ORACLE
OPEN
WORLD

Oracle Autonomous Transaction Processing Overview and Roadmap

Juan Loaiza

Senior Vice President Database Systems Technologies

#thinkautonomous

Autonomous Database

- Traditionally each database deployment was unique
 - You are the DB builder, securer, repairer, tuner, and driver
 - Complex, labor intensive, poor economies-of-scale

- Autonomous Database revolutionizes data management
 - The full database management lifecycle is completely automated
 - Even for ultra-mission critical databases with sensitive data
 - Enables you to innovate more, pay less, and ensure data safety

Journey to Autonomous Database

Oracle has invested thousands of engineer years automating and optimizing database

- Automatic Diagnostic Framework
- Automatic Refresh of Clones

12c

Automatic Columnar Flash

- Automatic IM population
- Automatic Application Continuity

18c

- Automatic Memory Management
- Automatic Segment Space Mgmt
- Automatic Statistics Gathering
- Automatic Storage Management
- Automatic Workload Repository
- Automatic Diagnostic Monitor

- Automatic Query Rewrite
- Automatic Undo Management

9i

Automatic SQL Tuning

11g

- Automatic Workload Capture/Replay
- Automatic SQL Plan Management
- Automatic Capture of SQL Monitor
- Automatic Data Optimization

Journey to Autonomous Database

And thousands of engineer years automating and optimizing database infrastructure

• Exadata Cloud Service

- 2018
- In-Memory Columnar in Flash
- Smart Fusion Block Transfer
- Direct-to-wire Protocol
- JSON and XML offload
- Instant failure detection
- Network Resource Mgmt
- Prioritized File Recovery
- IO Priorities
- Data Mining Offload
- Offload Decryption
- Database Aware Flash Cache
- Storage Indexes
- Hybrid Columnar Data
- Smart Scan
- Infiniband Scale-Out

Autonomous Completes the Journey

Brings Full Automation to Entire Database Lifecycle

World's First Autonomous Database

How It Works

Provisioning

Rapidly creates **scalable mission critical** databases

Creates Exadata⁺
Cloud Infrastructure,
RAC⁺ scale-out database,
Active Data Guard⁺ standby

Provisioning

Rapidly creates **scalable mission critical** databases

Creates Exadata⁺
Cloud Infrastructure,
RAC⁺ scale-out database,
Active Data Guard⁺ standby

Security

Protects from external and internal threats

Monitors threats, applies security **updates online**⁺, stops admin snooping with **DB Vault**⁺, **encrypts** all data

Provisioning

Rapidly creates **scalable mission critical** databases

Creates Exadata⁺
Cloud Infrastructure,
RAC⁺ scale-out database,
Active Data Guard⁺ standby

Security

Protects from external and internal threats

Monitors threats, applies security **updates online**⁺, stops admin snooping with **DB Vault**⁺, **encrypts** all data

Management

Automates all infrastructure and database management

Performs all OS and SYSDBA operations, tunes settings, patches all software online⁺, diagnoses errors⁺

Protection

Recovers from any failure without downtime

Automates backup, restore, application transparent failover in scale-out cluster or to active remote standby

Protection

Recovers from any failure without downtime

Automates backup, restore, application transparent failover in scale-out cluster or to active remote standby

Scaling

Scales online for highest performance and lowest cost

Instant online elasticity[†]
of serverless
compute and storage
enables true pay-per-use[†]

Protection

Recovers from any failure without downtime

Automates backup, restore, application transparent failover in scale-out cluster or to active remote standby

Scaling

Scales online for highest performance and lowest cost

Instant online elasticity[†]
of serverless
compute and storage
enables true pay-per-use[†]

Optimization

Machine Learning optimizes database for each workload

Continuously optimizes memory, data formats, indexes⁺, parallelism⁺, and plans⁺ for each workload

One Autonomous Database - Optimized by Workload

Autonomous Data Warehouse (ADW)

- Data Warehouse, Data Mart
- Data Lake, Machine Learning

Autonomous Transaction Processing (ATP)

- Transactions, Batch, Reporting, IoT
- Application Dev, Machine Learning

Autonomous Optimizations - Specialized by Workload

ADW

ATP

Columnar Format

Row Format

Creates Data Summaries

Creates Indexes*

Memory Speeds Joins, Aggs

Memory for Caching to Avoid IO

Statistics updated in real-time while preventing plan regressions

Continuous Optimization – Enabled by Machine Learning

- SQL Plans are like driving directions
 - Should adapt as data volume (traffic) changes
- Indexes are like roads and bridges
 - Should adapt if nature of the workload evolves
- Changes in data volume and SQL workload are continuously captured
- Machine Learning algorithm processes changes to find new optimal plans and indexes*
 - Improved driving directions, roads, bridges

