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7Max Planck Institute for Biological Cybernetics, Tübingen, Germany
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Abstract

Human visual object recognition is typically rapid and seemingly effortless, as
well as largely independent of viewpoint and object orientation. Until very recently,
animate visual systems were the only ones capable of this remarkable computa-
tional feat. This has changed with the rise of a class of computer vision algorithms
called deep neural networks (DNNs) that achieve human-level classification per-
formance on object recognition tasks. Furthermore, a growing number of studies
report similarities in the way DNNs and the human visual system process objects,
suggesting that current DNNs may be good models of human visual object recog-
nition. Yet there clearly exist important architectural and processing differences
between state-of-the-art DNNs and the primate visual system. The potential be-
havioural consequences of these differences are not well understood. We aim to
address this issue by comparing human and DNN generalisation abilities towards
image degradations. We find the human visual system to be more robust to image
manipulations like contrast reduction, additive noise or novel eidolon-distortions.
In addition, we find progressively diverging classification error-patterns between
humans and DNNs when the signal gets weaker, indicating that there may still
be marked differences in the way humans and current DNNs perform visual ob-
ject recognition. We envision that our findings as well as our carefully measured
and freely available behavioural datasets1 provide a new useful benchmark for the
computer vision community to improve the robustness of DNNs and a motivation
for neuroscientists to search for mechanisms in the brain that could facilitate this
robustness.

∗Please note that this paper has been greatly extended to an article published at NeurIPS 2018.
Unless referring to specific results contained here, we recommend reading and citing the new paper
(Geirhos et al., 2018).

1Data and materials available at https://github.com/rgeirhos/object-recognition
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1 Introduction

The visual recognition of objects by humans in everyday life is typically rapid and
effortless, as well as largely independent of viewpoint and object orientation (e.g.
Biederman, 1987). This ability of the primate visual system has been termed core
object recognition, and much research has been devoted to understanding this pro-
cess (see DiCarlo, Zoccolan, & Rust, 2012, for a review). We know, for example,
that it is possible to reliably identify objects in the central visual field within a
single fixation in less than 200 ms when viewing “standard” images (DiCarlo et
al., 2012; Potter, 1976; Thorpe, Fize, & Marlot, 1996). Based on the rapidness
of object recognition, core object recognition is often hypothesized to be achieved
with mainly feedforward processing although feedback connections are ubiquitous
in the primate brain (but see, e.g. Gerstner, 2005, for a critical assessment of this
argument). Object recognition is believed to be realized by the ventral visual path-
way, a hierarchical structure consisting of the areas V1-V2-V4-IT, with information
from the retina reaching the cortex in V1 (e.g. Goodale & Milner, 1992). Although
aspects of this process are known, others remain unclear.

Until very recently, animate visual systems were the only known systems capable
of visual object recognition. This has changed, however, with the advent of brain-
inspired deep neural networks (DNNs) which, after having been trained on millions
of labeled images, achieve human-level performance when classifying objects in
images of natural scenes (Krizhevsky, Sutskever, & Hinton, 2012). DNNs are now
employed on a variety of tasks and set the new state-of-the-art, sometimes even
surpassing human performance on tasks which were a few years ago thought to be
beyond an algorithmic solution for decades to come (He, Zhang, Ren, & Sun, 2015;
Silver et al., 2016). For an excellent introduction to DNNs see e.g. LeCun, Bengio,
and Hinton (2015).

Although being in the first place an engineering discipline, the field of computer
vision (interested in designing algorithms and building machines that can see) has
always been interested in human vision: As in object recognition, our visual system
is often remarkably successful, acting as de facto performance benchmark for many
tasks. It is thus not surprising that there has always been an exchange between
researchers in computer vision and human vision, such as the design of low-level
image representations (Simoncelli, Freeman, Adelson, & Heeger, 1992; Simoncelli
& Freeman, 1995) and the investigation of underlying coding principles such as
redundancy reduction (Atick, 1992; Barlow, 1961; Olshausen & Field, 1996). With
the advent of DNNs over the course of the last few years, this exchange has even
deepened. It is thus not surprising that some studies have started investigating
similarities between DNNs and human vision, drawing parallels between network
and biological units or network layers and visual areas in the primate brain. Clearly,
describing network units as biological neurons is an enormous simplification given
the sophisticated nature and diversity of neurons in the brain (Douglas & Martin,
1991). Still, often the strength of a model lies not in replicating the original system
but rather in its ability to capture the important aspects while abstracting from
details of the implementation (e.g. Kriegeskorte, 2015).
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1.1 Behavioural comparison between humans and DNNs

Thorough comparisons of human and DNN behaviour have been relatively rare. Be-
haviour goes well beyond overall performance: It comprises all performance changes
as a function of certain stimulus properties, e.g. how classification accuracy depends
on image background and contrast or the type and distribution of errors. Ideally,
computational models of behaviour should not only be able to predict the over-
all accuracy of humans, but be able to describe behaviour on a more fine-grained
level, e.g. in the current experiment on a category-by-category level. The ulti-
mate goal should be the prediction of behaviour on a trial-by-trial basis, termed
molecular psychophysics (Green, 1964; Schönfelder & Wichmann, 2012). An impor-
tant early step into comparing human and DNN behaviour was the work of Lake,
Zaremba, Fergus, and Gureckis (2015) reporting that DNNs are able to predict
human category typicality ratings for images. Another study by Kheradpisheh,
Ghodrati, Ganjtabesh, and Masquelier (2016) found largely similar performance
on view-invariant, background-controlled object recognition and, for some DNNs,
highly similar error distributions. On the other hand, so-called adversarial exam-
ples have cast some doubt on the idea of broad-ranging manlike DNN behaviour.
For any given image it is possible to perturb it minimally in a principled way such
that DNNs mis-classify it as belonging to an arbitrary other category (Szegedy et
al., 2014). This slightly modified image is then called an adversarial example, and
the manipulation is imperceptible to human observers (Szegedy et al., 2014).

