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The neutrosophic set (NS) is a more general platform which generalizes the concept of crisp, fuzzy, and intuitionistic
fuzzy sets to describe the membership functions in terms of truth, indeterminacy, and false degree. Under this environ-
ment, the present paper proposes an improved score function for ranking the single as well as interval-valued NSs by
incorporating the idea of hesitation degree between the truth and false degrees. Shortcomings of the existing function
have been highlighted in it. Further, the decision-making method has been presented based on proposed function and
illustrates it with a numerical example to demonstrate its practicality and effectiveness.
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1. INTRODUCTION

Decision making is one of the most widely used phenomenaiinay-to-day life. Almost all decisions take several
steps to reach the final destination and some of them may hesviaghature. On the other hand, with the growing
complexities of the systems day-by-day, it is difficult foetdecision maker to make a decision within a reasonable
time by using uncertain, imprecise, and vague informatian.handling this, researchers pay more attention to the
fuzzy set (FS) theory [1] and corresponding extensions agéhtuitionistic fuzzy set (IFS) theory [2], interval-uald

IFS (IVIFS) [3] , Neutrosophic set (NS) [4], etc. To date, §&nd IVIFSs have been widely applied by the various
researchers in different decision-making problems. Fstaimce, some authors [5-9] proposed an aggregation op-
erator for handling the different preferences of the deaishakers towards the alternatives under IFS environment.
Ye [10] proposed a novel accuracy function for ranking tHéedént alternatives of IFS or IVIFS. A ranking method
on IVIFSs has been presented in Mitchell [11] and Nayagarh ft2]. Garg [13] presented a generalized score func-
tion for ranking the IVIFSs. Xu [14] and Liu and Xie [15] dewpled a weighted score and accuracy function to rank
the IVIFSs. Garg [16] presented some series of geometriceggtion operator under an intuitionistic multiplicative
set environment. Garg [17] presented an accuracy functiomferval-valued Pythagorean fuzzy sets. A novel cor-
relation coefficient between the Pythagorean fuzzy setdbbasn studied by Garg [18]. Recently, Xu and Zhao [19]
presented a comprehensive analysis of these methods t&keahd/or IVIFSs and their corresponding applications
in multicriteria decision-making (MCDM) problems.

Although the FSs or IFSs have been widely used by the researtiey cannot deal with indeterminate and in-
consistent information. For example, if an expert takes@inion from a certain person about a certain object, then
the person may say that 0.5 is the possibility that stateisdnie, 0.7 say that the statement is false, and 0.2 say that
he or she is not sure about it. This issue is not handled by$iseoF IFSs. To resolve this, Smarandache [4] proposed
neutrosophic sets (NSs) which zre characterized by thoepiendent components lying]id™, 17| namely the “truth
degree” ), “indeterminacy degre€(T), and “falsity degree(F’), rather than only tw@ andF in IFS and onlyT” in
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FS theory. In NSs, the indeterminate information is depatdeT” andF’ whereas the inconsistent information is de-
pendent on the degree of the belongings and nonbelongingS$ef However, without specification, NSs are difficult
to apply in real-life problems. Thus, an extension of the diled a single-valued NS (SNS) and interval-valued NSs
(INSs) were proposed by Wang et al. [20, 21], respectivebjuvhdar and Samant [22] and Ye [23] proposed entropy
and similarity measures of SVNSs and IVNSs, respectivedy[24] and Broumi and Smarandache [25] proposed
a correlation coefficient of SVNSs and IVNSs. Ye [26] and Zipah al. [27] proposed an aggregation operator for
SVNSs and IVNSs. Later on, Peng et al. [28] showed that soreeatipns in Ye [26] may be unrealistic and hence
define the novel operations and aggregation operators fddM@roblems. Sahin [29] proposed score and accuracy
function for SVNSs and IVNSs. However, the most importasktfor the decision maker is to rank the objects so as
to get the desired decision(s). Thus, the objective of tlesgmt work is to present a novel score function for ranking
the NSs and INSs by overcoming certain shortcomings of tistieg functions. Furthermore, a ranking approach to
MCDM problems is proposed in which preferences related fferdint alternatives with respect to each criterion are
represented in the form of NSs.

