
Applied Mathematics and Computation 234 (2014) 557–578
Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier .com/ locate/amc
A nonlocal meshless solution for flexural vibrations
of double-walled carbon nanotubes
http://dx.doi.org/10.1016/j.amc.2014.01.015
0096-3003/� 2014 Elsevier Inc. All rights reserved.

E-mail addresses: k_kiani@kntu.ac.ir, keivankiani@yahoo.com
Keivan Kiani
Department of Civil Engineering, K.N. Toosi University of Technology, Tehran, Iran

a r t i c l e i n f o a b s t r a c t
Keywords:
Free transverse vibration
Vibration mode shapes
Double-walled carbon nanotubes (DWCNTs)
Nonlocal Rayleigh beam theory
Reproducing kernel particle method (RKPM)
The true understanding of free vibration of double-walled carbon nanotubes (DWCNTs)
plays a vital role in optimal design and dynamic control of such nanostructures. This paper
is aimed to examine free flexural vibration of lengthy DWCNTs with arbitrary boundary
conditions in the framework of nonlocal elasticity theory. The DWCNTs are embedded in
an elastic medium and are subjected to initially axial forces. Equivalent continuum struc-
tures associated with the innermost and outermost tubes of the DWCNT are considered.
The transverse and rotational interactions of the DWCNT with the surrounding elastic
medium are also taken into account. The generalized equations of motion of lengthy
DWCNTs are established based on the nonlocal Rayleigh beam theory. Seeking an
analytical solution to the developed equations, particularly in their general form, is a very
problematic task. As an alternative solution, an efficient numerical scheme is proposed. The
effects of slenderness ratio, small-scale parameter, lateral and rotational stiffness of the
surrounding matrix, and initially axial force on the first five natural frequencies of DWCNTs
under different boundary conditions are comprehensively scrutinized.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

The discovery of carbon nanotubes (CNTs) has opened up a new world in the field of nanotechnology. Since the past three
decades, four major forms of carbon materials have come to the real world; those are C60 by Kroto et al. [1] in 1985, multi-
walled carbon nanotube (MWCNT) by Iijima [2] in 1991, single-walled carbon nanotube (SWCNT) by Bethune et al. [3] in
1993, and carbon nanofiber. Subsequent studies revealed that CNTs integrate astonishing rigid and toughness properties,
such as exceptionally high elastic properties, huge elastic strain, and fracture strain sustaining capability [4–8]. Beyond
any exaggeration, CNTs are the strongest fibers recognized to date. The Young’s modulus of a SWCNT is around 1 TPa,
which is five times greater than steel, while its density is only 1200–1400 kg/m3 [9]. It implies that the macro-scale struc-
tures made of CNTs will be extremely lighter and stronger than steel frames. Further studies reported that the frequency of
flexural vibration of CNTs could reach the level of GHz [10,11] or even THz [12]. These evidences indicate that CNTs could be
regarded as the most capable reinforcement materials for the next generation of high frequency engineered structures.
Thereby, they have attracted the attention of both engineering and scientific communities of various disciplines during
recent years. As a result, understanding the true mechanisms of their vibrations under various boundary conditions would
be of great advantageous in optimal design of such nanostructures as well as future macro-scale structures made of CNTs.

Generally, free vibration of MWCNTs can be explored by using an atomistic-based approach, a classical continuum-based
model, or via a nonlocal continuum-based model. In the two later models, numerical schemes or analytical solutions may be
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implemented for solving the governing equations. The choice of the model in any circumstance entails a tradeoff in that. For
example, atomistic-based models commonly lead to more accurate results. However, they are really time-consuming and
labor intensive, which is not the case for the models based on the classical or even the nonlocal continuum mechanics. In
the continuum-based models, the CNT is treated as a continuous material with specific geometry and elastic materials’ prop-
erties. The classical continuum models which are used for flexural vibration of DWCNTs or MWCNTs are commonly based on
the traditional engineering models such as beams [13–24] and shells [25–27]. The major drawback of such models is that the
length of the C–C bond is not included in their formulations. This matter becomes highlighted particularly when the length of
the nanostructure would be comparable with the length of the C–C bond or even when the wavelength of the propagated
sound wave is fairly as small as the length of the C–C bonds. In order to conquer such a shortcoming of the classical models,
other sophisticated continuum-based theories have been developed during the past century such as couple stress theory
[28], modified couple stress theory [29,30], nonlocal continuum theory [31,32], and higher gradient continuum theory
[33]. A simple version of the nonlocal continuum theory of Eringen [31,32] is the most popular one among the nanotechnol-
ogist since it could be readily applied to the classical governing equations. In this fairly novel theory, the lengths of inter-
atomic bonds are incorporated into the equations of motion via a so-called small-scale parameter. For exploring flexural
vibration of CNTs, an investigation by Duan et al. [34] revealed that the value of the small-scale parameter to use generally
relies on the length-to-diameter ratios, mode shapes, and boundary conditions of the SWCNT. For each problem, the value of
the small-scale parameter can be appropriately selected through justification of the predicted dispersion curves by the non-
local model with those of an atomistic-based approach. Conversely, it seems that further research works are still needed to
investigate the feasibility of application of other non-classical theories to free vibration of nanostructures. To date, nonlocal
beam models [35–40] and nonlocal shells models [41,42] have been exploited for studying wave propagation within
DWCNTs as well as flexural vibration of DWCNTs. In the present work, a nonlocal beam model is employed since only flex-
ural vibration of DWCNTs is of particular interest. Among the beam theories, the Rayleigh beam theory is implemented since
the understudy DWCNT is a lengthy nanostructure, and it is expected that the ratio of the shear strain energy to the flexural
one would be negligible. Unlike the Euler–Bernoulli beam model, the rotary inertial of the DWCNT is also taken into account
by the Rayleigh beam theory.

A brief survey of the literature displays that the research works on the vibration of DWCNTs in the context of nonlocal
continuum theory of Eringen are limited to particular cases. For example, most of the previously published works were de-
voted to study free flexural vibration of simply supported DWCNTs [35,37,39] or flexural vibration of simply supported
DWCNTs under external loads [43,44]. The main reason of this fact is that finding an analytical solution to the nonlocal gov-
erning equations pertinent to linear free flexural vibration of DWCNTs which are embedded in an elastic medium under arbi-
trary boundary conditions as well as initially axial forces is a very problematic task. To conquest such a dilemma, efficient
numerical schemes could be implemented. In this work, reproducing kernel particle method (RKPM) is employed for solving
the nonlocal equations of motion of lengthy DWCNTs. RKPM is an efficient meshless technique which is initially developed
by Liu et al. [45]. To date, this method has been successfully applied to various engineering problems [46–49]. In contrast to
finite element method (FEM), RKPM employs higher-order shape functions (i.e., interpolants) according to the used base
function and window function. In FEM analysis, node-based meshes are used for discretizing of the spatial domain while
in RKPM analysis, particles are used for this purpose. This matter provides RKPM for a wide class of continuum mechanics’
problems, especially those undergoing mesh distortion, moving boundaries, higher gradients as well as those with higher-
order derivatives. In the present work, the fourth derivatives of the deflection fields of the innermost and outermost tubes of
the DWCNT appear in the equations of motion and it is anticipated that RKPM could reproduce the near to exact values of
such deflection fields by using its higher-order interpolant shape functions.

Recently, Kiani [50] examined free transverse vibration of an embedded single-walled tube structure under different
boundary conditions. Using various nonlocal beam models and RKPM inerpolants, the flexural frequencies of the nanostruc-
ture were obtained and the capabilities of the proposed models in capturing the flexural frequencies of the nanostructure
were also studied.

In this article, flexural vibration characterization of a lengthy DWCNT under arbitrary conditions is of concern. The
DWCNT is subjected to an initially axial force and is embedded in an elastic matrix. Using Hamilton’s principle, the dimen-
sionless equations of motion of the considered DWCNTs are established on the basis of the Rayleigh’s beam theory as well as
nonlocal continuum theory of Eringen. Since finding an analytical solution to the governing equations is a very difficult task,
an efficient meshless technique is proposed. The deflection fields of the innermost and outermost tubes of the lengthy
DWCNT are discretized via RKPM, and the governing equations are reconstructed in the matrix form. In some special cases,
the obtained results are also compared with those of other works. The roles of the influential parameters on the first five
flexural frequencies of lengthy DWCNTs under different boundary conditions are explained and discussed in some detail.

2. Model description

Consider a lengthy elastically supported DWCNT embedded in an elastic medium. A schematic representation of the
nanostructure has been shown in Fig. 1. The innermost and outermost tubes are modeled via equivalent continuum struc-
tures (ECSs). The ECS is a tubular structure whose length and most of its frequencies are identical to those of the original
tube. The mean radius, walls’ thickness, length, cross-sectional area, elasticity modulus, and density of the ECS associated
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Fig. 1. Schematic representation of a lengthy elastically supported DWCNT embedded in an elastic medium.
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with the innermost/outermost tube are represented by rm1=rm2 ; tb1
=tb2

, lb=lb;Ab1
=Ab2

; Eb1
=Eb2

, and qb1
=qb2

, respectively. The
van der Waals interaction forces between the atoms of the innermost and outermost tubes are simulated by a continuous
lateral spring system connecting two tubes. The stiffness of this spring system is denoted by Cv . For a lengthy DWNCT, its
value can be calculated based on Ref. [53,43]. The initially axial forces within the innermost and outermost tubes in order
are represented by Nb1 and Nb2 . The interaction of the DWCNT with its surrounding matrix is modeled by an elastic layer
consisting of continuous lateral and rotary springs with constants Kt and Kr , respectively. Additionally, both ends of the ECSs
have been attached to lateral and rotary springs with constants Kzi

and Kyi
, respectively (see Fig. 1). The choice of the levels of

these constants enables us to study free flexural vibration of a lengthy DWCNT for a wide range of boundary conditions.
In the next part, for assessing free dynamic analysis of the two linked ECSs, Rayleigh beam theory (RBT) is employed. The

small-scale parameter is also incorporated into the formulations of the problem using nonlocal continuum theory of Eringen.
Subsequently, the equations of motion describing the lateral vibration of a lengthy elastically supported DWCNT embedded
in an elastic matrix are obtained.

