension is computationally unfeasible.

In the first comparison, the nonparametric methods (NP-
ML) is compared to its derivative-free versions NP-ML-DF,
NP-ML-DFW, NP-ML-DFR and NP-ML-DFSR.

0.05 1 10 98.75

Seconds

0.1

1

13

NP-ML
NP-ML-DF
NP-ML-DFW
NP-ML-DFR
NP-ML-DFSR

0.05 1 10 98.75
Seconds

0.1

1

6

Fig. 5. Average (over the 5 subsets of 100 seconds each) of the relative
squared prediction errors εF (t) and εT (t), computed with T = 25 corre-
sponding to a horizon of 1.25 seconds. A log-log scale is used for ease of
readability.

In Figure 5 the averaged (over 5 realisations) time evolutions
of εF (t) and εT (t) are illustrated. All the nonparametric
derivative-free models perform comparably and outperform
NP-ML, both in transient (more significant) as well as in
steady state. The distribution of the steady state errors is shown
using boxplots in Figure 6. It is clear that all the derivative-
free methods outperform NP-ML, but also that NP-ML-DFR
(which uses a reduced rank derivative-free feature) is the
best performing method. This confirms that the dimensionality
reduction in equation (23) captures the relevant information
and allows to reduce the variance of the estimators.

As anticipated, the results in Figure 5 and Figure 6 are
obtained setting k = 3 in NP-ML-DSR. The reasons for this
choice is that, when using numerical differentiation, the input
location vector x(t) contains exactly 3 components (position,
velocity and acceleration) for each DoF. It is natural to ask
what happens as k changes. In Figure 7 the steady state
behaviour8 of εF (t) and of εT (t) is analysed as a function
of k = 1, 2, 3, 4.

It is apparent from Figure 7 that k = 1 and k = 2 are not
sufficient and lead to a considerable performance degradation;
in addition, no improvement is obtained increasing k beyond
3 (compare k = 3 and k = 4 in Figure 7). Larger values
(e.g. k = 5) have also been tested leading to similar results
and have been therefore omitted. The results in Figure 6 show
that the performance of NP-ML-DF (which uses R = I) is

8The transient behaviour has been omitted because it does not add much
information with respect to the steady state statistics.

NP-ML NP-ML-DF NP-ML-DFW NP-ML-DFR NP-ML-DFSR

0.1

0.2

0.3

F
o
rc

e
s

NP-ML NP-ML-DF NP-ML-DFW NP-ML-DFR NP-ML-DFSR

0.2

0.3

0.4

T
o
rq

u
e
s

Fig. 6. Boxplots of the steady state (i.e. after 30 seconds, see also Figure
5) of the relative squared prediction errors εF (t) and εT (t), computed with
T = 25 corresponding to a horizon of 1.25 seconds.

worse than NP-ML-DFR with k = 3. Overall this suggests
that, indeed, k = 3 is the optimal choice for this specific
application. NP-ML-DFR with k = 3 performs better than NP-
ML-DFSR. Considering the bias-variance trade-off dilemma,
the latter method introduces more bias and less variance than
the former, suggesting that, in these experimental results, the
bias introduced by NP-ML-DFSR is preponderant with respect
to the reduction of the variance.

NP-ML-DFR k1 NP-ML-DFR k2 NP-ML-DFR k3 NP-ML-DFR k4

0.1

0.2

0.3

F
o

rc
e

s

NP-ML-DFR k1 NP-ML-DFR k2 NP-ML-DFR k3 NP-ML-DFR k4

0.2

0.3

0.4

0.5

T
o

rq
u

e
s

Fig. 7. Boxplots of the steady state (i.e. after 30 seconds) of the relative
squared prediction errors εF (t) and εT (t), computed with T = 25 corre-
sponding to a horizon of 1.25 seconds.

Finally, a comparison between the estimators using nu-
merical derivatives and the derivative-free methods (and in
particular DFR) is provided for the semiparametric models.

In Figure 8 and Figure 9 the behaviour of εF (t) and of εT (t)
for the models SPK-ML-DFR and SPK-ML is illustrated.

