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Abstract

The University of New Mexico(UNM) stores data on students, faculty, and staff

at the University. The data is used to generate reports and fill surveys for several

local, statewide and nationwide reporting entities. The reports convey statistical

and analytical information such as the graduation rates, retention, performance,

ethnicity, age, and gender of students. Furthermore, the Institute of Design and

Innovation (IDI), and the Office of Institutional Analytics (OIA) at UNM use the

data provided for various predictive studies aimed at improving student outcomes.

This thesis proposes geospatial data as an additional layer of information for the

data repository. The paper runs through the general steps involved in setting up a

geospatial database using PostgreSQL and geospatial extensions including PostGIS,

Tiger Geocoder, and Address Standardizer. With geospatial functionality incorpo-

rated into the data repository, the university can know how far students live, which

amenities are in proximity to students, and other geospatial features which describe

students’ journeys through college.
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To demonstrate how the university could exploit geospatial functionality a dataset

of UNM students is spatially joined to socioeconomic data from the United States’

Census Bureau. Various student related geospatial queries are shown, as well as, how

to set up a geospatial database.
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Chapter 1

Introduction

Over the past few years, geospatial technology has grown to encompass a wide

variety of tools and disciplines that deal with geographic mapping and analysis of the

Earth and human societies. These include remote sensing imagery tools, Geographic

Information System (GIS) software, Global Positioning Systems (GPS) satellites and

receivers, and internet mapping applications such as Google Earth, Google Maps

APIs, and OpenMap [1]. Analysis of the data generated by these tools provides

information on various socioeconomic and environmental issues in different parts of

the world.

This thesis examines the incorporation of such analysis into higher education

by evaluating how socioeconomic and geographic data could be extracted from the

United States (U.S) Census Bureau and other data sources. It also considers how the

performance of students from a given geographic region could help advise incoming

students. The dataset used for the study is based on student data derived from the

University of New Mexico (UNM)’s data repository. Statistical information from the

study is presented to illustrate how various geospatial queries on census data, when

integrated with student data, can provide substantial information on a student’s
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Chapter 1. Introduction

performance and give insight into ways to improve student outcomes. In this thesis,

student outcomes and student performance may be used interchangeably to mean a

measure of student success regarding grades, retention, and time to graduation, also

known as the time-to-degree.

A major focus is how geospatial data is stored using a PostgreSQL database with

extensions that provide geospatial functionality, as well as, how the information is

processed with various software packages and presented to the end user. From a soft-

ware developer’s perspective, there are two principal aspects worth considering to

provide the end user with the necessary data: back-end processing and front-end pre-

sentation. Back-end processing includes how the data is processed, stored, queried,

or analyzed. Front-end presentation deals with visually presenting the information

to the user via a front-end interface. While the analysis involves dashboards of charts

and maps, the study focuses more on processing and querying the information. This

thesis also demonstrates the steps involved in analyzing student data based on so-

cioeconomic information on the geographic locations of students, using geospatial

joins and queries.

Various higher education institutions (HEIs) around the country increasingly

study student outcomes [2]. In particular, which parameters are predictive of stu-

dent outcomes and what measures could be taken to improve results. This is due to

a demand for increased accountability, declining state allocations, more diversity of

student populations, and the overall expansion of higher education in the last half

century [3, 2]. Various data analysis tools are used to this end, and several algorithms

are adopted to analyze curricular information based on designated factors such as

ethnicity, gender, age, and location. This thesis takes a similar approach, with an

emphasis on geospatial information and how it can be used to profile a student. By

mapping out the location of students before, during and after their time at the uni-

versity, informed decisions can be made to address various problems students face.

2



Chapter 1. Introduction

For example, exploring the most desirable jobs within specific geographic regions

helps to advise students on their post graduation prospects. Another use case is to

help students plan out their class schedules based on their proximity to the university

and access to transportation. While this thesis does not delve into all the problems

geospatial information addresses, it answers some fundamental questions that serve

as a starting point and explores best practices for analyzing geospatial data.

The primary focus of the thesis involves setting up a geospatial database for an

educational institution. However, it is also essential to explain why a geospatial

database is necessary. Thus, subsequent chapters consider the importance of geospa-

tial data by highlighting some queries that address geospatial questions. The study

explores geospatial information of an area and how it affects the students from the

area and examines how the performance and choices of students within an area de-

scribe and influence the geospatial region. Thus, the geospatial queries addressed by

the paper may fall within the following inquiries. a) Do the attributes of students

from a particular region provide information about the region? b) Do socioeconomic

data based on students’ geographic origins relate to student outcomes and choices?

c) What geospatial information can be gathered about students and academic insti-

tutions?

The first question addresses potential issues or traits within a geographic location,

based on choices and outcomes of students living in the region. The data consid-

ers whether there is a balance of males and females from a particular geographic

region, whether some areas do not produce students in specific academic disciplines,

and whether there are concerns (such as retention problems and low Grade Point

Average (GPA)) that need to be addressed regarding students from a particular ge-

ographic location. The second question encompasses issues such as, which major a

student is likely to pick, most preferred colleges, and the tendency of students to

switch or drop majors, based on socioeconomic information about a student’s geo-

3



Chapter 1. Introduction

graphic origin. Finally, the third question explores relevant geospatial information

about students and institutions outside of census data. This includes the proximity

of students to libraries, concentration of students in urban and rural areas, the infras-

tructure of geographic regions around academic institutions, and potential benefits

or disadvantages of living in a geographic area.

The second chapter delves into the literature concerning outcomes in higher ed-

ucation and geospatial data, possible applications of results from the study, and the

data sources that feed the test applications used in the study. The third chapter

introduces the methods used to extract, format and query geospatial data for the

study and some of the database tools employed for this purpose.

Based on selected parameters, the fourth chapter looks at the methods used for

analysis and how the data is illustrated via maps, graphs, and tables in a user-friendly

manner. The thesis concludes with a preview of possible integrations of the work

into future applications, as well as, a summary of the work. The appendices consist

of source code, technical screenshots of the implementation process, and a list of

references.