The rest of the paper is organized as follows. Section 2 prieftoduces the concepts, operations, and operators
of NSs, SVNSs, and INSs. Section 3 proposes an improved fwacgon for SVNSs and INSs by overcoming the
shortcoming of the existing functions. In Section 4, a naygbroach to MCDM problems with SVNSs and INSs
is developed. Then in Section 5, two examples are preseotiidgtrate the proposed methods and a comparative
analysis is provided. Finally, Section 6 concludes the pape

2. PRELIMINARIES
An overview of NS, SNS, and INS has been addressed here omilersal setX..

Definition 2.1. [4] ANS A in X is defined by its “truth membership functiofiT’4 ), an “indeterminacy-membership
function” (I4(z)), and a “falsity membership functiofF 4 (z)) where all are the subset [if~, 17 [ such thap~ <
sup Ta(z) + sup La(z) +sup Fa(z) < 3t forallz € X.

Ye [26] reduced the NSs to SNSs, defined as below.
Definition 2.2. ANS A in X is defined as [26]
A={{z,Ta(z),Ia(z), Fa(z)) | 2 € X},

and is called as SNS whe¥&,(z), I4(z), Fa(z) € [0,1]. SNS is also denoted by = {(Ta(x), Ia(x), Fa(z))} or
A = {(a,b,c).

Definition 2.3. [29] Let A; = (a;, b;, ¢;) ben SNSs, then
(i) Neutrosophic weighted average (NWA) operator is defiagd

NWA(Al,Ag,...7An):<1—ﬁ1—al wall‘[cwl>-
i=1

(i) Neutrosophic weighted geometric (NWG) operator is aledi as
NWG(A1, As, ..., A <Haw11—H (1-b)1-T[ (1) >
=1
wherew; is the weight vector of it such that, € [0, 1] and}"}" | w; = 1.
Definition 2.4. [20] An INS A in X is defined as
A = {([inf T'a(z), sup Ta(z)], [inf L4 (z),sup La(2)], [inf Fa(x),sup Fa(z)]) | v € X},

whereTs(z), Ia(x), Fa(z) € [0,1] and0 < supTa(x) + supla(z) + sup Fa(z) < 3,2 € X. An INS is also
denoted by = ([a”, a], [b", bY], [cF, cY]).
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Definition 2.5. [29] Let A; = ([a%, a¥], [bF,bY], [cF, cY]) ben INSs; then

17

() Aninterval-valued neutrosophic weighted average (WWperator is defined as

(1—af) 1 =TT @ =a?)* ], | TTH* TT0D“]:

INWA(A;, As, ... Ay) = <[1—
1 =1 =1 =1

n n n n

3

wherew; is the weight vector of it such that; € [0,1] and>""" | w; = 1.

Definition 2.6. Consider SN = (a, b, ¢); then in order to rank the NS, score functions [29] have besfmed
as

k() = TROERTE L ke ®

I(A) = a—2b—c ;o I(A) € [-1,1]. 2

Example2.1 Consider two NSsi; = (0.5,0.2,0.6) and A, = (0.2,0.2,0.3); then by using existing score functions
I(-)andK(-), we getl(A;) = I(As) = —0.5andK (A;) = K(A3) = 0.25. These functions are unable to give the
best alternative under some special cases.

Example2.2. Consider two NSsi; = (0.5,0,0.2) andA; = (0.4,0,0.1); thenI(A4;) = I(A43) = 0.3andK (4,) =
K (As) = 0.65. Thus, again they are unable to give the best one under seu@bpases.

Therefore, there is a need to modify the existing functi@msdnking the different alternative(s). Hence, a modi-
fied score function has been proposed for NSs as follows.
3. PROPOSED SCORE FUNCTION

In this section, a new score function for ranking NS and INS®®grcoming the shortcoming of the above functions
has been proposed.

Definition 3.1. Let A = (a,b,c) be a SNS, a score functiaN (-), based on the “truth-membership degrée],
“indeterminacy-membership degre@), and “falsity membership degreé?) which is defined as

:1—|—(a—2b—2c)(2—a—c). 3)

Clearly, if in some cases SNS has+ ¢ = 1 thenN(A) reduces td(A). Based on it, a prioritized comparison
method for any two SNS4; and A is defined as

(i) if K(A;) < K(As)thend; < As,
(i) if K(A;) = K(As)then

N(A)
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o f N(Al) < N(Ag) thenA1 < Ay
o f N(Al) > N(AQ) thenA4; = A,
o if N(Al) = N(Ag) thenA1 ~ Ao
The proposed function can easily solve the above shortagsmhthe above functions which can be demonstrated
as below.