The two semiparametric methods have similar initial per-
formance, but SPK-ML has a a better learning rate in the
transient. This behaviour might be attributed to the parametric
component of the model since in SPK-ML-DFR the physical
meaning of the features is lost. However, in steady state the
semiparametric derivative-free model outperforms the standard

11

0.05 1 10 98.75
Seconds

0.1

1

6
SPK-ML-DFR
SPK-ML

0.05 1 10 98.75
Seconds

0.2

1

6

Fig. 8. Average (over the 5 subsets of 100 seconds each) of the relative
squared prediction errors εF (t) and εT (t), computed with T = 25 corre-
sponding to a horizon of 1.25 seconds. A log-log scale is used for ease of
readability.

SPK-ML-DFR SPK-ML

0.1

0.15

0.2

F
o

rc
e

s

SPK-ML-DFR SPK-ML

0.15

0.2

0.25

0.3

T
o

rq
u

e
s

Fig. 9. Boxplots of the steady state (i.e. after 30 seconds, see also Figure
8) of the relative squared prediction errors εF (t) and εT (t), computed with
T = 25 corresponding to a horizon of 1.25 seconds.

model with an improvement of about 30% in terms of relative
error, see Figure 9.

The results obtained in this section give an empirical
evidence that learning the features directly from the past
history of the measured joint trajectories is a rather promising
direction.

C. Comparison among DFR-like models

Finally a comparison among the models with DFR features,
namely, P-ML-DFR, NP-ML-DFR, SP2-ML-DFR and SPK-
ML-DFR, is presented in Figures 10 and 11.

The transient performance can be analyzed by observing
the first 30 seconds in Figure 10. Similarly to P-ML, also the
parametric model P-ML-DFR has very poor performance (note
that the relative error is always larger than 1); the poor per-
formance of the parametric models seems to negatively affect
also the transient behaviour of the semiparametric models. As
a matter of fact, the transient performances of SP2-ML-DFR
and SPK-ML-DFR are very poor. The nonparametric model,
NP-ML-DFR, definitely outperforms all the other models in
terms of transient, suggesting that the parametric models are
probably inadequate to capture the dynamic behaviour.

0.05 1 10 98.75
Seconds

0.1

1

6

P-ML-DFR
NP-ML-DFR
SP2-ML-DFR
SPK-ML-DFR

0.05 1 10 98.75

Seconds

0.2

1

6

Fig. 10. Average (over the 5 subsets of 100 seconds each) of the
relative squared prediction errors εF (t) and εT (t), computed with T = 25
corresponding to a horizon of 1.25 seconds. A log-log scale is used for ease
of readability.

NP-ML-DFR SPK-ML-DFR

0.1

0.15

0.2

F
o
rc

e
s

NP-ML-DFR SPK-ML-DFR

0.15

0.2

0.25

T
o
rq

u
e
s

Fig. 11. Boxplots of the steady state (i.e. after 30 seconds, see also Figure
10) of the relative squared prediction errors εF (t) and εT (t), computed with
T = 25 corresponding to a horizon of 1.25 seconds.

The last 60 seconds of the experiment reported in Figure
10 and the boxplots in Figure 11 (only for NP-ML-DFR
and SPK-ML-DFR) illustrate the behaviour at steady state.
The suboptimal model SP2-ML-DFR is largely unsatisfactory,
which can be probably attributed to the bias error introduced
by the parametric component estimated by least squares.

D. Experimental results discussion

We can summarise as follows the findings of our extensive
experimental study:
• The derivative-free methods outperform the schemes

based on numerical differentiation; this is even more
remarkable if one recalls that the numerical derivatives
have been computed starting from data at a higher sam-
pling rate, i.e. they have practically used a richer dataset
(which ideally should have lead to better noise-rejection
properties). The main reason is probably to be attributed
to the fact that the derivatives on which the “classical”

12

models rely are computed using numerical differentiation
schemes from the measured positions, which are subject
to noise. However, the models (4), (7) and (8) do not
account for this noise and operate as if the measurements
were correct. Instead, the derivative free method performs
a reduction, which can be assimilated to computing
derivatives and accelerations, but this reduction is com-
puted as part of the modelling exercise, and as such its
effect on wrench prediction is directly accounted for.