4



Chapter 2

Background

2.1 Motivation

The University of New Mexico(UNM) boasts a large and diverse student body. In

2016, out of a total enrollment of 34,674 students, 42.1% were Hispanic, 36.7% white,

5.2% American Indian, 4.9% Foreign, 3.7% Asian, 2.3% African American/Black,

1.8% had no known ethnicity, and 3.2% had more than one race [4]. With such a

large and diverse student body, it is essential that the university is aware of the needs

of various groups. Students from different backgrounds and students with special

needs may require different services or communal groups within the university to

better deal with their particular needs. For example, first-generation students are

known to have problems navigating through college [5]. Setting up groups for first-

generation students from similar geographic backgrounds could ease them into college

life. Thus, understanding a student’s socioeconomic background plays a significant

role in the university’s ability to provide services and advise students to improve

student outcomes.

At UNM, prior work has been done to predict student outcomes based on some
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Chapter 2. Background

variables including students’ ethnicity, gender, retention rates, courseload and other

curricular factors [6]. While this paper does not engage in predictive analysis, it

introduces additional variables related to a student’s socioeconomic background that

could be incorporated into predictive studies.

2.2 Data Sources

2.2.1 University of New Mexico Student Data Mart

UNM has a number of database systems responsible for the storage of student

information. Among these database systems is the Student Data Mart, which is the

central data store for student related information. Some tables from the data mart

were queried to provide relevant student information for the purpose of the study.

Some of the data sampled from the Student Data Mart include geospatial informa-

tion such as students’ residential and mailing addresses, and students’ high school

addresses, as well as other information relevant to evaluating student outcomes. The

information includes students’ gender, ethnicity, age, grades, time to degree, and

other pertinent data.

For illustration purposes, the dataset chosen from the student database consists

of undergraduate students living in New Mexico who graduated between fall 2007

and fall 2016. Appendix A provides more information about the dataset and fields

used.

2.2.2 U.S Census Bureau (FactFinder)

Geospatial data can illustrate how external factors outside of a school setting

may play a part in student outcomes or provide further information that can be

6



Chapter 2. Background

considered when advising a student. The U.S Census Bureau provides data about

the socioeconomic status of various census tracts. Census tracts are defined by the

U.S Census Bureau as small, relatively permanent statistical subdivisions of a county.

By relating this census data to students via the census tracts they live in, we can

gain better insight into how students’ backgrounds may affect their performance in

an institution.

For the study, information was derived from the U.S Census Bureau. This com-

prised of data on all census tracts within the state of New Mexico based on five

main data profiles provided on the website. These data profiles were categorizations

of census information consisting of selected social, economic and housing charac-

teristics in the U.S, and the American Community Survey (ACS) demographic and

housing estimates.

To facilitate easy access to census data, the Census Bureau provides a web appli-

cation called the FactFinder which has advanced search and filtering options for the

Census data repository. The FactFinder web application provided socioeconomic

information about various census tracts. However, to associate the data with the

students at the university, there was a need for a means to connect both datasets.

Census tract shapefiles that contained geospatial information necessary for joining

the student data with the Census Bureau’s Socioeconomic data were also available

on the Census website.

2.2.3 Arbitrary Shapefiles and Geospatial Data

Besides data from the U.S Census Bureau, it was essential to find out how other

geospatial data related to student data. For this reason, other arbitrary geospatial

datasets were explored. Some sources such as data.gov and Tiger data provided

relevant information to the study. Examples of these data include shapefiles and

7



Chapter 2. Background

geospatial data on federal highways, urban and rural areas, zip code boundaries, and

landmarks.

2.3 Test GeoSpatial Database

While the data sources above are the primary data sources for the study, it be-

came apparent that a local geospatial database was needed to ease querying of the

data. As such, a smaller geospatial database was created with appropriately format-

ted datasets derived from the previously mentioned data sources. The database is

referred to in the rest of the paper as the test database.

Data extracted from the Student Data Mart, together with the Census Bureau’s

socioeconomic profiles, the census tracts shapefiles and other resulting files from cal-

culations using Python were imported into a PostgreSQL database. Also, to enable

geospatial joins and queries, the PostGIS extension was installed into the database.

The test database, therefore, provided a central data store for the geospatial queries

presented in the study. The database’s extensions, PostGIS, Tiger and Address

Standardizer, provided extra functionality for standardizing addresses, geocoding,

geospatial querying, joining, and indexing.

The Entity Relationship Diagram (ERD) in Figure 2.1 shows a simplified version

of the database structure. In the diagram, there are four main database tables

with a fifth join table that links student data to their addresses. The main idea

is to spatially join student data to census socioeconomic data via the intermediary

geospatial database tables; namely, the census shapefile and student addresses tables.

One notable attribute of the geospatial tables is a geom field that utilizes the geometry

formats available through PostGIS. The geometry format is not inherently available

as a data structure and is provided with the PostGIS extension to allow for geospatial

queries and joins [7].

8



Chapter 2. Background

Figure 2.1: An Entity Relationship Diagram for the Test Database

2.4 Project Summary

The creation of a geospatial student database with census data involved four main

steps as shown in Figure 2.2. The data was first collected from various sources

including the Student Data Mart, the census bureau and data.gov. Since the data

were from different sources and in different formats, the next step was to format the

data and prepare it for the database. The data were then consolidated into the test

database. Once the data were available in a central location, queries and analysis

could be carried out. The various steps are elaborated in the following chapters,

together with the software tools employed for querying and analyzing the data.