Example3.1 If we apply the proposed function on Example 2.1, then weNged;) = 0.275 and N (As) = 0.125
and hencéV(A4;) > N(A,). Therefore A, is a better alternative tha,.

Example3.2 If we apply Eq. (3) to Example 2.2 then we g€{ 4;) = 0.695 and N (A3) = 0.725 and henced, is
the best one.

Thus, the proposed function is reasonable and providededtieé algorithm for the decision analysis process.

Property 3.1.
The proposed functioV (A) and the existing functiok (A) satisfy the relation

l1—a-—c

NA)=2-a—-c)K(A) — 5

Proof. By the definitions ofV(A4) and K (A), we have

1+ {2K((A)-1)}(2—a—c¢)
2

= 2—-a—-¢)K(A) -

N(4) =
l—a—c

2 b
hence the result. O

Property 3.2.
The proposed functioV (A) and the existing functiofi(A) for a SVNSA satisfy the relation

_ 1—|—(2—a—c)I(A).

N(A) >

Proof. Proof follows from Eq. (3). O
Furthermore, we can have the following conclusions:

e WhenA = (1,0, 0) then the value oV (A) reaches the maximum value 1.

e WhenA = (0,0, 1) then the value ofV (A) reaches the minimum value 0.

e Forasubsetl = (a,b,1 —a), N(A) = a—b.

Furthermore, for decision makers it is not always possiblpresent their preferences in terms of exact num-
bers and hence corresponding to it they will prefer to giventhin the form of interval-valued numbers. Then
for an INSA = ([al,a"], [bE,0Y], [cF, Y]) where[a”, aV] is the “truth-membership degree” interv@i?, bV] is
“indeterminacy-membership degree” interval, drfd cU| is “falsity-membership degree” interval of each element
such that

0<aFaV <1, o<bl V<1, 0<cb V<.

Here, we introduce the score function for the INSs:

International Journal for Uncertainty Quantification



An Improved Score Function for Ranking Neutrosophic Sets 381

Definition 3.2. Let A = ([a%,a"], [b%,bY], [c¢F,cV]) be an INS. A score functiod/(-) of an INS based on the
“truth-membership degree” interval, “indeterminacy-ntership degree” interval, and “falsity-membership degree
interval is defined as

A+ (aF+a¥ ==Y =2k —20Y)(4 — ol —aV — b = Y)
= < ,

M(A) where M(A) € [0,1]. 4)

In particular, wher” = oV, b = bV, andc? = ¢V, an INS is degenerated to NS and their corresponding score
function reduces to Eq. (3). Clearly, & = ([1, 1], [0, 0], [0, 0]) thenM (A) = 1 and if A = ([0, 0], [0, 0], [1, 1]} then
M(A) =0.

Example3.3. Let A; = ([0.4,0.6],[0.2,0.3],[0.5,0.7]) and A2 = ([0.2,0.7],]0.1,0.2], 0.1, 0.3]) be two alternatives
represented in terms of INSs. For getting the best altem(@), we compute the score function as

44(04406—-05—-07—2x02—2x0.3)(4—04—0.6—0.5—0.7)
8

44(02407-01-03-2x01-2x02)(4—-02-0.7—-0.1-0.3)
8
so we havell (A3) > M (A;) which means alternativd, is better tham; .

M(Ay) = =0.2300,

M(Az) =

= 0.2975,

4. PROPOSED APPROACH

In this section, a MCDM approach has been presented undé&S$keand INSs environment based on the proposed
functions. For this, consider a problenvefalternativesA = { A, Ao, ..., A, }, which are evaluated by the decision
makers with respect to thedifferent criteriaC' = {C1, C», ..., C,, }, whose weight vectors ate;, w; € [0, 1], and

>~ w; =1, interms of the SNS or INS. Thus the characteristics of ttexmhtiveA; (i = 1,2, ..., m) are expressed
j=1
by an SNS:

