Solution of a Conjecture on Skolem Mean Graph of Stars $K_{1,l} \bigcup K_{1,m} \bigcup K_{1,n}$

V.Balaji

(Department of Mathematics, Surya College of Engineering and Technology, Villupuram-605 652, India)

E-mail: pulibala70@gmail.com

Abstract: In this paper, we prove a conjecture that the three stars $K_{1,l} \bigcup K_{1,m} \bigcup K_{1,n}$ is a skolem mean graph if |m-n| < 4+l for integers $l, m \ge 1$ and $l \le m < n$.

Key Words: Smarandachely edge m-labeling f_S^* , Smarandachely super m-mean graph, skolem mean labeling, Skolem mean graph, star.

AMS(2010): 05C78

§1. Introduction

All graphs in this paper are finite, simple and undirected. Terms not defined here are used in the sense of Harary [4]. A vertex labeling of G is an assignment $f:V(G) \to \{1,2,3,\ldots,p+q\}$ be an injection. For a vertex labeling f, the induced Smarandachely edge m-labeling f_S^* for an edge e=uv, an integer $m\geq 2$ is defined by $f_S^*(e)=\left\lceil\frac{f(u)+f(v)}{m}\right\rceil$. Then f is called a Smarandachely super m-mean labeling if $f(V(G))\cup\{f^*(e):e\in E(G)\}=\{1,2,3,\ldots,p+q\}$. Particularly, in the case of m=2, we know that

$$f^*(e) = \begin{cases} \frac{f(u) + f(v)}{2} & \text{if } f(u) + f(v) \text{ is even;} \\ \frac{f(u) + f(v) + 1}{2} & \text{if } f(u) + f(v) \text{ is odd.} \end{cases}$$

Such a labeling is usually called a mean labeling. A graph that admits a Smarandachely super mean m-labeling is called a Smarandachely super m-mean graph, particularly, a skolem mean graph if m=2 in [1]. It was proved that any path is a skolem mean graph, $K_{1,m}$ is not a skolem mean graphif $m\geq 4$, and the two stars $K_{1,m}\bigcup K_{1,n}$ is a skolem mean graph if and only if $|m-n|\leq 4$. In [2], it was proved that the three star $K_{1,l}\bigcup K_{1,m}\bigcup K_{1,n}$ is a skolem mean graph if |m-n|=4+l for $l=1,2,3,\cdots,$ $m=1,2,3,\cdots$ and $m\leq m< n$. It is also shown in [2] that the three star $K_{1,l}\bigcup K_{1,m}\bigcup K_{1,n}$ is not a skolem mean graph if |m-n|>4+l for $l=1,2,3,\cdots,$ $m=1,2,3,\cdots,$ $n\geq l+m+5$ and $l\leq m< n$, the four star $K_{1,l}\bigcup K_{1,l}\bigcup K_{1,m}\bigcup K_{1,m}\bigcup K_{1,n}$ is a skolem mean graph if |m-n|=4+2l for $l=2,3,4,\cdots,$ $m=2,3,4,\cdots,$ n=2l+m+4 and $l\leq m< n$; the four star $K_{1,l}\bigcup K_{1,l}\bigcup K_{1,m}\bigcup K_{1,n}$ is not a skolem mean graph if |m-n|>4+2l for $l=2,3,4,\cdots,$ $m=2,3,4,\cdots,$ $n\geq 2l+m+5$ and $l\leq m< n$; the four star $K_{1,l}\bigcup K_{1,l}\bigcup K_{1,l}$

¹Received June 16, 2011. Accepted December 8, 2011.

116 V.Balaji

 $m = 1, 2, 3, \dots, n = m + 7, 1 \le m < n$, and the four star $K_{1,1} \bigcup K_{1,1} \bigcup K_{1,m} \bigcup K_{1,n}$ is not a skolem mean graph if |m - n| > 7 for $m = 1, 2, 3, \dots, n \ge m + 8$ and $1 \le m < n$. In [3], the condition for a graph to be skolem mean is that $p \ge q + 1$.

§2. Main Theorem

Definition 2.1 The three star is the disjoint union of $K_{1,l}$, $K_{1,m}$ and $K_{1,n}$ for integers $l, m, n \ge 1$. Such a graph is denoted by $K_{1,l} \bigcup K_{1,m} \bigcup K_{1,n}$.

Theorem 2.2 If $l \leq m < n$, the three star $K_{1,l} \bigcup K_{1,m} \bigcup K_{1,n}$ is a skolem mean graph if |m-n| < 4+l for integers $l, m \geq 1$.

Proof Consider the graph $G = K_{1,l} \bigcup K_{1,m} \bigcup K_{1,n}$. Let $\{u\} \bigcup \{u_i : 1 \leq i \leq l\}$, $\{v\} \bigcup \{v_j : 1 \leq j \leq m\}$ and $\{w\} \bigcup \{w_k : 1 \leq k \leq n\}$ be the vertices of G. Then G has l+m+n+3 vertices and l+m+n edges. We have $V(G) = \{u,v,w\} \bigcup \{u_i : 1 \leq i \leq l\} \bigcup \{v_j : 1 \leq j \leq m\} \bigcup \{w_k : 1 \leq k \leq n\}$. The proof id divided into four cases following.