9



Chapter 2. Background

Figure 2.2: Flow Diagram for Process Involved in the Study
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Chapter 3

Geospatial Data Processing

To appreciate the need for a geospatial database, it is essential to understand what

it is and how it differs from other databases. Geospatial databases are databases that

contain geospatial data and can handle geospatial queries. Geospatial data refer to

data about some point or space on the earth while geospatial queries refer to queries

that extract relevant information from geospatial data. For the purpose of restricting

the scope of data, queries, and functions to geographic locations on the earth, the

term geospatial replaces the term spatial, which is used more generally to relate to

any given space. It should be noted that while geospatial databases are mainly

used in association with the earth, advances in neuroscience and architecture have

increasingly lead to incorporating spatial data structures when storing data about

the brain, structures, and other complex three dimensional (3D) objects [8, 9].

Geospatial databases are not inherently different from other databases. Rather,

they may either be extensions of regular databases with added geospatial function-

ality or specialized databases for storing and querying geospatial data. Currently,

the two main types of database systems are Not Only SQL (NoSQL) databases and

relational databases [10]. NoSQL and relational databases handle geospatial data
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Chapter 3. Geospatial Data Processing

differently but have some similarities [10]. Details of how NoSQL and relational

databases handle geospatial functionality is provided in Appendix B. PostgreSQL is

a relational database that was chosen for the test database because of its extensive

geospatial library and reputation as a stable and reliable database.

The main differences between geospatial and non-spatial databases lie in the

data types, the additional queries, and the types of indexes used in the database

[11]. First of all, most databases store two dimensional (2D) data while geospatial

databases store both 2D and 3D data. Using arrays as an analogy, a list of student

names could be seen as a one-dimensional array, while a 2D array could be a tabular

display spanning multiple columns of data consisting of student names, grades, ages

and ethnicities. 3D data include entries that convey information about a given 3D

space or a point within it. A student’s address may be stored as a string in a 2D

database but stored as geometric coordinates within a 3D database. While some

geospatial databases may not necessarily have 3D geospatial data types, a single

geospatial column entry may comprise of several thousands of latitude and longitude

coordinate values or a single latitude and longitude coordinate that relates to a point

on the earth. Conventional data types are unable to store such information properly.

Geospatial data is stored in a geospatial table using geospatial data structures,

which are mostly derived from extensions or libraries added to the database. Since

geospatial data is stored using 3D data structures, it follows that binary tree in-

dexes designed for 2D data structures are not efficient for geospatial data. Thus,

most databases use geospatial indexes that work differently when indexing geospa-

tial database tables. Relational geospatial databases typically use R-Tree indexing

or variants known as R* and R+ or kd-trees [11]. NoSQL databases also have special

geospatial indexes for geospatial entries.

To map census data to student data, a PostgreSQL database was created to store

selected student data, socioeconomic Census Bureau data and geospatial data from

12



Chapter 3. Geospatial Data Processing

the required shapefiles. The student dataset consists of students who graduated

between fall 2007 and fall 2016 and lived in New Mexico at the time. The Address

Standardizer and Tiger Geocoder extensions were installed to handle standardizing

addresses and geocoding the student and high school addresses from the Student Data

Mart. PostGIS was installed as an extension to handle geospatial storage, queries,

and joins. For further computational and analytical purposes, Python’s Pandas and

Statsmodels packages were used. Since data from different sources and formats were

used, it was essential to standardize the data. This chapter explores the steps taken

to format the data and how PostgreSQl and PostGIS are used to store, query and

analyze the data.

3.1 Geospatial Data Structures in PostGIS

Geospatial data is usually thought of as map data, which is mostly true. Most

information related to geographic information can be illustrated via maps. It follows

that maps form a large part of geospatial analysis. How then is a map stored within

a database of rows and columns when it contains arbitrary lines, shapes, and colors?

There are several formats in which geographic data is stored. A majority of these for-

mats are based on standards developed by the Open Geospatial Consortium (OGC)

through a consensus process. Two major categories of Geographic Information Sys-

tem (GIS) file formats are the raster and vector formats. Raster data is made up of

pixels or grid cells stacked in rows and columns while vector data consists of points

and paths [7].

PostGIS provides several data structures or GIS objects based on the "Simple

Features" defined by the OGC. PostGIS also extends the standard with support for

3D and four dimensional (4D) coordinates [7]. Four main GIS objects are used in

the test geospatial database as listed below:
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Chapter 3. Geospatial Data Processing

• POINT (latitude and longitude pair coordinates of student addresses, point

landmarks, public facilities)

• MULTILINESTRING (roads and highways)

• POLYGON (spatial joins and specific geographic area information)

• MULTIPOLYGON (area landmarks, census tracts, counties, school districts)

The full list of GIS objects and functions supported by PostGIS can be found in

the PostGIS manual [7]. To carry out geospatial operations and joins, a geom column

needs to be included in any geospatial database table. The field type should be one

of the geospatial data structures listed above or in the PostGIS manual [7].

3.2 Geocoding Solutions

Geocoding involves converting addresses into latitude and longitude values that

could be mapped to a point on the earth’s surface. To prepare the selected stu-

dent dataset for storage within a geospatial database, addresses were first geocoded.

Various geocoding methods were tested, most of which were expensive and time-

consuming. Some of the geocoding tools available include ‘geocod.io’, geocoder

wrappers from NodeJs, Ruby, and Python, and Tiger Geocoder extension for Post-

greSQL. Geocoder wrapper tools implement geocoding through multiple sources such

as Google, HERE, Yahoo, and MapBox but provide functions that abstract the pro-

grammer from having to use all the individual software. Most of these wrappers

and geocoding tools were either unable to handle batch geocoding (geocoding large

numbers of addresses) in a timely and cost-effective manner or had a limited number

of addresses allowed for geocoding. Thus, the Tiger Geocoder extension was used for

most large datasets while geocod.io was used for smaller datasets. Before geocoding
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addresses, the Address Standardizer was used to ensure addresses were formatted

and stored correctly.

