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The neutrosophic set (NS) is a more general platform which generalizes the concept of crisp, fuzzy, and intuitionistic

fuzzy sets to describe the membership functions in terms of truth, indeterminacy, and false degree. Under this environ-

ment, the present paper proposes an improved score function for ranking the single as well as interval-valued NSs by

incorporating the idea of hesitation degree between the truth and false degrees. Shortcomings of the existing function

have been highlighted in it. Further, the decision-making method has been presented based on proposed function and

illustrates it with a numerical example to demonstrate its practicality and effectiveness.
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1. INTRODUCTION

Decision making is one of the most widely used phenomena in our day-to-day life. Almost all decisions take several
steps to reach the final destination and some of them may be vague in nature. On the other hand, with the growing
complexities of the systems day-by-day, it is difficult for the decision maker to make a decision within a reasonable
time by using uncertain, imprecise, and vague information.For handling this, researchers pay more attention to the
fuzzy set (FS) theory [1] and corresponding extensions suchas intuitionistic fuzzy set (IFS) theory [2], interval-valued
IFS (IVIFS) [3] , Neutrosophic set (NS) [4], etc. To date, IFSs and IVIFSs have been widely applied by the various
researchers in different decision-making problems. For instance, some authors [5–9] proposed an aggregation op-
erator for handling the different preferences of the decision makers towards the alternatives under IFS environment.
Ye [10] proposed a novel accuracy function for ranking the different alternatives of IFS or IVIFS. A ranking method
on IVIFSs has been presented in Mitchell [11] and Nayagam et al. [12]. Garg [13] presented a generalized score func-
tion for ranking the IVIFSs. Xu [14] and Liu and Xie [15] developed a weighted score and accuracy function to rank
the IVIFSs. Garg [16] presented some series of geometric aggregation operator under an intuitionistic multiplicative
set environment. Garg [17] presented an accuracy function for interval-valued Pythagorean fuzzy sets. A novel cor-
relation coefficient between the Pythagorean fuzzy sets hasbeen studied by Garg [18]. Recently, Xu and Zhao [19]
presented a comprehensive analysis of these methods under IFSs and/or IVIFSs and their corresponding applications
in multicriteria decision-making (MCDM) problems.

Although the FSs or IFSs have been widely used by the researchers they cannot deal with indeterminate and in-
consistent information. For example, if an expert takes an opinion from a certain person about a certain object, then
the person may say that 0.5 is the possibility that statementis true, 0.7 say that the statement is false, and 0.2 say that
he or she is not sure about it. This issue is not handled by the FSs or IFSs. To resolve this, Smarandache [4] proposed
neutrosophic sets (NSs) which zre characterized by three independent components lying in]0+, 1+[ namely the “truth
degree” (T ), “indeterminacy degree”(I), and “falsity degree”(F ), rather than only twoT andF in IFS and onlyT in
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FS theory. In NSs, the indeterminate information is dependent onT andF whereas the inconsistent information is de-
pendent on the degree of the belongings and nonbelongings ofIFSs. However, without specification, NSs are difficult
to apply in real-life problems. Thus, an extension of the NS,called a single-valued NS (SNS) and interval-valued NSs
(INSs) were proposed by Wang et al. [20, 21], respectively. Majumdar and Samant [22] and Ye [23] proposed entropy
and similarity measures of SVNSs and IVNSs, respectively. Ye [24] and Broumi and Smarandache [25] proposed
a correlation coefficient of SVNSs and IVNSs. Ye [26] and Zhang et al. [27] proposed an aggregation operator for
SVNSs and IVNSs. Later on, Peng et al. [28] showed that some operations in Ye [26] may be unrealistic and hence
define the novel operations and aggregation operators for MCDM problems. Sahin [29] proposed score and accuracy
function for SVNSs and IVNSs. However, the most important task for the decision maker is to rank the objects so as
to get the desired decision(s). Thus, the objective of the present work is to present a novel score function for ranking
the NSs and INSs by overcoming certain shortcomings of the existing functions. Furthermore, a ranking approach to
MCDM problems is proposed in which preferences related to different alternatives with respect to each criterion are
represented in the form of NSs.

The rest of the paper is organized as follows. Section 2 briefly introduces the concepts, operations, and operators
of NSs, SVNSs, and INSs. Section 3 proposes an improved scorefunction for SVNSs and INSs by overcoming the
shortcoming of the existing functions. In Section 4, a novelapproach to MCDM problems with SVNSs and INSs
is developed. Then in Section 5, two examples are presented to illustrate the proposed methods and a comparative
analysis is provided. Finally, Section 6 concludes the paper.