3. Transverse vibration DWCNTs via a nonlocal continuum-based beam theory

3.1. Nonlocal equations of motion of DWCNTs

Based on the NRBT, the kinetic energy, TðtÞ, and the elastic strain energy, UðtÞ, of an elastically supported DWCNT embed-
ded in an elastic medium are expressed by:
TðtÞ ¼ 1
2

X2

i¼1

Z lb

0
qbi

Abi
_wiðx; tÞð Þ2 þ Ibi

_wi;xðx; tÞ
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dx;
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�wi;xxðx; tÞMnl

bi

�
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Z lb
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;

ð1Þ
where w1ðx; tÞ=Mnl
b1
ðx; tÞ and w2ðx; tÞ=Mnl

b2
ðx; tÞ denote the deflection/nonlocal bending moment fields of the innermost and

outermost tubes, respectively. According to the nonlocal continuum theory of Eringen [31,32], the nonlocal bending mo-
ments of the inner and outer tubes which are modeled based on the NRBT are provided by [36,37,51,52]:
Mnl
bi
� ðe0aÞ2Mnl

bi ;xx ¼ �Ebi
Ibi

wi;xx; i ¼ 1;2 ð2Þ
where a is an internal characteristic length. The value of e0 is determined by adjusting the dispersion curves of the nonlocal
model with those of another atomistic-based model when the experimentally observed data are not available. The parameter
e0a is called small-scale effect parameter or small-scale parameter. Using Hamilton’s principle,

R t
0 dTðtÞ � dUðtÞð Þdt ¼ 0, the

strong form of the equations of motion characterizing the transverse vibration of DWCNTs embedded in an elastic matrix is
obtained as:
qb1
ðAb1

€w1 � Ib1
€w1;xxÞ �Mnl

b1 ;xx þ Cv ðw1 �w2Þ � Nb1
w1;x

� �
;x þ
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where d represents the Dirac delta function. By combining Eq. (2) with Eqs. (3a) and (3b), the nonlocal equations of motion
for transverse vibration of DWCNTs in terms of deflection fields of the innermost and outermost tubes are obtained as
follows:
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qb1
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For examining the problem in a more general framework, the following dimensionless parameters are introduced:
n ¼ x
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where n is the dimensionless coordinate, wi is the dimensionless deflection field of the ith nanotube, s is the dimensionless
time parameter, l is the dimensionless small-scale parameter, rb1 denotes the gyration radius of the innermost tube, and k1

is the slenderness ratio of the innermost tube. Using Eqs. (4a), (4b), and (5), the dimensionless equations of motion are de-
rived as follows:
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Eqs. (6a) and (6b) furnish us with the strong form of the dimensionless equations of motion of an elastically supported
DWCNT with initially axial force embedded in an elastic medium. Generally, finding an analytical solution to Eqs. (6a)
and (6b) is a very difficult job. The analytical solutions to these equations are available just for particular cases. For instance,
Yoon et al. [14] explored free flexural vibration of MWCNTs embedded in an elastic matrix in the framework of classical con-
tinuum theory (i.e., l ¼ 0). The ECSs associated with the innermost and outermost tubes of the DWCNT are modeled based
on the Euler–Bernoulli beam theory. Their investigations were limited to the case of DWCNTs with clamped ends and only
lateral interaction of the DWCNT with its surrounding matrix was taken into account. Based on the Euler–Bernoulli beam
theory, Zhang et al. [15] proposed a double-elastic beam model for transverse vibrations of DWCNTs under compressive axial
load. The governing equations of the proposed model were constructed in the context of classical continuum theory. Without
considering the interaction of the DWCNT with its surrounding medium, the explicit expressions of flexural frequencies and
associated amplitude ratios of the inner tube to the outer one were derived in the case of simply supported DWCNTs. Using
Euler–Bernoulli beam model, Natsuki et al. [20] investigated the free flexural dynamic response of DWCNTs on the basis of
the classical continuum theory. The considered DWCNT did not experience any initial axial force and it was released from the
surrounding matrix. Moreover, free transverse vibrations of only simply supported DWCNTs were of concern. In the absence
of surrounding elastic medium as well as initially axial forces, Zhang et al. [35] studied free transverse vibrations of DWCNTs
based on the nonlocal Euler–Bernoulli beam theory. The frequency analyses of DWCNTs were carried out in the case of sim-
ply supported boundary conditions using eigen function expansion.

As it is seen in the literature, the undertaken works were restricted to some special boundary conditions. Moreover, the
full interactions of DWCNTs with its surrounding matrix were not considered. In order to bridge such a scientific gap, the
author was encouraged to propose a numerical solution for examining free transverse vibration of elastically supported
DWCNTs under a more general circumference.
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3.2. A discussion on the considered boundary conditions

In the proposed model in the previous section, a wide range of boundary conditions can be imposed to the model via ro-
tary and transverse springs which are attached to the ends of the innermost and outermost tubes. Four rotary springs are
aimed to control the rotations of the nanotubes’ ends whereas their transverse motion can be controlled by transversely at-
tached springs. These springs provide displacement boundary conditions, but what about the forced boundary conditions
(for example, nonlocal resultant shear forces as well as nonlocal bending moments at the ends of the tubes) which are com-
monly expressed in terms of higher-order derivatives of transverse displacements? Herein it should be noticed that we are
interested to study the problem via an efficient meshless methodology in which works with the weak form of Eqs. (6a) and
(6b). As it will be seen, such conditions can be weakly (not strongly) satisfied by choosing appropriate values for constants of
the attached springs to the nanotubes’ ends.

On the other hand, as explained earlier, we are exploiting a simple version of the nonlocal continuum theory of Eringen,
namely:
rnl
xx � ðe0aÞ2rnl

xx;xx ¼ rl
xx ¼ Eb �xx ð8Þ
for beam-like structures modeled by the NRBT, where rnl
xx;rl

xx, and �xx denote nonlocal longitudinal stress, local longitudinal
stress, and longitudinal strain, respectively. In this research work, the nonlocal governing equations are simply constructed
based on their classical version. Such a procedure have been extensively applied for nonlocal continuum-based modeling of
nanostructures [41,35–37,54–60]. In contrast to such models, there are so-called nonlocal non-classical models in which ex-
plain that Eq. (8) cannot be directly applied to the classical governing equations [61–64]. In other words, for nonlocal stress
analysis of solid nanostructures, the nonlocal stresses should be firstly evaluated in terms of strains using the nonlocal con-
stitutive relations, for example Eq. (8) for beam-like nanostructures. Thereafter, such a nonlocal version of stresses can be
employed in evaluating the total strain energy of the nanostructure (i.e., the histories of all strains are taken into account).
Thereby, the resulting nonlocal stress and bending moment of the beam-like nanostructure would be expressed in terms of
higher-order strains. As a result, the forced boundary conditions in their strong form are stated as a function of higher-order
derivatives of transverse displacements. Application of the meshless to such novel nonlocal models for investigating vibra-
tions of DWCNTs or even MWCNTs can be considered as a hot topic for future works.

4. Application of RKPM to the problem under study

In this section, a brief introduction to the one-dimensional RKPM is given at first. The calculations of RKPM shape func-
tions and their derivatives up to the third-order are explained in some detail. Thereafter, RKPM is employed for spatial dis-
cretization of the unknown fields of the problem at hand.

4.1. An introduction to one-dimensional RKPM

Based on the works of Liu and his coworkers [45,46,65,66], a continuous approximation of an arbitrarily one-dimensional
field uðxÞ, could be expressed by:
uaðxÞ ¼
Z

X
/�aðx; x� sÞuðsÞds; ð9Þ
where X denotes the spatial domain of our interest, and the modified kernel function /�aðx; x� sÞ is defined as:
/�aðx; x� sÞ ¼ /aðx� sÞcðx; x� sÞ; /aðx� sÞ ¼ 1
a

/
x� s

a

� �
; ð10Þ
where cðx; x� sÞ is the correction function, /aðx� sÞ is the kernel or window function which is characterized by the choice of
both the dilation parameter, a, and the function /. The dilation parameter controls the support or influence domain of the
kernel function. The main privilege of the RKPM with respect to the traditional smooth particle hydrodynamics (SPH) meth-
od is the incorporation of the correction function into its formulations. The main task of the newly introduced function is to
reduce the difficulties raised from finite domain effect. Thereby, it is anticipated to reduce the generated errors throughout
the computational domain, particularly in those regions close to the boundaries. The correction function is commonly stated
in the following form:
cðx; x� sÞ ¼
XN

i¼0

biðxÞðx� sÞi ¼ HTðx� sÞbðxÞ; ð11Þ
where HT is the base function, and b contains the unknown coefficients:
HT ¼ ½1; x; x2; . . . ; xN�;
bTðxÞ ¼ ½b0ðxÞ; b1ðxÞ; . . . ; bNðxÞ�;

ð12Þ
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in view of Eq. (10), by substituting Eq. (11) into Eq. (9), one can obtain:
uaðxÞ ¼
XN

k¼0

X1
n¼0

ð�1Þn

n!
bkðxÞmnþkðxÞuðnÞðxÞ; ð13Þ
where uð0ÞðxÞ ¼ uðxÞ;uðnÞ ¼ @nu
@xn ; n > 1, and mnðxÞ represents the moment function of order n, which is defined by:
mnðxÞ ¼
Z

X
ðx� sÞn /aðx� sÞds: ð14Þ
In order to satisfy the Nth order completeness condition for uaðxÞ:
XN

k¼0

bkðxÞmkðxÞ ¼ 1;
XN

k¼0

bkðxÞmnþkðxÞ ¼ 0; n P 1; ð15Þ
by solving the set of linear equations in Eq. (15), the unknown parameters bkðxÞ are determined as:
bðxÞ ¼M�1ðxÞHð0Þ; ð16Þ
where the moment matrix, M, is defined as:
MðxÞ ¼

m0ðxÞ m1ðxÞ . . . mNðxÞ
m1ðxÞ m2ðxÞ . . . mNþ1ðxÞ

..

. ..
. . .