(a) parse_address function

(b) Normalized Result

(c) Parsing Addresses in the Test Database

Figure 3.1: Address Standardizer Usage

3.2.1 Address Standardizer

The Address Standardizer extension is a PostgreSQL extension that takes a single

line address and parses it, with the help of three tables; the rules table, the lex table

and the gaz table. The rules table provides the basic mapping rules, the lex table

deals with alphanumeric input, and the gaz table is used to standardize place names.

These tables are generated in the database during the installation of the extension.

More details can be found in the PostGIS manual [7].

In the student database, addresses are provided within the columns: street_line1

street_line2, street_line3, city, state, postal_code, and country. However,
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many addresses in the student database are not formatted properly within these

fields. The address_standardizer extension is used to normalize the addresses by

parsing single addresses formed by concatenating the fields. Figures 3.1a and 3.1b

show an example of normalizing an address with the extension and the result from

the query. Figure 3.1 shows how addresses are normalized within the test database.

3.2.2 Tiger Geocoder

Tiger Geocoder is an extension for geocoding addresses into latitude and longitude

coordinates. It comes with its own address normalizer and includes functions for re-

verse geocoding, geospatial indexing, as well as other geospatial functions which load

and operate on geospatial census data. It is written to work with the Topologically

Integrated Geographic Encoding and Referencing system (TIGER) released by the

U.S Census Bureau, and is designed specifically for U.S addresses [7]. The address

normalizing function within Tiger Geocoder depends on the Address Standardizer

extension introduced in the previous subsection and works similarly.

Tiger Geocoder depends on data from the tiger_data schema which needs to

be downloaded and set up. Shapefiles and lookup data can be downloaded for all

states and territories in the U.S. Further information about the installation of the

tiger_data are available in the PostGIS manual [7]. Disadvantages of using Tiger

Geocoder for geocoding include the tasking setup process, slow batch geocoding

time, and a significant amount of space required for storing TIGER data. The major

advantage is that it is free, unlike other geocoders. For fewer addresses, alternative

geocoders such as those from Google and HERE are sufficient. Once the TIGER

data is set up, the table with the list of addresses can be geocoded. To geocode the

student_addresses table, the columns lat, lon, rating and new_address were

added to the table as shown in Figure 3.2. These columns were necessary for the
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latitude, longitude, match rating, and normalized address fields generated by the

geocoder.

Figure 3.2: Adding Columns for Geocoder

After all addresses were geocoded, the geom column was added, and designated a

Point geospatial datatype for the coordinate values. The geom column is essential for

geospatial operations and can be designated any of the geospatial datatypes available

in PostGIS. Tiger Geocoder’s geocode function takes in the addresses as input and

produces normalized addresses. The script for updating student addresses with the

normalizer is shown in Figure 3.3.

Figure 3.3: Geocoding Addresses with Tiger Geocoder
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Pre-Institutional Enrollment-Based Post-Graduation
High School CGPA Career
HSGPA Retention Relocation

SAT / ACT scores Time to degree
Course load

Housing (Off or On Campus)

Table 3.1: Attributes of Students

3.3 Geospatial Queries and Joins

Geospatial databases are mostly regular databases extended to provide extra func-

tionality. Hence, geospatial queries are very similar to regular queries for most

databases but with added functionality to account for geospatial data structures and

spatial relations. There are several geospatial databases or databases with geospa-

tial extensions. As mentioned in Chapter 1, three main questions illustrate the types

of information that can be extracted from the geospatial student database. These

questions are dealt with in the subsequent subsections.

3.3.1 Do the attributes of students from a particular region

provide information about the region?

In this context, student attributes refer to all attributes that could be associated

with a student in the dataset. Attributes may be pre-institutional, post-graduation,

or enrollment-based. Pre-institutional attributes are usually predetermined and con-

sist of student characteristics that exist before matriculation. Examples of student

attributes are provided in Table 3.1.

By using student attributes to provide information about geographic regions, the

queries are a means of creating profiles on geographic regions based on these at-
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Figure 3.4: Attributes of Students within Census Tracts

tributes. In Structured Query Language (SQL), such queries are implemented by

joining the tables consisting of geospatial information to the tables comprised of stu-

dent information, and grouping them by geographic locations. Joining a geospatial

table containing geographic locations to a table with student information requires a

spatial join. More specifically, the join requires finding student addresses contained

within particular regions. The ST_Contains function provided by PostGIS can han-

dle such joins. As shown in Figure 3.4, simply selecting all relevant student attributes

and census tracts from the spatially joined student_data and census_shapefile

tables should provide relevant student data for each census tract. The query se-

lects only few student attributes for brevity. Counties, school districts, and other

geographic regions could substitute census tracts.

Another way of relating student attributes to geographic regions is through aggre-

gate results such as averages, percentages, and counts within each geographic region.

The example in Figure 3.5 shows female and male percentages, average GPAs, and

time-to-degree for students within each county from the dataset.
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(a) Aggregate query of student attributes per county

(b) Results of Aggregate Query

Figure 3.5: Aggregate Query for Students within Counties

3.3.2 Do socioeconomic data based on students’ geographic

origins relate to student outcomes and choices?

This question follows the same concept introduced in the previous section. Stu-

dents are spatially joined to the census via the ST_Contains function. However,

queries require a different point of view, where data from geographic regions are

analyzed to figure out how regional characteristics affect students who live within

them. Thus, both socioeconomic data from census data, and student attributes from
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DP02 DP03 DP04 DP05
Average Family

Size
Income $200k or

more
paying 35% or
more GRAPI

Population Under
5 years

Average
Household Size

With Health
Insurance
Coverage

Hispanic or Latino
(of any race)

High School
Attainment

No Health
Insurance
Coverage

American Indian

Native Population
(born within the

U.S)

Course load

Foreign
Population

Table 3.2: Census Socioeconomic Data On Census Tracts

the Student Data Mart are selected in the queries. Consider as an example, a query

on the relationship between average income within geographic regions and student

GPAs. Average income is a socioeconomic factor, and GPA is the student attribute

in this case. The socioeconomic data provided by the census is categorized under

five major data profiles as listed below.