The ease at which DNNs can be fooled speaks to the need of a careful, psy-
chophysical comparison of human and DNN behaviour. As the possibility to sys-
tematically search for adversarial examples is very limited in humans, it is not
known how to quantitatively compare the robustness of humans and machines
against adversarial attacks. However, other behavioural measurements are known
to have contributed much to our current understanding of the human visual sys-
tem: Psychophysical investigations of human behaviour on object recognition tasks,
measuring accuracies depending on image colour (grayscale vs. colour), image con-
trast and the amount of additive visual noise have been powerful means of ex-
ploring the human visual system, revealing much about the internal computations
and mechanisms at work (e.g. Nachmias & Sansbury, 1974; Pelli & Farell, 1999;
Wichmann, 1999; Henning, Bird, & Wichmann, 2002; Carandini & Heeger, 2012;
Carandini, Heeger, & Movshon, 1997; Delorme, Richard, & Fabre-Thorpe, 2000).
As a consequence, similar experiments might yield equally interesting insights into
the functioning of DNNs, especially as a comparison to human behaviour. In this
study, we obtain and analyse human and DNN classification data for the three
above-mentioned, well-known image degradations. In addition, we employ a novel
image manipulation method. The stimuli generated by the so-called eidolon-factory
(Koenderink, Valsecchi, van Doorn, Wagemans, & Gegenfurtner, 2017) are para-
metrically controlled distortion of an image. Eidolons aim to evoke similar visual
awareness as objects perceived in the periphery, giving them some biological justi-
fication. To our knowledge, we are among the first to measure DNN performance
on these tasks and compare their behaviour to carefully measured human data, in
particular using a controlled lab environment (instead of Amazon Mechanical Turk
without sufficient control about presentation times, display calibration, viewing
angles, and sustained attention of participants).
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In this study, we employ a paradigm2 aimed at comparing human observers and
DNNs as fair as possible using an image categorization task with short presentation
times (200 ms) along with backwards masking by a high-contrast 1/f noise mask,
known to minimize, as much as psychophysically possible, feedback influence in
the brain. This is important since all investigated networks rely on purely feed-
forward computations. We perform psychophysical experiments on both human
observers and DNNs to assess how robust the three currently well-known DNNs
AlexNet (Krizhevsky et al., 2012), GoogLeNet (Szegedy et al., 2015) and VGG-16
(Simonyan & Zisserman, 2015) are towards image degradations in comparison to
human participants.

DNNs provide exciting new opportunities for computational modelling of vision—
and we envisage DNNs to have a major impact on our understanding of human
vision in the future, essentially agreeing with assessments voiced by Kriegeskorte
(2015), Kietzmann, McClure, and Kriegeskorte (2017) and VanRullen (2017). With
this study, we aim to shed light on the behavioural consequences of the currently
existing architectural, processing and training differences between the tested DNNs
and the primate brain. We envision that our analyses as well as our carefully mea-
sured and freely available behavioural datasets (https://github.com/rgeirhos/
object-recognition) may provide a new useful benchmark for the computer vision
community to improve the robustness of DNNs and a motivation for neuroscientists
to search for mechanisms in the brain that could facilitate human robustness.

2 Methods

2.1 General

We tested four ways of degrading images: conversion to grayscale, reducing image
contrast, adding uniform white noise, and increasing the strength of a novel image
distortion from the eidolon toolbox (Koenderink et al., 2017). Here we give an
overview about the experimental procedure and about the observers and deep neural
networks that performed these experiments. In the Appendix we provide details on
the categories and image database used (Section A.1), as well as information about
image preprocessing (Section A.2), including plots of example stimuli at different
levels of signal strength. In Section A.3 of the Appendix we list the specifics of
our experimental setup; for now it might be enough to know that images in the
psychophysical experiments were always displayed at the center of the screen at a
size of 3× 3 degrees of visual angle.

2.2 Procedure

In each trial a fixation square was shown for 300 ms, followed by an image shown for
only 200 ms, in turn immediately followed by a full-contrast pink noise mask (1/f
spectral shape) of the same size and duration. Participants had to choose one of
16 entry-level categories (see Section A.1 for details on these categories) by clicking
on a response screen shown for 1500 ms3. During the whole experiment, the screen

2This is the same paradigm as reported by Wichmann et al. (2017).
3During practice trials the response screen was visible for another 300 ms in case an incorrect category

was selected, and along with a short low beep sound the correct category was highlighted by setting its
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background was set to a grey value of 0.454 in the [0, 1] range, corresponding to the
mean grayscale value of all images in the dataset (41.17 cd/m2). Figure 1 shows a
schematic of a typical trial.

Prior to starting the experiment, all participants were shown the response screen
and asked to name all categories to ensure that the task was fully clear. They were
instructed to click on the category that they thought resembles the image best,
and to guess if they were unsure. They were allowed to change their choice within
the 1500 ms response interval; the last click on a category icon of the response
screen was counted as the answer. The experiment was not self-paced, i.e. the
response screen was always visible for 1500 ms and thus, each experimental trial
lasted exactly 2200 ms (300 ms + 200 ms + 200 ms + 1500 ms).

On separate days we conducted four different experiments with 1,280 trials per
participant each (eidolon-experiment: three sessions of 1,280 trials each). In the
colour-experiment, we used two distinct conditions (colour vs. grayscale), whereas
in the contrast-experiment and in the noise-experiment eight conditions were ex-
plored (corresponding to eight different contrast values or noise power densities,
respectively). In the eidolon-experiment, 24 distinct conditions were employed.
For each experiment, we randomly chose 80 images per category from the pool of
images without replacement (i.e., no observer ever saw an image more than once
throughout the entire experiment). Within each category, all conditions were coun-
terbalanced. Stimulus selection was done individually for each participant to reduce
the probability of an accidental bias in the image selection. Images within the ex-
periments were presented in randomized order. After 256 trials (colour-experiment,
noise-experiment and eidolon-experiment) and 128 trials (contrast-experiment), the
mean performance of the last block was displayed on the screen, and observers were
free to take a short break. The total time necessary to complete all trials was 47
minutes per session, not including breaks and practice trials. In total, the results
reported in this article are based on 39,680 psychophysical trials. Ahead of each
experiment, all observers conducted approximately 10 minutes of practice trials to
gain familiarity with the task and the position of the categories on the response
screen.

2.3 Observers and deep neural networks

Three observers participated in the colour-experiment (all male; 22 to 28 years;
mean: 25 years). In each of the other experiments, five observers took part
(contrast-experiment and noise-experiment: one female, four male; 20 to 28 years;
mean: 23 years. Eidolon-experiment: three female, two male; 19 to 28 years;
mean: 22 years). Subject-01 is an author and participated in all but the eidolon-
experiment. All other participants were either paid e 10 per hour for their partic-
ipation or gained course credit. All observers were students of the University of
Tübingen and reported normal or corrected-to-normal vision.

We used three DNNs for our analysis: AlexNet (Krizhevsky et al., 2012),
GoogLeNet (Szegedy et al., 2015) and VGG-16 (Simonyan & Zisserman, 2015).
All three networks were specified within the Caffe framework (Jia et al., 2014) and
acquired as a pre-trained model. VGG-16 was obtained from the Visual Geometry
Group’s website (http://www.robots.ox.ac.uk/~vgg/); AlexNet and GoogLeNet

background to white.
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300ms

200ms

200ms

Figure 1. Schematic of a trial. After the presentation of a central fixation square
(300 ms), the image was visible for 200 ms, followed immediately by a noise-mask
with 1/f spectrum (200 ms). Then, a response screen appeared for 1500 ms, during
which the observer clicked on a category. Note that we increased the contrast of
the noise-mask in this figure for better visibility when printed. Categories row-wise
from top to bottom: knife, bicycle, bear, truck, airplane, clock, boat,

car, keyboard, oven, cat, bird, elephant, chair, bottle, dog. The icons
are a modified version of the ones from the MS COCO website (http://mscoco.org/
explore/).

from the BLVC model zoo website (https://github.com/BVLC/caffe/wiki/Model
-Zoo). We reproduced the respective specified accuracies on the ILSVRC 2012 val-
idation dataset in our setting.