Machine Learning meets Mission Critical

- New approach avoids performance regressions
 - Even for difficult cases where new plan or index helps 99 SQL statements and hurts 1
- Changes are first tested in background
- Then the benefit is validated on first execute of every changed SQL
 - If performance regresses, then old SQL plan is used

More Details Tomorrow at 4:45pm in session TRN3980

Test Drive Automatic Index Creation in Oracle Autonomous Database Cloud

ATP In Action On Netsuite Workload

- Ran a complex Netsuite workload, and compared ATP to existing expert tuning
- 17,542 SQL statements, 1,852 tables, 8,151 indexes years of tuning to create these indexes
 - Before running on ATP, all indexes and statistics were dropped

ATP achieved identical performance to expert manual tuning ATP stays tuned as workload changes

Creation and Use

Autonomous Database Creation

- Database creation is super easy. Just select:
 - DB type ATP or ADW
 - DB CPU count really performance
 - DB storage size limit
 - DB region

- Performance resources allocated proportionally to number of CPUs chosen
 - Example if a DB gets 15% of CPUs in Exadata system, then it gets 15% of memory
 - Same for IOs per second, Storage CPUs, Flash Cache

Pre-defined Services for Autonomous Transaction Processing

- Clients connect to pre-defined "Services" using connect strings
- Different services defined for Transactions and Reporting/Batch
- Different services within TP and Batch control priority and parallelism

SERVICES NAME	RESOURCE MANAGEMENT SHARES	PARALELLISM	_
TPURGENT	12	MANUAL	
TP	8	1	
HIGH	4	CPU_COUNT	
MEDIUM	2	4	
LOW	1	1	

Use for Analytics, Reporting, and Batch on ADW and ATP

Autonomous DB Service – Interfaces

- Database actions are exposed through Cloud UI and REST APIs
 - —Database create/terminate/backup/restore/stop/start
 - Change provisioned CPUs or storage
- Monitoring is available through the cloud service dashboard
 - Autonomous Database monitoring will also be possible with customer's existing Enterprise Manager Cloud Control (coming soon)
- Developers can use SQL Developer, or any other developer tool that supports standard Oracle database connections
- Using Oracle Rest Data Services (ORDS) developers can easily build Rest APIs for data and procedures in the database

Deployment Options

One Autonomous Database – Two Deployment Options

Serverless Exadata Cloud Infrastructure

- An ATP-S Database is placed on Exadata Cloud Infrastructure based on Region
- Oracle completely manages and controls all placement, patching, software versions, and isolation
- RAC cluster enables rolling upgrades and fast failover
- Low minimum size/cost 1 OCPU and 1 TB of storage
- Low minimum time commitment 1 hour

Dedicated Exadata Cloud Infrastructure

- Designed for consolidation of mission critical databases
- Dedicated provides complete isolation from other tenants
- Customer is assigned dedicated Quarter/Half/Full Exadata
 System within a customer chosen region and customer VCN
 - Minimum term for hardware is 1 month
 - Software billed per hour based on number of CPUs activated for provisioned databases

Dedicated Exadata Cloud Infrastructure

- Higher Security Isolation
 - No other tenants on system
- Higher Performance Isolation
 - No other tenants running on system
 - Control over density and overprovisioning
 - Guaranteed instant upsizing of resources within system
- Higher Software Control
 - Control within limits over software version and patching windows
 - Control over workloads allowed to run in database or system

Dedicated Simple Isolated Cloud in Public Cloud

- Simplest deployment has single cluster and single Container Database (CDB)
- Multiple databases (PDBs) can be created in the CDB

Dedicated Sophisticated Isolated Cloud in Public Cloud

- Optionally create multiple container databases (CDBs) for higher control and isolation between consolidated databases
 - Isolate workgroups (sales, marketing) into separate CDBs
 - Allow separation by service level, e.g. test/prod, Data Guard or no
 - Group databases by software version required
 - Allow different applications to have different patching schedules
- Within a CDB can overprovision to efficiently share resources

Dedicated Infrastructure Fleet Administrator Role

- Dedicated Systems are controlled by Fleet Administrator
- Fleet Admin allocates resources (infrequent) by selecting:
 - Exadata Infrastructure number, size, region, VCN, License Model (BYOL) of systems
 - Container DBs names, software versions, backup retention, Data Guard standby
- Chooses Cloud Compartment and tag for Resources
- Chooses timing and content of patches within limits

ATP Operations:

Security

Security – Protection From External Attacks

- No login allowed to OS or CDB, no Root or SysDBA, only login as PDBAdmin or DB user
 - No callouts to OS allowed. Prevents installing or modifying any software on system.
- Database clients can connect securely using TLS/wallet
- Databases run in customer private Virtual Cloud Network to prevent network access by other customers or hackers – Public IP not required (now in Dedicated, soon in Serverless)
- Secure Configuration deployed at all levels OS, database, storage, etc.
- Oracle automatically applies updates with latest security patches
 - Quarterly, or off-cycle for high impact security vulnerability (details later)
- Native encryption prevents data access from outside the database