• DP01: Profile of General Population and Housing Characteristics

• DP02: Selected Social Characteristics in the United States

• DP03: Selected Economic Characteristics

• DP04: Selected Housing Characteristics

• DP05: ACS Demographic and Housing Estimates

For the test database, various socioeconomic characteristics were selected from

four of the data profiles, as shown in Table 3.2. To figure out how socioeconomic data
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on census tracts relates to student outcomes, queries involved selecting these char-

acteristics from the census_socioecons table, as well as, student attributes used to

measure student outcomes. The census_socioecons table was spatially joined to

the students via the census_shapefile and student_addresses tables. The En-

tity Relationship Diagram (ERD) in Chapter 2 Figure 2.1, shows the relationships

between the tables. Figure 3.6 shows an example query used to derive some char-

acteristics from the census_socioecons table and Figure 3.7 shows a query with

aggregate functions of averages for counties.

Figure 3.6: Socioeconomic Characteristics for Students within Census Tracts
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(a) Aggregate Query of Socioeconomic Characteristics per County

(b) Results of Aggregate Query

Figure 3.7: Aggregate Query of Socioeconomic Characteristics Within Geographic
Regions

In determining how socioeconomic factors affect students, aggregate functions

play the most relevant role. A variety of aggregate functions provide information

when classification systems are introduced. A classification system, in this case,

refers to a means of classifying students by socioeconomic categories. An example

would be a binary classification system for determining whether a geographic region

is considered high income. Consider for the data profile, DP03, percentages of people

with an income of $200,000 or more. Using the average as a pivoting point, com-
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munities where percentages are equal or greater than the average are assumed to be

high income and assigned a value 1, while 0 is assigned to low-income communities.

The code and results for the classification query are provided in Figure 3.8. Student

outcomes such as average GPAs or time-to-degree can be measured against these two

classifications. Several classification methods can be introduced into the database

and used with regression models or machine learning algorithms.

(a) Query for Student Outcomes in High Income Census Tracts

(b) Results of Classification Query

Figure 3.8: Aggregate Querying using Classification
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3.3.3 What geospatial information can be gathered about stu-

dents and academic institutions?

This line of query primarily involves spatial-centric information such as students’

proximity to university campuses, availability of public transportation, proximity

to disaster-prone areas, and availability of certain infrastructure. Geospatial infor-

mation such as distance to the university campuses can easily be provided through

geospatial querying of student and campus addresses. However, other geospatial

queries may require additional layers of geospatial information.

This highlights a special trait of geospatial databases. Just as tables containing

different aspects of student information can be added to a database, additional layers

of geospatial information can be added to a database. For a map showing the various

cities within New Mexico, a layer of traffic and highway information could be added

to the map. Furthermore, additional layers of zip code boundaries, hospitals, coffee

shops, hotels, public buildings, population densities, and other information could be

provided as labels, shapes, dots, and colors on the map. This drastically expands

the possible approaches by which student data can be analyzed. However, care must

be taken to limit geospatial queries to factors that could actually affect a student or

inform an institution about a lack of particular relevant services and infrastructure.

Shapefiles of federal highways, roads, public facilities, landmarks, urban areas

and school districts were imported into the test database to demonstrate other po-

tential queries with a variety of geospatial data. The ERD is displayed in Figure 3.9.

With all these shapefiles, so many questions can be asked about students and UNM,

including the following:

• Which students live closest to the Westgate Library?

• Are there any landmarks close to UNM?
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Figure 3.9: An Entity Relationship Diagram Showing Possible Geospatial Additions
to A Student Database

• What are some socioeconomic characteristics of UNM’s census tract?

• Which public facilities are available to students living downtown

• Are there good roads connecting students living in the downtown dormitory to

UNM for school buses?

To demonstrate some of the geospatial functions available in PostGIS, the first

question is illustrated in Figure 3.10. Two geospatial functions are used in the query,
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ST_Distance and ST_DWithin. ST_Distance is used to measure the distance be-

tween two geospatial objects. In this case, it is used to measure the distance between

student addresses and the Westgate Library. While the unit provided in the results

is in meters. PostGIS provides other functions such as the ST_Transforms function

for converting the measurements into other desired units. The ST_Dwithin in the

query is used to join the public_facilities table to the student_addresses table

based on all students within the given distance. Several other geospatial functions

are provided in the PostGIS manual for geospatial operations [7].
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(a) Query of Students Living Closest to Westgate Library

(b) Result of Distance Query

Figure 3.10: Students Living Close to the Westgate Library
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Analyzing the Data

Extensive analyses show various relationships between student backgrounds and

performance when socioeconomic data is related to student data. While more ex-

tensive machine learning and data analysis measures could be applied to the data,

the dataset for the study was limited and merely serves to introduce basic data anal-

ysis on student data. In this section, two methods used to analyze the data are

demonstrated: Data visualization with Tableau and computations using Python.

The Census Bureau has been very concerned with the educational attainment of

students, especially from Hispanic, American Indian, and African American commu-

nities [12]. This is mainly due to the fact that these ethnic groups have typically

experienced lower retention and graduation rates [12]. As New Mexico has a large

concentration of Hispanic and American Indian populations in various geographic re-

gions, most of the visualizations focused on students from these geographic regions.

This is also due to the lack of sufficient numbers of students from communities with

other ethnic backgrounds needed to provide relevant statistical data.
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4.1 Data Visualization

At UNM’s Office of Institutional Analytics, Tableau is used extensively to visualize

data into various graphs, charts, and maps that make it easier to recognize patterns

and analyze the data. With Tableau, dashboards are seamlessly created by connect-

ing to a data source and selecting the desired parameters or database columns for

illustration purposes. Tableau also allows for most basic queries and joins, including

geospatial features, making it a suitable tool for geospatial data visualization.