All DNNs require images to be specified using RGB planes; to evaluate the
performance using grayscale images we stacked a grayscale image three times in
order to obtain the desired form specified by the caffe.io module (https://github
.com/BVLC/caffe/blob/master/python/caffe/io.py). Images were fed through
the networks using a single feedforward pass of the 224× 224 pixels center crop.

3 Results

Trials in which human observers failed to click on any category were recorded as
an incorrect answer in the data analysis, and are shown as a separate category (top
row) in the confusion matrices (DNNs, obviously, never fail to respond). Such a
failure to respond occurred in only 1.2% of all trials, and did not differ meaningfully
between the different experiments. The terms ’accuracy’ and ’performance’ are used
interchangeably. All data, if not stated otherwise, were analyzed using R version
3.2.3 (R Core Team, 2016).
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3.1 Accuracy and response distribution entropy

When showing accuracy in any of the plots, the error bars provided have two distinct
meanings: First, for DNNs they indicate the range of DNN accuracies resulting from
seven4 runs on different images, with each run consisting of the same number of
images per category and condition that a single human observer was exposed to.
This serves as an estimate of the variability of DNN accuracies as a function of the
random choice of images. Second, the error bars for human participants likewise
correspond to the range of their accuracies (not the often shown S.E. of the means,
which would be much smaller).

In addition we assessed the response distribution entropy of humans and DNNs
as a function of image degradation strength. Entropy is a measure quantifying
how close a distribution is to the uniform distribution (the higher the entropy,
the closer it is). The distribution obtained by throwing a fair die many times
should therefore have higher entropy than the distribution obtained from repeatedly
throwing a rigged die. In the context of our experiments, it is used to measure
whether observers or DNNs exhibit a bias towards certain categories: if so, the
response distribution entropy will be lower than the maximal value of 4 bits (given
16 categories). We calculated the Shannon entropy H of response distribution X as
follows:
H(X ) = −

∑16
i=1 p(xi)log2(p(xi)), with p(xi) being the fraction of responses for

category i (e.g. p(xcar) = 0.25 if an observer responds car every fourth trial on
average).

3.1.1 Colour-experiment

We conducted a paired-samples t-test to assess the difference in accuracy between
coloured and grayscale images for each network and observer (Table 2 in the Ap-
pendix). In order to account for multiple comparisons, the critical significance level
of .05 was adjusted to .05

6 = .0083 by applying Bonferroni correction. As shown in
Figure 2(a) all three networks performed significantly worse for grayscale images
compared to coloured images (4.81% drop in performance on average: significant,
but not dramatic in terms of effect size). Human observers, on the other hand, did
not show on average a significant reduction in accuracy (only 1.88% accuracy drop
for grayscale images). As can be seen from the range of human grayscale results,
obsververs differed in their ability to cope with grayscale images.

The response distribution entropy shown in Figure 2(b) is innocuous: The DNNs
distributed their responses perfectly among the 16 categories, and human observers
are only marginally worse.

3.1.2 Contrast-experiment

As shown in Figure 3(a), accuracies for the contrast-experiment ranged from ap-
proximately 91−94% (VGG-16, GoogLeNet and human average) and 84% (AlexNet)
for full contrast to chance level ( 1

16 = 6.25%) for 1% of contrast, except for VGG-16
which still achieves 17.5% correct responses. AlexNet’s and GoogLeNet’s perfor-
mance dropped more rapidly than human and VGG-16’s performance for lower
contrast levels.

4Seven runs are the maximum possible number of runs without ever showing an image to a DNN
more than once per experiment.

7



0.
80

0.
85

0.
90

0.
95

1.
00

C
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy

Color Grayscale

●

●

(a) Colour-experiment accuracy

3.
5

3.
6

3.
7

3.
8

3.
9

4.
0

E
nt

ro
py

 o
f r

es
po

ns
e 

di
st

rib
ut

io
n 

[b
its

]

Color Grayscale

●
●

●

AlexNet
GoogLeNet
VGG−16
participants (avg.)

(b) Colour-experiment entropy

Figure 2. Results for the colour-experiment (n=3). (a) Accuracy. DNNs are shown
in shades of blue, human data in red; diamonds correspond to AlexNet, squares
to GoogLeNet, triangles to VGG-16, and circles to human observers; error bars as
described in section 3.1. (b) Response distribution entropy. Plotting conventions as
in (a).

The response distribution entropy shown in Figure 3(b) reveals, however, that
all three DNNs showed an increasing bias towards few categories (in other words,
they did no longer distribute their responses evenly among the 16 categories if the
contrast was lowered). Human observers, on the other hand, still largely distributed
their responses sensibly across the 16 categories.

3.1.3 Noise-experiment

The data for the noise-experiment were analyzed in the same way as the contrast-
experiment data. Overall, we found drastic differences in classification accuracy,
with human observers clearly outperforming all three networks. As can be seen
in Figure 3(c), by increasing the noise width from 0.0 (no noise) to 0.1, VGG-16’s
performance drops from an accuracy of 89.91% to 44.02%; GoogLeNet’s drops from
81.70% to 34.02% and AlexNet’s from 70.00% to 19.29%. Human observers, on the
other hand, only drop from 80.50% to 75.13%.

The response distribution entropy shown in Figure 3(d) shows again that all of
the investigated DNNs exhibit a strong bias towards few categories if the images
contained additive noise. For AlexNet and GoogLeNet, the response distribution
entropy is close to 0 bits for a noise width of 0.6 or more, which means that they
responded with a single category for these images (category bottle for both).
Interestingly, these preferred categories are usually not the same across experiments
or networks (Figures 6 and 9), and they do not simply match the probabilities of
the categories in the ImageNet training database. The network responses therefore
are not converging to their prior distribution, which would be a sensible way to
behave in the absence of a signal. Human observers, as with low contrast, largely
distributed their responses evenly across the 16 categories.
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Figure 3. Results for contrast-, noise- and eidolon-experiment (n=5 each).
(a, c, e)(Left) Accuracy. Plotting conventions as in Figure 2.
(b, d, f)(Right) Response distribution entropy.
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3.1.4 Eidolon-experiment

Results for the eidolon-experiment with maximal coherence of 1.0 are shown in Fig-
ure 3(e) and (f). The complete results of the eidolon-experiment for all coherence
settings are provided in the Appendix, Figure 11. In terms of accuracy, network
and human performance naturally were approximately equal for very low values of
reach (no distortion, therefore high accuracies) and for very high values of reach
(heavy distortion, accuracy at chance level). In the range between these extremes,
their accuracies followed the typically observed s-shaped pattern known from most
psychophysical experiments varying a single parameter. However, human observers
clearly achieved higher accuracies than all three networks for intermediate distor-
tions. In the full coherence case, the largest difference between network and human
performance was observed for a reach value of 23 = 8 (38.3% network accuracy vs.
75.3% human accuracy, averaged across networks and observers). The coherence-
parameter, albeit having a considerable effect on the perceptual appearance of the
stimuli, did not qualitatively change accuracies. Quantitatively, the performance
was generally higher for high coherence values (see Figure 11 for details). Unlike in
the case of contrast, the three networks showed only minor inter-network accuracy
differences.