2. PRELIMINARIES

An overview of NS, SNS, and INS has been addressed here on the universal setX .

Definition 2.1. [4] A NS A in X is defined by its “truth membership function”(TA), an “indeterminacy-membership
function” (IA(x)), and a “falsity membership function”(FA(x)) where all are the subset of]0−, 1+[ such that0− ≤
supTA(x) + sup IA(x) + supFA(x) ≤ 3+ for all x ∈ X .

Ye [26] reduced the NSs to SNSs, defined as below.

Definition 2.2. A NS A in X is defined as [26]

A = {〈x, TA(x), IA(x), FA(x)〉 | x ∈ X},

and is called as SNS whereTA(x), IA(x), FA(x) ∈ [0, 1]. SNS is also denoted byA = {〈TA(x), IA(x), FA(x)〉} or
A = 〈a, b, c〉.

Definition 2.3. [29] LetAi = 〈ai, bi, ci〉 ben SNSs, then

(i) Neutrosophic weighted average (NWA) operator is definedas

NWA(A1, A2, . . . , An) =
〈

1−

n
∏

i=1

(

1− ai
)

ωi

,

n
∏

i=1

bωi

i

n
∏

i=1

cωi

i

〉

;

(ii) Neutrosophic weighted geometric (NWG) operator is defined as

NWG(A1, A2, . . . , An) =
〈

n
∏

i=1

aωi

i , 1−
n
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i=1

(

1− bi
)

ωi

1−
n
∏

i=1

(

1− ci
)

ωi

〉

,

whereωi is the weight vector of it such thatωi ∈ [0, 1] and
∑n

i=1
ωi = 1.

Definition 2.4. [20] An INSA in X is defined as

A = {〈[inf TA(x), sup TA(x)], [inf IA(x), sup IA(x)], [inf FA(x), supFA(x)]〉 | x ∈ X},

whereTA(x), IA(x), FA(x) ∈ [0, 1] and0 ≤ supTA(x) + sup IA(x) + supFA(x) ≤ 3, x ∈ X . An INS is also
denoted byA = 〈[aL, aU ], [bL, bU ], [cL, cU ]〉.
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Definition 2.5. [29] LetAi = 〈[aLi , a
U
i ], [b

L
i , b

U
i ], [c

L
i , c

U
i ]〉 ben INSs; then

(i) An interval-valued neutrosophic weighted average (INWA) operator is defined as

INWA(A1, A2, . . . , An) =
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;

(ii) An interval-valued neutrosophic weighted geometric (INWG) operator is defined a

INWG(A1, A2, . . . , An) =
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whereωi is the weight vector of it such thatωi ∈ [0, 1] and
∑n

i=1
ωi = 1.

Definition 2.6. Consider SNSA = 〈a, b, c〉; then in order to rank the NS, score functions [29] have been defined
as

K(A) =
1 + a− 2b− c

2
; K(A) ∈ [0, 1], (1)

I(A) = a− 2b− c ; I(A) ∈ [−1, 1]. (2)

Example2.1. Consider two NSsA1 = 〈0.5, 0.2, 0.6〉 andA2 = 〈0.2, 0.2, 0.3〉; then by using existing score functions
I(·) andK(·), we getI(A1) = I(A2) = −0.5 andK(A1) = K(A2) = 0.25. These functions are unable to give the
best alternative under some special cases.

Example2.2. Consider two NSsA1 = 〈0.5, 0, 0.2〉 andA2 = 〈0.4, 0, 0.1〉; thenI(A1) = I(A2) = 0.3 andK(A1) =
K(A2) = 0.65. Thus, again they are unable to give the best one under some special cases.

Therefore, there is a need to modify the existing functions for ranking the different alternative(s). Hence, a modi-
fied score function has been proposed for NSs as follows.

3. PROPOSED SCORE FUNCTION

In this section, a new score function for ranking NS and INS byovercoming the shortcoming of the above functions
has been proposed.

Definition 3.1. Let A = 〈a, b, c〉 be a SNS, a score functionN(·), based on the “truth-membership degree”(a),
“indeterminacy-membership degree”(b), and “falsity membership degree”(c) which is defined as

N(A) =
1 + (a− 2b− c)(2 − a− c)

2
. (3)

Clearly, if in some cases SNS hasa + c = 1 thenN(A) reduces toK(A). Based on it, a prioritized comparison
method for any two SNSsA1 andA2 is defined as

(i) if K(A1) < K(A2) thenA1 ≺ A2,

(ii) if K(A1) = K(A2) then
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• if N(A1) < N(A2) thenA1 ≺ A2

• if N(A1) > N(A2) thenA1 ≻ A2

• if N(A1) = N(A2) thenA1 ∼ A2

The proposed function can easily solve the above shortcomings of the above functions which can be demonstrated
as below.