• The transient performances of semiparametric models
strongly depend on the availability of an accurate (phys-
ical) model. Indeed, when using derivative-free methods
wherein the extracted features are not guaranteed to
approximate velocities and accelerations, the parametric
model loses physical meaning. This is confirmed by the
poor transient performance of P-ML-DFR, SP2-ML-DFR
and SPK-ML-DFR (see Figure 10).

• Depending on whether transient or steady state perfor-
mance is to be favoured, NP-ML-DFR or SPK-ML-DFR
should be preferred respectively (see Figures 10, 11).

VII. CONCLUSIONS

In this paper, several models and algorithms for online
inverse dynamics learning have been discussed and compared
in a common framework. Parametric and nonparametric meth-
ods have been considered, as well as semiparametric models
obtained by combining the two. Different strategies, Cross
Validation (CV) and Marginal Likelihood optimisation (ML),
for estimating the hyperparameters have been compared and
also new model structures which do not rely on pre-computed
numerical derivatives have been introduced.

All these algorithms have been thoroughly tested on real
data from the right arm of the iCub robot; the comparison has
been performed both in terms of transient behaviour (how fast
algorithms can adapt to a new experimental setup) as well as
steady state behaviour.

Overall our experimental validation suggests that:
• The non-parametric model (NP) and the Semiparametric

model with RBD mean (SP2) perform better when trained
using Marginal Likelihood optimisation rather than Cross
Validation algorithms available in [25];

• Semiparametric methods which exploit physical insight,
when using numerical derivatives, outperform purely non-
parametric structures;

• Derivative-free methods are definitely advantageous w.r.t.
ad-hoc methods which rely on numerical differentiation,
when applied to purely non-parametric model structures
(see e.g. NP-ML-DFR);

• Endowing semiparametric methods with derivative-free
schemes is not entirely trivial; these new features do not
yield improvements in the parametric model as much as
they do in the nonparametric one. As a result the transient
behaviour of SPK-ML-DFR is significantly worse than its
nonparametric counterpart; instead, SPK-ML-DFR out-
performs its nonparametric counterpart in steady state.

This last item calls for further research efforts in the future,
which would hopefully allow to fully exploit the benefits of

derivative-free methods coupled with semiparametric model
structures. Our future agenda includes further comparison with
parametric methods which account for physical consistency of
the parameters (see for instance [54]) as well as the implemen-
tation of control strategies which exploit the estimated models.

VIII. ACKNOWLEDGMENTS
The authors gratefully acknowledge the other teams

involved in the FIRB project “Learning meets time”
(RBFR12M3AC), in particular iCub Facility group (Francesco
Nori, Giorgio Metta) and Lorenzo Rosasco (LCSL-IIT@MIT)
for making their data and code available to us.

APPENDIX

A. Proof of Proposition 3.1
First, note that both the SP model and the SPK model can

be rewritten as

y(t) = ψ>(x(t))π + f(x(t)) + e(t) (32)

where :
1) π is an unknown but fixed quantity for the SP model;
2) π is a zero mean Gaussian random vector with covari-

ance matrix γ2Ip for the SPK model.
In both models, f(·) is a Gaussian process with kernel function

K(x(t), x(s)) = ρ2KG(x(t), x(s)).

A well known connection between Bayes and Fisher (i.e.
assuming the parameter π is an unknown but fixed quantity)
estimators, is that the latter can be obtained as a limiting case
of the former when:
• the parameter π is modeled as a zero mean Gaussian

vector with covariance matrix γ2Ip
• the variance of the prior distribution of π is let go to

infinity by letting γ2 →∞.
This proves the first part of the Proposition. We proceed to
prove the second part. Let us stack the available data y(t),
t = 1 . . . N in the vector y and stack correspondingly the
regressors ψ>(x(t)) and f(x(t)) in the matrix Ψ and vector
f , respectively, so that models (32) can be written as

y = Ψπ + f + e (33)

where e is defined with the same rule as y. Moreover, we
define K(x,x) = cov[f , f] and K(·,x) = cov[f(·), f]. The
minimum variance estimators of π and f under 2) and given
ρ2, σ2, τ , are:

π̂ = cov[π,y]Var−1[y]y

= γ2Ψ>
(
γ2ΨΨ> + K(x,x) + σ2I

)−1
y (34)

f̂(·) = cov[f(·),y]Var−1[y]y

= K(·,x)
(
γ2ΨΨ> + K(x,x) + σ2I

)−1
y.