As for the contrast-experiment and the noise-experiment, we find all three net-
works to be strongly biased towards a few categories as shown by their low response
distribution entropy (Figure 3f).

3.1.5 Performance visualization

Here we provide a visualization of the performance differences between the studied
DNNs and human observers in terms of their generalisation ability (or robustness
against image degradations). For all degradation-types—contrast, noise, eidolons
with different coherence parameters—we estimated the stimulus levels correspond-
ing to 50% classification accuracy. The stimulus levels were calculated assuming a
linear relationship between the two closest data points measured in the experiments
and shown in the left column of Figure 3.

Figure 4(a) shows the 50% accuracies for the noise-experiment, Figure 4(b) for
the eidolon-experiment with maximal coherence (as in Figures 3(e) and (f)); the
three illustration images of categories bicycle, dog and keyboard were drawn ran-
domly from the pool of images used in the experiments. In both panels the top row
shows the stimuli corresponding to 50% accuracy for the average human observer.
The bottom three rows show the corresponding stimuli for VGG-16 (second row),
GoogLeNet (third row) and AlexNet (bottom row). On a typical computer screen
the more robust performance of human observers over DNNs should be readily ap-
preciable. 50% accuracy stimulus plots for the contrast-experiment and the other
conditions of the eidolon-experiment can be found in the Appendix, Figure 12.

3.2 Confusion and confusion difference matrices

Confusion matrices are a widely used tool for visualizing error patterns in multi-
class classification data, providing insight into classification behavior (e.g.: does
VGG-16 frequently confuse dogs with cats?). Figure 5(a) shows a standard con-
fusion matrix of the colour condition in the colour-experiment (Section 3.1.1) for

10



(a) Noise-experiment (b) Eidolon-experiment (coherence = 1.0)

Figure 4. Estimated stimuli corresponding to 50% classification accuracy. (a) Noise-
experiment. (b) Eidolon-experiment. Coherence parameter = 1.0. Top row: stimuli
corresponding to threshold for the average human observer. Bottom three rows:
stimuli corresponding to the same accuracy for VGG-16 (second row), GoogLeNet
(third row) and AlexNet (bottom row).

our human observers. Entries on the diagonal indicate correct classification, off-
diagonal entries indicate errors, e.g. when a cat was presented on the screen (8th

column from left), human observers in 77.5% of all cases correctly clicked cat (8th

row from bottom in 8th column), but in 11.7% clicked dog instead (11th row from
bottom in 8th column). Participants failed to respond in 1.7% of cat trials in the
colour condition of the colour-experiment (1st row from top in 8th column). Human
observers typically confused physically and semantically closely related categories
with each other, most notably some animal categories such as bear, cat and dog.
Importantly, the same occurred for DNNs, albeit for different categories (confusions
often between car and truck).

For the purpose of our analyses, however, we are mainly interested in compar-
isons between error patterns, e.g., do human observers more frequently confuse dogs
with cats than VGG-16, and if so, significantly more? In order to being able to
answer such questions, we developed a novel analysis and visualization technique,
which we term confusion difference matrix.

A confusion difference matrix serves the purpose of showing the difference be-
tween two confusion matrices (e.g. human observers and VGG-16) and highlighting
which differences are significant at the indicated, Bonferroni-corrected α-level. A
confusion difference matrix is obtained in two steps: First, one calculates the differ-
ence between two confusion matrices’ entries. In this newly obtained matrix, values
close to zero indicate similar classification behavior, whereas differences point at
diverging classification behavior. In the next step, we calculate whether a difference
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(a) Colour-experiment, colour-condition, human
participants.

(b) Colour-experiment, colour-condition, differ-
ence between human participants and VGG-16.

Figure 5. Confusion and confusion difference matrices for colour-experiment (colour-
condition only). A failure to respond is shown as a separate category in the top
row here. (a) Standard confusion matrix. Entries on the diagonal indicate correct
classification, off-diagonal entries indicate errors. (b) Confusion difference matrix.
All values indicate the signed difference of human observers’ and VGG-16’s confu-
sion matrix entries. A positive sign indicates that human observers responded more
frequently than VGG-16 to a certain category-response pair, for a negative sign vice-
versa. The colour here indicates whether a difference for a certain cell is significant
at α = 5%

16·17(∗), 1%
16·17(∗∗) and 0.1%

16·17(∗ ∗ ∗); these α-levels are Bonferroni corrected for
multiple comparisons (16 categories · 17 possible responses); see text in Section 3.2
for details.
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for a certain cell is significant, and repeat this calculation for all cells. We calculate
significance using a standard test of the probability of success in a Binomial exper-
iment: If one thinks of the 120 colour-experiment trials in which human observers
were exposed to a coloured cat image, of which they clicked on cat in 93 trials,
as of a Binomial experiment with 93 successes out of 120 trials, is “93 out of 120”
significantly higher or lower than we would expect under the null hypothesis of
success probability p = 96.8% (VGG-16’s fraction of responses in this cell5)? The
Binomial tests were performed with R, using the binom.test function of package
stats which calculates the conservative Clopper-Pearson confidence interval6. The
significance of a certain difference, in our experiments, is not used for traditional
hypothesis testing but rather as a means of distinguishing between important and
unimportant—perhaps only coincidental—behavioural differences between humans
and DNNs even if their accuracies were equal. Confusion difference matrices thus
visualize systematic category-dependent error pattern differences between human
observers and DNNs—and they do this at a much more fine-grained, category-
specific level than the response distribution entropy analyses shown in Section 3.1.

Figure 5(b) shows one confusion difference matrix for the colour-experiment
(colour-condition only); all values indicate the signed difference of human observers’
and VGG-16’s confusion matrix entries. A positive sign indicates that human ob-
servers responded more frequently than VGG-16 to a certain category-response
pair, for a negative sign vice-versa. VGG-16 is significantly better for many cate-
gories on the diagonal (correct classification) because—in the non-degraded colour
condition—human observers make more errors, see Figure 2(a). Overall, however,
most cells of the confusion difference matrix are grey, indicating very similar clas-
sification behaviour of human observers and VGG-16, not only in terms of overall
accuracy and response entropy, but on a fine-grained category-by-category level.

In Figure 6 we show a confusion difference matrix grid for the noise-experiment
(Section 3.1.3): nine confusion difference matrices for all three DNNs at three
matched performance levels. Confusion difference matrices shown here are calcu-
lated as described above, however, with the important difference that we here show
difference matrices for which human observers and networks have similar overall
performance (accuracy difference < 5%): we compare confusion matrices for dif-
ferent stimulus levels, but matched in performance7. The left column shows high
performance (no noise for human observers, very little noise for DNNs; performance
p-high = 80.5% which corresponds, in this order, to w = 0.0, 0.0, 0.0 and 0.03 for
human observers, AlexNet, GoogLeNet and VGG-16). On the right, data for low
performance (16.8%) are shown (high noise for human observers, moderate-to-low
noise for DNNs, w = 0.60, 0.10, 0.15, 0.19) and in the middle results for medium
performance: 45.6%, the condition for which human observers’ accuracy was ap-
proximately equal to 1

2(p-high + p-low) (medium noise for human observers, low

5It would also be possible compare VGG-16’s number of successes to human observers’ fraction of
responses. We always compared the network/observer/group with less trials to the one with more trials
as null hypothesis—in the example above (colour-experiment, colour-condition, cat images): a total of
120 trials for human observers vs. 280 trials for VGG-16 (or any other network).