. ..
.

mNðxÞ MNþ1ðxÞ . . . m2NðxÞ

0
BBBB@

1
CCCCA; ð17Þ
by substituting Eq. (16) into Eq. (11), and introducing Eqs. (10) and (11) to Eq. (9), the modified kernel function is obtained
as:
/�aðx; x� sÞ ¼ HTðx� sÞM�1ðxÞHð0Þ/aðx� sÞ: ð18Þ
As it is seen in Eq. (9), the approximate function has been expressed continuously in terms of modified function. For the sake
of numerical analysis, the discretized version of the approximate function is commonly required. Using trapezoidal rule,
uaðxÞ is now rewritten as:
uaðxÞ ¼
XNP

I¼1

/IðxÞuI; ð19Þ
where NP is the total number of RKPM’s particles, uI is the nodal parameter value of the Ith RKPM’s particle, and /IðxÞ is its
shape function which is expressed by:
/IðxÞ ¼ /�ðx; x� xIÞMxI; ð20Þ
where MxI is the length of the one-dimensional domain associated with the Ith particle. For example, in the case of N uni-
formly distributed particles of RKPM for a domain of length lb;Mx1 ¼ MxN ¼ lb

2ðN�1Þ, and Mxi ¼ lb
N�1 ; 2 6 i 6 N � 1. The first,

the second, and the third derivatives of the RKPM’s shape functions are evaluated as:
/I;xðxÞ ¼
HTðx� sÞM�1ðxÞ/a;xðx; x� xIÞþ
HT
;xðx� sÞM�1ðxÞ/aðx; x� xIÞþ

HTðx� sÞM�1
;x ðxÞ/aðx; x� xIÞ

0
BB@

1
CCAHð0ÞMxI; ð21aÞ

/I;xxðxÞ ¼
HTðx� sÞM�1ðxÞ/a;xxðx; x� xIÞ þHT

;xxðx� sÞM�1ðxÞ/aðx; x� xIÞþ
HTðx� sÞM�1

;xx ðxÞ/aðx; x� xIÞ þ 2HT
;xðx� sÞM�1ðxÞ/a;xðx; x� xIÞþ

2HT
;xðx� sÞM�1

;x ðxÞ/aðx; x� xIÞ þ 2HTðx� sÞM�1
;x ðxÞ/a;xðx; x� xIÞ

0
BB@

1
CCAHð0ÞMxI; ð21bÞ

/I;xxxðxÞ ¼

HTðx� sÞM�1ðxÞ/a;xxxðx; x� xIÞ þHT
;xxxðx� sÞM�1ðxÞ/aðx; x� xIÞþ

HTðx� sÞM�1
;xxxðxÞ/aðx; x� xIÞ þ 3HT

;xðx� sÞM�1ðxÞ/a;xxðx; x� xIÞþ
3HTðx� sÞM�1

;x ðxÞ/a;xxðx; x� xIÞ þ 3HT
;xxðx� sÞM�1ðxÞ/a;xðx; x� xIÞþ

3HT
;xxðx� sÞM�1

;x ðxÞ/aðx; x� xIÞ þ 3HTðx� sÞM�1
;x ðxÞ/a;xðx; x� xIÞþ

3HT
;xðx� sÞM�1

;xx ðxÞ/aðx; x� xIÞ þ 6HT
;xðx� sÞM�1

;x ðxÞ/a;xðx; x� xIÞ

0
BBBBBBBB@

1
CCCCCCCCA

Hð0ÞMxI: ð21cÞ
Using the relation MðxÞM�1ðxÞ ¼ I, where I is the identity matrix, M�1
;x ðxÞ and M�1

;xx ðxÞ are calculated as follows:
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M�1
;x ¼ �M�1 M;x M�1;

M�1
;xx ¼ �M�1 M;xx M�1 þ 2M�1 M;xM�1 M;x M�1;

ð22Þ
by using the discretized form of Eq. (14), the first, second, and third derivatives of the elements of the moment matrix could
be readily calculated as:
mnðxÞ ¼
XNP

i¼1

ðx� xiÞn/aðx� xiÞMxi; ð23aÞ

mn;xðxÞ ¼
PNP

i¼1/a;xðx� xiÞMxi; n ¼ 0PNP
i¼1ðx� xiÞn�1 ðx� xiÞ/a;xðx� xiÞ þ n/aðx� xiÞ

� �
Mxi; n P 1

;

(
ð23bÞ

mn;xxðxÞ ¼

PNP
i¼1/a;xxðx� xiÞMxi; n ¼ 0PNP
i¼1 x� xið Þ/a;xxðx; x� xiÞ þ 2/a;xðx; x� xiÞ
� �

Mxi; n ¼ 1PNP
i¼1 x� xið Þn/a;xxðx; x� xiÞ þ 2nðx� xiÞn�1/a;xðx; x� xiÞ þ nðn� 1Þ x� xið Þn�2/aðx� xiÞ
� �

Mxi; n P 2

;

8>>><
>>>:

ð23cÞ

mn;xxxðxÞ ¼

PNP
i¼1/a;xxxðx� xiÞMxi; n¼ 0PNP
i¼1 x� xið Þ/a;xxxðx;x� xiÞ þ3/a;xxðx; x� xiÞ
� �

Mxi; n¼ 1PNP
i¼1 x� xið Þ2/a;xxxðx;x� xiÞ þ nðnþ 1Þ/a;xðx;x� xiÞ þ 2ðnþ 1Þðx� xiÞ/a;xxðx; x� xiÞ
� �

Mxi; n¼ 2

PNP
i¼1

x� xið Þn/a;xxxðx; x� xiÞ þ 3nðx� xiÞn�1/a;xxðx;x� xiÞ þ 3nðn� 1Þðx� xiÞn�2/a;xðx; x� xiÞ
þnðn� 1Þðn� 2Þðx� xiÞn�3/aðx� xiÞ

 !
Mxi; n P 3

:

8>>>>>>>><
>>>>>>>>:

ð23dÞ
In this article, linear base function (i.e., HTðxÞ ¼ ½1; x�), and the following function is employed for construction of the window
and shape functions of RKPM:
/ðxÞ ¼ exp � x
a

� �2
� �

; a ¼ 0:3; ð24Þ
with a ¼ 3:2. In the case of using 7 RKPM’s particles which are distributed uniformly over the spatial domain ½0;1�, the plots
of RKPM’s shape functions as well as their first, second, and third derivatives are demonstrated in Fig. 2(a)–(d).
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4.2. Solving the governing equations of DWCNTs using RKPM

For the numerical solving of the dimensionless equations of motion of elastically supported DWCNTs, both sides of Eqs.
(6a) and (6b) are, respectively, multiplied by dw1 and dw2 where d represents the variational sign. The sum of the resulting
equations is then integrated over the normalized length of the DWCNT. After taking successful integration by parts, one can
arrive at:
Z 1

0
dw1 � l2dw1;nn

� �
w1;ss þ k�2

1 dw1;nw1;nss þ l2dw1;nnw1;nnss
� �

þ Cv dw1 � l2dw1;nn

� �
w1 �w2ð Þ þ dw1;nnw1;nn

n

þNb1
dw1;nw1;n þ l2dw1;nnw1;nn

� �
þ
X2

k¼1

Kz1 ðnkÞ dw1 � l2dw1;nn

� �
w1 þ Ky1

ðnkÞ dw1;n � l2dw1;nnn

� �
w1;n

� �
dðn� nkÞ

þ.2
1 dw2 � l2dw2;nn

� �
w2;ss þ k�2

1 .2
2 dw2;nw2;nss þ l2dw2;nnw2;nnss
� �

� Cv dw2 � l2dw2;nn

� �
w1 �w2ð Þþ.2

3dw2;nnw2;nn

þ Nb2 dw2;nw2;n þ l2dw2;nnw2;nn

� �
þ
X2

k¼1
Kz2 ðnkÞ dw2 � l2dw2;nn

� �
w2

�
þKy2

ðnkÞ dw2;n � l2dw2;nnn

� �
w2;n

�
dðn� nkÞ

þ Kt dw2 � l2dw2;nn

� �
w2 þ Kr dw2;nw2;n þ l2dw2;nnw2;nn

� �	
dn ¼ 0: ð25Þ
The unknown fields associated with the elastically supported DWCNT embedded in an elastic medium are discretized in the
spatial domain as: w1ðn; sÞ ¼

PNP1
I¼1 /w1

I ðnÞw1I ðsÞ and w2ðn; sÞ ¼
PNP2

I¼1 /w2
I ðnÞw2I ðsÞ where NP1/NP2, /w1

I ðnÞ//
w2
I ðnÞ, and w1I ðsÞ/

w2I ðsÞ denote the number of RKPMs particles, the RKPM shape functions pertinent to the Ith particle, and the nodal param-
eter values of the Ith particle of the innermost/outermost tubes, respectively. Therefore, Eq. (25) can be rewritten in the ma-
trix form as follows:
½Mb�
w1w1 ½Mb�

w1w2

½Mb�
w2w1 ½Mb�

w2w2

" #
w1;ss

w2;ss


 �
þ ½Kb�

w1w1 ½Kb�
w1w2

½Kb�
w2w1 ½Kb�

w2w2

" #
w1

w2


 �
¼

0
0


 �
; ð26Þ
where the nonzero submatrices in Eq. (26) are as:
Mb
� 
w1w1

IJ ¼
Z 1

0
/w1

I /w1
J þ k�2/w1

I;n /w1
J;n � l2/w1

I;nnð/
w1
J � k�2/w1

J;nnÞ
� �

dn; ð27aÞ

Mb

� 
w2w2

IJ ¼
Z 1

0
.2

1/
w2
I /w2

J þ .2
2k
�2/w2

I;n /w2
J;n � l2/w2

I;nn .2
1/

w2
J � k�2.2

2/
w2
J;nn

� �� �
dn; ð27bÞ

Kb

� 
w1w1

IJ ¼
Z 1

0
/w1

I;nn/
w1
J;nn þ Nb1 /w1

I;n /w1
J;n þ l2/w1

I;nn/
w1
J;nn

� �
þ Cv /w1

I � l2/w1
I;nn

� �
/w1

J

� �
dn

þ
X2

k¼1

Kz1 ðnkÞ /w1
I ðnkÞ � l2/w1

I;nnðnkÞ
� �

/w1
J ðnkÞ þ Ky1

ðnkÞ /w1
I;n ðnkÞ � l2/w1

I;nnnðnkÞ
� �

/w1
J;n ðnkÞ

� �
; ð27cÞ

Kb

� 
w1w2

IJ ¼ �
Z 1

0
Cv /w1

I � l2/w1
I;nn

� �
/w2

J dn; ð27dÞ

Kb

� 
w2w1

IJ ¼ �
Z 1

0
Cv /w2

I � l2/w2
I;nn

� �
/w1

J dn; ð27eÞ

Kb

� 
w2w2

IJ ¼
Z 1

0

.2
3/

w2
I;nn/

w2
J;nn þ Nb2

/w2
I;n /w2

J;n þ l2/w2
I;nn/

w2
J;nn

� �
þ Cv /w2

I � l2/w2
I;nn

� �
/w2

J

þKt /w2
I � l2/w2

I;nn

� �
/w2

J þ Kr /w2
I;n � l2/w2

I;nnn

� �
/w2

J

0
B@

1
CAdn

þ
X2

k¼1

Kz2 ðnkÞ /w2
I ðnkÞ � l2/w2

I;nnðnkÞ
� �

/w2
J ðnkÞ þ Ky2

ðnkÞ /w2
I;n ðnkÞ � l2/w2

I;nnnðnkÞ
� �

/w2
J;n ðnkÞ

� �
: ð27fÞ
For calculating the natural flexural frequencies of the DWCNT, one can assume: w1ðsÞ ¼ w10 ei-s and w2ðsÞ ¼ w20 ei-s where
i ¼