A; = {(C;,ai(Cy), bi(Cy),ci(Cy)]) | Cj € C},

where0 < a;(C;),b;(C)),ci(C;) < 1,and0 < a;(Cy) + bi(Cj) + ¢;(C;) < 3. The pairs of these neutrosophic
numbers forC; are denoted by;; = (ai;, bij, ci;). Therefore, the overall collective neutrosophic matrixds=
(etij)mxn- Since the different criteria may be of different types, eymbenefit or cost, then there is a need to
normalize it. For this, the value of the benefit type is coteainto the cost type by using the following equation:

(5)

of; 3 for benefit criteria
ri; = o
Y lauy; forcost criteria

and hence the matrik is converted into matrix® = (7;)nxm whereoc;?j = (cij, 1 — bij, a;;) is the complement of
SNS«;;. Then, we have the following methods for MCDM based on pregdanctions.

Approach I
Step 1: Obtain the decision matricRsfrom D, if required, by using Eq. (5).

Step 2: Aggregate the SNSs; for eachA; into an overall neutrosophic valug by using theNW A or NWG
operator.

Step 3: Utilize Eqg. (3) to compute the score value.of
Step 4: Rank the; according to score values and hence choose the best aiterbased on better value.

Step 5: End.
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Approach Il

If the decision-makers give their preferences towards eagh = 1,2,...,n) in the form of interval numbers

(lafs,af}], [bh, 051, [k, ¢5}]) rather than the crisp numbér;;, bij, ¢;;) then we have the following method.

Step 1: Obtain the decision matricBSrom D, if required, by using Eg. (5).

Step 2: Aggregate the INSs; for each4; into an overall interval-valued neutrosophic number valugy using the
INW A or INWG operator.

Step 3: Use Eq. (4) to compute their score value.
Step 4: Find the best one(s) based on its ranking value.

Step 5: End.

5. PRACTICAL EXAMPLE

In this section, two illustrative examples have been givemiEmonstrating as well as validating the proposed method.

Example5.1 Consider a multicriteria decision making problem of an Btagent company where an investor wants
to invest some money. To do that, they set a panel for fourilplesalternativesA = { A;, A, A3, A4}, namely, food,
transport, electronic, and tire company, respectivelintest the money under the three different criteria denbted
C1, Cy, andC3 with weightw = (0.35,0.25,0.40)7. Then by utilizing the proposed Approach | we obtain the most
desirable alternative(s) as follows.

Step 1: The decision makers evaluate these alternativésamech criterion and give their rating in terms of the SNSs
ri; = {aij, bij, cij), (i = 1,2,3,4; j = 1,2, 3). The normalized information for these is listed in Table 1.

Step 2: Compute the neutrosophic numhefor each alternativel; by using the NWA operator as follows.

(0.3268, 0.2000, 0.3680),
ry = (0.4375,0.2352,0.2550),

T1 =

ro = (0.5626,0.1319,0.2000),
rqy = (0.5746,0.0000, 0.1320).

Step 3: Use Eq. (3) for finding the score function-pfind we get

N(r1) =0212,  N(rp) =0.561,  N(rs)=0312,  N(rs) = 0.7863.

Step 4: Based on the score values, we observedhate., the tire company, is the most desirable alternative.

If we utilize existing score functions to rank these alt¢ives then we gef(r1) = —0.4412, I(r2) = 0.0988,
I(r3) = —0.2880, I(r4) = 0.4427, and K (1) = 0.2794, K (r3) = 0.5494, K (r3) = 0.3560, K (r4) = 0.7213.
Hence, the best alternative remains the same as compaiteapodposed approach.

On the other hand, if we utilize the NWG operator for aggrieggthese SNSs then we get

ri = (0.3031,0.2000,0.3881),

(0.4181,0.2416, 0.2616),

ry = (0.5578,0.1414, 0.2000),

re = rq = (0.5385,0.1555,0.1414),

TABLE 1: Single-valued neutrosophic decision matrix

C: C- Cs
Ay | (04,0.2,0.3) (0.4,0.2,0.3) (0.2,0.2,0.5)
As | (0.6,0.1,0.2) (0.6,0.1,0.2) (0.5,0.2,0.2)
As | (0.3,0.2,0.3)  (0.5,0.2,0.3) (0.5,0.3,0.2)
Ay | (0.7,0.0,0.1)  (0.6,0.1,0.2) (0.4,0.3,0.2)
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hence the corresponding score values by using Eq. (3) are
N(r1) =0.1826,  N(rp) =0.5466,  N(r3) =0.2844,  N(rs) = 0.5568.