6If the network’s fraction of responses in a certain cell was 0.0% (not a single response in this cell),
we set p = 0.1% and if it was 100.0% (every time a certain category was presented, the response lied in
this cell), we set p = 99.9% instead.

7If DNN-human accuracy deviance was more than 5% for all conditions, we ran additional experiments
to determine a suitable condition.
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noise for DNNs; w = 0.35, 0.06, 0.08, 0.10).
Showing confusion difference matrices at matched performance levels—rather

than at the same stimulus level—has the advantage that the sum over all entries
of the to-be-compared confusion matrices is the same, i.e. for equally behaving
classifiers the expectation is to obtain mainly grey (non-significant) cells. However,
inspection of Figure 6 shows this only to be the case for the easy, low-noise, condition
(left column). With increasing task difficulty (more noise), network and human
behavior diverges substantially. As the noise level increases, all networks show a
rapidly increasing bias for a few categories. For a noise level of w = 0.35, AlexNet
and GoogLeNet almost exclusively respond bottle (92.32% and 85.71%), whereas
VGG-16 homes in on category dog for 62.50% of all images. Note that this bias
for certain categories is neither consistent across networks nor across the image
manipulations.

A similar pattern emerged for the contrast-experiment: Classification behavior
on a stimulus-by-stimulus basis for all three DNNs is close to that of human ob-
servers for a high accuracy (nominal contrast level). However, as task difficulty
increases, the classification behavior of all three DNNs differs significantly from
human behavior, despite being matched in overall accuracy (see the Appendix,
Figure 9).

4 Discussion

We psychophysically examined to what extend currently well-known DNNs (AlexNet,
GoogLeNet and VGG-16) could be a good model for human feedforward visual ob-
ject recognition. So far thorough comparisons of DNNs and human observers on
behavioural grounds have been rare. Here we proposed a fair and psychophysically
accurate way of comparing network and human performance on a number of ob-
ject recognition tasks: measuring categorization accuracy for single-fixation, briefly
presented (200 ms) and backward-masked images as a function of colour, contrast,
uniform noise, and eidolon-type distortions.

We find that DNNs outperform human observers by a significant margin for
non-distorted, coloured images—the images the DNNs were specifically trained on.
We speculate that this may in part be due to some images in the ImageNet database
containing images with small animals in the background, making it tough to decide
whether it is a cat, dog or even a bear. Given that the images were labelled by
human observers—who thus are the ultimate guardians of what counts as right
or wrong—it is clear that for unlimited inspection time and sufficient training hu-
man observers will equal DNN performance, as shown by the benchmark results of
Russakovsky et al. (2015), obtained using expert annotators. What we established,
however, is that under conditions minimizing feedback, current DNNs already out-
perform human observers on the type of images found on ImageNet..

Our first experiment also shows that human observers’ accuracy suffers only
marginally when images are converted to grayscale in comparison to coloured im-
ages, consistent with previous studies (Delorme et al., 2000; Kubilius, Bracci, &
Op de Beeck, 2016; Wichmann, Braun, & Gegenfurtner, 2006)8. For all three tested

8Consistent, also, with the popularity of black-and-white movies and photography: If we had a hard
time recognizing objects and scenes in black-and-white we doubt that they’d ever have been a mass
medium in the early and mid 20th century.
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Figure 6. Confusion difference grid for the noise-experiment. Every confusion dif-
ference matrix shown here is calculated as described in the text. We here show
difference matrices for which human observers and networks have similar overall per-
formance. The left column shows for human observers the condition in which they
performed best (no noise, performance p-high = 80.5%) and for all three networks
the condition for which they achieved the same accuracy. On the right, data for
low performance (16.8%) are shown and in the middle results for medium perfor-
mance: 45.6%. Colour indicates whether a difference for a certain cell is significant
at α = 5%

16·17·9(∗), 1%
16·17·9(∗∗) and 0.1%

16·17·9(∗ ∗ ∗); these α-levels are Bonferroni corrected
for multiple comparisons (16 categories · 17 possible responses · 9 confusion difference
matrices).
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DNNs the performance decrement is significant, however. Particularly AlexNet
shows a largish drop in performance (> 7%), which is not human-like. VGG-16
and GoogLeNet rely less on colour information, but still somewhat more than the
average human observer.

Our second experiment examined accuracy as a function of image contrast. Hu-
man participants outperform AlexNet and GoogLeNet (but not VGG-16) in the
low contrast regime, where all DNNs display an increasing bias for certain cate-
gories (Figure 3(b) as well as Figure 9). Almost all images on which the networks
were originally trained with had full contrast. Apparently, training on ImageNet in
itself only leads to a suboptimal contrast invariance. There are several solutions to
overcome this deficiency: One option would be to include an explicit image prepro-
cessing stage or have the first layer of the networks normalise the contrast. Another
option would be to augment the training data with images of various contrast levels,
which in itself might be a worthwhile data augmentation technique even if one does
not expect low contrast images at test time. In the human visual system, proba-
bly as a response to the requirement of increasing stimulus identification accuracy
(Geisler & Albrecht, 1995), a mechanism called contrast gain control evolved, serv-
ing the human visual system as a contrast normalization technique by taking into
account the average local contrast rather than the absolute, global contrast (e.g.
Carandini et al., 1997; Heeger, 1992; Sinz & Bethge, 2009, 2013). This has the
(side-) effect that human observers can easily perform object recognition across a
variety of contrast levels. Thus yet another, though clearly more labour-intensive
way of improving contrast invariance in DNNs would be to incorporate a mech-
anism of contrast gain control directly in the network architecture. Early vision
models could serve as a role model (e.g., Goris, Putzeys, Wagemans, & Wichmann,
2013; Schütt & Wichmann, 2017).

Our third experiment, adding uniform white noise to images, shows very clear
discrepancies between the performance of DNNs and human observers. Note that,
if anything, we might have underestimated human performance: randomly shuffling
all conditions of an experiment instead of using blocks of a certain stimulus level are
likely to yield accuracies that are lower than those possible in a blocked constant
stimulus setting (Blackwell, 1953; Jäkel & Wichmann, 2006). Already at a moderate
noise level, however, network accuracies drop sharply, whereas human observers are
only slightly affected (visualized in Figure 4 showing stimuli corresponding to 50%
accuracy for human observers and the three networks). Consistent with recent
results by Dodge and Karam (2017), our data clearly show that the human visual
system is currently much more robust to noise than any of the investigated DNNs.

Another noteworthy finding is that the three DNNs exhibit considerable inter-
model differences; their ability to cope with grayscale and different levels of contrast
and noise differs substantially. In combination with other studies finding moderate
to striking differences (e.g. Cadieu et al., 2014; Kheradpisheh et al., 2016; Lake
et al., 2015), this speaks to the need of carefully distinguishing between models
rather than treating DNNs as a single model type as it is perhaps sometimes done
in vision science.