ffiffiffiffiffiffiffi
�1
p

, w10 and w20 are the initial nodal parameter vectors of the innermost and outermost tubes, respectively, and - de-
notes the dimensionless flexural frequency of the DWCNT embedded in an elastic matrix under initially axial force. By
substituting these new forms of w1 and w2 into Eq. (26),
�-2 ½Mb�
w1w1 ½Mb�

w1w2

½Mb�
w2w1 ½Mb�

w2w2

" #
þ ½Kb�

w1w1 ½Kb�
w1w2

½Kb�
w2w1 ½Kb�

w2w2

" # !
w10

w20


 �
¼

0
0


 �
: ð28Þ
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Through solving the set of eigenvalue equations in Eq. (28), the eigenvalues (i.e., dimensionless flexural frequencies) and the
corresponding eigenvectors (i.e., flexural vibration modes) of a lengthy DWCNT embedded in an elastic matrix under initially
axial force are obtained based on the NRBT hypotheses.

5. Results and discussion

In this section, the capability of the proposed numerical model in capturing the natural frequencies of DWCNTs is initially
explored through some comparisons of the obtained results with those of other works. Subsequently, the first five natural
frequencies of DWCNTs for different boundary conditions, slenderness ratios, small-scale parameters, and initially axial
forces will be presented in the tabular format. Afterward, the effects of various factors on the first five dimensionless flexural
frequencies of DWCNTs with different boundary conditions will be presented graphically. For this purpose, consider a
DWCNT of length 20 nm, consisting of the innermost and outermost tubes of mean radii 0.5 nm and 0.84 nm, respectively,
whose walls’ thickness is equal to 0.34 nm. The material properties of the innermost and outermost tubes of the DWCNT are
as: qbi

¼ 2500 kg/m3 and Ebi
=1 TPa. Throughout this section, the above-mentioned values are used in the frequency analysis

of the problem unless other values are clearly specified for the aforementioned parameters. The nth dimensionless frequency
associated with the nth vibration mode of the DWCNT is now defined by Xn ¼

ffiffiffiffiffiffiffi
-n
p

. In the RKPM analysis of each tube, 11
uniformly distributed particles, cubic spline window function, and linear base function are used. The dilation parameter per-
tinent to each particle is set equal to 3.2. Additionally, similar RKPM shape functions are employed for discretization of the
deflection fields of the innermost and outermost tubes. For different boundary conditions, the values of the parameters Kyi

and Kzi
have been given in Table 1. In Table 1, SS and CC stand for fully simply supported and fully clamped conditions of

both the innermost and outermost tubes, respectively. The SfS or SfC conditions imply that the left ends of both tubes are
shear-free whereas their right ends have simply supported or clamped supports. The condition SC denotes that the left ends
of both tubes have simple supports while the right ends have clamped supports. Finally, the CF condition implies that the left
supports of both tubes are clamped whereas the right ones are free from any constraint (i.e., cantilevered DWCNT).

5.1. Comparison of the obtained results with those of other works

In order to check the accuracy of the numerical calculations, the predicted results by the proposed model are verified with
those of other available works in some particular cases. In the first verification, the obtained results are compared with those
of Aydogdu [21]. In the carried out work by Aydogdu [21], the parameter Cv was approximated by

Cv ¼ 320� ð2rm1 Þ=0:16d2 ðerg=cm2Þ where d = 0.142 nm. Furthermore, for the sake of comparability of the obtained results

with those of Aydogdu [21], the nth nondimensional natural frequency of the DWCNT is now introduced by Nn ¼ ð
qb1

Abl4b
Eb1

Ib
x2

nÞ
1
4

where xn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eb1 Ib1=ðqb1

Ab1 l4
bÞ

q
-n;Ab ¼ Ab1 þ Ab2 , and Ib ¼ Ib1 þ Ib2 . In the work of Aydogdu [21], the natural frequencies of

multi-walled carbon nanotubes were obtained in the case of simply supported conditions using a higher-order beam theory.
The predicted first five nondimensional flexural frequencies by Aydogdu [21] as well as those of the proposed model have
been provided in Table 2. The results are given for two levels of the aspect ratio of the DWCNT, lb=rm1 = 20 and 100. As it is
seen in Table 2, the proposed numerical model can reproduce the nondimensional flexural frequencies of the DWCNT by
Aydogdu [21] with a good accuracy.
Table 1
The values of Kyi

and Kzi
for the considered boundary conditions.

SS CC SC SfS SfC CF

Kzi ðn1Þ 108 108 108 0 0 108

Kzi ðn2Þ 108 108 108 108 108 0

Kyi
ðn1Þ 0 108 0 108 108 108

Kyi
ðn2Þ 0 108 108 0 108 0

Table 2
Comparison between the predicted first five nondimensional frequencies of the DWCNT via RKPM and those of Aydogdu [21].

lb=rm2 N1 N2 N3 N4 N5

20 Aydogdu [21] 3.1410 6.2650 9.2756 11.880 13.946
Proposed model 3.1331 6.2080 9.1118 11.6232 12.7541

100 Aydogdu [21] 3.1416 6.2832 9.4245 12.565 15.705
Proposed model 3.1411 6.2835 9.4286 12.5810 15.7503
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In another comparison study, without taking into account the nonlocal effect, the predicted first and second flexural
frequencies of the DWCNT are compared with those of the proposed analytical model by Wang and Varadan [37]. The ana-
lytical expressions of the natural frequencies of DWCNTs by Wang and Varadan [37] were limited to DWCNTs with simply
supported conditions. The considered geometry, physical, and mechanical data of the DWCNTs are identical to those men-
tioned in Ref. [37]. To cover a wide range of the aspect ratio and to assess the effect of the aspect ratio on the vibration char-
acteristics of the DWCNT, five levels of the length for the DWCNT and three levels of the radius of the innermost tube have
been taken into account (see Table 3). As it is clear from Table 3, there is a good agreement between the obtained frequencies
by the proposed model and those of Wang and Varadan [37]. Moreover, both the first and second natural frequencies of the
DWCNT increase with the radius of the innermost tube whereas decrease with the length of the DWCNT.

In another comparison, the dimensionless fundamental frequency of the DWCNT based on the proposed model are ver-
ified with those of the model proposed by Ke et al. [67]. Using nonlocal Timoshenko beam theory, Ke et al. [67] studied vibra-
tions of DWCNTs using differential quadrature method (DQM). The DWCNT under study has the following properties:
qbi

= 2300 kg/m3, Ebi
= 1 TPa, rm1 = 0.35 nm, rm2 = 0.7 nm, tbi

= 0.35 nm, lb ¼ 20 rm2 , and Kt ¼ Kr ¼ Nbi
¼ 0; i ¼ 1;2. In Table 4,

the predicted results by the proposed numerical model and those of Ke et al. [67] are provided for SS, CC, and SC boundary
conditions and four levels of the small-scale parameter. As it is seen in Table 4, for all levels of the small-scale parameter, the
present model can capture the results of Ke et al. [67] for SS, CC, and SC boundary conditions with relative error lower than
2.2, 6.5, and 5.8 percent, respectively. By increasing the small-scale parameter, the discrepancies between the results of two
models would decrease. Furthermore, the predicted results by the proposed model are generally greater than those of the
model by Ke et al. [67]. It is mainly related to this fact that the Rayleigh beam model does not consider the shear deformation
effects of the nanostructure. In other words, its transverse stiffness is commonly overestimated with respect to the Timo-
shenko beam model. As a result, the resulting frequencies of the nanostructure are generally higher than those obtained
by Timoshenko beam theory. Additionally, such discrepancies is expected to become highlighted as the nanostructure’s
length decreases.

5.2. Numerical study of the effects of small-scale parameter and initially applied force on the first five natural frequencies of
DWCNTs for different boundary conditions as well as slenderness ratio

For the proposed model, the first five dimensionless frequencies of DWCNTs with SS, CC, SC, SfS, SfC, and CF
boundary conditions are provided in Tables 5–10, respectively. The results have been given for four levels of the slender-
ness ratio of the innermost tube (i.e., k1 ¼ 40;60;80; and 120) as well as four levels of the small-scale parameter
Table 3
Comparison of the predicted first two natural frequencies of the DWCNT by the proposed model with those of Wang and Varadan [37] for DWCNTs with various
levels of length and radius of the innermost tube.

lbnm x1 (THz) x2 (THz)

rm1 = 0.5 nm rm1 = 0.75 nm rm1 = 1 nm rm1 = 0.5 nm rm1 = 0.75 nm rm1 = 1 nm

WVa PSb WV PS WV PS WV PS WV PS WV PS

14 0.7416 0.7419 0.9783 0.9684 1.2214 1.2030 2.8321 2.9687 3.7072 3.8738 4.6180 4.8103
18 0.4494 0.4488 0.5931 0.5859 0.7406 0.7278 1.7694 1.7966 2.3268 2.3450 2.8996 2.9126
22 0.3010 0.3004 0.3973 0.3922 0.4962 0.4872 1.1958 1.2029 1.5758 1.5701 1.9960 1.9504
26 0.2156 0.2151 0.2845 0.2808 0.3554 0.3488 0.8593 0.8612 1.1322 1.1243 1.4146 1.3966
30 0.1619 0.1616 0.2137 0.2109 0.2669 0.2620 0.6465 0.6469 0.8529 0.8445 1.0649 1.0490

a The expression WV stands for Wang and Varadan [37].
b The expression PS stands for present study.