Example3.1. If we apply the proposed function on Example 2.1, then we getN(A1) = 0.275 andN(A2) = 0.125
and henceN(A1) > N(A2). Therefore,A1 is a better alternative thanA2.

Example3.2. If we apply Eq. (3) to Example 2.2 then we getN(A1) = 0.695 andN(A2) = 0.725 and henceA2 is
the best one.

Thus, the proposed function is reasonable and provides an effective algorithm for the decision analysis process.

Property 3.1.
The proposed functionN(A) and the existing functionK(A) satisfy the relation

N(A) = (2− a− c)K(A)−
1− a− c

2
.

Proof. By the definitions ofN(A) andK(A), we have

N(A) =
1 + {2K((A)− 1)}(2− a− c)

2

= (2− a− c)K(A)−
1− a− c

2
,

hence the result.

Property 3.2.
The proposed functionN(A) and the existing functionI(A) for a SVNSA satisfy the relation

N(A) =
1 + (2− a− c)I(A)

2
.

Proof. Proof follows from Eq. (3).

Furthermore, we can have the following conclusions:

• WhenA = 〈1, 0, 0〉 then the value ofN(A) reaches the maximum value 1.

• WhenA = 〈0, 0, 1〉 then the value ofN(A) reaches the minimum value 0.

• For a subsetA = 〈a, b, 1− a〉, N(A) = a− b.

Furthermore, for decision makers it is not always possible to present their preferences in terms of exact num-
bers and hence corresponding to it they will prefer to give them in the form of interval-valued numbers. Then
for an INSA = 〈[aL, aU ], [bL, bU ], [cL, cU ]〉 where[aL, aU ] is the “truth-membership degree” interval,[bL, bU ] is
“indeterminacy-membership degree” interval, and[cL, cU ] is “falsity-membership degree” interval of each elementx

such that

0 ≤ aL, aU ≤ 1, 0 ≤ bL, bU ≤ 1, 0 ≤ cL, cU ≤ 1.

Here, we introduce the score function for the INSs:
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Definition 3.2. Let A = 〈[aL, aU ], [bL, bU ], [cL, cU ]〉 be an INS. A score functionM(·) of an INS based on the
“truth-membership degree” interval, “indeterminacy-membership degree” interval, and “falsity-membership degree”
interval is defined as

M(A) =
4 + (aL + aU − cL − cU − 2bL − 2bU )(4 − aL − aU − cL − cU )

8
, where M(A) ∈ [0, 1]. (4)

In particular, whenaL = aU , bL = bU , andcL = cU , an INS is degenerated to NS and their corresponding score
function reduces to Eq. (3). Clearly, ifA = 〈[1, 1], [0, 0], [0, 0]〉 thenM(A) = 1 and ifA = 〈[0, 0], [0, 0], [1, 1]〉 then
M(A) = 0.

Example3.3. Let A1 = 〈[0.4, 0.6], [0.2, 0.3], [0.5, 0.7]〉 andA2 = 〈[0.2, 0.7], [0.1, 0.2], [0.1, 0.3]〉 be two alternatives
represented in terms of INSs. For getting the best alternative(s), we compute the score function as

M(A1) =
4 + (0.4 + 0.6− 0.5− 0.7− 2× 0.2− 2× 0.3)(4− 0.4− 0.6− 0.5− 0.7)

8
= 0.2300,

M(A2) =
4 + (0.2 + 0.7− 0.1− 0.3− 2× 0.1− 2× 0.2)(4− 0.2− 0.7− 0.1− 0.3)

8
= 0.2975,

so we haveM(A2) ≥ M(A1) which means alternativeA2 is better thanA1.

4. PROPOSED APPROACH

In this section, a MCDM approach has been presented under theNSs and INSs environment based on the proposed
functions. For this, consider a problem ofm alternatives,A = {A1, A2, . . . , Am}, which are evaluated by the decision
makers with respect to then different criteriaC = {C1, C2, . . . , Cn}, whose weight vectors areωj, ωj ∈ [0, 1], and
n
∑

j=1

ωj = 1, in terms of the SNS or INS. Thus the characteristics of the alternativeAi(i = 1, 2, . . . ,m) are expressed

by an SNS:

Ai =
{〈

Cj , ai(Cj), bi(Cj), ci(Cj)]
〉

| Cj ∈ C
}

,

where0 ≤ ai(Cj), bi(Cj), ci(Cj) ≤ 1, and0 ≤ ai(Cj) + bi(Cj) + ci(Cj) ≤ 3. The pairs of these neutrosophic
numbers forCj are denoted byαij = 〈aij , bij , cij〉. Therefore, the overall collective neutrosophic matrix isD =
(αij)m×n. Since the different criteria may be of different types, namely, benefit or cost, then there is a need to
normalize it. For this, the value of the benefit type is converted into the cost type by using the following equation:

rij =

{

α
c
ij ; for benefit criteria

αij ; for cost criteria
, (5)

and hence the matrixD is converted into matrixR = (rij)n×m whereαc
ij = 〈cij , 1− bij , aij〉 is the complement of

SNSαij . Then, we have the following methods for MCDM based on proposed functions.

Approach I:

Step 1: Obtain the decision matricesR fromD, if required, by using Eq. (5).

Step 2: Aggregate the SNSsrij for eachAi into an overall neutrosophic valueri by using theNWA or NWG

operator.

Step 3: Utilize Eq. (3) to compute the score value ofri.

Step 4: Rank theri according to score values and hence choose the best alternative based on better value.

Step 5: End.
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Approach II:
If the decision-makers give their preferences towards eachAi(i = 1, 2, . . . , n) in the form of interval numbers
〈[aLij , a

U
ij ], [b

L
ij , b

U
ij ], [c

L
ij , c

U
ij ]〉 rather than the crisp number〈aij , bij , cij〉 then we have the following method.

Step 1: Obtain the decision matricesR fromD, if required, by using Eq. (5).

Step 2: Aggregate the INSsrij for eachAi into an overall interval-valued neutrosophic number valueri by using the
INWA or INWG operator.

Step 3: Use Eq. (4) to compute their score value.

Step 4: Find the best one(s) based on its ranking value.

Step 5: End.

5. PRACTICAL EXAMPLE

In this section, two illustrative examples have been given for demonstrating as well as validating the proposed method.

Example5.1. Consider a multicriteria decision making problem of an investment company where an investor wants
to invest some money. To do that, they set a panel for four possible alternativesA = {A1, A2, A3, A4}, namely, food,
transport, electronic, and tire company, respectively, toinvest the money under the three different criteria denotedby
C1, C2, andC3 with weightω = (0.35, 0.25, 0.40)T . Then by utilizing the proposed Approach I we obtain the most
desirable alternative(s) as follows.

Step 1: The decision makers evaluate these alternatives w.r.t. each criterion and give their rating in terms of the SNSs
rij = 〈aij , bij , cij〉, (i = 1, 2, 3, 4; j = 1, 2, 3). The normalized information for these is listed in Table 1.

Step 2: Compute the neutrosophic numberri for each alternativeAi by using the NWA operator as follows.

r1 = 〈0.3268, 0.2000, 0.3680〉, r2 = 〈0.5626, 0.1319, 0.2000〉,

r3 = 〈0.4375, 0.2352, 0.2550〉, r4 = 〈0.5746, 0.0000, 0.1320〉.

Step 3: Use Eq. (3) for finding the score function ofri and we get

N(r1) = 0.212, N(r2) = 0.561, N(r3) = 0.312, N(r4) = 0.7863.

Step 4: Based on the score values, we observe thatA4, i.e., the tire company, is the most desirable alternative.

If we utilize existing score functions to rank these alternatives then we getI(r1) = −0.4412, I(r2) = 0.0988,
I(r3) = −0.2880, I(r4) = 0.4427, andK(r1) = 0.2794, K(r2) = 0.5494, K(r3) = 0.3560, K(r4) = 0.7213.
Hence, the best alternative remains the same as compared to the proposed approach.

On the other hand, if we utilize the NWG operator for aggregating these SNSs then we get

r1 = 〈0.3031, 0.2000, 0.3881〉, r2 = 〈0.5578, 0.1414, 0.2000〉,

r3 = 〈0.4181, 0.2416, 0.2616〉, r4 = 〈0.5385, 0.1555, 0.1414〉,

TABLE 1: Single-valued neutrosophic decision matrix

C1 C2 C3

A1 〈0.4, 0.2, 0.3〉 〈0.4, 0.2, 0.3〉 〈0.2, 0.2, 0.5〉

A2 〈0.6, 0.1, 0.2〉 〈0.6, 0.1, 0.2〉 〈0.5, 0.2, 0.2〉

A3 〈0.3, 0.2, 0.3〉 〈0.5, 0.2, 0.3〉 〈0.5, 0.3, 0.2〉

A4 〈0.7, 0.0, 0.1〉 〈0.6, 0.1, 0.2〉 〈0.4, 0.3, 0.2〉
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hence the corresponding score values by using Eq. (3) are

N(r1) = 0.1826, N(r2) = 0.5466, N(r3) = 0.2844, N(r4) = 0.5568.