Recent studies on so-called adversarial examples in DNNs have demonstrated
that, for a given image, it is possible to construct a minimally perturbed version
of this image which DNNs will misclassify as belonging to an arbitrary different
category (Szegedy et al., 2014). Here we show that comparatively large but purely
random distortions such as additive uniform noise also lead to poor network per-
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formance. Our detailed analyses of the network decisions offer some clues on what
could contribute to robustness against these distortions, as the measurement of
confusion matrices for different signal-to-noise ratios is a powerful tool to reveal
important algorithmic differences of visual decision making in humans and DNNs.
All three DNNs show an escalating bias towards few categories as noise power den-
sity increases (Figures 3 and 6), indicating that there might be something inherent
to noisy images that causes the networks to select a single category. The networks
might perceive the noise as being part of the object and its texture while human
observers perceive the noise like a layer in front of the image (you may judge this
yourself by looking at the stimuli in Figure 7). This might be the achievement of a
mechanism for depth-layering of surface representations implemented by mid-level
vision, which is thought to help the human brain to encode spatial relations and
to order surfaces in space (Kubilius, Wagemans, & Op de Beeck, 2014). Incorpo-
rating such a depth-layering mechanism may lead to an improvement of current
DNNs, enabling them to robustly classify objects even when they are distorted in
a way that the network was not exposed to during training. It remains subject
to future investigations to determine whether such a mechanism will emerge from
augmenting the training regime with different kinds of noise, or whether changes in
the network architecture, potentially inspired by knowledge about mid-level vision,
are necessary to achieve this feat.

One might argue that human observers, through experience and evolution, were
exposed to some image distortions (e.g. fog or snow) and therefore have an advan-
tage over current DNNs. However, an extensive exposure to eidolon-type distortions
seems exceedingly unlikely. And yet, human observers were considerably better at
recognising eidolon-distorted objects, largely unaffected by the different perceptual
appearance for different eidolon parameter combinations (reach, coherence). This
indicates that the representations learned by the human visual system go beyond
being trained on certain distortions as they generalise towards previously unseen
distortions. We believe that achieving such robust representations that generalise
towards novel distortions are the key to achieve robust deep neural network perfor-
mance, as the number of possible distortions is literally unlimited.

4.1 Conclusion

We conducted a behavioural, psychophysical comparison of human and DNN object
recognition robustness against image degradations. While it has long been noticed
that DNNs are extremely fragile against adversarial attacks, our results show that
they are also more prone to random perturbations than humans. In comparison
to human observers, we find the classification performance of three currently well-
known DNNs trained on ImageNet—AlexNet, GoogLeNet and VGG-16—to decline
rapidly with decreasing signal-to-noise ratio under image degradations like addi-
tive noise or eidolon-type distortions. Additionally, by measuring and comparing
confusion matrices we find progressively diverging patterns of classification errors
between humans and DNNs with weaker signals, and considerable inter-model dif-
ferences. Our results demonstrate that there are still marked differences in the
way humans and current DNNs process object information. We envision that our
findings and the freely available behavioural datasets may provide a new useful
benchmark for improving DNN robustness and a motivation for neuroscientists to
search for mechanisms in the brain that could facilitate this robustness.
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the preferred psychophysical method for näıve observers. Journal of Vision, 6 (11),
1307-1322.

Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., . . . Darrell, T.
(2014). Caffe: Convolutional architecture for fast feature embedding. In Proceedings
of the 22nd ACM International Conference on Multimedia (pp. 675–678).

Kheradpisheh, S. R., Ghodrati, M., Ganjtabesh, M., & Masquelier, T. (2016). Deep
networks resemble human feed-forward vision in invariant object recognition. arXiv
preprint arXiv:1508.03929.

Kietzmann, T. C., McClure, P., & Kriegeskorte, N. (2017). Deep neural networks in
computational neuroscience. bioRxiv , http://dx.doi.org/10.1101/133504 .

Kleiner, M., Brainard, D., Pelli, D., Ingling, A., Murray, R., & Broussard, C. (2007).
What’s new in Psychtoolbox-3. Perception, 36 (14), 1.

Koenderink, J., Valsecchi, M., van Doorn, A., Wagemans, J., & Gegenfurtner, K. (2017).
Eidolons: Novel stimuli for vision research. Journal of Vision, 17 (2), 7–7.

Kriegeskorte, N. (2015). Deep neural networks: A new framework for modeling biological
vision and brain information processing. Annual Review of Vision Science, 1 (15),
417–446.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep
convolutional neural networks. In Advances in Neural Information Processing Sys-
tems (pp. 1097–1105).

Kubilius, J., Bracci, S., & Op de Beeck, H. P. (2016). Deep neural networks as a com-
putational model for human shape sensitivity. PLoS Computational Biology , 12 (4),
e1004896.

Kubilius, J., Wagemans, J., & Op de Beeck, H. P. (2014). A conceptual framework of
computations in mid-level vision. Frontiers in Computational Neuroscience, 8 , 158.

Lake, B. M., Zaremba, W., Fergus, R., & Gureckis, T. M. (2015). Deep Neural Networks
predict category typicality ratings for images. In Proceedings of the 37th Annual
Conference of the Cognitive Science Society.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521 (7553), 436–444.
Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., . . . Zitnick, C. L.

(2015). Microsoft COCO: Common objects in context. In European Conference on

19



Computer Vision (pp. 740–755).
Nachmias, J., & Sansbury, R. V. (1974). Grating contrast: Discrimination may be better

than detection. Vision Research, 14 (10), 1039-1042.
Olshausen, B. A., & Field, D. J. (1996). Emergence of simple-cell receptive field properties

by learning a sparse code for natural images. Nature, 381 (6583), 607.
Pelli, D. G., & Farell, B. (1999). Why use noise? Journal of the Optical Society of America

A, 16 (3), 647-653.
Potter, M. C. (1976). Short-term conceptual memory for pictures. Journal of Experimental

Psychology: human learning and memory , 2 (5), 509.
R Core Team. (2016). R: A language and environment for statistical computing [Computer

software manual]. Vienna, Austria. Retrieved from https://www.R-project.org/

Rosch, E. (1999). Principles of categorization. In E. Margolis & S. Laurence (Eds.),
Concepts: core readings (pp. 189–206).