Table 4
Comparison of the dimensionless fundamental frequency (i.e., x1) of the DWCNT based on the present work with those of Ke et al. [67] for SS, CC, and SC
boundary conditions and various values of the small-scale parameter.

BCsa Model (approach) Dimensionless fundamental frequency: x1
b

l ¼ 0:1 l ¼ 0:15 l ¼ 0:2

SS Ke et al. [67] (DQM) 0.2920 0.2768 0.2591
Present work (RKPM) 0.2984 0.2830 0.2649

CC Ke et al. [67] (DQM) 0.6055 0.5687 0.5266
Present work (RKPM) 0.6449 0.5942 0.5396

SC Ke et al. [67] (DQM) 0.4366 0.4112 0.3820
Present work (RKPM) 0.4618 0.4316 0.3976

a boundary conditions.
b x1 ¼ x1 lb

ffiffiffiffiffiffiffiffiffiffiffiffiffi
qb=Eb

p
.



Table 5
The first five dimensionless frequencies of a DWCNT with SS boundary conditions for various values of slenderness ratio, small-scale parameter, and initially
axial force.

k1 e0a ¼ 0 nm e0a ¼ 1 nm e0a ¼ 1:5 nm e0a ¼ 2 nm

Nbi
¼ 0 Nbi

¼ 10 Nbi
¼ 20 Nbi

¼ 0 Nbi
¼ 10 Nbi

¼ 20 Nbi
¼ 0 Nbi

¼ 10 Nbi
¼ 20 Nbi

¼ 0 Nbi
¼ 10 Nbi

¼ 20

40 3.7344 4.0433 4.2942 3.6946 4.0121 4.2683 3.6476 3.9758 4.2383 3.5866 3.9291 4.2000
7.3937 7.5625 7.7207 7.1021 7.2915 7.4671 6.8057 7.0195 7.2153 6.4764 6.7221 6.9434

10.8863 11.0040 11.1180 10.0326 10.1809 10.3228 9.3101 9.4933 9.6663 8.6183 8.8460 9.0571
14.0984 14.1959 14.2911 12.4267 12.5617 12.6922 11.2344 11.4118 11.5809 10.2110 10.4417 10.6574
16.9139 17.0073 17.0989 14.3221 14.4573 14.5882 12.7107 12.8927 13.0664 11.4228 11.6638 11.8896

60 3.7411 4.0503 4.3016 3.7231 4.0362 4.2898 3.7012 4.0191 4.2757 3.6715 3.9961 4.2567
7.4501 7.6188 7.7769 7.3117 7.4898 7.6559 7.1553 7.3448 7.5206 6.9617 7.1666 7.3554

11.0911 11.2058 11.3171 10.6536 10.7827 10.9073 10.2091 10.3553 10.4956 9.7151 9.8840 10.0447
14.6221 14.7098 14.7959 13.6736 13.7802 13.8843 12.8199 12.9484 13.0732 11.9642 12.1213 12.2724
17.9942 18.0671 18.1391 16.3369 16.4325 16.5264 15.0161 15.1376 15.2562 13.8024 13.9571 14.1068

80 3.7434 4.0528 4.3042 3.7332 4.0448 4.2975 3.7207 4.0350 4.2894 3.7034 4.0216 4.2783
7.4691 7.6380 7.7963 7.3894 7.5636 7.7265 7.2955 7.4762 7.6447 7.1734 7.3632 7.5392

11.1582 11.2727 11.3838 10.8991 11.0218 11.1406 10.6133 10.7461 10.8741 10.2687 10.4150 10.5553
14.7893 14.8759 14.9610 14.2059 14.3034 14.3990 13.6131 13.7238 13.8318 12.9544 13.0825 13.2069
18.3384 18.4084 18.4776 17.2703 17.3539 17.4362 16.2789 16.3783 16.4759 15.2605 15.3807 15.4982

120 3.7450 4.0546 4.3061 3.7405 4.0510 4.3031 3.7348 4.0466 4.2994 3.7270 4.0404 4.2943
7.4824 7.6515 7.8100 7.4464 7.6178 7.7784 7.4026 7.5770 7.7401 7.3433 7.5218 7.6884

11.2043 11.3190 11.4302 11.0848 11.2031 11.3178 10.9439 11.0668 11.1858 10.7607 10.8899 11.0147
14.9022 14.9886 15.0736 14.6253 14.7168 14.8065 14.3125 14.4100 14.5056 13.9251 14.0309 14.1344
18.5669 18.6363 18.7049 18.0419 18.1174 18.1921 17.4777 17.5608 17.6427 16.8155 16.9087 17.0005

Table 6
The first five dimensionless frequencies of a DWCNT with CC boundary conditions for various values of slenderness ratio, small-scale parameter, and initially
axial force.

k1 e0a ¼ 0 nm e0a ¼ 1 nm e0a ¼ 1:5 nm e0a ¼ 2 nm

Nbi
¼ 0 Nbi

¼ 10 Nbi
¼ 20 Nbi

¼ 0 Nbi
¼ 10 Nbi

¼ 20 Nbi
¼ 0 Nbi

¼ 10 Nbi
¼ 20 Nbi

¼ 0 Nbi
¼ 10 Nbi

¼ 20

40 5.7337 5.8549 5.9686 5.6397 5.7804 5.9110 5.5243 5.6884 5.8390 5.3808 5.5760 5.7522
9.3964 9.4987 9.5976 8.9041 9.0370 9.1641 8.4229 8.5908 8.7491 7.9168 8.1287 8.3251

12.8516 12.9374 13.0213 11.6323 11.7573 11.8783 10.6615 10.8293 10.9894 9.7777 9.9984 10.2050
15.9293 16.0111 16.0913 13.7840 13.9110 14.0342 12.3370 12.5119 12.6791 11.1374 11.3714 11.5909
17.5779 17.5834 17.5888 15.4466 15.5824 15.7140 13.6084 13.7945 13.9720 12.1727 12.4215 12.6544

60 5.7484 5.8696 5.9832 5.7100 5.8399 5.9612 5.6555 5.7961 5.9268 5.5829 5.7383 5.8816
9.4957 9.5966 9.6942 9.2661 9.3810 9.4917 9.0024 9.1342 9.2604 8.6865 8.8407 8.9871

13.1793 13.2595 13.3381 12.5451 12.6439 12.7405 11.9148 12.0355 12.1526 11.2424 11.3913 11.5344
16.7226 16.7900 16.8565 15.4534 15.5437 15.6325 14.3544 14.4707 14.5843 13.2952 13.4445 13.5889
20.0661 20.1264 20.1861 17.9734 18.0601 18.1456 16.3778 16.4938 16.6073 14.9605 15.1133 15.2614

80 5.7533 5.8745 5.9882 5.7344 5.8604 5.9784 5.7034 5.8356 5.9589 5.6607 5.8014 5.9322
9.5273 9.6281 9.7256 9.3993 9.5080 9.6129 9.2392 9.3577 9.4718 9.0348 9.1666 9.2928

13.2804 13.3598 13.4379 12.9080 12.9983 13.0867 12.4942 12.5974 12.6981 12.0090 12.1293 12.2462
16.9625 17.0280 17.0927 16.1787 16.2576 16.3353 15.3944 15.4891 15.5820 14.5502 14.6655 14.7781
20.5462 20.6023 20.6580 19.1770 19.2490 19.3202 17.9413 18.0315 18.1204 16.7123 16.8260 16.9375

120 5.7566 5.8779 5.9916 5.7509 5.8742 5.9898 5.7378 5.8639 5.9819 5.7186 5.8485 5.9699
9.5488 9.6496 9.7472 9.4952 9.5995 9.7004 9.4211 9.5299 9.6350 9.3203 9.4352 9.5460

13.3475 13.4269 13.5049 13.1809 13.2652 13.3478 12.9750 13.0653 13.1537 12.7096 12.8080 12.9042
17.1187 17.1837 17.2480 16.7512 16.8223 16.8926 16.3293 16.4079 16.4854 15.8151 15.9038 15.9910
20.8532 20.9081 20.9627 20.1805 20.2428 20.3045 19.4586 19.5297 19.6000 18.6284 18.7113 18.7931
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(i.e., e0a = 0, 1, 1.5, and 2 nm). For each pair of the slenderness ratio and small-scale parameter, the results are also provided
for three values of initially applied axial force on both the innermost and outermost tubes (i.e., Nbi

= 0, 10, and 20; i = 1,2). As
it is seen in Tables 5–10, for a constant level of the slenderness ratio, the dimensionless flexural frequencies generally de-
crease with an increase of the small-scale effect parameter. This matter is more apparent for higher modes of vibration.
For specified values of small-scale parameter and initially axial force, the dimensionless frequencies increase with the slen-
derness ratio of the nanotube, irrespective of the boundary conditions of the DWCNT. This fact is more obvious for higher
modes of vibration. Furthermore, an increase of the initially applied axial forces leads to an increase of the dimensionless



Table 7
The first five dimensionless frequencies of a DWCNT with SC boundary conditions for various values of slenderness ratio, small-scale parameter, and initially
axial force.

k1 e0a ¼ 0 nm e0a ¼ 1 nm e0a ¼ 1:5 nm e0a ¼ 2 nm

Nbi
¼ 0 Nbi

¼ 10 Nbi
¼ 20 Nbi

¼ 0 Nbi
¼ 10 Nbi

¼ 20 Nbi
¼ 0 Nbi

¼ 10 Nbi
¼ 20 Nbi

¼ 0 Nbi
¼ 10 Nbi

¼ 20

40 4.7127 4.9066 5.0789 4.6486 4.8568 5.0404 4.5707 4.7963 4.9932 4.4714 4.7203 4.9344
8.3881 8.5178 8.6418 8.0060 8.1613 8.3081 7.6247 7.8096 7.9821 7.2129 7.4360 7.6405