Defining R := K(x,x) + σ2I and using the matrix inversion
lemma we have:(

γ2ΨΨ> + K(x,x) + σ2I
)−1

=
(
γ2ΨΨ> +R

)−1

= R−1 −R−1Ψ
(
Ψ>R−1Ψ + γ−2I

)−1
Ψ>R−1

13

so that, from (34)

π̂ = γ2
(
I −Ψ>R−1Ψ

(
Ψ>R−1Ψ + γ−2I

)−1
)

Ψ>R−1y

=
(
Ψ>R−1Ψ + γ−2I

)−1
Ψ>R−1y,

and similarly

f̂(·) = K(·,x)R−1
(
I −Ψ

(
Ψ>R−1Ψ + γ−2I

)−1
Ψ>R−1

)
y

= K(·,x)R−1[y −Ψπ̂].

Clearly, as γ2 →∞, we have that π̂ converges to the weighted
least squares estimate

π̂WLS =
(
Ψ>R−1Ψ

)−1
Ψ>R−1y (35)

and f̂ converges to

f̂(·) = K(·,x)R−1[y −Ψπ̂WLS].

On the other hand the marginal likelihood function for
model (33), under 1), i.e. when π is considered as an unknown
parameter, has the form:

LSP (y) = −2log (pη(y))
= log(det(2πR)) + (y −Ψπ)>R−1(y −Ψπ).

When ρ2, σ2, τ are kept fixed, the minimization with respect
to π can be performed in closed form, and yields exactly the
weighted least squares solution (35). However, even for γ2 →
∞, the marginal likelihoods of y given the hyperparameters
ρ, σ2, τ under 1) and 2) are different. In fact, if 1) is postulated,
and π is solved as above, one obtains the profile marginal log-
likelihood L̂SP (y) := LSP (y)|π=π̂WLS

L̂SP (y) = log(det(2πR))+(y−Ψπ̂WLS)>R−1(y−Ψπ̂WLS)

where the hyperparameters ρ2, σ2, τ are hidden in the defini-
tion of R = K(x,x) + σ2I .

Instead, if 2) is postulated, the marginal log-likelihood takes
the form

LSPK(y) = log(det(2π(γ2ΨΨ>+R)))+y>(γ2ΨΨ>+R)−1y.

Using, as above, the matrix inversion Lemma on (γ2ΨΨ> +
R), the Sylvester determinant identity and defining π̂ :=
(Ψ>R−1Ψ + γ−2I)−1ΨR−1y, we obtain

LSPK(y) = log(det(2πR)) + log(det(Ip + γ2Ψ>R−1Ψ))

+ (y −Ψπ̂)>R−1(y −Ψπ̂)

+ π̂>Ψ>R−1(y −Ψπ̂).

As γ2 → ∞ we have that π̂ → π̂WLS and π̂>Ψ>R−1(y −
Ψπ̂)→ 0 so that9

LSPK(y) ≈ log(det(2πR)) + log(det(Ip + γ2Ψ>R−1Ψ))

+ (y −Ψπ̂WLS)>R−1(y −Ψπ̂WLS).

The second term log(det(Ip + γ2Ψ>R−1Ψ)) can be manipu-
lated as follows:

log(det(Ip + γ2Ψ>R−1Ψ))

= log(det(γ2Ip)) + log(det(γ−2Ip + Ψ>R−1Ψ))

≈ p log γ2 + log(det(Ψ>R−1Ψ))

9The symbol ≈ denotes equality in the limit as γ →∞.

where the last approximation clearly holds when γ2 → ∞.
Inserting the last expression in LSPK(y) we obtain that

LSPK(y) ≈ log(det(2πR)) + plogγ2 + log(det(Ψ>R−1Ψ))
+(y −Ψπ̂WLS)>R−1(y −Ψπ̂WLS)

≈ L̂SP (y) + log(det(Ψ>R−1Ψ)) + p log γ2

which shows that the the two log-likelihoods differ, up to the
constant log(det(γ2Ip)) = p log γ2 which is not a function of
ρ, σ2, τ , for a nontrivial term log(det(Ψ>R−1Ψ)) which have
an influence on the location of their minima. �

REFERENCES

[1] J. J. Craig, Introduction to robotics: mechanics and control. Pearson
Prentice Hall Upper Saddle River, 2005, vol. 3.