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., . . . Fei-Fei, L. (2015).
ImageNet Large Scale Visual Recognition Challenge. International Journal of Com-
puter Vision, 115 (3), 211–252.
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Appendix

A Stimuli & Apparatus

A.1 Categories and image database

The images serving as psychophysical stimuli were images extracted from the train-
ing set of the ImageNet Large Scale Visual Recognition Challenge 2012 database
(Russakovsky et al., 2015). This database contains millions of labeled images
grouped into 1,000 very fine-grained categories (e.g., the database contains over
a hundred different dog breeds). If human observers are asked to name objects,
however, they most naturally categorize them into many fewer so-called basic or
entry-level categories, e.g. dog rather than German shepherd (Rosch, 1999). The
Microsoft COCO (MS COCO) database (Lin et al., 2015) is an image database
structured according to 91 such entry-level categories, making it an excellent source
of categories for an object recognition task. Thus for our experiments we fused the
carefully selected entry-level categories in the MS COCO database with the large
quantity of images in ImageNet. Using WordNet’s hypernym relationship (x is a hy-
pernym of y if y is a ”kind of” x, e.g., dog is a hypernym of German shepherd), we
mapped every ImageNet label to an entry-level category of MS COCO in case such
a relationship exists, retaining 16 clearly non-ambiguous categories with sufficiently
many images within each category (see Figure 1 for a iconic representation of the 16
categories; the figure shows the icons used for the observers during the experiment).
A complete list of ImageNet labels used for the experiments can be found in our
github repository, https://github.com/rgeirhos/object-recognition. Since
all investigated DNNs, when shown an image, output classification predictions for
all 1,000 ImageNet categories, we disregarded all predictions for categories that
were not mapped to any of the 16 entry-level categories. Amongst the remaining
categories, the entry-level category corresponding to the ImageNet category with
the highest probability (top-1) was selected as the network’s response. This way,
the DNN response selection corresponds directly to the forced-choice paradigm for
our human observers.

A.2 Image preprocessing

We used Python (Version 2.7.11) for all image preprocessing and for running the
DNN experiments. From the pool of ImageNet images of the 16 entry-level cat-
egories, we excluded all grayscale images (1%) as well as all images not at least
256×256 pixels in size (11% of non-grayscale images). We then cropped all images
to a center patch of 256 × 256 pixels as follows: First, every image was cropped
to the largest possible center square. This center square was then downsampled
to the desired size with PIL.Image.thumbnail((256, 256), Image.ANTIALIAS).
Human observers get adapted to the mean luminance of the display during experi-
ments, and thus images which are either very bright or very dark may be harder to
recognize due to their very different perceived brightness. We therefore excluded all
images which had a mean deviating more than two standard deviations from that
of other images (5% of correct-sized colour-images excluded). In total we retained
213,555 images from ImageNet.

For the experiments using grayscale images the stimuli were converted using
the rgb2gray method (Van der Walt et al., 2014) in Python. This was the case
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for all experiments and conditions except for the colour-condition of the colour-
experiment. For the contrast-experiment, we employed eight different contrast
levels c ∈ {1, 3, 5, 10, 15, 30, 50, 100%}. For an image in the [0, 1] range, scaling
the image to a new contrast level c was achieved by computing new value = c

100% ·
old value +

1− c
100%

2 for each pixel. For the noise-experiment, we first scaled all
images to a contrast level of c = 30%. Subsequently, white uniform noise of range
[−w,w] was added pixelwise, w ∈ {0.0, 0.03, 0.05, 0.1, 0.2, 0.35, 0.6, 0.9}. In case
this resulted in a value out of the [0, 1] range, this value was clipped to either 0 or
1. By design, this never occurred for a noise range less or equal to 0.35 due to the
reduced contrast (see above). For w = 0.6, clipping occurred in 17.2% of all pixels
and for w = 0.9 in 44.4% of all pixels. Clearly, clipping pixels changes the spectrum
of the noise and is undesirable. However, as can be seen in Section 3, specifically
Figure 3, all DNNs were already at chance performance for noise with a w of 0.35
(no clipping), whereas human observers were still supra-threshold. Thus changes
in the exact shape of the spectrum of the noise due to clipping have no effect on
the conclusions drawn from our experiment. See Figure 7 for example contrast and
noise stimuli.

All eidolon stimuli were generated using the eidolon toolbox for Python ob-
tained from https://github.com/gestaltrevision/Eidolon, more specifically
its PartiallyCoherentDisarray(image, reach, coherence, grain) function.
Using a combination of the three parameters reach, coherence and grain, one ob-
tains a distorted version of the original image (a so-called eidolon). The parameters
reach and coherence were varied in the experiment, grain was held constant with
a value of 10.0 throughout the experiment (grain indicates how fine-grained the
distortion is; a value of 10.0 corresponds to a medium-grainy distortion). Reach
∈ {1.0, 2.0, 4.0, 8.0, 16.0, 32.0, 64.0, 128.0} is an amplitude-like parameter indicating
the strength of the distortion, coherence ∈ {0.0, 0.3, 1.0} defines the relationship be-
tween local and global image structure. Those two parameters were fully crossed,
resulting in 8 · 3 = 24 different eidolon conditions. A high coherence value ”re-
tains the local image structure even when the global image structure is destroyed”
(Koenderink et al., 2017, p. 10). A coherence value of 0.0 corresponds to ’com-
pletely incoherent’, a value of 1.0 to ’fully coherent’. The third value 0.3 was chosen
because it produces images that perceptually lie—as informally determined by the
authors—in the middle between those two extremes. See Figure 8 for example
eidolon stimuli.

All images, prior to showing them to human observers or DNNs, were saved in
the JPEG format using the default settings of the skimage.io.imsave function.
The JPEG format was chosen because the image training database for all three
networks, ImageNet (Russakovsky et al., 2015), consists of JPEG images. However,
one has to bear in mind that JPEG compression is lossy and introduces, under
certain circumstances, unwanted artefacts. We therefore ran all DNN experiments
additionally saving them in the (up to rounding issues) lossless PNG format. We
did not find any noteworthy differences in DNN results for colour-, noise- and
eidolon-experiment but did find some for the contrast-experiment, which is why we
report data for PNG images in the case of the contrast-experiment (Figure 3). In
particular, saving a low-contrast image to JPEG may result in a slightly different
contrast level, which is why we refer to the contrast level of JPEG images as nominal
contrast throughout this paper. For an in-depth overview about JPEG vs. PNG
results, see Section C of this Appendix.
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(a) Contrast-experiment stimuli (b) Noise-experiment stimuli

Figure 7. Three example stimuli for all conditions of contrast-experiment and noise-
experiment. The three images (categories bicycle, dog and keyboard) were drawn
randomly from the pool of images used in the experiments.
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(a) Coherence parameter = 1.0 (b) Coherence parameter = 0.0

Figure 8. Three example stimuli (bicycle, dog, keyboard) for all except the co-
herence = 0.3 conditions of the eidolon-experiment, split by coherence levels.
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A.3 Apparatus

All stimuli were presented on a VIEWPixx LCD monitor (VPixx Technologies,
Saint-Bruno, Canada) in a dark chamber. The 22” monitor (484 × 302 mm) had
a spatial resolution of 1920 × 1200 pixels at a refresh rate of 120 Hz. Stimuli
were presented at the center of the screen with 256 × 256 pixels, corresponding,
at a viewing distance of 123 cm, to 3 × 3 degrees of visual angle. A chin rest
was used in order to keep the position of the head constant over the course of an
experiment. Stimulus presentation and response recording were controlled using
MATLAB (Release 2016a, The MathWorks, Inc., Natick, Massachusetts, United
States) and the Psychophysics Toolbox extensions version 3.0.12 (Brainard, 1997;
Kleiner et al., 2007) along with our in-house iShow library (http://dx.doi.org/
10.5281/zenodo.34217) on a desktop computer (12 core CPU i7-3930K, AMD
HD7970 graphics card “Tahiti” by AMD, Sunnyvale, California, United States)
running Kubuntu 14.04 LTS. Responses were collected with a standard computer
mouse.