11.8669 11.9665 12.0634 10.8409 10.9754 11.1049 9.9981 10.1715 10.3362 9.2113 9.4336 9.6410
15.0204 15.1089 15.1956 13.1181 13.2479 13.3737 11.7996 11.9747 12.1419 10.6884 10.9198 11.1367
17.5551 17.5624 17.5688 14.8979 15.0327 15.1632 13.1723 13.3557 13.5307 11.8093 12.0538 12.2828

60 4.7231 4.9171 5.0896 4.6957 4.8961 5.0737 4.6592 4.8675 5.0513 4.6100 4.8293 5.0215
8.4632 8.5922 8.7155 8.2838 8.4244 8.5583 8.0786 8.2334 8.3798 7.8287 8.0025 8.1655

12.1259 12.2212 12.3142 11.5971 11.7089 11.8176 11.0648 11.1961 11.3229 10.4851 10.6420 10.7921
15.6651 15.7416 15.8169 14.5651 14.6625 14.7579 13.5932 13.7146 13.8328 12.6381 12.7903 12.9372
19.0264 19.0924 19.1577 17.1601 17.2506 17.3397 15.7047 15.8229 15.9383 14.3902 14.5434 14.6918

80 4.7266 4.9207 5.0933 4.7123 4.9099 5.0853 4.6914 4.8936 5.0726 4.6627 4.8712 5.0551
8.4879 8.6169 8.7403 8.3864 8.5220 8.6514 8.2625 8.4063 8.5430 8.1028 8.2578 8.4044

12.2083 12.3032 12.3959 11.8968 12.0011 12.1028 11.5511 11.6669 11.7794 11.1398 11.2710 11.3978
15.8653 15.9403 16.0142 15.1878 15.2750 15.3607 14.5038 14.6055 14.7050 13.7557 13.8764 13.9940
19.4325 19.4950 19.5569 18.2216 18.2988 18.3750 17.1124 17.2066 17.2994 15.9912 16.1076 16.2216

120 4.7291 4.9232 5.0959 4.7238 4.9195 5.0934 4.7148 4.9125 5.0880 4.7018 4.9024 5.0801
8.5050 8.6341 8.7577 8.4610 8.5931 8.7193 8.4035 8.5392 8.6688 8.3254 8.4662 8.6004

12.2642 12.3591 12.4518 12.1228 12.2220 12.3188 11.9517 12.0561 12.1579 11.7300 11.8417 11.9503
15.9982 16.0729 16.1466 15.6789 15.7591 15.8382 15.3146 15.4016 15.4872 14.8669 14.9631 15.0575
19.6974 19.7590 19.8200 19.1026 19.1710 19.2387 18.4633 18.5399 18.6155 17.7204 17.8079 17.8941

Table 8
The first five dimensionless frequencies of a DWCNT with SfS boundary conditions for various values of slenderness ratio, small-scale parameter, and initially
axial force.

k1 e0a ¼ 0 nm e0a ¼ 1 nm e0a ¼ 1:5 nm e0a ¼ 2 nm

Nbi
¼ 0 Nbi

¼ 10 Nbi
¼ 20 Nbi

¼ 0 Nbi
¼ 10 Nbi

¼ 20 Nbi
¼ 0 Nbi

¼ 10 Nbi
¼ 20 Nbi

¼ 0 Nbi
¼ 10 Nbi

¼ 20

40 1.8813 2.3574 2.6490 1.8768 2.3552 2.6475 1.8705 2.3521 2.6455 1.8618 2.3479 2.6426
5.6076 5.8239 6.0184 5.4787 5.7098 5.9158 5.3343 5.5835 5.8031 5.1603 5.4336 5.6709
9.2151 9.3509 9.4810 8.6784 8.8403 8.9936 8.1779 8.3701 8.5497 7.6645 7.8957 8.1081

12.5993 12.7030 12.8039 11.3504 11.4888 11.6222 10.3824 10.5601 10.7290 9.5107 9.7381 9.9501
15.6349 15.7281 15.8194 13.4902 13.6236 13.7527 12.0682 12.2468 12.4172 10.8968 11.1321 11.3526

60 1.8821 2.3584 2.6501 1.8804 2.3576 2.6496 1.8776 2.3562 2.6487 1.8737 2.3543 2.6474
5.6308 5.8474 6.0423 5.5724 5.7955 5.9955 5.5013 5.7328 5.9392 5.4088 5.6516 5.8667
9.3304 9.4650 9.5940 9.0682 9.2147 9.3546 8.7833 8.9443 9.0971 8.4490 8.6295 8.7993

12.9414 13.0391 13.1347 12.2717 12.3862 12.4976 11.6273 11.7617 11.8916 10.9491 11.1095 11.2631
16.4176 16.4958 16.5728 15.1271 15.2262 15.3235 14.0325 14.1559 14.2762 12.9860 13.1407 13.2900

80 1.8824 2.3588 2.6505 1.8817 2.3584 2.6503 1.8801 2.3577 2.6498 1.8779 2.3566 2.6491
5.6388 5.8555 6.0506 5.6062 5.8266 6.0245 5.5647 5.7899 5.9915 5.5090 5.7407 5.9473
9.3686 9.5032 9.6323 9.2169 9.3583 9.4935 9.0403 9.1901 9.3329 8.8187 8.9799 9.1329

13.0517 13.1488 13.2438 12.6494 12.7562 12.8604 12.2192 12.3377 12.4528 11.7211 11.8553 11.9851
16.6649 16.7411 16.8163 15.8549 15.9434 16.0305 15.0639 15.1672 15.2683 14.2203 14.3429 14.4624

120 1.8826 2.3590 2.6508 1.8825 2.3590 2.6508 1.8819 2.3587 2.6506 1.8809 2.3582 2.6503
5.6443 5.8613 6.0565 5.6304 5.8489 6.0454 5.6117 5.8323 6.0304 5.5858 5.8093 6.0097
9.3951 9.5299 9.6592 9.3271 9.4649 9.5969 9.2429 9.3845 9.5200 9.1307 9.2776 9.4178

13.1267 13.2238 13.3189 12.9403 13.0418 13.1410 12.7215 12.8284 12.9327 12.4432 12.5575 12.6687
16.8301 16.9060 16.9808 16.4412 16.5227 16.6030 16.0083 16.0967 16.1836 15.4859 15.5836 15.6795
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frequencies of the DWCNT for different boundary conditions. In the case of a DWCNT with SS boundary conditions (see Ta-
ble 5), the effect of variation of initially axial force on the variation of flexural frequencies of the DWCNT with higher small-
scale parameter is more obvious. However, for a lengthy DWCNT (i.e., a DWCNT with higher values of the slenderness ratio),
the variation of initially axial forces as a function of flexural frequencies is not generally sensitive to the small-scale param-
eter. Moreover, for specified values of slenderness ratio and initially axial forces, the dimensionless flexural frequencies de-
crease with the small-scale parameter. Concerning free flexural vibration of a DWCNT with CC boundary conditions and a
low level of the slenderness ratio (i.e., k1 ¼ 40) (see Table 6), the first dimensionless frequency decreases with the small-scale



Table 9
The first five dimensionless frequencies of a DWCNT with SfC boundary conditions for various values of slenderness ratio, small-scale parameter, and initially
axial force.

k1 e0a ¼ 0 nm e0a ¼ 1 nm e0a ¼ 1:5 nm e0a ¼ 2 nm

Nbi
¼ 0 Nbi

¼ 10 Nbi
¼ 20 Nbi

¼ 0 Nbi
¼ 10 Nbi

¼ 20 Nbi
¼ 0 Nbi

¼ 10 Nbi
¼ 20 Nbi

¼ 0 Nbi
¼ 10 Nbi

¼ 20

40 2.8574 3.0778 3.2567 2.8475 3.0759 3.2603 2.8321 3.0707 3.2619 2.8111 3.0637 3.2640
6.6031 6.7566 6.9000 6.4210 6.5945 6.7552 6.2179 6.4156 6.5964 5.9797 6.2089 6.4152

10.2131 10.3231 10.4295 9.5434 9.6841 9.8188 8.9353 9.1110 9.2769 8.3286 8.5487 8.7528
13.5621 13.6531 13.7420 12.1046 12.2344 12.3599 11.0090 11.1817 11.3463 10.0440 10.2700 10.4815
16.5149 16.6020 16.6873 14.1240 14.2551 14.3820 12.5798 12.7584 12.9290 11.3264 11.5643 11.7873

60 2.8590 3.0795 3.2585 2.8560 3.0799 3.2612 2.8492 3.0777 3.2621 2.8395 3.0745 3.2632
6.6357 6.7890 6.9324 6.5550 6.7173 6.8685 6.4535 6.6271 6.7879 6.3233 6.5122 6.6858

10.3620 10.4698 10.5743 10.0351 10.1571 10.2749 9.6807 9.8199 9.9533 9.2729 9.4346 9.5884
13.9889 14.0722 14.1540 13.1971 13.2993 13.3992 12.4471 12.5714 12.6920 11.6736 11.8264 11.9735
17.4645 17.5340 17.6026 15.9905 16.0830 16.1738 14.7665 14.8851 15.0008 13.6179 13.7698 13.9167

80 2.8596 3.0801 3.2591 2.8588 3.0812 3.2615 2.8551 3.0801 3.2621 2.8497 3.0783 3.2628
6.6465 6.8000 6.9435 6.6029 6.7614 6.9092 6.5437 6.7086 6.8620 6.4645 6.6382 6.7992

10.4100 10.5177 10.6221 10.2226 10.3384 10.4504 10.0012 10.1269 10.2481 9.7265 9.8657 9.9992
14.1224 14.2049 14.2859 13.6476 13.7410 13.8324 13.1407 13.2471 13.3511 12.5627 12.6866 12.8070
17.7584 17.8255 17.8918 16.8293 16.9099 16.9894 15.9318 16.0284 16.1232 14.9900 15.1074 15.2221