Using various charts, maps and graphs with colors, the relationship between stu-

dent attributes and socioeconomic data are more pronounced, and further analysis

can be conducted. Some examples of simple data visualizations that show basic pat-

terns and characteristics of students in different geographic areas within New Mexico

are explored in this section. A dataset of undergraduate students at UNM who live in

New Mexico and were enrolled during fall 2016 was selected. For demonstration pur-

poses, the illustrations are based on the same three questions presented in Chapters

1 and 3.

Do the attributes of students from a particular region provide information about

the region?

Suppose a university needed to know whether students from various census tracts

experience large disparities in student outcomes. An optimal data visualization would

show the time-to-degree, GPAs, and HSGPAs of students from these census tracts.

As illustrated in Figure 4.1, within the state of New Mexico, census tracts with the

highest average HSGPAs tend to maintain this momentum through college. How-

ever, time-to-degree seems to be independent of GPAs within census tracts. Besides

student outcomes, other attributes of students such as ethnicity, age distribution,

choice of housing, and student majors could be observed within census tracts.
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Figure 4.1: Student Attributes for Census Tracts with the Highest Populations of
UNM Students

Do socioeconomic data based on students’ geographic origins relate to student out-

comes and choices?

One interesting observation was how geographic regions that students lived in,

affected student GPAs, time-to-degree and choice of majors and housing. The most

popular majors at UNM within the selected dataset in order of magnitude were Bi-

ology, Business Administration, Psychology and Criminology. Psychology and Busi-

ness Administration switch places once their distribution across census tracts is taken
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(a) Popularity of Majors at UNM for students who live in New Mexico

(b) Popularity of Majors in Regions with More Hispanics and Latinos

Figure 4.2: The popularity of Majors within the University

into consideration. However, the popularity of Biology and Business Administration

drastically drops when taking into account students from geographic regions with

higher concentration of Hispanics. Students from geographic regions with higher

percentages of Hispanics chose Psychology, Criminology, and Political Science while

students from regions with fewer Hispanics chose Biology and Business Administra-

tion. In geographic regions with more natives (people born in the United States),

most students had undecided majors. Biology, Psychology and Business Administra-

tion were also the most popular majors among such students, while Criminology and

Elementary Education were popular among students with higher concentrations of

non-natives. The pivoting point to determine whether or not a geographic region was
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deemed to have a higher or lower concentration of a given attribute was the average.

For example, concerning students from geographic regions with higher concentration

of Hispanics, a filter was set for the percentage of Hispanics within the specific re-

gions to be greater than the average. For brevity, Figure 4.2 shows the distribution

of majors among all students in the dataset and students from geographic regions

with higher Hispanic/Latin concentrations, while the rest of the figures are provided

in Appendix C.

Figure 4.3: Student Housing

Housing characteristics were also different among students from different back-

grounds. Students from regions with higher percentages of Hispanics and people
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below the Federal Poverty Level (FPL) preferred to live off-campus or with their

parents. The inverse was the case for students from populations with higher educa-

tional attainment percentages and higher percentages of wealthy residents as shown

in Figure 4.3. GPA and time-to-degree also showed slight differences when plot-

ted against students from different backgrounds. Students from regions with higher

percentages of Hispanics, higher percentages of people below the FPL and lower

percentages of health insurance coverage, took a longer time to graduate and had

relatively lower GPAs overall. However, the differences were not large enough to

make these attributes predictive indicators for all students

What geospatial information can be gathered about students and academic institu-

tions?

Figure 4.4: Ethnic Distribution of Students in New Mexico

With Tableau, the students’ ethnic distribution across New Mexico could be illus-
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trated as shown in Figure 4.4. The legend binds colors to ethnicity and population

density. From the map, it is apparent that most students are White, Hispanic,

and American Indian with the highest concentration of students within and around

Bernalillo County. This makes sense since the university is located within the area.

By hovering the pointer over a student on the map, Tableau provides detailed in-

formation about the student based on selected parameters. Furthermore, various

census datasets are available in Tableau as data layers. In Figure 4.4 for example, a

data layer showing the 2017 Hispanic or Latino ancestry populations is depicted by

different shades of purple for various census blocks within the state of New Mexico.

4.2 Statistical Analysis with Python

A possible application of a geospatial student database is predictive analysis. So

far, geospatial querying has been introduced as a means to extract socioeconomic

and geospatial information about students and their environments. Taking it a step

further, the information could be analyzed with regression models and adapted into

predicting student outcomes and choices. To test the possibility of regression mod-

eling and predictive analysis using geospatial student data, census socioeconomic

features of students’ communities were plotted against selected measures of student

outcomes. The two main selected measures were the time-to-degree and GPA of

students. A simple regression model known as the Ordinary Least Squares (OLS)

regression model was used. The code is provided in Figure 4.6. Some socioeconomic

factors were found to affect student outcomes. For example, students from Hispanic

communities took longer to graduate on the average and had lower GPAs as shown

in Figure 4.5a. However, as seen in the graphs, the regression lines were not a good

predictive measure overall because the differences between students from communi-

ties with higher concentrations of Hispanics and those with lower concentrations were
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small. Since there is a relation, however, machine learning algorithms and special-

ized regression models could produce more robust predictions of incoming students’

outcomes based on historical socioeconomic values of student backgrounds.