B Fine-tuning on distortions

AlexNet, GoogLeNet and VGG-16 have not been designed for or trained on images
with reduced contrast, added noise or other distortions. It is therefore natural to
ask whether simple architectural modifications or fine-tuning of these networks can
improve their robustness. Our preliminary experiments indicate that fine-tuning
DNNs on specific test conditions can improve their performance on these conditions
substantially, even surpassing human performance on noisy low-contrast images,
for example. At the same time, fine-tuning on specific conditions does not seem
to generalise well to other conditions (e.g. fine-tuning on uniform noise does not
improve performance for salt-and-pepper noise), a finding consistent with results by
Dodge and Karam (2017) who examined the impact of fine-tuning on noise and blur.
This clearly indicates that it could be difficult to train a single network to reach
human performance on all of the conditions tested here. A publication containing
a detailed description and analysis of these experiments is in preparation. The
question what kind of training would lead to robustness for arbitrary noise models
remains open.

C JPEG vs. PNG

As mentioned in Section A.2, all experiments were performed using images saved
in the JPEG format for compatibility with the image training database ImageNet
(Russakovsky et al., 2015), which consists of JPEG images. That is, a certain image
was read in, distorted as described earlier and then saved again as a JPEG image
using the default settings of the skimage.io.imsave function. Since the lossy
compression of JPEG may introduce artefacts, we here examine the difference in
DNN results between saving to JPEG and to PNG, which is lossless up to rounding
issues. Some results for the contrast-experiment using JPEG images were already
reported by Wichmann et al. (2017).

The results of this comparison can be seen in Table 1. For all experiments but
the contrast-experiment, there was hardly any difference between PNG and JPEG
images. For the contrast-experiment, however, we found a systematic difference:
all networks were better for PNG images. We therefore collected human data for
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Table 1

Classification performance difference for PNG and JPEG images.

Experiment AlexNet GoogLeNet VGG-16 human avg.

colour-experiment 0.03% (0.03%) -0.01% (0.01%) 0.02% (0.02%) -
contrast-experiment 1.64% (1.64%) 3.25% (3.27%) 8.82% (8.84%) 2.68% (3.67%)
noise-experiment 0.03% (0.48%) 0.22% (0.71%) 0.45% (0.71%) -
eidolon-experiment -0.43% (1.08%) 0.03% (1.02%) -0.34% (1.09%) -

Notes. Each entry corresponds to the average performance difference for PNG minus JPEG
performance for a certain network and experiment. The value in brackets indicates the average
absolute difference. A value of 0.03% for AlexNet in the colour-experiment therefore indicates
that AlexNet performance on PNG images was, in absolute terms, 0.03% higher compared to
JPEG images (in this example: 90.58% vs. 90.61%). Human data (n=3) was collected for the
contrast-experiment only.

this experiment employing PNG instead of JPEG images (reported in Figure 3). In
this experiment, three of the original contrast-experiment’s observers participated,
seeing the same images as in the first experiment9. The results are compared in
Figure 10. Both human observers and DNNs were better for PNG images than for
JPEG images, especially in the low-contrast regime. Especially VGG-16 benefits
strongly from saving images to PNG (on average: 8.82 % better performance) and
achieves better-than-human performance for 1% and 3% contrast stimuli. In the
main paper, we therefore show the performance of humans and DNNs when the
images are saved as in the PNG rather than the JPEG format to disentangle JPEG
compression and low contrast.

The cause of this effect could most likely be attributed to JPEG compression
artefacts for low-contrast images. Based on our JPEG vs. PNG examination,
we draw the following conclusions: First of all, we recommend using a lossless
image saving routine for future experiments even though networks may be trained
on JPEG images, since performance, as our data indicate, will be either equal or
better in both man and machine. Secondly, we showed that our results with JPEG
images for the colour-, the noise- and the eidolon-experiment are not influenced by
this issue, whereas the contrast-experiment’s results are to some degree.

9A time gap of approximately six months between both experiments should minimize memory effects;
furthermore, human participants were not shown any feedback (correct / incorrect classification choice)
during the experiments.
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Table 2

Colour-experiment: difference between colour and grayscale conditions (paired-samples t-
test).

Network / Observer Difference (%) 95% CI (%) t df p

AlexNet 7.72 [6.55, 8.90] 12.86 4479 <.001*
VGG-16 3.79 [2.97, 4.62] 8.99 4479 <.001*
GoogLeNet 2.90 [2.04, 3.76] 6.61 4479 <.001*
subject-01 0.47 [-2.91, 3.85] 0.27 639 .785
subject-02 1.25 [-2.33, 4.83] 0.69 639 .493
subject-03 3.91 [0.10, 7.72] 2.01 639 .045

Notes. *p < .0083. Difference stands for colour minus grayscale performance; significant at
α = 5%

6 = .0083 after applying Bonferroni correction for multiple comparisons.
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Figure 9. Confusion difference grid for contrast-experiment (as in Figure 6). Left
column: for human observers the condition in which they performed best (100%
contrast, performance p-high = 86.6%) and for all networks the condition for which
they achieved the same accuracy. Right column: data for low performance (20.8%);
middle column: results for medium performance: 47.6%. The colour here shows
whether a difference for a certain cell is significant at α = 5%

16·17·9(∗), 1%
16·17·9(∗∗) and

0.1%
16·17·9(∗ ∗ ∗); these α-levels are Bonferroni corrected for multiple comparisons (16
categories · 17 possible responses · 9 confusion difference matrices). Data obtained
with JPEG images.
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(a) Contrast-experiment accuracy for JPEG im-
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(b) Contrast-experiment accuracy for PNG im-
ages
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(c) Contrast-experiment entropy for JPEG im-
ages
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(d) Contrast-experiment entropy for PNG im-
ages

Figure 10. Accuracy and response distribution entropy for contrast-experiment, split
by JPEG and PNG images. (a)(c) Results for JPEG images. N=3, the same three
observers as for the PNG experiment. (b)(d) Results for PNG images. N=3.
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(a) Classification accuracy
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(b) Response distribution entropy

Figure 11. Complete eidolon-experiment results (n=5). (a) Accuracy including range.
This range was obtained as for the other experiments. (b) Response distribution
entropy. Note that the data for coherence = 1.0 are already visualized in Figure 3
(e) and (f), but are here shown again for better comparison to the results obtained
for different coherence values.
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(a) Contrast-experiment, JPEG images (b) Contrast-experiment, PNG images

(c) Eidolon-experiment, coherence = 0.3 (d) Eidolon-experiment, coherence = 0.0

Figure 12. Estimated stimuli corresponding to 50% accuracy for contrast-experiments
and eidolon-experiment (coherence parameter = 0.3 and 0.0). Top row: stimuli cor-
responding to threshold for the average human observer. Bottom three rows: stimuli
corresponding to the same accuracy for VGG-16 (second row), GoogLeNet (third
row) and AlexNet (bottom row). The corresponding stimulus levels were calculated
by assuming a linear relationship between the two closest data points measured in
the experiments.
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