120 2.8599 3.0805 3.2595 2.8606 3.0818 3.2613 2.8592 3.0816 3.2619 2.8570 3.0809 3.2623
6.6541 6.8077 6.9513 6.6369 6.7926 6.9381 6.6106 6.7691 6.9171 6.5735 6.7361 6.8875

10.4428 10.5506 10.6551 10.3609 10.4722 10.5801 10.2553 10.3711 10.4833 10.1146 10.2367 10.3547
14.2118 14.2941 14.3751 13.9941 14.0813 14.1669 13.7345 13.8278 13.9193 13.4062 13.5079 13.6073
17.9513 18.0178 18.0835 17.5067 17.5794 17.6512 17.0100 17.0902 17.1693 16.4159 16.5063 16.5953

Table 10
The first five dimensionless frequencies of a DWCNT with CF boundary conditions for various values of slenderness ratio, small-scale parameter, and initially
axial force.

k1 e0a ¼ 0 nm e0a ¼ 1 nm e0a ¼ 1:5 nm e0a ¼ 2 nm

Nbi
¼ 0 Nbi

¼ 10 Nbi
¼ 20 Nbi

¼ 0 Nbi
¼ 10 Nbi

¼ 20 Nbi
¼ 0 Nbi

¼ 10 Nbi
¼ 20 Nbi

¼ 0 Nbi
¼ 10 Nbi

¼ 20

40 2.2556 2.7640 3.0553 2.2581 2.7695 3.0624 2.2593 2.7747 3.0697 2.2610 2.7820 3.0801
5.5961 5.9060 6.1682 5.5074 5.8317 6.1033 5.4002 5.7425 6.0259 5.2634 5.6302 5.9296
9.2184 9.3874 9.5472 8.7764 8.9710 9.1528 8.3405 8.5656 8.7730 7.8760 8.1408 8.3807

12.5845 12.7061 12.8238 11.4696 11.6265 11.7765 10.5607 10.7580 10.9441 9.7166 9.9654 10.1958
15.6060 15.7113 15.8137 13.6151 13.7611 13.9017 12.2406 12.4329 12.6154 11.0872 11.3379 11.5715

60 2.2575 2.7662 3.0577 2.2594 2.7694 3.0616 2.2600 2.7718 3.0649 2.2608 2.7750 3.0695
5.6295 5.9402 6.2032 5.5910 5.9080 6.1752 5.5403 5.8654 6.1379 5.4722 5.8086 6.0885
9.3582 9.5263 9.6856 9.1464 9.3262 9.4956 8.9064 9.1005 9.2822 8.6165 8.8301 9.0283

12.9673 13.0828 13.1952 12.3784 12.5107 12.6387 11.7905 11.9430 12.0895 11.1549 11.3340 11.5047
16.4379 16.5271 16.6147 15.2553 15.3656 15.4734 14.2182 14.3533 14.4844 13.2057 13.3729 13.5338

80 2.2581 2.7670 3.0585 2.2598 2.7693 3.0612 2.2602 2.7707 3.0632 2.2607 2.7725 3.0658
5.6411 5.9521 6.2155 5.6206 5.9352 6.2009 5.5917 5.9107 6.1794 5.5518 5.8772 6.1502
9.4059 9.5743 9.7339 9.2851 9.4600 9.6253 9.1388 9.3219 9.4944 8.9513 9.1457 9.3279

13.0956 13.2106 13.3226 12.7451 12.8697 12.9907 12.3588 12.4952 12.6270 11.9021 12.0544 12.2009
16.7128 16.8000 16.8858 15.9755 16.0751 16.1728 15.2363 15.3507 15.4625 14.4329 14.5670 14.6974

120 2.2586 2.7675 3.0591 2.2599 2.7690 3.0608 2.2603 2.7698 3.0618 2.2606 2.7707 3.0630
5.6494 5.9607 6.2243 5.6415 5.9543 6.2190 5.6289 5.9437 6.2097 5.6108 5.9285 6.1963
9.4395 9.6082 9.7682 9.3867 9.5583 9.7208 9.3182 9.4935 9.6592 9.2255 9.4059 9.5761

13.1846 13.2997 13.4119 13.0242 13.1436 13.2598 12.8310 12.9558 13.0770 12.5818 12.7140 12.8421
16.9009 16.9877 17.0733 16.5499 16.6424 16.7333 16.1515 16.2509 16.3484 15.6640 15.7729 15.8794
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parameter; however, for a lengthy DWCNT with CC boundary conditions (i.e., k1 ¼ 120), the first dimensionless frequency
trivially increases with the small-scale parameter. Additionally, excluding the first natural frequency, the natural frequencies
of the DWCNT with CC boundary conditions always decrease as the small-scale parameter increases. Based on the presented
results in Tables 5–7, the frequencies of a DWCNT with SC boundary conditions are generally between those of a DWCNT
with SS and those of that with CC boundary conditions. For a DWCNT with SC boundary conditions subjected to initially axial
forces (see Table 7), all the dimensionless frequencies decrease with the small-scale parameter. In the case of a DWCNT with
SfS boundary conditions (see Table 8), variation of the small-scale effect parameter has a trivial effect on the variation of
dimensionless natural frequencies. For a DWCNT subjected to a particular value of initially axial force, variation of the
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slenderness ratio has a slight effect on the variation of dimensionless natural frequencies of the DWCNT with lower mode
numbers. Regarding DWCNTs with SfC boundary conditions (see Table 9), for a specified value of the slenderness ratio,
the first dimensionless natural frequency commonly increases with the small-scale parameter. However, the rate of change
of the first dimensionless frequency as a function of the small-scale parameter decreases with the slenderness ratio of the
DWCNT. As it is seen in Table 8, for a lengthy DWCNT with SfC boundary conditions (i.e., k1 ¼ 120), the variation of the
small-scale parameter has a trivial effect on the variation of the first dimensionless flexural frequency of the DWCNT. In such
a case, the effect of variation of the initially axial force on the variation of the first natural frequency is more obvious with
respect to other frequencies. It is also clear from Table 8 that excluding the frequency corresponding to the first mode of
vibration, the frequencies of other vibration modes decrease with the small-scale parameter. Concerning the free vibration
of a DWCNT with CF boundary conditions (see Table 10), the first dimensionless flexural frequency increases with the small-
scale parameter for all levels of the slenderness ratio. For a lengthy DWCNT, similar to the previously studied boundary con-
ditions, the variation of the small-scale parameter has a trivial effect on the variation of the first dimensionless flexural fre-
quency of the DWCNT. A brief scrutiny of the presented results in Tables 5–10 also reveals that the variation of the initially
axial force within the DWCNT with CF conditions is most influential on the first dimensionless flexural frequency with re-
spect to other boundary conditions.

5.3. Vibration modes patterns of the innermost and outermost tubes of the DWCNT under different conditions

In this part, the vibrational mode shapes associated with the natural frequencies of the DWCNT are plotted for different
boundary conditions. It is emphasized herein that the effect of influential parameters on the vibration mode patterns of the
lengthy DWCNT as well as the amplitude ratio between the innermost and outermost tubes are not of concern. However, the
focal focus of the author is on the general patterns of the flexural vibration modes of the innermost and outermost tubes of
the DWCNT under different conditions. For this purpose, the first ten vibration mode shapes of the DWCNT are demonstrated
in Figs. 3–8 for various boundary conditions. The plotted results are provided for freely vibrant DWCNTs with k1 ¼ 40 and
l ¼ 0 when no initially axial forces are exerted on DWCNTs (i.e., Kr=Kt=Nbi

=0). In these figures, the mode shapes pertinent
to the innermost and the outermost tubes have been shown by the solid lines and the dotted lines, respectively.

In Fig. 3, the predicted vibration modes of the DWCNT with SS boundary conditions and their correspondence dimension-
less flexural frequencies are given. As it is clear, the dynamic amplitudes of the innermost tube are generally greater than
those of the outermost tube. In the cases of the first four modes of vibration, the DWCNT commonly exhibits a coaxial vibra-
tion pattern and the dynamic amplitudes of the innermost and outermost tubes are approximately the same. For the fifth
mode of vibration, the noncoaxial deflections of the innermost and outermost tubes of the DWCNT are apparent. The second,
third, fourth, fifth, and tenth modes of vibration of the DWCNT in order consist of two, three, four, five, and six half-waves
and the deflections of the innermost and outermost tubes are in the same direction. For the cases of the sixth to the ninth
vibration modes, obvious noncoaxial vibration modes are predicted by the proposed model. The sixth, seventh, eighth, and
ninth vibration modes are composed of two, one, three, and four half-waves of vibration, respectively. For these vibration
modes, the deflections of the innermost tube are in the opposite direction of those of the outermost tube.

The first ten vibration mode shapes of the DWCNT with CC conditions as well as the values of the corresponding dimen-
sionless flexural frequencies are illustrated in Fig. 4. The first three vibration modes show somewhat coaxial vibration modes
such that the dynamic amplitudes of deflection of the innermost tube are fairly greater than those of the outermost tube. The
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Fig. 3. The first ten transverse vibration modes of the innermost and outermost tubes of a DWCNT with SS boundary conditions (k1 = 40, e0a = 0; (. . .)
outermost tube, (—) innermost tube).
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fifth, sixth, seventh, and ninth vibration modes of the DWCNT have been consisted of one, two, three, and four half-waves,
respectively. In such vibration modes, the deflections of the outermost tube are in the opposite direction with respect to
those of the innermost tube. The eighth and tenth modes of vibration are, respectively, characterized by five and six half-
waves and the innermost and outermost tubes have been deflected in the same direction. For these vibration modes, the
dynamic amplitude deflections of the innermost are also greater than those of the outermost tube.

Fig. 5 shows the first ten vibration modes of the DWCNT with SC boundary conditions. As it is seen in Fig. 5, the first three
modes of vibration of the DWCNT are approximately coaxial since the deflections of both the innermost and outermost tubes
are the same and the amplitudes of the vibration modes of both the inner and outer tubes are fairly similar. The fifth, sixth,
eighth, and ninth modes of vibration consist of one, two, three, and four half-waves and the deflections of the innermost and
outermost tubes are in the opposite direction.