[2] D. Nguyen-Tuong, M. Seeger, and J. Peters, “Model learning with local
Gaussian process regression,” Advanced Robotics, vol. 23, no. 15, pp.
2015–2034, 2009.

[3] A. Karimi, M. Butcher, and R. Longchamp, “Model-free precompensator
tuning based on the correlation approach,” IEEE Transactions on Control
Systems Technology, vol. 16, no. 5, pp. 1013–1020, Sept 2008.

[4] M. Fliess, “Model-free control and intelligent PID controllers: towards a
possible trivialization of nonlinear control?” IFAC Proceedings Volumes,
vol. 42, no. 10, pp. 1531–1550, 2009.

[5] D. Nguyen-Tuong and J. Peters, “Model learning for robot control: a
survey,” Cognitive Processing, vol. 12, no. 4, pp. 319–340, 2011.

[6] R. Calandra, S. Ivaldi, M. P. Deisenroth, E. Rueckert, and J. Peters,
“Learning inverse dynamics models with contacts,” in 2015 IEEE
International Conference on Robotics and Automation (ICRA), May
2015, pp. 3186–3191.

[7] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics: modelling,
planning and control. Springer Science & Business Media, 2010.

[8] J. Hollerbach, W. Khalil, and M. Gautier, “Model identification,” in
Springer Handbook of Robotics. Springer, 2008, pp. 321–344.

[9] C. Rasmussen and C. Williams, Gaussian Processes for Machine Learn-
ing. The MIT Press, 2006.

[10] G. Prando, D. Romeres, G. Pillonetto, and A. Chiuso, “Classical vs.
Bayesian methods for linear system identification: point estimators and
confidence sets,” in Proc. of ECC, 2016.

[11] D. Nguyen-Tuong and J. Peters, “Using model knowledge for learning
inverse dynamics,” in IEEE International Conference on Robotics and
Automation, 2010.

[12] T. Wu and J. Movellan, “Semi-parametric Gaussian process for robot
system identification,” in IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), 2012, pp. 725–731.

[13] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transac-
tions on Knowledge and Data Engineering, vol. 22, no. 10, pp. 1345–
1359, 2010.

[14] B. Bocsi, L. Csató, and J. Peters, “Alignment-based transfer learning for
robot models,” in The 2013 International Joint Conference on Neural
Networks (IJCNN), 2013, pp. 1–7.

[15] N. Lawrence, M. Seeger, and R. Herbrich, “Fast sparse Gaussian process
methods: The informative vector machine,” in Proceedings of the 15th
International Conference on Neural Information Processing Systems, ser.
NIPS’02. Cambridge, MA, USA: MIT Press, 2002, pp. 625–632.

[16] A. J. Smola and P. L. Bartlett, “Sparse greedy Gaussian process
regression,” in Advances in Neural Information Processing Systems 13,
T. K. Leen, T. G. Dietterich, and V. Tresp, Eds. MIT Press, 2001, pp.
619–625.

[17] E. Snelson and Z. Ghahramani, “Sparse gaussian processes using
pseudo-inputs,” in Advances in Neural Information Processing Systems.
MIT press, 2006, pp. 1257–1264.

[18] V. Tresp, “A Bayesian committee machine,” Neural Comput., vol. 12,
no. 11, pp. 2719–2741, Nov. 2000.

[19] C. Williams and M. Seeger, “Using the nyström method to speed
up kernel machines,” in Advances in Neural Information Processing
Systems 13. MIT Press, 2001, pp. 682–688.