Thus, the best alternative isA4, i.e., the tire company, for investing the money.
If we utilize the existing score functionsI(ri) andK(ri), i = 1, 2, 3, 4 on these weighted aggregating values then

we get

I(r1) = −0.4850, I(r2) = 0.0750, I(r3) = −0.3267, I(r4) = 0.0860,

and

K(r1) = 0.2575, K(r2) = 0.5375, K(r3) = 0.3367, K(r4) = 0.5430,

so the best alternative isA4.

Example5.2. Interval-valued neutrosophic numbers:
Consider the MCDM problem as described in the above example under the INSs environment. Then the following
steps of Approach II have been performed to get the best alternative(s).

Step 1: Assume that an expert gives their preferences towards each alternative under each criterion in terms of INSs
and their values are summarized in Table 2.

Step 2: The aggregate values of each alternativeAi(i = 1, 2, 3, 4) are computed by using the INWA operator and the
results are as follows:

r1 = 〈[0.5452, 0.7516], [0.1681, 0.3000], [0.3041, 0.4373]〉,

r2 = 〈[0.4996, 0.6634], [0.1551, 0.2885], [0.3482, 0.4655]〉,

r3 = 〈[0.3946, 0.5626], [0.2000, 0.3365], [0.4210, 0.5532]〉,

r4 = 〈[0.6383, 0.7396], [0.0000, 0.2070], [0.2297, 0.4039]〉.

Step 3: By using Eq. (4), we getM(ri)(i = 1, 2, 3, 4) corresponding to each alternative as

M(r1) = 0.4066, M(r2) = 0.3639, M(r3) = 0.2183, M(r4) = 0.5821.

Step 4: Rank these alternatives and hence we findA4 is the best company for investment.

If we utilize the INWG operator then we have

Step 2: The aggregated values of each alternative are

r1 = 〈[0.5004, 0.6620], [0.1761, 0.3000], [0.3195, 0.4422]〉,

r2 = 〈[0.4547, 0.6581], [0.1861, 0.3371], [0.5405, 0.6786]〉,

r3 = 〈[0.3824, 0.5578], [0.2000, 0.3419], [0.5012, 0.7070]〉,

r4 = 〈[0.6333, 0.7335], [0.1555, 0.2570], [0.5069, 0.6632]〉.

Step 3: We obtainM(ri)(i = 1, 2, 3, 4) as

M(r1) = 0.3569, M(r2) = 0.2597, M(r3) = 0.1872, M(r4) = 0.3851.

Step 4: Rank these alternatives and hence we findA4 is the most desirable company.
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TABLE 2: Interval-valued neutrosophic decision matrix

C1 C2 C3

A1 〈[0.4, 0.5], [0.2, 0.3], [0.3, 0.4]〉 〈[0.4, 0.6], [0.1, 0.3], [0.2, 0.4]〉 〈[0.7, 0.9], [0.2, 0.3], [0.4, 0.5]〉

A2 〈[0.6, 0.7], [0.1, 0.2], [0.2, 0.3]〉 〈[0.6, 0.7], [0.1, 0.2], [0.2, 0.3]〉 〈[0.3, 0.6], [0.3, 0.5], [0.8, 0.9]〉

A3 〈[0.3, 0.6], [0.2, 0.3], [0.3, 0.4]〉 〈[0.5, 0.6], [0.2, 0.3], [0.3, 0.4]〉 〈[0.4, 0.5], [0.2, 0.4], [0.7, 0.9]〉

A4 〈[0.7, 0.8], [0.0, 0.1], [0.1, 0.2]〉 〈[0.6, 0.7], [0.1, 0.2], [0.1, 0.3]〉 〈[0.6, 0.7], [0.3, 0.4], [0.8, 0.9]〉

6. CONCLUSION

In the present manuscript, an attempt has been made to present an improved score function for ranking the NSs or
INSs. From the existing studies, it has been observed that the existing score functions are unable to give the best
alternative(s) under some situations. For overcoming this, the present manuscript considers the hesitation degree
between the membership functions and hence proposes a novelscore function for ranking NSs. Further, a ranking
method for solving MCDM problems based on it has been presented and illustrated with a numerical example in the
SNSs and INSs environment. From the results, it has been observed that it can equivalently solve the decision-making
problem efficiently. In the future, we will extend this approach to the other domains.
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