The first ten vibration modes as well as their pertinent dimensionless frequency values of the DWCNT under SfS condi-
tions are provided in Fig. 6. The first three vibration modes exhibit the coaxial vibration pattern. The first, second, third,
fourth, fifth, and tenth vibration modes are consisting of one, three, five, seven, nine, and eleven quarter-waves, respectively,
and the deflections of the innermost and outermost tubes are in the same direction. The sixth, seventh, eighth, and ninth
vibration modes have, respectively, three, one, five, and seven quarter-waves and they are clearly noncoaxial. In such vibra-
tion modes, the deflections of the innermost and outermost tubes are in the opposite direction as well.

In Fig. 7, the first ten vibration modes of the innermost and outermost tubes of the DWCNT with SfC boundary conditions
as well as the values of the corresponding dimensionless flexural frequencies are presented. A brief comparison between the
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plotted vibration modes in Figs. 6 and 7 indicates that the patterns of vibration modes of the DWCNT with SfC conditions are
somehow similar to the case of the DWCNT under SfS conditions.

Finally, the first ten vibration modes of the DWCNT with CF boundary conditions as well as the values of their correspond-
ing dimensionless frequencies are provided in Fig. 8. The first four modes display coaxial vibration pattern. Moreover, in the
fifth and tenth modes of vibration modes, the deflection amplitudes of the innermost tube are apparently larger than those of
the outermost tube. For the sixth, seventh, eighth, and ninth modes of vibration, there exists noncoaxial vibration patterns. In
such cases, the deflections of the tubes are in the opposite direction. Additionally, the amplitudes of deflections of the
innermost tube are somewhat greater than those of the outermost tube.

5.4. Parametric studies

In this part, the effects of the slenderness ratio of the innermost tube, small-scale parameter, initially axial force, lateral
and rotational stiffness of the surrounding matrix on the first five flexural frequencies of DWCNTs are investigated for dif-
ferent boundary conditions. The radii of the innermost and outermost tubes are considered as rm1 = 3 nm and rm2 = 3.34 nm,
respectively.

5.4.1. Effect of slenderness ratio on the natural frequencies of DWCNTs
The effects of the slenderness ratio of the innermost tube on the dimensionless flexural frequencies of a DWCNT with dif-

ferent boundary conditions are of concern. In the absence of the initially axial force, a freely excitable DWCNT is considered
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(i.e., Kt ¼ Kr ¼ Nbi
= 0). The plots of the first dimensionless natural frequencies in terms of the slenderness ratio of the inner-

most tube have been provided for the understudy DWCNT with SS, CC, SC, and CF boundary conditions in Fig. 9(a), (b), (c),
and (d), respectively. The predicted results have been given for three levels of the small-scale parameter (i.e., e0a = 0, 1, and
2 nm). As it is obvious in Fig. 9(a)–(d), the dimensionless frequencies of the DWCNT for each boundary conditions increase
with the slenderness ratio such that the dimensionless frequency of each mode would converge to a specific value, irrespec-
tive of the small-scale parameter. It implies that for higher levels of the slenderness ratio, the variation of the small-scale
parameter has a trivial effect on the variation of dimensionless natural frequencies. For all boundary conditions, the variation
of the small-scale effect parameter is more influential on the frequencies of higher modes of vibration.

5.4.2. Effect of small-scale parameter on the natural frequencies of DWCNTs
In Fig. 10(a)–(d), the first five dimensionless natural frequencies of a DWCNT with k1 ¼ 20 as a function of the small-scale

parameter have been plotted for different boundary conditions. The results are presented in the absence of initially axial
force when the DWCNT has been released from the surrounding matrix. As it is seen in Fig. 10(a)–(d), the natural frequencies
generally decrease with the small-scale parameter, irrespective of the boundary conditions of the DWCNT. This matter is
more obvious for the frequencies corresponding to the higher modes of vibration. A scrutiny of the plotted results in
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Fig. 10(a)–(d) is also indicated that the influence of the small-scale parameter on the natural frequencies is, respectively, less
and more noticeable to the DWCNTs with CF and CC conditions with respect to other cases.

5.4.3. Effect of lateral stiffness of the surrounding matrix on the natural frequencies of DWCNTs
In this part, the influence of lateral stiffness of the surrounding matrix on the natural frequencies of the DWCNT embed-

ded in an elastic medium is of particular interest. For this purpose, the first five dimensionless frequencies of the DWCNT as a
function of the dimensionless lateral stiffness of the surrounding matrix are provided in Fig. 11(a)–(d) for different boundary
conditions as well as small-scale parameters. The slenderness ratio of the innermost tube is set equal to 20. It is assumed that
the surrounding matrix does not resist against rotation of the DWCNT (i.e., Kr = 0), and both the innermost and outermost
tubes do not experience initially axial forces. As it is obvious from the presented results in Fig. 11(a)–(d), the natural frequen-
cies of the DWCNT increase with the lateral stiffness of the surrounding matrix for all boundary conditions. Furthermore, the
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variation of the lateral stiffness of the surrounding matrix is more influential on the variation of the dimensionless natural
frequencies of the lower modes of vibration. A brief survey of the plotted results in Fig. 11(a)–(d) shows that the variation of
the lateral stiffness of the surrounding medium has the most influence on the variation of the first natural frequency of the
DWCNT with CF boundary conditions in compare to other cases. However, the effect of the lateral stiffness on the first nat-
ural frequency of the DWCNT with CC boundary conditions is very trivial. For an assumed value of the lateral stiffness of the
surrounding matrix, the predicted dimensionless natural frequencies would lessen with the small-scale parameter, irrespec-
tive of the boundary condition of the DWCNT. The plotted results in Fig. 11(a)–(d) indicate that the rate of decreasing of the
frequencies due to the variation of the small-scale parameter is more apparent to those frequencies associated with the high-
er modes of vibration.

5.4.4. Effect of rotational stiffness of the surrounding matrix on the natural frequencies of DWCNTs
Herein, the effect of the rotational stiffness of the surrounding medium of the DWCNT on the first five dimensionless nat-

ural frequencies of the DWCNT is of concern. Consider a DWCNT with the innermost tube’s slenderness ratio equal to 20 and
its both tubes are free from any initial axial force. Since the effect of only rotational stiffness of the surrounding matrix on the
vibration characteristics of the DWCNT is of interest, the lateral stiffness of the surrounding matrix is set equal to zero. The
plotted results in Fig. 12(a)–(d) have been provided for various boundary conditions as well as different levels of the small-
scale parameter. The obtained results reveal that an increase in the rotational stiffness of the surrounding matrix leads to an
increase of the first dimensionless frequency of the DWCNT, irrespective of the small-scale effect parameter and the bound-
ary condition of the DWCNT. Except the CF boundary condition, there exists roughly a linear relationship between the pre-
dicted dimensionless frequencies and the dimensionless rotational stiffness of the surrounding matrix (see Fig. 12(a)–(c)).
According to the graphically presented results in Fig. 12(a)–(d), the effect of the variation of the rotational stiffness constant
on the frequencies of the lower vibration’s modes is more obvious with respect to those of higher vibration’s modes. The
demonstrated results in Fig. 12(a)–(d) also reveal that the variation of the rotational stiffness of the surrounding matrix
has the most influence on the variation of first natural frequency of the DWCNT with CF boundary conditions. This matter
follows with lower rate as one moves from CF to SS, then SC, and finally CC boundary conditions.

5.4.5. Effect of initially axial force on the natural frequencies of DWCNTs
Another interesting parametric study is carried out to determine the effect of the initially axial forces within the inner-

most and outermost tubes on the natural frequencies of the DWCNT. To this end, an elastically supported DWCNT with slen-
derness ratio of the innermost tube equal to 20 which has been released from the surrounding matrix is considered. The plots
of the first five dimensionless frequencies as a function of dimensionless initially axial forces within the nanotubes of the
DWCNT are presented in Fig. 13(a)–(d) for different boundary conditions as well as various values of small-scale parameters.
According to the plotted results in Fig. 13(a)–(d), for all considered boundary conditions, the dimensionless natural frequen-
cies increase with the dimensionless initially axial force. Moreover, the influence of the initially axial force on the lower nat-
ural frequencies of the DWCNT is more apparent. For a DWCNT with assumed values of initially axial forces, the natural
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frequencies would lessen as the small-scale parameter becomes highlighted; however, this fact is more obvious for the nat-
ural frequencies of higher modes of vibration. For the studied range of the initially axial forces, the variation of the initially
axial forces has the less/most effect on the variation of the natural frequencies of the DWCNT with CC/CF boundary condi-
tions with respect to other cases.

6. Conclusions

For different boundary conditions, free transverse dynamic responses of lengthy double-walled carbon nanotubes
(DWCNTs) embedded in an elastic matrix are examined in the context of the nonlocal continuum theory of Eringen. To this
end, the equivalent continuum structures (ECSs) associated with the innermost and outermost tubes are considered. The
interaction van der Waals forces between the atoms of the innermost and outermost tubes are modeled via a continuous
lateral spring connecting two tubes. The interaction of the DWCNT with its surrounding medium is is also simulated by con-
tinuous lateral and rotary springs, which are attached to the outer ECS through its length. The two attached lengthy ECSs are
then modeled by using nonlocal Rayleigh beam theory. The dimensionless equations of motion describing free transverse
vibrations of the elastically supported DWCNT embedded in an elastic medium are derived. Finding an analytical solution
to the obtained governing equations with their general boundary conditions is a very difficult job. Such solutions are
available for some special cases. To bridge such a scientific gap, reproducing kernel particle method (RKPM) is proposed
as an alternative efficient scheme. The deflection fields of the innermost and outermost tubes, the only unknowns of the
problem, are discretized using appropriate shape functions of RKPM. By introducing appropriate test functions to the
governing equations and using integration by parts, the set of algebraic equations describing motion of the considered
DWCNT are obtained. For a lengthy DWCNT with different boundary conditions, the eigenvalues and eigenvectors of the
set of eigenvalue equations are calculated. In some special cases, the obtained results are also compared with those of other
researchers and a reasonably good agreement is achieved. The effects of the slenderness ratio, small-scale parameter, lateral
and rotational stiffness of the surrounding matrix, and initially axial force on the first five dimensionless flexural frequencies
of the DWCNT embedded in an elastic matrix are explored for different boundary conditions via comprehensive parametric
studies. The roles of the influential parameters on the free variation of DWCNTs under different boundary conditions are also
displayed and discussed in some detail.
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