(a) Hispanic Concentration in Communi-
ties Plotted Against GPA

(b) Low Health Insurance Coverage Plot-
ted Against GPA

(c) Communities with Higher Educa-
tional Attainment Percentages Plotted
Against GPA

Figure 4.5: Socioeconomic Features and Their Influence on Student GPAs

For regression analysis with Python, a number of packages were imported, in-

cluding Pandas, GeoPandas, Statsmodels and SQLAlchemy. Pandas and GeoPan-

das are open source Python libraries that provide data structures and data analysis

tools. These packages are comparable to working with R but provide less func-

tionality with data analysis. R is a programing language designed specifically for

statical computing, and also provides packages for statistical analysis on geospatial
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data. Two powerful data structures made available by the Pandas library are Series

and DataFrames. A Series is a one dimensional data structure of arrays while a

DataFrame is a two dimensional data structure with columns of potentially different

data types. These two data structures come with various methods and attributes

that make data analysis with Pandas relatively simple. GeoPandas is an extension

of the Pandas package with geospatial functionality and provides the GeoSeries and

GeoDataFrame data types as extensions to Series and DataFrame types. These data

types allow for easy computational operations and analysis with Python as shown

in the code in Figure 4.6. As shown in the code, SQLAlchemy is used to connect to

the test database. Pandas provides the read_sql_table method for importing the

dataset into a Python DataFrame. Using the Statsmodels.api package, statiscal

analysis such as the Ordinary Least Squares algorithm can be run on the data.
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6/30/2017 subset_regression.py

file:///Users/edwinagbenyega/Documents/Thesis/exportToHTML/subset_regression.py.html 1/1

subset_regression.py

1    import pandas as pd  
2    import numpy as np  
3    import statsmodels.api as sm  
4    import matplotlib.pyplot as plt  
5    from sqlalchemy import create_engine  
6      
7    # connect to test database  
8    engine = create_engine('postgresql://edwinagbenyega@localhost:5432/thesis')  
9      
10   # pull data from subset table (a table containing student data joined to census data for  
11   # data analysis  
12   df = pd.read_sql_table(table_name="subset", con=engine)  
13     
14   # regression function for displaying results from and OLS regression model  
15   def reg_m(y, x):  
16       ones = np.ones(len(x[0]))  
17       X = sm.add_constant(np.column_stack((x[0], ones)))  
18       for ele in x[1:]:  
19           X = sm.add_constant(np.column_stack((ele, X)))  
20       results = sm.OLS(y, X).fit()  
21       return results  
22     
23     
24   # plotting the results of the regression model onto a graph  
25   def plt_graph(xlabel, ylabel, title, results, fname):  
26       fig, ax = plt.subplots()  
27       fig = sm.graphics.plot_fit(results, 0, ax=ax)  
28       ax.set_ylabel(ylabel)  
29       ax.set_xlabel(xlabel)  
30       ax.set_title(title)  
31       plt.savefig('./graphs/' + fname + '.png')  
32     
33   # variables containing socioeconomic factors and student attributes for regression analyses  
34   df2 = df[df['bdegsem'] >= 6]  
35   y1 = df2['bdegsem'] 
36   y2 = df2['gpa']  
37   x1 = [df2['hisp_latino_any']] 
38   x2 = [df2['hisp_latino_any'], df2['native'], df2['foreign_born']]  
39   x3 = [df2['no_health_insurance']]  
40   x4 = [df2['college_grad'], df2['hs_attain_25'], df2['grad_attain_25']]  
41     
42   # dictionaries for possible variable combinations of socioeconomic factors and student attributes  
43   y = {'BDEGSEM': y1, 'GPA': y2}  
44   x = {'hisp': x1, 'Racial Distribution': x2, 'Income w/o Insurance': x3, 'Ed Attainment': x4}  
45     
46   # df2['income_over_200k'], df2['below_fpl_all'],  
47     
48   # running regression model for all the factors included in the x and y dictionaries  
49   count = 0 
50   for i,j in y.items():  
51       for k,l in x.items():  
52           count += 1  
53           print()  
54           title = "Regression Summary: y = " + i + " x = " + k  
55           reg = reg_m(j, l)  
56           print(title)  
57           print('*'*100)  
58           print(reg.summary())  
59           plt_graph(k, i, title, reg, i + str(count))

Figure 4.6: Python Code for OLS Regression Modeling
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Future Work / Conclusion

5.1 Geospatial Profiling as a Potential Substitute

for Census Data

According to a study of decennial census undercounts by the PricewaterhouseC-

oopers consulting firm, the Census undercounted the population of New Mexico by

an estimated 35,988 people, or 9.4% of the population in 2000 [13]. This trend con-

tinued in subsequent years and the undercounted estimates ultimately cost the state

over $100 million in Federal funding between 2002 and 2012 [14]. Data compiled by

the Bureau of Business and Economic Research(BBER) at UNM suggests that the

effect of the undercount may have been even more severe [14]. It comes to ques-

tion then whether the Census Bureau’s data is an appropriate source for examining

student backgrounds.

The Census Bureau is a rich source of data, statistical reports and analyses on var-

ious characteristics of people within the U.S. With regards to school enrollment and

other educational attainment characteristics, the Census Bureau depends on a vari-
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ety of surveys and data collection programs. These mainly consists of the American

Community Survey (ACS), Current Population Survey (CPS), Survey of Income and

Program Participation (SIPP), Small Area Income and Poverty Estimates (SAIPE)

Program, and other smaller survey bodies [15, 12].

While these programs make an effort to provide information based on answers

derived from surveys, factors such as sampling and non-sampling errors may account

for certain levels of inaccuracy [15]. Factors such as respondents’ interpretation of

questions, cooperation, and accuracy of answers are typical causes of non-sampling

errors [15]. Quality control measures and adjusted weighted procedures of the final

estimates are carried out to reduce these errors to acceptable error margins [15].

However, an alternative to depending on census data could be historical student

data.

Arguably, statistical data made available by associating students with their ge-

ographic origins could provide information on geographic regions based on student

characteristics. For example, by associating the average GPAs, retention rates, gen-

der, ethnicities and other attributes of students with their addresses, more accurate

and substantial data could be associated with various geographic regions. This can

be achieved by exploiting geospatial relationships of historical data regarding stu-

dents and where they lived. Also, geospatial querying could provide more valuable

information such as the proximity of students to various facilities, percentages of

students within walking distance to their educational institutions, concentration of

students in particular regions per race, gender, and major.