[20] A. Ranganathan, M. H. Yang, and J. Ho, “Online sparse Gaussian
process regression and its applications,” IEEE Transactions on Image
Processing, vol. 20, no. 2, pp. 391–404, Feb 2011.

[21] L. Csató and M. Opper, “Sparse on-line Gaussian processes,” Neural
Comput., vol. 14, no. 3, pp. 641–668, Mar. 2002.

14

[22] D. Nguyen-Tuong and J. Peters, “Incremental online sparsification for
model learning in real-time robot control,” Neurocomputing, vol. 74,
no. 11, pp. 1859–1867, 2011.

[23] A. Gijsberts and G. Metta, “Incremental learning of robot dynamics
using random features,” in IEEE International Conference on Robotics
and Automation (ICRA), 2011, pp. 951–956.

[24] A. Rahimi and B. Recht, “Random features for large-scale kernel
machines,” in Advances in neural information processing systems, 2007,
pp. 1177–1184.

[25] R. Camoriano, S. Traversaro, L. Rosasco, G. Metta, and F. Nori,
“Incremental semiparametric inverse dynamics learning,” in 2016 IEEE
International Conference on Robotics and Automation (ICRA), May
2016, pp. 544–550.

[26] D. Romeres, M. Zorzi, R. Camoriano, and A. Chiuso, “Online semi-
parametric learning for inverse dynamics modeling,” in Decision and
Control (CDC), 2016 IEEE 55th Conference on. IEEE, 2016, pp.
2945–2950.

[27] J. Quiñonero Candela and C. E. Rasmussen, “A unifying view of sparse
approximate Gaussian process regression,” The Journal of Machine
Learning Research, vol. 6, pp. 1939–1959, 2005.

[28] J. Hartikainen and S. Särkkä, “Kalman filtering and smoothing solutions
to temporal Gaussian process regression models,” in 2010 IEEE Inter-
national Workshop on Machine Learning for Signal Processing, Aug
2010, pp. 379–384.

[29] G. De Nicolao, G. Ferrari-Trecate, and A. Lecchini, “MAXENT priors
for stochastic filtering problems,” in Mathematical Theory of Networks
and Systems, Padova, Italy, Jul. 1998.

[30] M. F. Huber, “Recursive Gaussian process: On-line regression and
learning,” Pattern Recognition Letters, vol. 45, pp. 85 – 91, 2014.

[31] J. Prüher and M. Simandl, “Gaussian process based recursive system
identification,” Journal of Physics: Conference Series, vol. 570, no. 1,
2014.

[32] D. Romeres, G. Prando, G. Pillonetto, and A. Chiuso, “Online Bayesian
system identification,” in Proc. of ECC, 2016.

[33] G. Prando, D. Romeres, and A. Chiuso, “Online identification of time-
varying systems: a Bayesian approach,” in Proc. of IEEE CDC, 2016.

[34] C. I. Byrnes, A. Isidori, and J. C. Willems, “Passivity, feedback
equivalence, and the global stabilization of minimum phase nonlinear
systems,” IEEE Transactions on Automatic Control, vol. 36, no. 11, pp.
1228–1240, Nov 1991.

[35] J. Taylor, Classical Mechanics. University Science Books, 2005.
[36] G. Pillonetto, M. H. Quang, and A. Chiuso, “A new kernel-based

approach for nonlinear system identification,” IEEE Transactions on
Automatic Control, vol. 56, no. 12, pp. 2825–2840, Dec 2011.

[37] A. Russu, G. D. Nicolao, I. Poggesi, M. Neve, and R. Gomeni,
“Bayesian population approaches to the analysis of dose escalation
studies,” Computer Methods and Programs in Biomedicine, vol.
107, no. 2, pp. 189 – 201, 2012. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0169260711001519

[38] A. Papoulis and S. U. Pillai, Probability, random variables, and stochas-
tic processes. Tata McGraw-Hill Education, 2002.

[39] G. Wahba, Spline models for observational data. Siam, 1990, vol. 59.
[40] L. Ljung, System Identification - Theory for the User, 2nd ed. Upper

Saddle River, N.J.: Prentice-Hall, 1999.
[41] F. Fraccaroli, A. Peruffo, and M. Zorzi, “A new recursive least squares

method with multiple forgetting schemes,” in 54th IEEE Conference on
Decision and Control (CDC), 2015, pp. 3367–3372.