Dedicated Operations:

High Availability

Availability Policies

- High Availability Protection from hardware failures, software crashes, patches, updates
 - Uses RAC Database, redundant compute, networking, triple mirrored storage, and daily backup
- Extreme Availability Adds protection from site outages and data corruptions
 - Uses Active Data Guard Standby. Available soon on ATP-Dedicated
 - Service Uptime SLA per Month: 99.995 NRX% (NRX = No Ridiculous Exclusions)
 - 99.995% Uptime = at most 2m 12s of downtime per month
 - Goal is for application impact to be well under 30 seconds from any given availability event

Dedicated Operations:

Patching And Upgrades

Review - New Annual Release Model and Motivation

- Huge Releases every few years big bang of many features creates instability
 - -Solution: Annual Releases fewer changes, easier to test

- Want large patch bundles to avoid one-off patch proliferation
 - -Solution: Quarterly **Updates** include all important fixes

- However, bundling many fixes together increases risk of regression
 - —Solution: Quarterly **Revisions** only includes **security** and **regression** fixes

Quarterly Database **Updates**

Revisions

Updates and Revisions

Production	April	July	October	January	April
19.2.0	19.3.0	19.4.0	← Update		
		19.3.1	19.4.1	Revision	n #1
			19.3.2	19.4.2	Revision #

Updates and Revisions

- ATP-D allows customers to patch to current or previous Update or Revision
- Allows customers to apply latest Update on test system, Revision on production

- Quarterly Patching of all components (on-demand for critical security issue)
 - Firmware, OS, Hypervisor, Clusterware, Database
 - Installs prebuilt Gold Image of patched database executables rather than directly applying patches
- Patching is automatically scheduled
 - Customer can adjust timing within a time range
- Patches applied rolling across RAC nodes and Exadata storage servers
 - Database is continuously available to application
 - Applications using Application Continuity best practices run without interruption

Autonomous Database:

Migration

Migration to Autonomous Database

- Autonomous Database is an Oracle Managed and Secure environment
- A physical database can't simply be migrated to autonomous because:
 - Database must be converted to PDB, upgraded to 19c, and encrypted
 - Any changes to Oracle shipped stored procedures or views must be found and reverted
 - All uses of CDB admin privileges must be removed
 - All legacy features that are not supported must be removed (e.g. legacy LOBs)
- Migration uses Data Pump to move database data into new Autonomous DB
 - GoldenGate replication can be used to keep database online during process
 - Has standard GoldenGate restrictions or rowids, nested tables, identity columns, etc.

Benefits

- Spend Less
 - Eliminate tedious, expensive, and unsafe manual database management
 - Cut runtime costs up to 90% with ultra-efficiency and pay-per-use
- Innovate more
 - Develop new applications faster with instant database provisioning and self-tuning
 - Refocus talent on business value
- Ensure data safety
 - Continuous online updates protect against cyber-attacks
 - Fault-tolerant solution including maintenance

Think Autonomous – Revolutionize Your Data Management

Try it Now

2 TB Autonomous Database FREE for 3,300 Hours

https://cloud.oracle.com/try-autonomous-database

APPENDIX

Legacy Features Disallowed in ATP

Legacy Feature	Replacement		
Basic File LOBS	Secure Files LOBS		
Dictionary Managed Tablespaces	Locally Managed Tablespaces		
Manual Space Management	Automatic Space Management (ASSM)		
Uniform Extent Allocation	Autoallocate		
Manual Undo Segments	Undo Tablespace		
DBMS_JOB	DBMS_SCHEDULER		
DBMS_PIPE	Advanced Queuing		
Non 8K Blocks	8K Blocks		
Clustered Tables	Normal Tables		
Index Organized Tables	Normal Tables		
Tables that Disallow Row Movement	Row Movement Enabled		

Restrictions – V1 Feature Limitations

- Java VM
- XML DB Repository
- Application Container
- Oracle Sharding
- LogMiner
- Golden Gate Capture
- Logical Standby except for patch/upgrade
- Real Application Testing
- OLAP
- Workspace Manager
- Transportable Tablespaces
- Oracle Multimedia
- Data Models

- Logical Standby and GoldenGate Related Restrictions during migration or upgrade:
 - Changes to tables with unsupported datatypes
 - Nested Tables, Identity Columns, Temporal Validity columns, PKREF, PKOID, SDO_RDF_TRIPLE_S
 - Reference and System Table Partitions
 - Edition Based Redefinition
 - Sharded queues
 - Various DBMS_* packages during rolling upgrade and migration

Database Creation is Almost Identical

- Database creation is almost identical between serverless and dedicated
 - Same screens and interfaces
- Main difference when creating a database in Dedicated, customer chooses destination CDB for new database instead of Region

RAC CLUSTER