Thus, the best alternative &, i.e., the tire company, for investing the money.
If we utilize the existing score functiordgr;) andK (r;), ¢« = 1,2, 3,4 on these weighted aggregating values then
we get

I(ry) = —0.4850, I(ry) =0.0750, I(r3) = —0.3267, I(rs)=0.0860,
and
K(r1) = 02575, K(ry) =0.5375, K(rs)=0.3367, K(ry)= 0.5430,

so the best alternative ;.

Examples.2. Interval-valued neutrosophic numbers:
Consider the MCDM problem as described in the above examplerthe INSs environment. Then the following
steps of Approach Il have been performed to get the besnhaliee(s).

Step 1: Assume that an expert gives their preferences tavearch alternative under each criterion in terms of INSs
and their values are summarized in Table 2.

Step 2: The aggregate values of each alternatifé = 1, 2, 3,4) are computed by using the INWA operator and the
results are as follows:

1

([0.5452, 0.7516], [0.1681, 0.3000], [0.3041, 0.4373]),
r = ([0.4996,0.6634], [0.1551, 0.2885], [0.3482, 0.4655]),
([ Al Al )
([ Al I I

r3 0.3946, 0.5626], [0.2000, 0.3365], [0.4210, 0.5532

0.6383, 0.7396], [0.0000, 0.2070], [0.2297, 0.4039]).

) ) )

rqg =
Step 3: By using Eq. (4), we géf (r;)(i = 1,2, 3,4) corresponding to each alternative as
M(ry) = 0.4066, M(ry) = 0.3639, M(rs) =0.2183, M(ry) = 0.5821.
Step 4: Rank these alternatives and hence wedini the best company for investment.

If we utilize the INWG operator then we have

Step 2: The aggregated values of each alternative are

ry = {([0.5004,0.6620],[0.1761,0.3000], [0.3195, 0.4422]),
ry = ([0.4547,0.6581],[0.1861,0.3371], [0.5405, 0.6786]),
rs = ([0.3824,0.5578],[0.2000,0.3419], [0.5012, 0.7070]),
T4 ([0.6333,0.7335], [0.1555, 0.2570], [0.5069, 0.6632]).

Step 3: We obtaiM/ (r;)(i = 1,2, 3,4) as

M(ry) = 0.3569, M(ry) =0.2597, M(rs) =0.1872, M(r4) = 0.3851.

Step 4: Rank these alternatives and hence wedipis the most desirable company.
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TABLE 2: Interval-valued neutrosophic decision matrix

Cq C, Cs

A; | ([0.4,0.5],[0.2,0.3],[0.3,0.4] [0.4,0.6],[0.1,0.3],[0.2,0.4]) ([0.7,0.9],[0.2,0.3],[0.4,0.5])
As | ([0.6,0.7],[0.1,0.2],[0.2,0.3] [0.6,0.7],[0.1,0.2],[0.2,0.3]) ([0.3,0.6],[0.3,0.5],[0.8,0.9])
As | ([0.3,0.6],[0.2,0.3],[0.3,0.4] [0.5,0.6],[0.2,0.3],[0.3,0.4]) ([0.4,0.5],[0.2,0.4],[0.7,0.9])
Ay | ([0.7,0.8],[0.0,0.1],[0.1,0.2] [0.6,0.7],[0.1,0.2],[0.1,0.3]) ([0.6,0.7],[0.3,0.4],[0.8,0.9])

)
)
)
)

o~ o~~~
o~ o~~~

6. CONCLUSION

In the present manuscript, an attempt has been made to peesénproved score function for ranking the NSs or
INSs. From the existing studies, it has been observed tleagtisting score functions are unable to give the best
alternative(s) under some situations. For overcoming this present manuscript considers the hesitation degree
between the membership functions and hence proposes asuwrel function for ranking NSs. Further, a ranking
method for solving MCDM problems based on it has been presaand illustrated with a numerical example in the
SNSs and INSs environment. From the results, it has beemasthat it can equivalently solve the decision-making
problem efficiently. In the future, we will extend this appoh to the other domains.
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