[42] A. Björck, Numerical Methods for Least Squares Problems. Society
for Industrial and Applied Mathematics, 1996. [Online]. Available:
http://epubs.siam.org/doi/abs/10.1137/1.9781611971484

[43] G. James, D. Witten, T. Hastie, and R. Tibshirani, An introduction to
statistical learning. Springer, 2013, vol. 112.

[44] K. R. Kozlowski, Modelling and identification in robotics. Springer
Science & Business Media, 2012.

[45] M. Zorzi and A. Chiuso, “Sparse plus Low rank Network Identification:
A Nonparametric Approach,” Automatica, vol. 53, 2017.

[46] G. Metta, L. Natale, F. Nori, G. Sandini, D. Vernon, L. Fadiga,
C. Von Hofsten, K. Rosander, M. Lopes, J. Santos-Victor et al.,
“The icub humanoid robot: An open-systems platform for research in
cognitive development,” Neural Networks, vol. 23, no. 8, pp. 1125–1134,
2010.

[47] F. Janabi-Sharifi, V. Hayward, and C.-S. Chen, “Discrete-time adaptive
windowing for velocity estimation,” IEEE Transactions on control
systems technology, vol. 8, no. 6, pp. 1003–1009, 2000.

[48] S. Ivaldi, M. Fumagalli, M. Randazzo, F. Nori, G. Metta, and G. Sandini,
“Computing robot internal/external wrenches by means of inertial, tactile
and f/t sensors: theory and implementation on the icub,” in Humanoid

Robots (Humanoids), 2011 11th IEEE-RAS International Conference on,
2011, pp. 521–528.

[49] U. Pattacini, F. Nori, L. Natale, G. Metta, and G. Sandini, “An ex-
perimental evaluation of a novel minimum-jerk cartesian controller for
humanoid robots,” IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 1668–1674, 2010.

[50] F. Nori, S. Traversaro, J. Eljaik, F. Romano, A. Del Prete, and D. Pucci,
“icub whole-body control through force regulation on rigid non-coplanar
contacts,” Frontiers in Robotics and AI, p. 18, 2015.

[51] A. Tacchetti, P. K. Mallapragada, M. Santoro, and L. Rosasco, “GURLS:
A least squares library for supervised learning,” Journal of Machine
Learning Research, vol. 14, pp. 3201–3205, 2013.

[52] J. M. Maciejowski, Predictive control: with constraints. Pearson
education, 2002.

[53] G. Pillonetto and A. Chiuso, “Tuning complexity in regularized kernel-
based regression and linear system identification: The robustness of the
marginal likelihood estimator,” Automatica, vol. 58, pp. 106 – 117, 2015.

[54] S. Traversaro, S. Brossette, A. Escande, and F. Nori, “Identification
of fully physical consistent inertial parameters using optimization on
manifolds,” in 2016 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Oct 2016, pp. 5446–5451.

http://www.sciencedirect.com/science/article/pii/S0169260711001519
http://www.sciencedirect.com/science/article/pii/S0169260711001519
http://epubs.siam.org/doi/abs/10.1137/1.9781611971484

	I Introduction
	II Problem Statement
	III Model Classes
	III-A Linear parametric model
	III-B Nonparametric Model
	III-C Semiparametric model with RBD mean
	III-D Semiparametric model with RBD kernel
	III-E Discussion of Proposition ??

	IV Kernel Approximation and Online Learning
	IV-A Kernel approximation
	IV-B Online learning
	IV-C Hyperparameter vector estimation

	V Derivative-free Learning
	V-A Derivative-free features
	V-B Derivative-free features with reduced rank
	V-C Structured derivative-free input locations with reduced rank

	VI Inverse Dynamics Learning on iCub
	VI-A Experimental results using numerical derivatives
	VI-B Experimental results with derivative-free features
	VI-C Comparison among DFR-like models
	VI-D Experimental results discussion

	VII Conclusions
	VIII ACKNOWLEDGMENTS
	Appendix
	A Proof of Proposition ??

	References