40



Chapter 5. Future Work / Conclusion

5.2 Framework for Generating Statistical and Ana-

lytical Reports

Incorporating geospatial functionality into student databases opens up a myriad

of possibilities. By adding various layers of geospatial data, different aspects of stu-

dents and the geographic regions they live in are made available for analysis. As

shown in Chapter 3, shapefiles with information about federal highways, urban and

rural areas, landmarks, and public facilities provide information about the commu-

nities students live in and the resources available. Additional layers of spatial data

from sources such as Google Maps and data.gov could also be integrated for further

analysis. Since different parts of the U.S have different geographic characteristics, an

interesting expansion of the research is to compare statistical geospatial data from

various universities in different geographic regions. In order to achieve this, a fu-

ture direction would involve creating a portable framework that generates statistical

information based on Census Bureau socioeconomic data and student data.

The framework would have predefined variables that could be mapped onto fields

from any educational institution’s database. Once educational institutions input

these fields, the framework would compare historical data with those of other insti-

tutions of similar backgrounds and produce predictive geospatial reports and ana-

lytics. The framework would include the ability to generate a PostgreSQL/PostGIS

geospatial database based on student addresses. It would also use geospatial and

machine learning functions from Python packages such as Pandas/Geopandas and

Sci-kit Learn.
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5.3 Conclusion

The U.S Census Bureau gathers data from all over the U.S for policymaking and

allocation of funds to various communities [16]. Using geospatial databases as a

means to associate socioeconomic census data with student data is a relatively new

concept. Thus, there are a lot of unexplored analytical and predictive models. The

thesis explored three broad areas of incorporating geospatial data into data analytics

for HEIs. The first area considered how attributes of students living in a geographic

region could be used to characterize the geographic region. The second explored how

socioeconomic data from the Census Bureau could describe the students who live

in a given geographic region. The third area dealt with geospatial data from other

external sources and how they related to students and educational institutions. These

are broad topics that illustrate the benefits of incorporating geospatial data into a

student database. However, the relationships introduced by a geospatial student

database are by no means exhausted in this thesis. While the study mentioned some

problems worth addressing, there are still several unexplored questions.

Geospatial databases enable queries on 3D and 4D data. This means that geospa-

tial analytics are not restricted to geographic regions but also encompass 3D and 4D

spatial concepts. Therefore, researchers could explore topological relationships be-

tween university campuses and students. An example is the effect of landscape, archi-

tecture, and spatial dynamics of where students study (such as campuses, classrooms

and libraries) on student outcomes. Geospatial databases also enable specialized an-

alytics on students and classes. These include how student outcomes are influenced

by the distribution of students within a classroom of a given size or the effect of

class schedules on students with varied proximity to the school and accessibility to

transportation.

Potential advances include expanding the dataset to consist of several universities
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and creating a portable framework that other universities could apply to their data.

By creating a framework for multiple universities, universities could share statistical

geospatial data and learn more about incoming students from different geographic

origins. Student advisors could help students align their courses and class schedules

better, based on comparing statistical geospatial information. Projected statistical

findings could also help identify discrepancies in student outcomes. Thus, geospatial

student databases yield several benefits to HEIs and deserve further studies as an

upcoming field of student analytics.
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Appendix A

Selected Fields from Census Data

Mapped to Test Database Fields

Figure A.1: Selected Socioeconomic Fields From the FactFinder Mapped to the Test
Database
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Appendix B

NoSQL and Relational Databases

with Geospatial Functionality

Some examples of NoSQL databases are presented below with an explanation of

the tools they use to handle geospatial analysis. The relational databases considered

are Postgres and MemSQL. NoSQL databases described are Redis and Neo4j.

B.1 Postgres Database with PostGIS Extension

PostgreSQL (or Postgres) is a reliable open source object-relational database man-

agement system that runs on most major operating systems, is fully ACID compliant

and has native programming interfaces for most programming languages. PostGIS is

an open source PostgreSQL extension that follows the Simple Features for SQL spec-

ification defined by the Open Geospatial Consortium (OGC). It adds various spatial

functions and data types to PostgreSQL and makes it easier and more efficient to

store and query geospatial data in a PostgreSQL database.
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B.2 Redis

Redis is an open-source data structure store that operates in memory which makes

it highly available. It is used as a database, cache and message broker, and supports

several data structures as well as geospatial querying. Redis stores geographic posi-

tioning using Geohashes. These Geohashes, together with the geospatial commands

(which include GEOADD, GEODIST, GEOHASH, GEOPOS, GEORADIUS, GEO-

RADIUSBYMEMBER) enable Redis to implement various geospatial queries.

B.3 MemSQL and MemSQL GeoSpatial

MemSQL is an in-memory database much like redis. It is however, a relational

database and scales horizontally like most distributed systems. MemSQL is fast, since

it stores data in-memory. It also performs well with real-time analytical and trans-

actional processing. MemSQL supports geospatial datatypes, topological functions

and and measurement functions. MemSQL geospatial is a partial implementation

of the OpenGIS standard for geospatial processing. It is able to perform relational,

temporal and spatial transactions and analysis at a massive scale and high perfor-

mance.

B.3.1 Neo4j and Neo4j Spatial

Neo4j is an ACID-compliant transactional graph database implemented in Java

and Scala. It is open source and implements the Property Graph Model. Neo4j

Spatial is a library that provides the tools needed to run geospatial operations on a

Neo4j database.
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Appendix C

Popularity of Majors at UNM

(a) Popularity of Majors at UNM for students who live in New Mexico

(b) Popularity of Majors According to Census Tract Distribution

Figure C.1: Overall Popularity of Majors at UNM

48



Appendix C. Popularity of Majors at UNM

(a) Popularity of Majors in Regions with More Hispanics and Latinos

(b) Popularity of Majors in Regions with Fewer Hispanics and Latinos

Figure C.2: Popularity of Majors by Hispanic and Latino Classification
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Appendix C. Popularity of Majors at UNM

(a) Popularity of Majors in Regions with More Natives

(b) Popularity of Majors in Regions with Fewer Natives

Figure C.3: Popularity of Majors by Native Classification
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