Case 1 Let $l \le m < n$ where n = l + m + 3 for integers $l, m \ge 1$. We prove such graph G is a skolem mean graph. The required vertex labeling $f: V(G) \to \{1, 2, 3, \dots, l + m + n + 3\}$ is defined as follows:

$$f(u) = 1, \quad f(v) = 3;$$

 $f(w) = l + m + n + 3;$
 $f(u_i) = 2i + 3 \text{ for } 1 \le i \le l;$
 $f(v_j) = 2l + 2j + 3 \text{ for } 1 \le j \le m;$
 $f(w_k) = 2k \text{ for } 1 \le k \le n - 1 \text{ and }$
 $f(w_n) = l + m + n + 2.$

The corresponding edge labels are as follows:

The edge labels of uu_i is i+2 for $1 \le i \le l$, vv_j is l+j+3 for $1 \le j \le m$ and ww_k is $\frac{2k+l+m+n+3}{2}$ for $1 \le k \le n-1$. Also, the edge label of ww_n is l+m+n+3. Therefore, the induced edge labels of G are distinct. Hence G is a skolem mean graph.

Case 2 Let $l \le m < n$ where n = l + m + 2 for integers $l, m \ge 1$. We prove that G is a skolem mean graph. The required vertex labeling $f: V(G) \to \{1, 2, 3, \dots, l + m + n + 3\}$ is defined as follows:

$$f(u) = 1;$$
 $f(v) = 2;$ $f(w) = l + m + n + 3;$
 $f(u_i) = 2i + 2$ for $1 \le i \le l;$
 $f(v_j) = 2l + 2j + 2$ for $1 \le j \le m;$
 $f(w_k) = 2k + 1$ for $1 \le k \le n - 1$ and
 $f(w_n) = l + m + n + 2.$

The corresponding edge labels are as follows:

The edge labels of uu_i is i+2 for $1 \le i \le l$; vv_j is l+j+2 for $1 \le j \le m$ and ww_k is $\frac{2k+l+m+n+4}{2}$ for $1 \le k \le n-1$. Also, the edge label of ww_n is l+m+n+3. Therefore, the induced edge labels of G are distinct. Hence the graph G is a skolem mean graph.

Case 3 Let $l \le m < n$ where n = l + m + 1 for integers $l, m \ge 1$. In this case, the required vertex labeling $f: V(G) \to \{1, 2, 3, \dots, l + m + n + 3\}$ is defined as follows:

$$f(u) = 1;$$
 $f(v) = 2;$ $f(w) = l + m + n + 3;$
 $f(u_i) = 2i + 1$ for $1 \le i \le l;$
 $f(v_j) = 2l + 2j + 1$ for $1 \le j \le m;$
 $f(w_k) = 2k + 2$ for $1 \le k \le n - 1$ and
 $f(w_n) = l + m + n + 2.$

The corresponding edge labels are as follows:

The edge labels of uu_i is i+1 for $1 \le i \le l$; vv_j is l+j+2 for $1 \le j \le m$ and ww_k is $\frac{2k+l+m+n+5}{2}$ for $1 \le k \le n-1$. Also, the edge label of ww_n is l+m+n+3. Therefore, the induced edge labels of G are distinct. Therefore, G is a skolem mean graph.

Case 4 Let $l \le m < n$ where n = l + m for integers $l, m \ge 1$. We prove such graph G is a skolem mean graph. In this case, the required vertex labeling $f: V(G) \to \{1, 2, 3, \dots, l + m + n + 3\}$ is defined as follows:

$$f(u) = 1;$$
 $f(v) = 3;$ $f(w) = l + m + n + 3;$
 $f(u_i) = 2i$ for $1 \le i \le l;$
 $f(v_j) = 2l + 2j$ for $1 \le j \le m;$
 $f(w_k) = 2k + 3$ for $1 \le k \le n - 1$ and
 $f(w_n) = l + m + n + 2.$

Calculation shows the corresponding edge labels are as follows:

The edge labels of uu_i is i+1 for $1 \le i \le l$; vv_j is l+j+2 for $1 \le j \le m$ and ww_k is $\frac{2k+l+m+n+6}{2}$ for $1 \le k \le n-1$. Also, the edge label of ww_n is l+m+n+3. Therefore, the induced edge labels of G are distinct and G is a skolem mean graph.

Combining these discussions of Cases 1-4, we know that G is a skolem mean graph. \square

References

- [1] V.Balaji, D.S.T.Ramesh and A. Subramanian, Skolem mean labeling, *Bulletin of Pure and Applied Sciences*, 26E(2)(2007), 245-248.
- [2] V.Balaji, D.S.T.Ramesh and A.Subramanian, Some Results on Skolem Mean Graphs, *Bulletin of Pure and Applied Sciences*, 27E(1)(2008), 67-74.
- [3] J.Gallian, A Dynamic Survey of Graph Labeling, *The Electronic Journal of Combinatorics*, 16 (2009), # DS6.
- [4] F.Harary, Graph Theory, Addison-Wesley, Reading Mass, 1972.